• No results found

University of Groningen Design of new aggregates for catalysis Tosi, Filippo

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Design of new aggregates for catalysis Tosi, Filippo"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Design of new aggregates for catalysis

Tosi, Filippo

DOI:

10.33612/diss.107814277

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Tosi, F. (2019). Design of new aggregates for catalysis. Rijksuniversiteit Groningen. https://doi.org/10.33612/diss.107814277

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

139

Summary

A large part of chemistry is performed in solution, where compounds are dissolved in (usually) an organic solvent and then react with each other with or without the aid of a catalyst (a chemical species which makes reactions happen faster). When organic compounds are fully dissolved, we define this as a homogeneous system. This is not always the case though; chemistry can be performed also with undissolved components, such as solid catalysts for instance, which we define as heterogeneous systems. These materials are sometimes able to enhance the rate of a reaction and allow transformations otherwise not possible in solution.

In the vast category of materials which can be used, aggregates deriving from amphiphilic molecules have taken an important place. Amphiphiles are molecules which feature two distinct parts, namely a hydrophilic part (such as a charged head group which dissolves in water) and a hydrophobic or lipophilic component (such as a long carbon chain, which does not dissolve in water).

The term indicates then a compound which has both a “water-loving” component (hydrophilic) and a “fat-loving” component (lipophilic). Because of these ambivalent characteristics, once put into water amphiphiles tend to rearrange their constituting parts, forming a variety of structures in a relatively ordered manner which is called self-assembly (Figure 1).

Figure 1: Schematic representation of an amphiphile and the self-assembly process.

Since the alkyl tails (the hydrophobic component of the amphiphile) do not dissolve in water, they rearrange as far as possible from the aqueous medium while the hydrophilic part stays in contact with water. The aliphatic tails form a new, lipophilic, phase which generates different structures according to the geometry of the amphiphile and the environmental conditions. In this new phase, organic molecules become soluble. This is the way in which soap (also an amphiphile) works to clean our dishes, including oil droplets which otherwise are not soluble in water. Just like soap can bring

(3)

140

oil and dirt in solution, an amphiphilic aggregate can include organic substrate bringing them together in aqueous environment.

Using this characteristic, amphiphiles have helped achieve a long-standing challenge for chemists: achieving reactivity in water.

Several different amphiphiles (also known as surfactants) have been used for this purpose. According to their structure they could form small spherical aggregates (named micelles), membranes (defined as vesicles, if spherical) or other self-assembled structures. It has been shown that in the presence of these aggregates higher reaction speed was achieved in comparison to the same reaction in the most common organic solvents. One important aspect to take into consideration here, is that in these tiny aggregates the concentration of reagents is very high and therefore molecules can easily come in contact with each other and react. The main drawback of this approach is the use of large quantities of surfactants (up to 30%), which constitutes a large amount of waste. Chemists have worked on this aspect, and they found that in some cases, with vesicular aggregates, for instance, low amounts of amphiphiles can be used, still achieving efficient results.

The focus of this thesis work was synthesizing new surfactants to use for reactivity in aqueous environment. This is particularly important to find new ways to efficiently perform reactions in water, possibly avoiding to use large quantities of amphiphiles. Emphasis was placed on the aggregation studies and ways to control the morphologies obtained in the self-assembly process.

Chapter 1 summarizes the principles of self-assembly of amphiphilic molecules and the use of those aggregates in catalysis. After a description of the different types of aggregates, the dissertation details the uses and developments of these aggregates to perform chemical reactions in water. A selection of the milestones on this topic describes the evolution of the field and attempts to achieve reactivity in aqueous environment.

Chapter 2 the synthesis and self-assembly of amphiphiles based on a so-called BINOL scaffold was investigated. Four different test substrates were synthesized changing the length and termination of the polyethylene glycol (PEG) chain and the effect of the substitution on their self-assembly was examined. Different structures were obtained, ranging from vesicles to cubic structures and even nanotubes, providing well-defined BINOL-based aggregates. A temporal effect was observed, revealing that the formation of vesicles and cubic structures occurs only in first instance, and is followed by rearrangement of the structures to form thermodynamically stable nanotubes, a process facilitated by sonication.

