• No results found

University of Groningen Lateral organization of proteins and lipids in the plasma membrane and the kinetics and lipid- dependence of lysine transport in Saccharomyces cerevisiae van 't Klooster, Joury

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Lateral organization of proteins and lipids in the plasma membrane and the kinetics and lipid- dependence of lysine transport in Saccharomyces cerevisiae van 't Klooster, Joury"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Lateral organization of proteins and lipids in the plasma membrane and the kinetics and

lipid-dependence of lysine transport in Saccharomyces cerevisiae

van 't Klooster, Joury

DOI:

10.33612/diss.119641587

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

van 't Klooster, J. (2020). Lateral organization of proteins and lipids in the plasma membrane and the kinetics and lipid-dependence of lysine transport in Saccharomyces cerevisiae. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.119641587

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

References

1. Singer, S. J. & Nicolson, G. L. The Fluid Mosaic Model of the Structure of Cell Membranes. Science (80-. ). 175, 720–731 (1972).

2. Gibellini, F. & Smith, T. K. The Kennedy pathway-De novo synthesis of phosphatidylethanolamine and phosphatidylcholine. IUBMB Life 62, n/a-n/a (2010).

3. Athenstaedt, K. & Daum, G. Phosphatidic acid, a key intermediate in lipid metabolism. Eur J Biochem 266, 1–16 (1999).

4. Daum, G., Lees, N. D., Bard, M. & Dickson, R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14, 1471–1510 (1998).

5. Volkman, J. K. Sterols and other triterpenoids: source specificity and evolution of biosynthetic pathways. Org Geochem 36, 139–159 (2005).

6. Gunstone, F. D. Lipids — Nomenclature, structure, biosynthesis, and chemical synthesis. in Fatty Acid and Lipid Chemistry 35–60 (Springer US, 1996). doi:10.1007/978-1-4615-4131-8_2

7. Gunstone, F. D. Fatty Acid and Lipid Chemistry. (Springer US, 1996). doi:10.1007/978-1-4615-4131-8

8. Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant.

Science (80-. ). 346, 75–78 (2014).

9. Osumi, T., Taketani, S., Katsuki, H., Kuhara, T. & Matsumoto, I. Ergosterol biosynthesis in yeast. Pathways in the late stages and their variation under various conditions. J. Biochem. 83, 681–691 (1978).

10. Peña-Diaz, J. et al. Mitochondrial localization of the mevalonate pathway enzyme 3-Hydroxy-3-methyl-glutaryl-CoA reductase in the Trypanosomatidae.

Mol. Biol. Cell 15, 1356–63 (2004).

11. Zinser, E., Paltauf, F. & Daum, G. Sterol composition of yeast organelle membranes and subcellular distribution of enzymes involved in sterol metabolism. 175, 2853–2858 (1993).

12. Distribution and functions of sterols and sphingolipids. Cold Spring Harb.

Perspect. Biol. 3, a004762 (2011).

13. Futerman, A. H. & Riezman, H. The ins and outs of sphingolipid synthesis. Trends

Cell Biol. 15, 312–318 (2005).

14. Kolter, T., Proia, R. & Sandhoff, K. Combinatorial Ganglioside Biosynthesis. J Biol

Chem 277, 25859–25862 (2002).

15. Smith, S. W. & Lester, R. L. Inositol phosphorylceramide, a novel substance and the chief member of a major group of yeast sphingolipids containing a single

(3)

inositol phosphate. J Biol. Chem 249, 3395–3405 (1974).

16. Prinz, W. A. Lipid Trafficking sans Vesicles: Where, Why, How? Cell 143, 870–874 (2010).

17. Lev, S. Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nat

Rev Mol Cell Bio 11, 739 (2010).

18. Jacquier, N. & Schneiter, R. Mechanisms of sterol uptake and transport in yeast.

J. Steroid Biochem. Mol. Biol. 129, 70–78 (2012).

19. Wong, L. H., Čopič, A. & Levine, T. P. Advances on the Transfer of Lipids by Lipid Transfer Proteins. Trends Biochem Sci 42, 516–530 (2017).

20. Cockcroft, S. & Raghu, P. Phospholipid transport protein function at organelle contact sites. Curr Opin Cell Biol 53, 52–60 (2018).

21. Graham, T. R. Flippases and vesicle-mediated protein transport. Trends Cell Biol 14, 670–677 (2004).

22. Johansen, J., Ramanathan, V. & Beh, C. T. Vesicle trafficking from a lipid perspective. Cell Logist 2, 151–160 (2012).

23. Klemm, R. W. et al. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185, 601–612 (2009). 24. Gaigg, B., Timischl, B., Corbino, L. & Schneiter, R. Synthesis of sphingolipids with

very long chain fatty acids but not ergosterol is required for routing of newly synthesized plasma membrane ATPase to the cell surface of yeast. J. Biol. Chem. 280, 22515–22522 (2005).

25. Wolf, W., Meese, K. & Seedorf, M. Ist2 in the yeast cortical endoplasmic reticulum promotes trafficking of the amino acid transporter Bap2 to the plasma membrane. PLoS One 9, e85418 (2014).

26. Robl, I., Grassl, R., Tanner, W. & Opekarová, M. Construction of phosphatidylethanolamine-less strain of Saccharomyces cerevisiae. Effect on amino acid transport. 18, 251–260 (2001).

27. Watanabe, R., Funato, K., Venkataraman, K., Futerman, A. H. & Riezman, H. Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J. Biol. Chem. 277, 49538–49544 (2002).

28. Qiu, W. et al. Structure and activity of lipid bilayer within a membrane-protein transporter. 115, 201812526 (2018).

29. Teo, A. C. K. et al. Analysis of SMALP co-extracted phospholipids shows distinct membrane environments for three classes of bacterial membrane protein. Sci.

Rep. 9, 1813 (2019).

(4)

PLoS One 7, e35063 (2012).

31. de Kroon, A. I. P. M., Rijken, P. J. & Smet, C. H. Checks and balances in membrane phospholipid class and acyl chain homeostasis, the yeast perspective. Prog. Lipid

Res. 52, 374–394 (2013).

32. Carman, G. M. & Han, G.-S. S. Regulation of phospholipid synthesis in the yeast Saccharomyces cerevisiae. Annu. Rev. Biochem. 80, 859–883 (2011).

33. Daum, G. et al. Systematic analysis of yeast strains with possible defects in lipid metabolism. Yeast 15, 601–614 (1999).

34. Schneiter, R. et al. Electrospray ionization tandem mass spectrometry (ESI-MS/MS) analysis of the lipid molecular species composition of yeast subcellular membranes reveals acyl chain-based sorting/remodeling of distinct molecular species en route to the plasma membrane. J. Cell Biol. 146, 741–754 (1999). 35. Patton-Vogt, J. & de Kroon, A. I. P. M. I. P. M. Phospholipid turnover and acyl

chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids (2019). doi:10.1016/j.bbalip.2019.05.006

36. Heikinheimo, L. & Somerharju, P. Preferential decarboxylation of hydrophilic phosphatidylserine species in cultured cells. Implications on the mechanism of transport to mitochondria and cellular aminophospholipid species compositions.

J. Biol. Chem. 273, 3327–3335 (1998).

37. Breslow, D. K. Sphingolipid Homeostasis in the Endoplasmic Reticulum and Beyond. Csh Perspect Biol 5, a013326 (2013).

38. Rajakumari, S., Rajasekharan, R. & Daum, G. Triacylglycerol lipolysis is linked to sphingolipid and phospholipid metabolism of the yeast Saccharomyces cerevisiae. Biochim. Biophys. Acta 1801, 1314–1322 (2010).

39. Breslow, D. K. & Weissman, J. S. Membranes in balance: mechanisms of sphingolipid homeostasis. Mol. Cell 40, 267–279 (2010).

40. Dickson, R. C. Yeast Sphingolipid Metabolism - AOCS Lipid Library.pdf. AOCS lipid

Libr. 1–9 (2018).

41. Parks, L. W. & Casey, W. M. Physiological implications of sterol biosynthesis in yeast. Annu. Rev. Microbiol. 49, 95–116 (1995).

42. Gollub, E. G., Liu, K. P., Dayan, J., Adlersberg, M. & Sprinson, D. B. Yeast mutants deficient in heme biosynthesis and a heme mutant additionally blocked in cyclization of 2,3-oxidosqualene. J. Biol. Chem. 252, 2846–2854 (1977).

43. Alvarez-Vasquez, F., Riezman, H., Hannun, Y. A. & Voit, E. O. Mathematical Modeling and Validation of the Ergosterol Pathway in Saccharomyces cerevisiae.

PLoS One 6, e28344 (2011).

(5)

1798, 1286–1288 (2010).

45. Guan, X. L. et al. Functional interactions between sphingolipids and sterols in biological membranes regulating cell physiology. Mol. Biol. Cell 20, 2083–2095 (2009).

46. Surma, M. A., Klose, C. & Simons, K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim. Biophys. Acta 1821, 1059–1067 (2012).

47. Zinser, E. et al. Phospholipid synthesis and lipid composition of subcellular membranes in the unicellular eukaryote Saccharomyces cerevisiae. 173, 2026– 2034 (1991).

