• No results found

The effects of liquidity level, commonality and risk on IPO timing

N/A
N/A
Protected

Academic year: 2021

Share "The effects of liquidity level, commonality and risk on IPO timing"

Copied!
41
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

 

THE  EFFECTS  OF  LIQUIDITY  LEVEL,  COMMONALITY  AND  

RISKS  ON  IPO  TIMING.    

Master  thesis             Student     Tim  Waaijer  

Number   6036759  

Study     Business  Economics   Track     Finance  

Supervisor   Patrick  Tuijp,  MPhil   Date     7  August  2015           Abstract    

This  paper  contributes  to  both  IPO  and  liquidity  literature  by  examining  a  liquidity  based  explanation  of   IPO  fluctuations.  IPOs  tend  to  cluster  in  time  and  are  correlated  with  up-­‐markets.  Ex-­‐ante  IPO  liquidity  is   proxied   by   sector   liquidity.   Liquidity   level   and   its   three   characteristics   (i)   liquidity   commonality,   (ii)   return  sensitivity  to  market  liquidity  and  (iii)  liquidity  sensitivity  to  market  have  mixed  influences  on  the   number  of  IPOs.  Liquidity  level  of  the  market  portfolio  appears  to  be  significant  and  a  1%  increase  in   illiquidity  decreases  the  number  of  IPOs  in  three  months  with  6.8%.  Liquidity  level  on  the  sector  level  is   not  significant  and  that  also  counts  for  the  three  characteristics.  Only  market  wide  liquidity  is  dominant   in   explaining   the   fluctuating   number   of   IPOs,   corresponding   with   other   literature   that   a   liquid   after-­‐ market  is  favorable  for  IPOs.    

 

Keywords:  Liquidity,  IPO,  liquidity  commonality,  Amihud  

(2)

STATEMENT  OF  ORIGINALITY    

 

This  document  is  written  by  student  Tim  Waaijer  who  declares  to  take  full  responsibility  for  the  content   of  this  document.    

 

I  declare  that  the  text  and  the  work  presented  in  this  document  is  original  and  that  no  sources  other   than  those  mentioned  in  the  text  and  its  references  have  been  used  in  creating  it.    

 

The  Faculty  of  Economics  and  Business  of  the  University  of  Amsterdam  is  responsible  solely  for  the   supervision  of  completion  of  the  work,  not  for  the  contents.      

(3)

1.  INTRODUCTION  

IPO  volume  tends  to  fluctuate  over  time  (Lowry,  2003).  Volume  is  higher  in  up-­‐markets  than  in  down-­‐ markets  (Derrien,  2005;  Pastor  and  Veronesi,  2005).  In  times  of  crisis,  few  companies  are  newly  listed  on   exchanges.  While  market  returns  are  not  a  dominant  factor  in  explaining  these  fluctuations  (Ritter  and   Welch,  2002),  returns  are  lower  in  down-­‐markets  (French,  Schwert,  and  Stambaugh,  1987)  and  illiquidity   is  correlated  with  down-­‐markets  (Brunnermeier  and  Pedersen,  2009).  This  indicates  a  certain  correlation   between  liquidity  and  IPO  fluctuations.  

This   paper   combines   research   done   on   IPOs   and   liquidity   and   liquidity   commonality.   Chordia,   Roll  and  Subrahmanyam  (2000),  Amihud  (2002),  Pastor  and  Stambaugh  (2003),  Acharya  and  Pedersen   (2005),  Brunnermeier  and  Pedersen  (2009)  established  findings  for  liquidity  and  liquidity  commonality   as  did  Ritter  and  Welch  (2002),  Eckbo  and  Norli  (2005)  and  Pastor  and  Veronesi  (2005)  for  IPOs,  among   others.  Most  research  done  in  the  combined  field  is  focused  on  after-­‐market  liquidity  for  IPOs  and  the   development  of  liquidity  on  the  amount  of  ‘money  left  on  the  table’  (Corwin,  Harris  and  Lipson,  2004;   Ritter  and  Welch,  2002).  Eckbo  and  Norli  (2005)  look  at  liquidity  and  long-­‐run  performance  of  IPOs.     How   liquidity   exerts   influence   on   the   future   number   of   IPOs   has   not   yet   been   researched.   Besides  liquidity  level,  liquidity  has  three  more  characteristics:  liquidity  commonality,  return  sensitivity   to  market  liquidity  and  liquidity  sensitivity  to  market  return  (Acharya  and  Pedersen,  2005).  This  paper   aims  to  clarify  the  determinants  for  a  company  to  go  public  regarding  liquidity  and  its  characteristics.   The  main  question  to  answer  is  how  do  liquidity  and  its  characteristics  influence  the  decision  of  firms  to   go  public?  Liquidity  of  a  company  cannot  be  observed  ex-­‐ante  IPO  date  and  that  makes  research  on  this   specific  topic  difficult.  However,  the  contribution  of  this  paper  is  the  development  of  a  proxy:  for  each   company  I  use  its  sector  to  create  a  portfolio  of  which  I  calculate  the  returns  and  liquidity.  These  values   then  serve  as  proxy  for  the  IPO  company.  

  Acharya   and   Pedersen   (2005)   develop   in   their   paper   a   liquidity-­‐adjusted   CAPM   based   on   the   Amihud   illiquidity   measure   (Amihud,   2002).   They   provide   evidence   that   not   only   market   risk   and   liquidity   commonality   are   priced   but   also   risks   between   returns   and   liquidity.   These   risks   are   return   sensitivity  to  market  liquidity  and  liquidity  sensitivity  to  market  liquidity.  As  return  sensitivity  to  market   liquidity   is   documented   by   Pastor   and   Stambaugh   (2003),   liquidity   sensitivity   to   market   liquidity   is   undocumented   in   academic   literature   before   the   paper   Acharya   and   Pedersen   (2005).   It   is   the   most   important  factor  in  their  model  due  to  the  highest  estimated  premium.  