Chapter 3 focuses on accessing different aggregates from the same amphiphilic scaffold using transition metal ions as a way to direct self-assembly. By making transition metal complexes from a single surfactant scaffold, we were able to access different geometries, ranging from cubic structures, to sponges, vesicles and micelles. In order to understand how a few metals of the transition series had such a drastic effect on the aggregation, spectroscopic investigation was carried out, shedding light on the key role of water coordination.

(4)

141

In Chapter 4, the synthesis and self-assembly of chiral bis(urea) amphiphiles is investigated. This new amphiphilic system assembled in ribbons, which seem to keep the chiral information of the monomer in the self-assembled structure. The coiling of such ribbons was tuned by varying the e.e. of the amphiphilic mixture, resulting in the formation of helical ribbons and planar sheets by decreasing the enantiomeric excess. Moreover, the system showed thermo-responsive properties resulting in the formation of vesicles upon heating, on the expense of the chiral ribbons.

In Chapter 5, studies towards catalytic application of new amphiphiles are discussed. A new family of BINOL-based amphiphiles was synthesized, this time reverting the substitution on the BINOL core with respect to the design presented in Chapter 2. The rationale behind this design was based on the idea of including organic substrates in the lipid bilayer formed in the aggregation process, bringing them in close proximity to the catalytically active site. The synthesis of some of these new derivatives was accomplished and the self-assembly properties were investigated, although a well-defined structure could not be observed. In a second section of the Chapter, the previously presented salen-based amphiphiles (Chapter 3) were investigated in catalytic test reactions. The copper and nickel complexes were used to perform the stereoselective Henry reaction, the cobalt and iron complexes were tested for ring-opening reaction of epoxides and eventually the manganese complex was investigated in the epoxidation of alkenes. Unfortunately, no outcome that we hoped for was obtained, but these complexes could still represent an important new step in the quest of achieving reactivity in water.

Chapters 6 and 7 venture in the investigation of a different type of aggregate. In the study of the organolithium cross-coupling reaction optimized in our group, we searched for an effective way to perform catalysis in short reaction times. The development of this methodology showed that oxygen activation was paramount in order to achieve fast reactivity. Molecular oxygen activated the Pd complex used towards the formation of active Pd nanoparticles (PdNPs) in a stepwise reduction mechanism. Passing through the formation of a Pd(I) dimeric complex, PdNPs were obtained as a result of the reduction performed in situ by the lithium reagent. The impressive reaction rates have been exploited in an application where time constraint is key: labelling with radioactive isotopes. The use of [11C] is particularly difficult due to

its short half-life (t1/2 = 20 min). We showcased the usefulness of our methodology by

labelling the target PET-tracer Celecoxib.

Chapter 7 describes a further application of this fast cross-coupling methodology in the synthesis of the target breast-cancer drug Tamoxifen. In comparison with previously reported studies, this protocol stands out for its atom economy and short step count, obtaining Tamoxifen in only 2 steps from cheap and commercially available starting materials.

(5)

142

Samenvatting

Een groot deel van scheikunde wordt uitgevoerd in oplossing, waar stoffen opgelost zijn in (over het algemeen) organische oplosmiddelen en dan reageren met elkaar, met of zonder hulp van een katalysator (een chemische stof die reactes versnelt). Wanneer organische stoffen volledig opgelost zijn, noemen we dit een homogeen systeem. Dit is echter niet altijd het geval: reacties kunnen plaatsvinden tussen niet opgeloste componenten, zoals bijvoorbeeld vaste katalysatoren. Een dergelijk systeem wordt heterogeen genoemd. Dit soort materialen kunnen soms de snelheid van een reactie verhogen, of transformaties toestaan die normaal in een oplossing niet mogelijk zijn.