48. Zinser, E. & Daum, G. Isolation and biochemical characterization of organelles from the yeast, Saccharomyces cerevisiae. Yeast 11, 493–536 (1995).

49. Strahl, T. & Thorner, J. Synthesis and function of membrane phosphoinositides in budding yeast, Saccharomyces cerevisiae. Biochim. Biophys. Acta Bba - Mol

Cell Biol. Lipids 1771, 353–404 (2007).

50. Hankins, H., Sere, Y., Diab, N., Menon, A. & Graham, T. Phosphatidylserine translocation at the yeast trans-Golgi network regulates protein sorting into exocytic vesicles. Mol Biol Cell 26, 4674–4685 (2015).

51. Ejsing, C. S. et al. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry. Proc. Natl. Acad. Sci. U.S.A. 106, 2136–2141 (2009). 52. Tuller, G., Nemec, T., Hrastnik, C. & Daum, G. Lipid composition of subcellular

membranes of an FY1679-derived haploid yeast wild-type strain grown on different carbon sources. Yeast 15, 1555–1564 (1999).

53. Kooijman, E. E. et al. Spontaneous curvature of phosphatidic acid and lysophosphatidic acid. Biochemistry 44, 2097–2102 (2005).

54. Marsh, D. Analysis of the bilayer phase transition temperatures of phosphatidylcholines with mixed chains. Biophys J 61, 1036–1040 (1992). 55. Marsh, D. Thermodynamic analysis of chain-melting transition temperatures for

monounsaturated phospholipid membranes: dependence on cis-monoenoic double bond position. Biophys. J. 77, 953–963 (1999).

56. Marsh, D. Lateral pressure in membranes. 1286, 183–223 (1996).

57. Karasawa, A. et al. Physicochemical factors controlling the activity and energy coupling of an ionic strength-gated ATP-binding cassette (ABC) transporter. J.

Biol. Chem. 288, 29862–29871 (2013).

58. Gullingsrud, J. & Schulten, K. Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophys. J. 86, 3496–3509 (2004).

59. Hsueh, Y.-W. et al. Ergosterol in POPC Membranes: Physical Properties and Comparison with Structurally Similar Sterols. Biophys J 92, 1606–1615 (2007).

(6)

60. Shaghaghi, M., Chen, M.-T., Hsueh, Y.-W., Zuckermann, M. J. & Thewalt, J. L. Effect of Sterol Structure on the Physical Properties of 1-Palmitoyl-2-oleoyl- sn-glycero-3-phosphocholine Membranes Determined Using 2H Nuclear Magnetic Resonance. Langmuir 32, 7654–7663 (2016).

61. Suhling, K. Twist and Probe-Fluorescent Molecular Rotors Image Escherichia coli Cell Membrane Viscosity. Biophys. J. 111, 1337–1338 (2016).

62. Mika, J. T. et al. Measuring the Viscosity of the Escherichia coli Plasma Membrane Using Molecular Rotors. Biophys. J. 111, 1528–1540 (2016). 63. Arora, A., Raghuraman, H. & Chattopadhyay, A. Influence of cholesterol and

ergosterol on membrane dynamics: a fluorescence approach. Biochem. Biophys.

Res. Commun. 318, 920–926 (2004).

64. Hung, W.-C. et al. Comparative Study of the Condensing Effects of Ergosterol and Cholesterol. Biophys J 110, 2026–2033 (2016).

65. Czub, J. & Baginski, M. Comparative molecular dynamics study of lipid membranes containing cholesterol and ergosterol. Biophys. J. 90, 2368–2382 (2006).

66. Chen, C. & Tripp, C. P. A comparison of the behavior of cholesterol, 7-dehydrocholesterol and ergosterol in phospholipid membranes. Biochim.

Biophys. Acta 1818, 1673–1681 (2012).

67. Hsueh, Y.-W., Weng, C.-J., Chen, M.-T., Thewalt, J. & Zuckermann, M. Deuterium NMR study of the effect of ergosterol on POPE membranes. Biophys. J. 98, 1209– 1217 (2010).

68. Meyer, T. et al. Membrane properties of cholesterol analogs with an unbranched aliphatic side chain. Chem. Phys. Lipids 184, 1–6 (2014).

69. Scheidt, H. A., Meyer, T. & Chemie~…, N.-J. Cholesterol’s aliphatic side chain modulates membrane properties. Angew. Chemie~… (2013). doi:10.1002/anie.201306753

70. Urbina, J. A. et al. Molecular order and dynamics of phosphatidylcholine bilayer membranes in the presence of cholesterol, ergosterol and lanosterol: a comparative study using 2H-, 13C- and 31P-NMR spectroscopy. Biochim.

Biophys. Acta 1238, 163–176 (1995).

71. Stevens, M. M., Honerkamp-Smith, A. R. & Keller, S. L. Solubility limits of cholesterol , lanosterol , ergosterol , stigmasterol , and β-sitosterol in electroformed lipid vesicles. Soft Matter 6, 5882–5890 (2010).

72. Maula, T., Sazzad, M. & Slotte, P. J. Influence of Hydroxylation, Chain Length, and Chain Unsaturation on Bilayer Properties of Ceramides. Biophys. J. 109, 1639– 1651 (2015).

(7)

73. Koynova, R. & Caffrey, M. Phases and phase transitions of the sphingolipids. 1255, 213–236 (1995).

74. Veatch, S. L. & Keller, S. L. Separation of Liquid Phases in Giant Vesicles of Ternary Mixtures of Phospholipids and Cholesterol. Biophys. J. 85, 3074–3083 (2003). 75. Baumgart, T., Hunt, G., Farkas, E. R., Webb, W. W. & Feigenson, G. W.

Fluorescence probe partitioning between Lo/Ld phases in lipid membranes.

Biochim. Biophys. Acta - Biomembr. 1768, 2182–2194 (2007).

76. Juhasz, J., Davis, J. H. & Sharom, F. J. Fluorescent probe partitioning in giant unilamellar vesicles of ‘lipid raft’ mixtures. Biochem. J. 430, 415–423 (2010). 77. Malinsky, J., Opekarová, M., Grossmann, G. & Tanner, W. Membrane

Microdomains, Rafts, and Detergent-Resistant Membranes in Plants and Fungi.

Annu Rev Plant Biol 64, 501–529 (2013).

78. Simons, K. & Ikonen, E. Functional rafts in cell membranes. Nature 387, 569–572 (1997).

79. Aresta-Branco, F. et al. Gel Domains in the Plasma Membrane of Saccharomyces cerevisiae HIGHLY ORDERED, ERGOSTEROL-FREE, AND SPHINGOLIPID-ENRICHED LIPID RAFTS. 286, 5043–5054 (2011).

80. Kraft, M. L. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It. 4, 154 (2017).

81. Zurzolo, C., van Meer, G. & Mayor, S. The order of rafts. Conference on microdomains, lipid rafts and caveolae. EMBO Rep. 4, 1117–1121 (2003). 82. Alvarez, F. J., Douglas, L. M. & Konopka, J. B. Sterol-rich plasma membrane

domains in fungi. Eukaryot. Cell 6, 755–763 (2007).

83. Tomioku, K. et al. Nanoscale domain formation of phosphatidylinositol 4-phosphate in the plasma and vacuolar membranes of living yeast cells. Eur J Cell

Biol (2018). doi:10.1016/j.ejcb.2018.03.007

84. Baumann, N. A. et al. Transport of Newly Synthesized Sterol to the Sterol-Enriched Plasma Membrane Occurs via Nonvesicular Equilibration†. 44, 5816– 5826 (2005).

85. de la Serna, J., Schütz, G. J., Eggeling, C. & Cebecauer, M. There Is No Simple Model of the Plasma Membrane Organization. Front. Cell Dev Biol. 4, 106 (2016). 86. Mouritsen, O. G. Membrane Protein-Lipid Match and Mismatch. (Elsevier

Masson, 2017). doi:10.1016/B978-0-12-809633-8.08084-5

87. Sharpe, H. J., Stevens, T. J. & Munro, S. A comprehensive comparison of transmembrane domains reveals organelle-specific properties. Cell 142, 158– 169 (2010).

(8)

Microb Biotech 22, 105–113 (2012).

89. Vastermark, A., Wollwage, S., Houle, M. E., Rio, R. & Saier, M. H. Expansion of the APC superfamily of secondary carriers. Proteins Struct Funct Bioinform 82, 2797–2811 (2014).

90. Schweikhard, E. S. & Ziegler, C. M. Current Topics in Membranes. Curr. Top.

Membr. 70, 1–28 (2012).

91. Saier, J. H. Families of transmembrane transporters selective for amino acids and their derivatives. Microbiology+ 146, 1775–1795 (2000).

92. Ljungdahl, P. O. & Daignan-Fornier, B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190, 885–929 (2012).

93. Gournas, C., Prévost, M., Krammer, E.-M. & André, B. Yeast Membrane Transport. Adv. Exp. Med. Biol. 892, 69–106 (2016).