In de enorme categorie materialen die gebruikt kunnen worden, hebben aggregaten bestaande uit amfifiele moleculen een belangrijke plaats ingenomen. Amfifielen zijn moleculen die twee afzonderlijke delen hebben, namelijk een hydrofiel deel (zoals een geladen kopgroep die oplost in water) en een hydrofobe of lipofiele component (zoals een lange koolstofketen die niet oplost in water).

De term ‘amfifiel’ duidt dus een verbinding aan die zowel een "waterminnende" component (hydrofiel) als een "vetminnende" component (lipofiel) heeft. Vanwege deze ambivalente eigenschappen hebben amfifielen, eenmaal in water gebracht, de neiging hun samenstellende delen te herschikken, waarbij ze een verscheidenheid aan structuren vormen op een relatief ordelijke manier die zelfassemblage wordt genoemd (Figuur 1).

Figuur 2: Schematisch overzicht van een amfifiel en het zelfassemblageproces.

Omdat de alkylstaarten (de hydrofobe component van de amfifiel) niet oplossen in water, herschikken ze zo ver mogelijk van het waterige medium terwijl het hydrofiele deel in contact blijft met water. De alifatische staarten vormen een nieuwe, lipofiele fase die verschillende structuren genereert volgens de geometrie van het amfifiel en de omgevingscondities. In deze nieuwe fase worden organische moleculen oplosbaar. Dit is de manier waarop zeep (ook een amfifiel) onze borden reinigt, oliedruppeltjes die

(6)

143

anders niet in water oplosbaar zijn opnemend. Net zoals zeep olie en vuil in oplossing kan brengen, kan een amfifiel aggregaat organisch substraat bevatten dat ze zo samenbrengt in een waterige omgeving.

Met behulp van deze eigenschap hebben amfifielen bijgedragen aan een langdurige uitdaging voor chemici: reactiviteit in water bereiken.

Verschillende soorten amfifielen (ook bekend als oppervlakteactieve stoffen) zijn voor dit doel gebruikt. Afhankelijk van hun structuur kunnen ze kleine sferische aggregaten (micellen genoemd), membranen (gedefinieerd als vesikels, indien sferisch) of andere zelf-geassembleerde structuren vormen. Er is aangetoond dat in aanwezigheid van deze aggregaten een hogere reactiesnelheid werd bereikt in vergelijking met dezelfde reactie in de meest gebruikelijke organische oplosmiddelen. Een belangrijk aspect om hier rekening mee te houden, is dat in deze kleine aggregaten de concentratie van reagentia erg hoog is, zodat moleculen gemakkelijk met elkaar in contact kunnen komen en reageren. Het belangrijkste nadeel van deze aanpak is het gebruik van grote hoeveelheden oppervlakteactieve stoffen (tot 30%), wat een grote hoeveelheid afval vormt. Chemici hebben aan dit aspect gewerkt en vonden dat in sommige gevallen met vesiculaire aggregaten, bijvoorbeeld, kleine hoeveelheden amfifielen kunnen worden gebruikt, terwijl nog steeds efficiënte resultaten bereikt worden.

De focus van dit proefschriftwerk is de synthese van nieuwe oppervlakteactieve stoffen om te gebruiken voor reacties in waterige omgeving. Dit is vooral belangrijk om nieuwe manieren te vinden om reacties in water efficiënt uit te voeren, waarbij mogelijk grote hoeveelheden amfifielen worden vermeden. De nadruk werd gelegd op de aggregatiestudies en manieren om de morfologieën verkregen in het zelfassemblageproces te beheersen.

Hoofdstuk 1 vat de principes van zelfassemblage van amfifielen samen en beschrijft het gebruik van deze stoffen in katalyse. Het hoofdstuk beschrijft de verschillende aggregaten die met amfifielen in het water kunnen worden verkregen en hun gebruik voor chemische reacties in het water. Een selectie van de mijlpalen over dit onderwerp beschrijft de ontwikkeling van het veld en de pogingen om reactiviteit in het water te kunnen bereiken.