94. Risinger, A. L., Cain, N. E., Chen, E. J. & Kaiser, C. A. Activity-dependent Reversible Inactivation of the General Amino Acid Permease. Mol Biol Cell 17, 4411–4419 (2006).

95. Jauniaux, J. & Grenson, M. GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Eur. J. Biochem. 190, 39–44 (1990).

96. Andréasson, C., Neve, E. P. A. & Ljungdahl, P. O. Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21, 193– 199 (2004).

97. Düring-Olsen, L., Regenberg, B., Gjermansen, C., Kielland-Brandt, M. C. & Hansen, J. Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases. Curr Genet 35, 609–617 (1999).

98. Schreve, J. L. & Garrett, J. M. Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. Biochem Bioph Res Co 313, 745–751 (2004).

99. Aouida, M., Leduc, A., Poulin, R. & Ramotar, D. AGP2 Encodes the Major Permease for High Affinity Polyamine Import in Saccharomyces cerevisiae. J Biol

Chem 280, 24267–24276 (2005).

100. Aouida, M. et al. Agp2, a Member of the Yeast Amino Acid Permease Family, Positively Regulates Polyamine Transport at the Transcriptional Level. PLoS One 8, e65717 (2013).

101. van Roermund, C., Hettema, E. H., van den Berg, M., Tabak, H. F. & Wanders, R. Molecular characterization of carnitine-dependent transport of acetyl-CoA from peroxisomes to mitochondria in Saccharomyces cerevisiae and identification of a plasma membrane carnitine transporter, Agp2p. Embo J 18, 5843–5852

(9)

(1999).

102. Sáenz, D. A., Chianelli, M. S. & Stella, C. A. L-Phenylalanine Transport in Saccharomyces cerevisiae: Participation of GAP1, BAP2, and AGP1. J Amin. Acids 2014, 1–9 (2014).

103. Schreve, J. L., Sin, J. K. & Garrett, J. M. The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine. J Bacteriol 180, 2556–2559 (1998).

104. Usami, Y. et al. Functional mapping and implications of substrate specificity of the yeast high-affinity leucine permease Bap2. Biochim. Biophys. Acta Bba -

Biomembr 1838, 1719–1729 (2014).

105. Didion, T., Regenberg, B., Jørgensen, M. U., Kielland-Brandt, M. C. & Andersen, H. A. The permease homologue Ssy1p controls the expression of amino acid and peptide transporter genes in Saccharomyces cerevisiae. Mol Microbiol 27, 643– 650 (1998).

106. Grauslund, M., Didion, T., Kielland-Brandt, M. C. & Andersen, H. A. BAP2, a gene encoding a permease for branched-chain amino acids in Saccharomyces cerevisiae. Biochim. Biophys. Acta Bba - Mol Cell Res 1269, 275–280 (1995). 107. Zhu, X., Garrett, J., Schreve, J. & Michaeli, T. GNP1, the high-affinity glutamine

permease of S. cerevisiae. Curr Genet 30, 107–114 (1996).

108. Bajmoczi, M., Sneve, M., Eide, D. J. & Drewes, L. R. TAT1 Encodes a Low-Affinity Histidine Transporter inSaccharomyces cerevisiae. Biochem. Biophys. Res.

Commun. 243, 205–209 (1998).

109. Schmidt, A., Hall, M. N. & Koller, A. Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14, 6597–6606 (1994). 110. Kanda, N. & Abe, F. Structural and functional implications of the yeast

high-affinity tryptophan permease Tat2. Biochemistry 52, 4296–4307 (2013). 111. Omura, F., Hatanaka, H. & Nakao, Y. Characterization of a novel tyrosine

permease of lager brewing yeast shared by Saccharomyces cerevisiae strain RM11-1a. Fems Yeast Res 7, 1350–1361 (2007).

112. Lasko, P. F. & Brandriss, M. C. Proline transport in Saccharomyces cerevisiae. J.

Bacteriol. 148, 241–247 (1981).

113. Vandenbol, M., Jauniaux, J.-C. & Grenson, M. Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83, 153–159 (1989).

114. JAUNIAUX, J., VANDENBOL, M., VISSERS, S., BROMAN, K. & GRENSON, M. Nitrogen catabolite regulation of proline permease in Saccharomyces cerevisiae.

(10)

Eur J Biochem 164, 601–606 (1987).

115. Tanaka, J. & Fink, G. R. The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene 38, 205–214 (1985).

116. Ghaddar, K. et al. Converting the yeast arginine Can1 permease to a lysine permease. J. Biol. Chem. 289, 7232–7246 (2014).

117. Grenson, M. Multiplicity of the amino acid permeases in Saccharomyces cerevisiae. II. Evidence for a specific lysine-transporting system. 127, 339–346 (1966).

118. Regenberg, B., Düring-Olsen, L., Kielland-Brandt, M. C. & Holmberg, S. Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36, 317–328 (1999).

119. Sychrova, H. & Chevallier, M. Yeast sequencing reports. APL1, a yeast gene encoding a putative permease for basic amino acids. Yeast 10, 653–657 (1994). 120. Sychrová, H., Chevallier, M. R., Horák, J. & Kotyk, A. Thialysine-resistant mutants and uptake of lysine in Schizosaccharomyces pombe. Curr Genet 21, 351–355 (1992).

121. Regenberg, B., Holmberg, S., Olsen, L. D. & Kielland-Brandt, M. C. Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr. Genet. 33, 171–177 (1998).

122. Uemura, T., Tomonari, Y., Kashiwagi, K. & Igarashi, K. Uptake of GABA and putrescine by UGA4 on the vacuolar membrane in Saccharomyces cerevisiae.

Biochem Bioph Res Co 315, 1082–1087 (2004).

123. André, B., Hein, C., Grenson, M. & Jauniaux, J.-C. Cloning and expression of the UGA4 gene coding for the inducible GABA-specific transport protein of Saccharomyces cerevisiae. Mol Gen Genet. Mgg 237, 17–25 (1993).

124. Debailleul, F. et al. Nitrogen catabolite repressible GAP1 promoter, a new tool for efficient recombinant protein production in S. cerevisiae. Microb Cell Fact 12, 129 (2013).

125. Bianchi, F., van’t Klooster, J. S., Ruiz, S. J. & Poolman, B. Regulation of Amino Acid Transport in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 83, (2019). 126. Henderson, R. K., Fendler, K. & Poolman, B. Coupling efficiency of secondary

active transporters. Curr. Opin. Biotechnol. 58, 62–71 (2019).

127. Poolman, B., Driessen, a J. & Konings, W. N. Regulation of solute transport in streptococci by external and internal pH values. Microbiol. Rev. 51, 498–508 (1987).

128. Woodward, J. R. & Cirillo, V. P. Amino acid transport and metabolism in nitrogen-starved cells of Saccharomyces cerevisiae. J. Bacteriol. 130, 714–723 (1977).

(11)

129. Kotyk, A. & R’ihov’a, L. Energy requirement for amino acid uptake in Saccharomyces cerevisiae. Folia Microbiol. (Praha). 17, 353—356 (1972). 130. Morrison, C. E. & Lichstein, H. C. Regulation of lysine transport by feedback

inhibition in Saccharomyces cerevisiae. J. Bacteriol. 125, 864–871 (1976). 131. Fischer, W. N. et al. Low and high affinity amino acid H+-cotransporters for

cellular import of neutral and charged amino acids. Plant J. 29, 717–731 (2002). 132. Opekarová, M. et al. Unidirectional arginine transport in reconstituted

plasma-membrane vesicles from yeast overexpressing CAN1. Eur. J. Biochem. 211, 683– 688 (1993).

133. Opekarová, M. & Kubín, J. On the unidirectionality of arginine uptake in the yeast Saccharomyces cerevisiae. FEMS Microbiol. Lett. 152, 261–267 (1997).

134. Bianchi, F. et al. Asymmetry in inward- and outward-affinity constant of transport explain unidirectional lysine flux in Saccharomyces cerevisiae. Sci

Rep-uk 6, 31443 (2016).

135. Poolman, B. et al. Cation and sugar selectivity determinants in a novel family of transport proteins. Mol Microbiol 19, 911–922 (1996).

136. Val, C. del, White, S. H. & Bondar, A.-N. Ser/Thr Motifs in Transmembrane Proteins: Conservation Patterns and Effects on Local Protein Structure and Dynamics. J. Membr. Biol. 245, 717–730 (2012).

137. Poolman, B., Knol, J. & Lolkema, J. S. Kinetic Analysis of Lactose and Proton Coupling in Glu379 Mutants of the Lactose Transport Protein of Streptococcus thermophilus. J Biol Chem 270, 12995–13003 (1995).

138. Kovalevsky, A. Y. et al. Identification of the Elusive Hydronium Ion Exchanging Roles with a Proton in an Enzyme at Lower pH Values. Angew. Chemie Int Ed 50, 7520–7523 (2011).

139. Boyer, P. D. Bioenergetic coupling to protonmotive force: should we be considering hydronium ion coordination and not group protonation? Trends

Biochem Sci 13, 5–7 (1988).

140. Wilson, D. M. & Wilson, T. H. Cation specificity for sugar substrates of the melibiose carrier in Escherichia coli. Biochim. Biophys. Acta Bba - Biomembr 904, 191–200 (1987).