Hoofdstuk 2 beschrijft de verschillende structuren die ontstaan als gevolg van veranderingen van de substitutie van op BINOL gebaseerde amfifielen. Vier derivaten werden gemaakt, met verschillende lengte en uiteinden van de polyethylene glycol (PEG) staarten en het effect van de substitutie over de aggregaten werd onderzocht.

Onderscheiden structuren worden bereikt, van vesiculen tot kubieke structuren en nanotubes. Een tijdelijk effect werd geobserveerd, waarin vesikels en kubieke structuren zich met behulp van sonicatie, naar thermodynamische stabiele nanotubes herschikken.

Hoofdstuk 3 richt zich op het construeren van verschillende aggregaten uit dezelfde amfifiele kernstructuur, met behulp van overgangsmetaalionen als een manier om zelfassemblage te sturen. Door verschillende overgangsmetaalcomplexen te maken van een enkele amfifiel, konden we toegang krijgen tot verschillende geometrieën,

(7)

144

variërend van kubieke structuren tot sponzen, vesikels en micellen. Om te begrijpen hoe enkele metalen van de overgangsreeks zo'n drastisch effect hadden op de aggregatie, werd spectroscopisch onderzoek uitgevoerd, dat licht werpt op de sleutelrol van watercoördinatie.

In Hoofdstuk 4 wordt de synthese en zelfassemblage van chirale bis (ureum) amfifielen onderzocht. Dit nieuwe amfifiele systeem assembleert in linten, die de chirale informatie van het monomeer in de zelf-geassembleerde structuur lijken te behouden. Het oprollen van dergelijke linten werd afgestemd door de e.e. te variëren van het amfifiele mengsel, resulterend in de vorming van spiraalvormige linten en vlakke vellen door de enantiomere overmaat te verminderen. Bovendien vertoonde het systeem thermogevoelige eigenschappen resulterend in de vorming van blaasjes bij verwarming, ten koste van de chirale linten.

In Hoofdstuk 5 worden studies naar katalytische toepassing van nieuwe amfifielen, afgeleid de amfifielen gepresenteerd in van hoofdstuk 2 en 3, besproken. Een nieuwe familie van op BINOL gebaseerde amfifielen werd gesynthetiseerd, deze keer werd de substitutie op de BINOL-kern hersteld. De grondgedachte achter dit ontwerp was gebaseerd op het idee om organische substraten op te nemen in de lipide dubbellaag gevormd in het aggregatieproces, waardoor ze in de nabijheid van de katalytisch actieve plaats worden gebracht. De synthese van enkele van deze nieuwe derivaten werd voltooid en de zelfassemblage-eigenschappen werden onderzocht, hoewel een goed gedefinieerde structuur niet kon worden waargenomen. In een tweede deel van het hoofdstuk werden de eerder gepresenteerde amandelen op salenbasis (hoofdstuk 3) onderzocht in katalytische testreacties. De koper- en nikkelcomplexen werden gebruikt om de stereoselectieve Henry-reactie uit te voeren, de kobalt- en ijzercomplexen werden getest op ringopeningsreactie van epoxiden en uiteindelijk werd het mangaancomplex onderzocht in de epoxidatie van alkenen. Helaas werd er geen resultaat bereikt waarop we hadden gehoopt, maar deze complexen konden nog steeds een belangrijke nieuwe stap vormen in de zoektocht naar reactiviteit in water.