141. Ethayathulla, A. S. et al. Structure-based mechanism for Na+/melibiose symport by MelB. Nat Commun 5, 3009 (2014).

142. Perez, C. et al. Substrate specificity and ion coupling in the Na+/betaine symporter BetP. Embo J 30, 1221–1229 (2011).

143. Shaffer, P. L., Goehring, A., Shankaranarayanan, A. & Gouaux, E. Structure and Mechanism of a Na+-Independent Amino Acid Transporter. Science (80-. ). 325,

(12)

1010–1014 (2009).

144. Schulze, S., Köster, S., Geldmacher, U., van Scheltinga, A. C. & Kühlbrandt, W. Structural basis of Na+-independent and cooperative substrate/product antiport in CaiT. Nature 467, 233 (2010).

145. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl--dependent neurotransmitter transporters.

Nature 437, 215 (2005).

146. Kaur, J., Olkhova, E., Malviya, V. N., Grell, E. & Michel, H. A L-lysine transporter of high stereoselectivity of the amino acid-polyamine-organocation (apc) superfamily production, functional characterization, and structure modeling. J.

Biol. Chem. 289, 1377–1387 (2014).

147. PINSON, B., CHEVALLIER, J. & URN-GRIMAL, D. Only one of the charged amino acids located in membrane-spanning regions is important for the function of the Saccharomyces cerevisiae uracil permease. Biochem J 339, 37–42 (1999). 148. Ghaddar, K. et al. Substrate-Induced Ubiquitylation and Endocytosis of Yeast

Amino Acid Permeases. Mol Cell Biol 34, 4447–4463 (2014).

149. Jack, D. L., Paulsen, I. T. & Saier, M. H. The amino acid/polyamine/organocation (APC) superfamily of transporters specific for amino acids, polyamines and organocations. Microbiology 146, 1797–1814 (2000).

150. Fang, Y. et al. Structure of a prokaryotic virtual proton pump at 3.2 Å resolution.

Nature 460, 1040 (2009).

151. Gao, X. et al. Structure and Mechanism of an Amino Acid Antiporter. Science

(80-. )(80-. 324, 1565–1568 (2009).

152. Ma, D. et al. Structure and mechanism of a glutamate–GABA antiporter. Nature 483, 632 (2012).

153. Kowalczyk, L. et al. Molecular basis of substrate-induced permeation by an amino acid antiporter. Proc Natl. Acad Sci 108, 3935–3940 (2011).

154. Krishnamurthy, H. & Gouaux, E. X-ray structures of LeuT in substrate-free outward-open and apo inward-open states. Nature 481, 469 (2012).

155. Vangelatos, I., Vlachakis, D., Sophianopoulou, V. & Diallinas, G. Modelling and mutational evidence identify the substrate binding site and functional elements in APC amino acid transporters. Mol Membr Biol 26, 356–370 (2009).

156. Gournas, C., Evangelidis, T., Athanasopoulos, A., Mikros, E. & Sophianopoulou, V. The Aspergillus nidulans Proline Permease as a Model for Understanding the Factors Determining Substrate Binding and Specificity of Fungal Amino Acid Transporters. J Biol Chem 290, 6141–6155 (2015).

(13)

cerevisiae. FEMS Microbiol. Rev. 38, 254–299 (2014).

158. Zhang, W., Du, G., Zhou, J. & Chen, J. Regulation of Sensing, Transportation, and Catabolism of Nitrogen Sources in Saccharomyces cerevisiae. Microbiol Mol Biol

R 82, e00040-17 (2018).

159. Magasanik, B. & Kaiser, C. A. Nitrogen regulation in Saccharomyces cerevisiae.

Gene 290, 1–18 (2002).

160. Nielsen, P. et al. Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol Gen Genet. Mgg 264, 613–622 (2001). 161. Talibi, D., Grenson, M. & André, B. Cis - and trans -acting elements determining

induction of the genes of the γ-aminobutyrate (GABA) utilization pathway in Saccharomyces cerevisiae. Nucleic Acids Res 23, 550–557 (1995).

162. André, B. et al. Two mutually exclusive regulatory systems inhibit UAS GATA , a cluster of 5ʹ-GAT(A/T)A-3ʹ upstream from the UGA4 gene of Saccharomyces cerevisiae. Nucleic Acids Res 23, 558–564 (1995).

163. Jézégou, A. et al. Heptahelical protein PQLC2 is a lysosomal cationic amino acid exporter underlying the action of cysteamine in cystinosis therapy. Proc Natl.

Acad Sci 109, E3434–E3443 (2012).

164. Godard, P. et al. Effect of 21 Different Nitrogen Sources on Global Gene Expression in the Yeast Saccharomyces cerevisiae▿ †. Mol Cell Biol 27, 3065– 3086 (2007).

165. Ljungdahl, P. O. Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc T 37, 242–247 (2009).

166. Forsberg, H. & Ljungdahl, P. O. Genetic and Biochemical Analysis of the Yeast Plasma Membrane Ssy1p-Ptr3p-Ssy5p Sensor of Extracellular Amino Acids. Mol

Cell Biol 21, 814–826 (2001).

167. Bernard, F. & André, B. Genetic analysis of the signalling pathway activated by external amino acids in Saccharomyces cerevisiae. Mol Microbiol 41, 489–502 (2001).

168. Iraqui, I. et al. Amino Acid Signaling in Saccharomyces cerevisiae: a Permease-Like Sensor of External Amino Acids and F-Box Protein Grr1p Are Required for Transcriptional Induction of the AGP1 Gene, Which Encodes a Broad-Specificity Amino Acid Permease. Mol Cell Biol 19, 989–1001 (1999).

169. Gaber, R. F., Ottow, K., Andersen, H. A. & Kielland-Brandt, M. C. Constitutive and Hyperresponsive Signaling by Mutant Forms of Saccharomyces cerevisiae Amino Acid Sensor Ssy1†. Eukaryot Cell 2, 922–929 (2003).

170. Eckert-Boulet, N. et al. Transcriptional profiling of extracellular amino acid sensing in Saccharomyces cerevisiae and the role of Stp1p and Stp2p. Yeast 21,

(14)

635–648 (2004).

171. Forsberg, H., Gilstring, F. C., Zargari, A., Martínez, P. & Ljungdahl, P. O. The role of the yeast plasma membrane SPS nutrient sensor in the metabolic response to extracellular amino acids. Mol Microbiol 42, 215–228 (2001).

172. Kodama, Y., Omura, F., Takahashi, K., Shirahige, K. & Ashikari, T. Genome-wide expression analysis of genes affected by amino acid sensor Ssy1p in Saccharomyces cerevisiae. Curr Genet 41, 63–72 (2002).

173. Kralt, A. et al. Intrinsically Disordered Linker and Plasma Membrane-Binding Motif Sort Ist2 and Ssy1 to Junctions. Traffic 16, 135–147 (2015).

174. Wu, B. et al. Competitive intra- and extracellular nutrient sensing by the transporter homologue Ssy1p. J Cell Biol. 173, 327–331 (2006).

175. Klasson, H., Fink, G. R. & Ljungdahl, P. O. Ssy1p and Ptr3p Are Plasma Membrane Components of a Yeast System That Senses Extracellular Amino Acids. Mol Cell

Biol 19, 5405–5416 (1999).

176. Scherens, B., Feller, A., Vierendeels, F., Messenguy, F. & Dubois, E. Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. Fems

Yeast Res 6, 777–791 (2006).

177. Hinnebusch, A. G. TRANSLATIONAL REGULATION OF GCN4 AND THE GENERAL AMINO ACID CONTROL OF YEAST*. Microbiology+ 59, 407–450 (2005).

178. Hinnebusch, A. G. & Natarajan, K. Gcn4p, a Master Regulator of Gene Expression, Is Controlled at Multiple Levels by Diverse Signals of Starvation and Stress.

Eukaryot. Cell 1, 22–32 (2002).

179. Natarajan, K. et al. Transcriptional Profiling Shows that Gcn4p Is a Master Regulator of Gene Expression during Amino Acid Starvation in Yeast. Mol. Cell.

Biol. 21, 4347–4368 (2001).

180. Simpson, C. E. & Ashe, M. P. Adaptation to stress in yeast: to translate or not?

Biochem Soc T 40, 794–799 (2012).

181. Cardillo, S., Moretti, M. & García, S. Uga3 and Uga35/Dal81 Transcription Factors Regulate UGA4 Transcription in Response to γ-Aminobutyric Acid and Leucine ▿. Eukaryot Cell 9, 1262–1271 (2010).

182. Abdel-Sater, F., Bakkoury, M., Urrestarazu, A., Vissers, S. & André, B. Amino Acid Signaling in Yeast: Casein Kinase I and the Ssy5 Endoprotease Are Key Determinants of Endoproteolytic Activation of the Membrane-Bound Stp1 Transcription Factor. Mol Cell Biol 24, 9771–9785 (2004).

183. Cardillo, S. B., García, S. & Moretti, M. Common features and differences in the expression of the three genes forming the UGA regulon in Saccharomyces

(15)

cerevisiae. Biochem Bioph Res Co 410, 885–889 (2011).