Hoofdstukken 6 is gericht op een ander type aggregaat. In de studie van de organolithium cross-coupling reactie ontwikkeld in ons lab, hebben we gezocht naar een effectieve manier om katalyse uit te voeren in korte reactietijden. Moleculair zuurstof activeert het Pd complex om Pd nanodeeltjes te vormen in een stapsgewijs reductiemechanisme. Na de vorming van een Pd(I) dimeer complex, werden Pd nanodeeltjes verkregen als resultaat van de in situ reductie waarvoor het lithiumreagens verantwoordelijk is. De uitstekende reactiesnelheid werd gebruikt in een toepassing waarin tijd cruciaal is: het labelen met radioactieve isotopen. Het gebruik van [11C] in het bijzonder is moeilijk vanwege de korte halfwaardetijd (t1/2 = 20

min). We hebben de bruikbaarheid van deze methode tentoongesteld in het labelen van de PET-tracer Celecoxib.

Hoofdstuk 7 beschrijft nog een toepassing van de ultrasnelle organolithium cross-coupling reactie, gepresenteerd in Hoofdstuk 6, met de synthese van het borstkankermedicijn Tamoxifen. In vergelijk met andere protocollen, valt onze

(8)

145

methode op door zijn atoomeconomie en laag aantal stappen. Tamoxifen kon verkregen worden in twee stappen, startend met goedkope en commercieel beschikbare startmaterialen.

Riassunto

Gran parte della chimica avviene in soluzione, in cui i composti chimici sono dissolti in un solvente (piú comunemente) organico e reagiscono l’uno con l’altro con o senza l’aiuto di un catalizzatore (ovvero una specie chimica che incrementa la velocitá di una reazione). Quando i composti chimici sono completamente dissolti, il sistema viene definito omogeneo. Questo peró non é sempre il caso; infatti, in chimica si possono osservare reazioni anche con composti che non sono dissolti, come ad esempio un catalizzatore solido, e in questo caso si parla di sistema eterogeneo. A volte, questi materiali sono in grado di incrementare la velocitá di reazione o permettere trasformazioni chimiche che altrimenti non avverrebbero in soluzione (sistema omogeneo).

Nel grande insieme di materiali che possono essere utilizzati per questo scopo, gli aggregati che derivano da anfifili hanno dimostrato di essere molto interessanti. Gli anfifili sono molecole costituite da due parti distinte, ovvero una parte idrofilica (come una “testa” dotata di carica positiva o negativa, che si dissolve bene in acqua) e una componente idrofobica o lipofilica (come una lunga catena di atomi di carbonio, che non si dissolve bene in acqua).

Il termine anfifilo indica quindi un composto che allo stesso tempo “ama l’acqua” (idrofilico) o che “ama il grasso” (lipofilico). Per via di queste caratteristiche ambivalenti, una volta posti in ambiente acquoso gli anfifili tendono a riorientare le loro componenti, formando diverse strutture in un processo relativamente ordinato che viene definito “self-assembly” (Figura 1).

(9)

146

Dal momento che le catene di carbonio non si dissolvono bene in ambiente acquoso, queste si riorganizzano in modo da star il piú lontano possibile dall’acqua mentre la componente idrofilica resta in contatto col solvente. A seguito di questo processo, la componente lipofilica costituisce una nuova fase, che cambia aspetto a seconda delle caratteristiche strutturali del composto anfifilico e delle condizioni dell’ambiente circostante. In questa nuova fase, perfino i composti organici possono essere dissolti. Fondamentalmente, il sapone (anch’esso un anfifilo) funziona allo stesso modo per pulire i nostri piatti, inglobando goccioline d’olio che altrimenti non si dissolverebbero in acqua. Esattamente come un detergente é in grado di portare olio e sporco in soluzione, un aggregato anfifilico é in grado di inglobare sostanze organiche facendo in modo che queste vengano a contatto fra di loro in ambiente acquoso.

Utilizzando questa stratagia, gli anfifili hanno aiutato i chimici ad affrontare una sfida irrisolta da molto tempo: poter condurre reazioni in acqua.