184. Palavecino, M. D., Correa-García, S. R. & Bermúdez-Moretti, M. Genes of Different Catabolic Pathways Are Coordinately Regulated by Dal81 in Saccharomyces cerevisiae. J Amin. Acids 2015, 484702 (2015).

185. Sosa, E. et al. Gcn4 negatively regulates expression of genes subjected to nitrogen catabolite repression. Biochem Bioph Res Co 310, 1175–1180 (2003). 186. Harbison, C. T. et al. Transcriptional regulatory code of a eukaryotic genome.

Nature 431, 99 (2004).

187. Finley, D., Ulrich, H. D., Sommer, T. & Kaiser, P. The Ubiquitin–Proteasome System of Saccharomyces cerevisiae. 192, 319–360 (2012).

188. MacGurn, J. A., Hsu, P.-C. & Emr, S. D. Ubiquitin and Membrane Protein Turnover: From Cradle to Grave. Annu. Rev. Biochem. 81, 231–259 (2012). 189. Lauwers, E., Erpapazoglou, Z., Haguenauer-Tsapis, R. & André, B. The ubiquitin

code of yeast permease trafficking. Trends Cell Biol 20, 196–204 (2010). 190. Meusser, B., Hirsch, C., Jarosch, E. & Sommer, T. ERAD: the long road to

destruction. Nat Cell Biol 7, 766–772 (2005).

191. Huyer, G. et al. Distinct Machinery Is Required in Saccharomyces cerevisiae for the Endoplasmic Reticulum-associated Degradation of a Multispanning Membrane Protein and a Soluble Luminal Protein. J Biol Chem 279, 38369– 38378 (2004).

192. Kota, J. & Ljungdahl, P. O. Specialized membrane-localized chaperones prevent aggregation of polytopic proteins in the ER. J Cell Biol. 168, 79–88 (2005). 193. Kota, J., Gilstring, C. F. & Ljungdahl, P. O. Membrane chaperone Shr3 assists in

folding amino acid permeases preventing precocious ERAD. J. Cell Biol. 176, 617– 628 (2007).

194. Baldridge, R. D. & Rapoport, T. A. Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD. Cell 166, 394–407 (2016).

195. Hein, C., Springael, J. Y., Volland, C., Haguenauer-Tsapis, R. & André. NPl1, an essential yeast gene involved in induced degradation of Gap1 and Fur4 permeases, encodes the Rsp5 ubiquitin-protein ligase. Mol. Microbiol. 18, 77– 87 (1995).

196. Léon, S. & Haguenauer-Tsapis, R. Ubiquitin ligase adaptors: Regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res 315, 1574–1583 (2009).

197. Lin, C. H., MacGurn, J. A., Chu, T., Stefan, C. J. & Emr, S. D. Arrestin-Related Ubiquitin-Ligase Adaptors Regulate Endocytosis and Protein Turnover at the Cell Surface. Cell 135, 714–725 (2008).

(16)

198. Nikko, E. & Pelham, H. R. B. Arrestin-Mediated Endocytosis of Yeast Plasma Membrane Transporters. Traffic 10, 1856–1867 (2009).

199. O’Donnell, A. F. The Running of the Buls: Control of Permease Trafficking by α-Arrestins Bul1 and Bul2. Mol Cell Biol 32, 4506–4509 (2012).

200. O’Donnell, A. F., Apffel, A., Gardner, R. G. & Cyert, M. S. α-Arrestins Aly1 and Aly2 Regulate Intracellular Trafficking in Response to Nutrient Signaling. Mol Biol Cell 21, 3552–3566 (2010).

201. Teis, D., Saksena, S. & Emr, S. D. SnapShot: The ESCRT Machinery. Cell 137, 182-182.e1 (2009).

202. Saksena, S., Sun, J., Chu, T. & Emr, S. D. ESCRTing proteins in the endocytic pathway. Trends Biochem Sci 32, 561–573 (2007).

203. Gournas, C. et al. Transition of yeast Can1 transporter to the inward-facing state unveils an α-arrestin target sequence promoting its ubiquitylation and endocytosis. Mol. Biol. Cell 28, 2819–2832 (2017).

204. Suzuki, A., Mochizuki, T., Uemura, S., Hiraki, T. & Abe, F. Pressure-Induced Endocytic Degradation of the Saccharomyces cerevisiae Low-Affinity Tryptophan Permease Tat1 Is Mediated by Rsp5 Ubiquitin Ligase and Functionally Redundant PPxY Motif Proteins. Eukaryot Cell 12, 990–997 (2013).

205. Nagayama, A., Kato, C. & Abe, F. The N- and C-terminal mutations in tryptophan permease Tat2 confer cell growth in Saccharomyces cerevisiae under high-pressure and low-temperature conditions. Extremophiles 8, 143–149 (2004). 206. Abe, F. & Iida, H. Pressure-Induced Differential Regulation of the Two

Tryptophan Permeases Tat1 and Tat2 by Ubiquitin Ligase Rsp5 and Its Binding Proteins, Bul1 and Bul2. Mol Cell Biol 23, 7566–7584 (2003).

207. Zhao, Y., MacGurn, J. A., Liu, M. & Emr, S. The ART-Rsp5 ubiquitin ligase network comprises a plasma membrane quality control system that protects yeast cells from proteotoxic stress. Elife 2, e00459 (2013).

208. Rubio-Texeira, M. & Kaiser, C. A. Amino acids regulate retrieval of the yeast general amino acid permease from the vacuolar targeting pathway. Mol. Biol.

Cell 17, 3031–3050 (2006).

209. Risinger, A. L. & Kaiser, C. A. Different Ubiquitin Signals Act at the Golgi and Plasma Membrane to Direct GAP1 Trafficking. Mol Biol Cell 19, 2962–2972 (2008).

210. Merhi, A. & André, B. Internal Amino Acids Promote Gap1 Permease Ubiquitylation via TORC1/Npr1/14-3-3-Dependent Control of the Bul Arrestin-Like Adaptors. Mol Cell Biol 32, 4510–4522 (2012).

(17)

ubiquitination and endocytosis of the yeast metal transporter Smf1. Embo Rep 9, 1216–1221 (2008).

212. Hatakeyama, R., Kamiya, M., Takahara, T. & Maeda, T. Endocytosis of the Aspartic Acid/Glutamic Acid Transporter Dip5 Is Triggered by Substrate-Dependent Recruitment of the Rsp5 Ubiquitin Ligase via the Arrestin-Like Protein Aly2 ▿. Mol Cell Biol 30, 5598–5607 (2010).

213. Cain, N. E. & Kaiser, C. A. Transport activity–dependent intracellular sorting of the yeast general amino acid permease. Mol Biol Cell 22, 1919–1929 (2011). 214. Melnykov, A. V. New mechanisms that regulate Saccharomyces cerevisiae short

peptide transporter achieve balanced intracellular amino acid concentrations.

Yeast 33, 21–31 (2016).

215. Wullschleger, S., Loewith, R. & Hall, M. N. TOR Signaling in Growth and Metabolism. Cell 124, 471–484 (2006).

216. Loewith, R. & Hall, M. N. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics 189, 1177–1201 (2011).

217. Eltschinger, S. & Loewith, R. TOR Complexes and the Maintenance of Cellular Homeostasis. Trends Cell Biol. 26, 148–159 (2016).

218. Gaubitz, C., Prouteau, M., Kusmider, B. & Loewith, R. TORC2 Structure and Function. Trends Biochem. Sci. 41, 532–545 (2016).

219. Cardenas, M. E., Cutler, S. N., Lorenz, M. C., Como, C. J. & Heitman, J. The TOR signaling cascade regulates gene expression in response to nutrients. Gene Dev 13, 3271–3279 (1999).

220. Barbet, N. C. et al. TOR controls translation initiation and early G1 progression in yeast. Mol Biol Cell 7, 25–42 (1996).

221. Powers, T. & Walter, P. Regulation of Ribosome Biogenesis by the Rapamycin-sensitive TOR-signaling Pathway in Saccharomyces cerevisiae. Mol Biol Cell 10, 987–1000 (1999).

222. Kamada, Y. et al. Tor-Mediated Induction of Autophagy via an Apg1 Protein Kinase Complex. J. Cell Biol. 150, 1507–1513 (2000).

223. MacGurn, J. A., Hsu, P.-C., Smolka, M. B. & Emr, S. D. TORC1 Regulates Endocytosis via Npr1-Mediated Phosphoinhibition of a Ubiquitin Ligase Adaptor.

Cell 147, 1104–1117 (2011).

224. Saliba, E. et al. The yeast H+-ATPase Pma1 promotes Rag/Gtr-dependent TORC1 activation in response to H+-coupled nutrient uptake. Elife 7, e31981 (2018). 225. González, A. & Hall, M. N. Nutrient sensing and TOR signaling in yeast and

mammals. EMBO J. 36, 397–408 (2017).

(18)

glutamine-sensitive interaction with Pib2 on the vacuolar membrane. PLoS

Genet. 14, 1–25 (2018).

227. Varlakhanova, N. V., Mihalevic, M. J., Bernstein, K. A. & Ford, M. G. J. Pib2 and the EGO complex are both required for activation of TORC1. J. Cell Sci. 130, 3878–3890 (2017).

228. Busto, J. V et al. Lateral plasma membrane compartmentalization links protein function and turnover. Embo J 37, e99473 (2018).

229. Gournas, C. et al. Conformation-dependent partitioning of yeast nutrient transporters into starvation-protective membrane domains. Proc Natl. Acad Sci 115, 201719462 (2018).

230. Keener, J. M. & Babst, M. Quality Control and Substrate-Dependent Downregulation of the Nutrient Transporter Fur4. Traffic 14, 412–427 (2013). 231. Guiney, E. L., Klecker, T. & Emr, S. D. Identification of the endocytic sorting signal

recognized by the Art1-Rsp5 ubiquitin ligase complex. Mol. Biol. Cell 27, 4043– 4054 (2016).

232. Soetens, O., Craene, J.-O. De & André, B. Ubiquitin Is Required for Sorting to the Vacuole of the Yeast General Amino Acid Permease, Gap1. J. Biol. Chem. 276, 43949–43957 (2001).

233. Fujita, S. et al. The C-terminal region of the yeast monocarboxylate transporter Jen1 acts as a glucose signal–responding degron recognized by the α-arrestin Rod1. J. Biol. Chem. 293, 10926–10936 (2018).

234. Hein, C. & André, B. A C-terminal di-leucine motif and nearby sequences are required for NH4+-induced inactivation and degradation of the general amino acid permease, Gap1p, of Saccharomyces cerevisiae. 24, 607–616 (1997). 235. Roth, A. F. et al. Global Analysis of Protein Palmitoylation in Yeast. Cell 125,

1003–1013 (2006).

236. Popov-Čeleketić, D., Bianchi, F., Ruiz, S. J., Meutiawati, F. & Poolman, B. A Plasma Membrane Association Module in Yeast Amino Acid Transporters. J Biol Chem 291, 16024–16037 (2016).

237. Nishimura, N. & Balch, W. E. A Di-Acidic Signal Required for Selective Export from the Endoplasmic Reticulum. Science (80-. ). 277, 556–558 (1997).

238. Malkus, P., Jiang, F. & Schekman, R. Concentrative sorting of secretory cargo proteins into COPII-coated vesicles. J. Cell Biol. 159, 915–921 (2002).

239. Springael, J.-Y. & André, B. Nitrogen-regulated Ubiquitination of the Gap1 Permease ofSaccharomyces cerevisiae. Mol. Biol. Cell 9, 1253–1263 (1998). 240. Omura, F., Kodama, Y. & Ashikari, T. The basal turnover of yeast branched-chain

(19)

207–214 (2001).

241. Gao, M. & Kaiser, C. A. A conserved GTPase-containing complex is required for intracellular sorting of the general amino-acid permease in yeast. Nat Cell Biol 8, ncb1419 (2006).

242. Kriel, J., Haesendonckx, S., Rubio-Texeira, M., Zeebroeck, G. & Thevelein, J. M. From transporter to transceptor: Signaling from transporters provokes re-evaluation of complex trafficking and regulatory controls. Bioessays 33, 870–879 (2011).

243. Nakamura, H. et al. Phosphatidylserine synthesis required for the maximal tryptophan transport activity in Saccharomyces cerevisiae. Biosci. Biotechnol.

Biochem. 64, 167–172 (2000).

244. Opekarová, M., Robl, I. & Tanner, W. Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast.

Biochim. Biophys. Acta 1564, 9–13 (2002).

245. Hachiro, T., Yamamoto, T., Nakano, K. & Tanaka, K. Phospholipid Flippases Lem3p-Dnf1p and Lem3p-Dnf2p Are Involved in the Sorting of the Tryptophan Permease Tat2p in Yeast. J Biol Chem 288, 3594–3608 (2013).

246. Chen, S. et al. Roles for the Drs2p-Cdc50p complex in protein transport and phosphatidylserine asymmetry of the yeast plasma membrane. Traffic 7, 1503– 1517 (2006).

247. Umebayashi, K. & Nakano, A. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J. Cell Biol. 161, 1117–1131 (2003). 248. Rodríguez-Vargas, S., Sánchez-García, A., Martínez-Rivas, J. M., Prieto, J. A. &

Randez-Gil, F. Fluidization of membrane lipids enhances the tolerance of Saccharomyces cerevisiae to freezing and salt stress. Appl. Environ. Microbiol. 73, 110–116 (2007).

249. Skrzypek, M. S., Nagiec, M. M., Lester, R. L. & Dickson, R. C. Inhibition of Amino Acid Transport by Sphingoid Long Chain Bases in Saccharomyces cerevisiae. J Biol

Chem 273, 2829–2834 (1998).

250. Lauwers, E., Grossmann, G. & André, B. Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: essential role in transport activity and normal control by ubiquitination. Mol. Biol. Cell 18, 3068–3080 (2007).

251. Malínská, K., Malínský, J., Opekarová, M. & Tanner, W. Visualization of Protein Compartmentation within the Plasma Membrane of Living Yeast Cells. Mol Biol

Cell 14, 4427–4436 (2003).

252. Malinska, K., Malinsky, J., Opekarova, M. & Tanner, W. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane

(20)

of living S. cerevisiae cells. J Cell Sci 117, 6031–6041 (2004).

253. Spira, F. et al. Patchwork organization of the yeast plasma membrane into numerous coexisting domains. Nat Cell Biol 14, 640 (2012).

254. Bianchi, F. et al. Steric exclusion and protein conformation determine the localization of plasma membrane transporters. Nat. Commun. 9, 501 (2018). 255. Young, M. E. et al. The Sur7p Family Defines Novel Cortical Domains in

Saccharomyces cerevisiae, Affects Sphingolipid Metabolism, and Is Involved in Sporulation. Mol Cell Biol 22, 927–934 (2002).

256. Vivero-Pol, L., George, N., Krumm, H., Johnsson, K. & Johnsson, N. Multicolor Imaging of Cell Surface Proteins. J Am Chem Soc 127, 12770–12771 (2005). 257. Walther, T. C. et al. Eisosomes mark static sites of endocytosis. Nature 439, 998

(2006).

258. Strádalová, V. et al. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. 122, 2887–2894 (2009). 259. Moreira, K. E. et al. Seg1 controls eisosome assembly and shape. J Cell Biol. 198,

405–420 (2012).

260. Grossmann, G., Opekarová, M., Malinsky, J., Weig-Meckl, I. & Tanner, W. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. Embo J 26, 1–8 (2007).

261. Lauwers, E. & André, B. Association of yeast transporters with detergent-resistant membranes correlates with their cell-surface location. Traffic 7, 1045– 1059 (2006).

262. Moharir, A., Gay, L., Appadurai, D., Keener, J. & Babst, M. Eisosomes are metabolically regulated storage compartments for APC-type nutrient transporters. Mol Biol Cell 29, mbc.E17-11-0691 (2018).

263. Brach, T., Specht, T. & Kaksonen, M. Reassessment of the role of plasma membrane domains in the regulation of vesicular traffic in yeast. J Cell Sci 124, 328–337 (2011).

264. Grossmann, G. et al. Plasma membrane microdomains regulate turnover of transport proteins in yeast. J. Cell Biol. 183, 1075–1088 (2008).

265. Drew, D. et al. GFP-based optimization scheme for the overexpression and purification of eukaryotic membrane proteins in Saccharomyces cerevisiae. Nat.

Protoc. 3, 784–798 (2008).

266. Chang, J., Ruiz, V. & Vancura, A. Purification of Yeast Membranes and Organelles by Sucrose Density Gradient Centrifugation. in 141–149 (Humana Press, 2008). doi:10.1007/978-1-59745-261-8_10

(21)

activation by phosphorylation. Nat. Commun. 7, (2016).

268. Geertsma, E. R., Nik Mahmood, N. a B., Schuurman-Wolters, G. K. & Poolman, B. Membrane reconstitution of ABC transporters and assays of translocator function. Nat. Protoc. 3, 256–266 (2008).

269. Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into Nanodiscs. FEBS

Lett. 584, 1721–1727 (2010).

270. Carlson, M. et al. The Peptidisc, a simple method for stabilizing membrane proteins in detergent-free solution. Elife 7, (2018).

271. Flayhan, A. et al. Saposin Lipid Nanoparticles: A Highly Versatile and Modular Tool for Membrane Protein Research. Structure 26, 345-355.e5 (2018).

272. Long, A. R. et al. A detergent-free strategy for the reconstitution of active enzyme complexes from native biological membranes into nanoscale discs. BMC

Biotechnol. 13, 41 (2013).

273. Oluwole, A. O. et al. Solubilization of Membrane Proteins into Functional Lipid-Bilayer Nanodiscs Using a Diisobutylene/Maleic Acid Copolymer. Angew. Chem.

Int. Ed. Engl. 56, 1919–1924 (2017).

274. Ljungdahl, P. O. & Daignan-Fornier, B. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 190, 885–929 (2012).

275. Lolkema, J. S. & Poolman, B. Uncoupling in secondary transport proteins. A mechanistic explanation for mutants of lac permease with an uncoupled phenotype. J. Biol. Chem. (1995).