Diversi anfifili (che possono essere definiti anche surfattanti) sono stati usati con quest’intenzione. A seconda della loro struttura, questi sono in grado di formare piccoli aggregati sferici (detti micelle), membrane (dette vescicole, se sferiche anch’esse) o altri tipi di strutture piú complesse. É stato provato che, in presenza di questi aggregati in acqua, si osservano velocitá di reazione molto piú elevate che in un solvente organico. Un aspetto importante da tenere in considerazione é che in questi piccoli aggregati la concentrazione locale di reagenti é molto alta, e quindi queste molecole possono facilmente venire a contatto l’una con l’altra e reagire. Lo svantaggio principale di questo approccio deriva dalle grandi quantitá di anfifilo che devono essere usate (fino al 30%), generando una grande quantitá di rifiuti di scarto della reazione. Diversi laboratori internazionali hanno lavorato per trovare un modo per affrontare questo problema e hanno scoperto che, per esempio in presenza di vescicole, basse percentuali di anfifili possono essere utilizzate pur sempre ottenendo risultati ottimali.

Lo scopo di questa tesi é stato di sintetizzare nuovi anfifili col fine di poter eseguire reazioni catalitiche in ambiente acquoso. L’accento é stato posto su nuovi metodi per condurre reazioni in acqua, possibilmente evitando di produrre grandi quantitá di rifiuti. Particolare attenzione é stata posta sugli studi di aggregazione e sui modi per controllare la morfologia degli aggregati derivati dal processo di self-assembly.

Il Capitolo 1 riassume i principi del self-assembly dei composti anfifilici e l’uso che ne é stato fatto in catalisi. Dopo una descrizione dei tipi di aggregati che derivano da questo processo, si passa alla descrizione degli usi e sviluppi di questi aggregati per poter condurre reazioni in acqua. Una selezione delle pietre miliari dell’argomento riassume l’evoluzione del campo e i tentativi fatti con l’intenzione di ottenere sistemi performanti per la catalisi in ambiente acquoso.

Nel Capitolo 2 la sintesi e il self-assembly di anfifili derivati da una struttura definita BINOL sono stati investigati. Quattro substrati differenti sono stati sintetizzati variando la lunghezza e terminazione delle catene polietileniche (PEG), e l’effetto della sostituzione sul processo di self-assembly é stato investigato. Diverse strutture sono state osservate, da vescicole a strutture cubiche e nanotubi, ottenendo aggregati ben definiti. Inoltre l’effetto temporale é stato studiato, rilevando che la formazione di

(10)

147

vescicole e aggregati cubici avviene soltanto in prima istanza per poi riorganizzarsi verso la formazione di nanotubi termodinamicamente stabili in un processo facilitato da stimolazione ad ultrasuoni.

Il Capitolo 3 tratta lo studio di diversi aggregati ottenuti dallo stesso anfifilo utilizzando metalli di transizione come strategia per poter direzionare il processo di self-assembly. Sintetizzando complessi di diversi metalli della prima serie di transizione, siamo riusciti ad ottenere diverse strutture, da aggregati cubici, a spugne, vescicole e micelle. Per ottenere maggiori informazioni sull’effetto dei metalli sul processo di aggregazione, una dettagliata investigazione spettroscopica ha rivelato l’effetto del metallo sulla coordinazione di singole molecole d’acqua, responsabili per il cambio di morfologia degli aggregati.

Nel Capitolo 4, la sintesi e il self-assembly di bis(uree) chirali anfifiliche sono stati discussi. Questo nuovo sistema anfifilico ha dato vita alla formazione di nastri, i quali mantengono la stessa informazione stereochimica dei monomeri nel processo di self-assembly. La curvatura di questi nastri puó essere variata cambiando l’eccesso enantiomerico della miscela anfifilica, portando cosí alla formazione di nastri elicoidali e piatti col diminuire dei valori di e.e. Inoltre, il sistema ha mostrato di avere proprietá termo-responsive, formando vescicole con l’incremento di temperatura.