276. Forrest, L. R., Krämer, R. & Ziegler, C. The structural basis of secondary active transport mechanisms. Biochim. Biophys. Acta Bba - Bioenerg. 1807, 167–188 (2010).

277. Shimamura, T. et al. Molecular basis of alternating access membrane transport by the sodium-hydantoin transporter Mhp1. Science (80-. ). 328, 470–473 (2010).

278. Zollmann, T. et al. Single liposome analysis of peptide translocation by the ABC transporter TAPL. Proc. Natl. Acad. Sci. 112, 2046–2051 (2015).

279. Mulligan, C. et al. The substrate-binding protein imposes directionality on an electrochemical sodium gradient-driven TRAP transporter. Proc. Natl. Acad. Sci. 106, 1778–1783 (2009).

280. Mayer, L. D., Hope, M. J. & Cullis, P. R. Vesicles of variable sizes produced by a rapid extrusion procedure. Biochim. Biophys. Acta 858, 161–168 (1986). 281. Sychorva, H., Matejckova, a. & Kotyk, a. Kinetic properties of yeast lysine

(22)

62 (1993).

282. Robertson, D. E., Kaczorowski, G. J., Garcia, M. L. & Kaback, H. R. Active transport in membrane vesicles from Escherichia coli: the electrochemical proton gradient alters the distribution of the lac carrier between two different kinetic states.

Biochemistry 19, 5692–5702 (1980).

283. Guan, L. & Kaback, R. H. Binding affinity of lactose permease is not altered by the H+ electrochemical gradient. Proc. Natl. Acad. Sci. U. S. A. 101, 12148–12152 (2004).

284. Maximov, S., Ott, V., Belkoura, L. & Krämer, R. Stimulus analysis of BetP activation under in vivo conditions. Biochim. Biophys. Acta 1838, 1288–1295 (2014).

285. Kalayil, S., Schulze, S. & Kühlbrandt, W. Arginine oscillation explains Na+ independence in the substrate/product antiporter CaiT. Proc. Natl. Acad. Sci. 110, 17296–17301 (2013).

286. Billesbølle, C. B. et al. Substrate-induced Unlocking of the Inner Gate Determines the Catalytic Efficiency of a Neurotransmitter:Sodium Symporter. J. Biol. Chem. 290, 26725–26738 (2015).

287. Piscitelli, C. L., Krishnamurthy, H. & Gouaux, E. Neurotransmitter/sodium symporter orthologue LeuT has a single high-affinity substrate site. Nature 468, 1129–1132 (2010).

288. Bjerregaard, H., Severinsen, K., Said, S., Wiborg, O. & Sinning, S. A Dualistic Conformational Response to Substrate Binding in the Human Serotonin Transporter Reveals a High Affinity State for Serotonin. J. Biol. Chem. 290, 7747– 7755 (2015).

289. Li, Z. et al. Identification of a second substrate-binding site in solute-sodium symporters. J. Biol. Chem. 290, 127–41 (2015).

290. Armstrong, E. F. Enzymes. By J.B.S. Haldane, M.A. Monographs on Biochemistry. Edited by R.H.A. Plimmer, D.Sc., and Sir F. G. Hopkins, M.A., M.B., D.Sc., F.R.S. Pp. vii+235. London: Longmans, Green & Co., 1930. Price 14s. J. Soc. Chem.

Ind. 49, 919–920 (1930).

291. WRIGHT, K. J. & OVERATH, P. Purification of the lactose:H+ carrier of Escherichia coli and characterization of galactoside binding and transport. FEBS J. 138, 497– 508 (1984).

292. Knol, J., Sjollema, K. & Poolman, B. Detergent-mediated reconstitution of membrane proteins. Biochemistry 37, 16410–16415 (1998).

293. Sherman, F., Fink, G. R. & Hicks, J. B. Laboratory course manual for methods in yeast genetics. (1986). doi:10.1016/0307-4412(91)90039-B/abstract

(23)

294. Nørholm, M. H. H. A mutant Pfu DNA polymerase designed for advanced uracil-excision DNA engineering. BMC Biotechnol. 10, 1 (2010).

295. Alani, E., Cao, L. & Kleckner, N. A method for gene disruption that allows repeated use of URA3 selection in the construction of multiply disrupted yeast strains. Genetics 116, 541–545 (1987).

296. Geertsma, E. R. & Poolman, B. High-throughput cloning and expression in recalcitrant bacteria. Nat. Methods 4, 705–707 (2007).

297. Newman, M. J. & Wilson, T. H. Solubilization and reconstitution of the lactose transport system from Escherichia coli. J. Biol. Chem. 255, 10583–10586 (1980). 298. Cladera, J., Rigaud, J., Bottin, H. & Duñach, M. Functional reconstitution of photosystem I reaction center from cyanobacteriumSynechocystis. J. Bioenerg.

Biomembr. 28, 503–515 (1996).

299. Shimazu, M., Sekito, T., Akiyama, K., Ohsumi, Y. & Kakinuma, Y. A Family of Basic Amino Acid Transporters of the Vacuolar Membrane from Saccharomyces cerevisiae. J Biol Chem 280, 4851–4857 (2005).

300. Saier, M. H. et al. The Transporter Classification Database (TCDB): recent advances. Nucleic Acids Res 44, D372–D379 (2016).

301. Reddy, V. S., Shlykov, M. A., Castillo, R., Sun, E. I. & Saier, M. H. The major facilitator superfamily (MFS) revisited. Febs J 279, 2022–2035 (2012).

302. Tsirigos, K. D., Peters, C., Shu, N., Käll, L. & Elofsson, A. The TOPCONS web server for consensus prediction of membrane protein topology and signal peptides.

Nucleic Acids Res 43, W401–W407 (2015).

303. Yan, N. Structural advances for the major facilitator superfamily (MFS) transporters. Trends Biochem. Sci. 38, 151–159 (2013).

304. Gromadka, R., Gora, M., Zielenkiewicz, U., Slonimski, P. P. & Rytka, J. Subtelomeric duplications in Saccharomyces cerevisiae chromosomes III and XI: Topology, arrangements, corrections of sequence and strain-specific polymorphism. Yeast 12, 583–591 (1996).

305. SHIMAZU, M. et al. Vba5p, a Novel Plasma Membrane Protein Involved in Amino Acid Uptake and Drug Sensitivity in Saccharomyces cerevisiae. Biosci Biotechnol.

Biochem 76, 1993–1995 (2014).

306. Bernsel, A., Viklund, H., Hennerdal, A. & Elofsson, A. TOPCONS: consensus prediction of membrane protein topology. Nucleic Acids Res. 37, W465-8 (2009). 307. Baker Brachmann, C. et al. Designer deletion strains derived fromSaccharomyces cerevisiae S288C: A useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14, 115–132 (1998).

(24)

and cloning in Escherichia coli. J. Mol. Biol. 138, 179–207 (1980).

309. Giaever, G. et al. Functional profiling of the Saccharomyces cerevisiae genome.

Nature 418, 387–391 (2002).

310. Newstead, S., Kim, H., von Heijne, G., Iwata, S. & Drew, D. High-throughput fluorescent-based optimization of eukaryotic membrane protein overexpression and purification in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 104, 13936–13941 (2007).

311. Janke, C. et al. A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962 (2004).

312. Sikorski, R. S. & Hieter, P. A System of Shuttle Vectors and Yeast Host Strains Designed for Efficient Manipulation of DNA in Saccharomyces Cerevisiae.

Genetics 122, 19 (1989).

313. Gueldener, U., Heinisch, J., Koehler, G. J., Voss, D. & Hegemann, J. H. A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res. 30, e23 (2002).

314. Olin-Sandoval, V. et al. Lysine harvesting is an antioxidant strategy and triggers underground polyamine metabolism. Nature 572, 249–253 (2019).

315. Ruiz, S. J., van ’t Klooster, J. S., Bianchi, F. & Poolman, B. Growth inhibition by amino acids in Saccharomyces cerevisiae. bioRxiv 222224 (2017). doi:10.1101/222224

316. Regenberg, B. & Kielland-Brandt, M. C. Amino acid residues important for substrate specificity of the amino acid permeases Can1p and Gnp1p inSaccharomyces cerevisiae. Yeast 18, 1429–1440 (2001).

317. Soetens, O., Craene, D. J. O. & Andre, B. Ubiquitin Is Required for Sorting to the Vacuole of the Yeast General Amino Acid Permease, Gap1. J. Biol. Chem. 276, 43949–43957 (2001).

318. Haguenauer-Tsapis, R. & André, B. Membrane trafficking of yeast transporters: mechanisms and physiological control of downregulation. in 273–323 (2004). doi:10.1007/b97215

319. Schothorst, J. et al. Yeast nutrient transceptors provide novel insight in the functionality of membrane transporters. Curr. Genet. 59, 197–206 (2013). 320. Stockner, T. et al. Development of Refined Homology Models: Adding the

Missing Information to the Medically Relevant Neurotransmitter Transporters. in 99–120 (2014). doi:10.1007/978-3-642-53839-1_5

321. Beuming, T., Shi, L., Javitch, J. A. & Weinstein, H. A comprehensive structure-based alignment of prokaryotic and eukaryotic neurotransmitter/Na+

(25)

symporters (NSS) aids in the use of the LeuT structure to probe NSS structure and function. Mol. Pharmacol. 70, 1630–1642 (2006).

322. Stephan, M. M., Chen, M. A., Penado, K. M. & Rudnick, G. An extracellular loop region of the serotonin transporter may be involved in the translocation mechanism. Biochemistry 36, 1322–8 (1997).

323. Jursky, F. et al. Structure, function and brain localization of neurotransmitter transporters. J. Exp. Biol. 196, 283–295 (1994).

324. Papadaki, G. F., Amillis, S. & Diallinas, G. Substrate specificity of the furE transporter is determined by cytoplasmic terminal domain interactions. Genetics 207, 1387–1400 (2017).

325. Simmons, K. J. et al. Molecular mechanism of ligand recognition by membrane transport protein, Mhp1. EMBO J. 33, 1831–1844 (2014).

326. Raba, M. et al. Extracellular loop 4 of the proline transporter PutP controls the periplasmic entrance to ligand binding sites. Structure 22, 769–780 (2014). 327. Kanner, B. I., Bendahan, A., Pantanowitz, S. & Su, H. The number of amino acid

residues in hydrophilic loops connecting transmembrane domains of the GABA transporter GAT-1 is critical for its function. FEBS Lett. 356, 191–194 (1994). 328. Hopf, T. A. et al. Three-Dimensional Structures of Membrane Proteins from

Genomic Sequencing. Cell 149, 1607–1621 (2012).

329. Mikros, E. & Diallinas, G. Tales of tails in transporters. Open Biol. 9, (2019). 330. Merhi, A., Gérard, N., Lauwers, E., Prévost, M. & André, B. Systematic mutational

analysis of the intracellular regions of yeast gap1 permease. PLoS One 6, (2011). 331. Koning, A. J., Lum, P. Y., Williams, J. M. & Wright, R. DiOC6 staining reveals organelle structure and dynamics in living yeast cells. Cell Motil. Cytoskeleton 25, 111–128 (1993).

332. Meinema, A. C. et al. Long unfolded linkers facilitate membrane protein import through the nuclear pore complex. Science (80-. ). 333, 90–93 (2011).

333. Stradalova, V. et al. Distribution of cortical endoplasmic reticulum determines positioning of endocytic events in yeast plasma membrane. PLoS One 7, (2012). 334. Wolinski, H., Kolb, D., Hermann, S., Koning, R. I. & Kohlwein, S. D. A role for seipin in lipid droplet dynamics and inheritance in yeast. J. Cell Sci. 124, 3894–3904 (2011).

335. Kung, L. A. et al. Global analysis of the glycoproteome in Saccharomyces

cerevisiae reveals new roles for protein glycosylation in eukaryotes. Mol. Syst. Biol. 5, 308 (2009).

336. Kukuruzinska, M. A., Bergh, M. L. E. & Jackson, B. J. Protein Glycosylation in Yeast.

(26)

337. Keller, T. et al. The large extracellular loop of organic cation transporter 1 influences substrate affinity and is pivotal for oligomerization. J. Biol. Chem. 286, 37874–37886 (2011).

338. Brast, S. et al. The cysteines of the extracellular loop are crucial for trafficking of human organic cation transporter 2 to the plasma membrane and are involved in oligomerization. FASEB J. 26, 976–986 (2012).

339. Will, A. & Tanner, W. Importance of the first external loop for substrate recognition as revealed by chimeric Chlorella monosaccharide/H + symporters.

FEBS Lett. 381, 127–130 (1996).

340. Yu, X. et al. Structural basis for the transport mechanism of the human glutamine transporter SLC1A5 (ASCT2). bioRxiv 622563 (2019). doi:10.1101/622563 341. Compton, E. L. R., Taylor, E. M. & Mindell, J. A. The 3-4 loop of an archaeal

glutamate transporter homolog experiences ligand-induced structural changes and is essential for transport. Proc. Natl. Acad. Sci. U. S. A. 107, 12840–12845 (2010).

342. Egner, R., Rosenthal, F. E., Kralli, A., Sanglard, D. & Kuchler, K. Genetic Separation of FK506 Susceptibility and Drug Transport in the Yeast Pdr5 ATP-binding Cassette Multidrug Resistance Transporter. Mol. Biol. Cell 9, 523–543 (1998). 343. Coleman, J. A., Green, E. M. & Gouaux, E. X-ray structures and mechanism of the

human serotonin transporter. Nature 532, 334–339 (2016).

344. Möller, I. R. et al. Conformational dynamics of the human serotonin transporter during substrate and drug binding. Nat. Commun. 10, (2019).

345. Smicun, Y., Campbell, S. D., Chen, M. A., Gu, H. & Rudnick, G. The role of external loop regions in serotonin transport. Loop scanning mutagenesis of the serotonin transporter external domain. J. Biol. Chem. 274, 36058–64 (1999).

346. Ghaddar, K., Merhi, A., Krammer, E. & Saliba, E. Substrate-induced ubiquitylation and endocytosis of yeast amino acid permeases. (2014). doi:10.1128/MCB.00699-14

347. Kanda, N. & Abe, F. Structural and Functional Implications of the Yeast High-Affinity Tryptophan Permease Tat2. Biochemistry-us 52, 4296–4307 (2013). 348. Gao, Xiang; Lu, Feiran; Zhou, Lijun; Dang, Shangyu; Sun, Linfeng; Li, Xiaochun;

Wang, Jiawei; Shi, Y. Structure and Mechanism of an Amino Acid Antiporter.

Science 325, 1010–1014 (2009).

349. Yamashita, A., Singh, S. K., Kawate, T., Jin, Y. & Gouaux, E. Crystal structure of a bacterial homologue of Na+/Cl --dependent neurotransmitter transporters.

Nature 437, 215–223 (2005).

(27)

excision. Nucleic Acids Res. 35, 1992–2002 (2007).

351. Schiestl, R. H. & Gietz, R. D. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. (1989). doi:10.1007/BF00340712

352. Kaiser, C., Michaelis, S., Mitchell, A. & Cold Spring Harbor Laboratory. Methods

in yeast genetics : a Cold Spring Harbor Laboratory course manual. (Cold Spring

Harbor Laboratory Press, 1994).

353. Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis.

Nature Methods 9, 676–682 (2012).

354. Marks, D. S. et al. Protein 3D structure computed from evolutionary sequence variation. PLoS One 6, (2011).

355. Marks, D. S., Hopf, T. A. & Sander, C. Protein structure prediction from sequence variation. Nat. Biotechnol. 30, 1072–80 (2012).

356. Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845– 858 (2015).

357. Wang, Z., Zhao, F., Peng, J. & Xu, J. Protein 8-class secondary structure prediction using conditional neural fields. Proteomics 11, 3786–92 (2011).

358. Yang, J. et al. The I-TASSER Suite: protein structure and function prediction. Nat.

Methods 12, 7–8 (2015).

359. Tusnády, G. E. & Simon, I. The HMMTOP transmembrane topology prediction server. Bioinformatics 17, 849–50 (2001).

360. Hofmann, K. & Stoffel, W. TMbase - A database of membrane spanning proteins segments. (1993).

361. Kaján, L. et al. Cloud prediction of protein structure and function with PredictProtein for Debian. Biomed Res. Int. 2013, (2013).

362. Bateman, A. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 47, D506–D515 (2019).

363. Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-A multiple sequence alignment editor and analysis workbench.

Bioinformatics 25, 1189–1191 (2009).

364. Sievers, F. et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 7, (2011).

365. Physical Basis of Self-Organization and Function of Membranes: Physics of Vesicles. Handb. Biol. Phys. 1, 213–304 (1995).

366. Cerbon, J. & Calderon, V. Generation modulation and maintenance of the plasma membrane asymmetric phospholipid composition in yeast cells during growth:

Referenties

GERELATEERDE DOCUMENTEN

The work described in this thesis was carried out in the Membrane Enzymology group of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB) of the University

Diffusion and localization of proteins in the plasma membrane of Saccharomyces cerevisiae Syga, Lukasz.. IMPORTANT NOTE: You are advised to consult the publisher's version

In conclusion: we have developed a generic method for the immobilization of living and synthetic cells on surfaces that allow the structure of the cells and dynamic processes in

Fw primer for amplification of can1 specific YPet fusion cassette from Pug72 YPet with

To obtain more information about the (slow) diffusion of proteins and lipids in the plasma membrane of yeast, we thus explored the possibilities to insert fluorescent probes

Quand nous avons comparé les SMALPs avec les extraits totaux de la membrane plasmique, nous trouvons que les concentrations d’ergostérols sont 6 fois plus bas (4 contre 20-30

Lateral organization of proteins and lipids in the plasma membrane and the kinetics and lipid-dependence of lysine transport in Saccharomyces

Lateral organization of proteins and lipids in the plasma membrane and the kinetics and lipid- dependence of lysine transport in Saccharomyces cerevisiae.. van 't