Nel Capitolo 5 sono stati condotti studi volti all’applicazione catalitica di nuovi anfifili. In primo luogo é stata sintetizzata una nuova famiglia di anfifili basati sulla struttura dei BINOL, invertendo la sostituzione sul centro catalitico rispetto al design presentato nel Capitolo 2. L’idea dietro a questo design risiede nel fatto che in questo modo i substrati organici sarebbero inclusi nella membrana lipofilica dell’aggregato, in prossimitá del sito catalitico. La sintesi di alcuni di questi derivati é andata a buon fine e gli studi di self-assembly sono stati eseguiti, ma purtroppo non e’ stata rilevata la formazione di nessun aggregato. In una seconda parte del capitolo, gli anfifili descritti nel Capitolo 3 sono stati testati per applicazioni in catalisi. I complessi di rame e nickel sono stati utilizzati nella reazione di Henry, i complessi di cobalto e ferro sono stati testati per l’apertura di anelli epossidici, e infine il complesso di manganese é stato investigato nella reazione di epossidazione di composti alchenici. Sfortunatamente, non siamo riusciti a dimostrare l’utilizzo di questi nuovi sistemi, ma i complessi studiati potrebbero comunque rappresentare un passo importante verso l’ottenimento di sistemi efficienti per ottenere catalisi in ambiente acquoso.

I Capitoli 6 e 7 sono incentrati su un diverso tipo di aggregato. Nello studio della reazione di cross-coupling con reagenti di organolitio, ottimizzata nel nostro gruppo di ricerca, abbiamo cercato di trovare un modo per ottenere elevate velocitá di reazione. Lo sviluppo di una metodologia ultraveloce ha dimostrato che la presenza di ossigeno é necessaria per ottenere corti tempi di reazione. L’ossigeno molecolare attiva il complesso di palladio verso la formazione di nanoparticelle attive in un meccanismo di riduzione in due step. Inizialmente, si ha la formazione di un complesso dimerico di palladio in stato di ossidazione (+1), successivamente si ottengono nanoparticelle come risultato della riduzione in situ causata dal reagente di organolitio. L’incredibile velocitá di questa reazione é stata utilizzata in un’applicazione in cui il tempo é fondamentale:

(11)

148

marcatura con isotopi radioattivi. L’utilizzo di [11C] é particolarmente difficile per via

del suo corto emivita (t1/2 = 20 min). Siamo riusciti a provare l’utilitá di questa

metodologia nella sintesi del marcatore radioattivo Celecoxib.

Il Capitolo 7 descrive un’altra applicazione della reazione di cross-coupling catalizzata da nanoparticelle, ovvero la sintesi del farmaco Tamoxifen comunemente utilizzato nel trattamento del cancro al seno. Rispetto a studi riportati precedentemente in letteratura, il nostro protocollo spicca per la sua atom economy e la cortezza della sintesi, provvedendo il farmaco in soli due step a partire da materiali commerciali e poco costosi.

Referenties

GERELATEERDE DOCUMENTEN

Het bevriezen van water in een ijsje zorgt niet voor een nieuwe stof.. Dit is een

The thermo-responsive phase transition observed with micro-DSC was unequivocably confirmed by Cryo-TEM measurements of the heated samples, which revealed the formation of vesicles

been reported to be catalyzed by Co and Fe salen complexes, which provided us with a further possibility to find application for metallo-amphiphiles L1-Co and L1-Fe. The

Gratifyingly, identical results were achieved with both electron-poor and electron-rich substrates (5a-8a). Unwanted side reactions were suppressed with near perfect

Employing our recently discovered highly active palladium nanoparticle based catalyst (Chapter 6), we were able to couple an alkenyllithium reagent with high (Z/E)

I had to write you few times before I got an interview with you for a PhD position and my level of excitement (and anxiety) in that moment was beyond the roof. I was

With the aim of directing self-assembly of amphiphiles in water to different stages, transition metals were used as an effective tool to access different geometries, ranging from

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.. Downloaded