  The  amount  of  ‘money  left  on  the  table’,  i.e.  the  underpricing  -­‐  which  is  the  difference  between   the  offer  price  and  the  closing  price  of  the  first  day  in  percentages,  must  compensate  for  the  risk  that  

(4)

investors   have   by   buying   IPO   shares.   Underpricing   is   higher   in   “hot   issue”   markets   and   is   linked   to   expected  stock  returns.  Stocks  that  are  expected  to  be  more  risky  than  others  have  higher  underpricing   (Derrien,  2005).  According  to  Acharya  and  Pedersen  (2005)  liquidity,  liquidity  commonality  and  its  two   risks   are   priced   in   expected   stock   returns.   Therefore   liquidity   and   its   characteristics   might   exert   influence  on  the  fluctuating  number  of  IPOs.  

  For  companies  it  is  important  to  understand  the  reaction  of  the  market  when  they  go  public  and   have  accurate  expectations.  For  investors  it  is  important  to  understand  the  motives  of  a  company  to  go   public   and   value   it   accordingly.   The   dynamic   field   between   companies   and   investors   is   interesting   because  both  parties  want  to  maximize  returns.  With  more  information  about  significant  factors  both   companies   and   investors   can   time   their   IPO   and   investment   in   IPOs   more   strategically.   Also   it   is   interesting  for  academic  literature  to  understand  why  IPO  volume  fluctuates  and  how  the  decisions  of   companies  and  investors  are  influenced.  

  I   use   Amihud’s   (2002)   measure   for   illiquidity   and   Acharya   and   Pedersen’s   (2005)   normalized   version   of   Amihud   as   illiquidity   measures.   Data   for   these   measures   is   provided   by   CRSP   and   included   only  listed  stocks  on   NYSE  and  Amex  exchanges.  CRSP  has   few   recorded   volume   entries   before  1983,   which   limits   the   ability   to   calculate   reliable   illiquidity   proxies.   Since   the   number   of   IPOs   tends   to   fluctuate  with  the  same  rhythm  as  business  cycles  it  is  important  to  take  a  large  timeframe  to  produce   accurate  results.  Therefore  the  window  of  this  research  lies  between  January  1983  and  March  2015.  

Thomson  One  provides  the  necessary  data  for  the  number  of  IPOs  for  the  sector  portfolios  and   market  portfolio.  Only  US  IPOs  on  Nasdaq,  NYSE  and  Amex  are  included  in  this  research.  The  number  of   IPOs  is  not  solely  dependent  on  market  conditions  but  also  relies  on  the  quality  of  the  company  itself.  To   control  for  these  factors  accounting  data  is  required  around  the  IPO  issue  date.  Compustat  provides  this   data.  

Rolling   betas   indicate   the   monthly   updated   systematic   risk,   liquidity   commonality,   return   sensitivity  to  market  liquidity  and  liquidity  sensitivity  to  market  return.  First  step  analysis  is  to  provide   evidence   for   the   influence   of   liquidity   level   on   the   number   of   future   IPOs.   According   to   this   research   liquidity   is   significant   for   the   market   portfolio.   Less   market   liquidity   results   in   fewer   future   IPOs   and   corresponds   with   literature   of   Ritter   and   Welch   (2002)   and   Brunnermeier   and   Pedersen   (2009).   On   average  a  1%  increase  in  illiquidity  according  to  Amihud’s  (2002)  measure  estimates  a  decrease  of  9.8%   in   the   number   of   IPOs   but   it   dependents   on   the   number   of   forwarded   months.   Six-­‐month   forwarded   estimates  are  impacted  more  by  current  the  liquidity  level  than  three-­‐month  forwarded  estimates.  

(5)

  The  second  step  is  to  test  if  sector  liquidity  also  significantly  explains  the  number  of  IPOs  for  the   sector  portfolio.  I  was  not  able  to  establish  enough  evidence  to  accept  this  hypothesis.  The  same  holds   for  the  liquidity  betas.  Adding  controls  and  time-­‐  and  sector-­‐fixed  effects  did  not  make  a  difference.  The   controls  have  large  explanatory  power  while  the  betas  do  not  add  much  to  the  explanatory  power  when   they  are  significant.  Based  on  the  evidence  in  this  paper,  companies  do  not  let  their  decision  for  an  IPO   be  influenced  by  sector  liquidity  and  the  sensitivity  to  market  return  and  liquidity.  

  Section  2  elaborates  on  important  literature  that  explains  studies  in  the  fields  of  liquidity  and   IPOs   and   combines   them.   It   shows   that   papers   researching   the   combined   field   hardly   exist.  Section   3   clarifies  the  data  sources  and  displays  descriptive  statistics  of  the  variables.  Further,  the  methodology   and  model  is  explained  in  Section  4  with  summary  statistics  about  the  calculated  betas.  The  results  are   presented   in   Section   5   for   the   two   proxies   for   liquidity.   Robustness   results   for   fixed   effects   are   presented   in   Subsection   5.2.   Finally,   I   provide   concluding   comments   in   Section   6   together   with   a   discussion.  

 

2.  LITERATURE  REVIEW  

This   literature   review   elaborates   on   papers   that   are   related   to   this   paper.   The   determinants   of   the   decision   to   go   public   can   be   inferred   both   from   the   ex-­‐ante   characteristics   of   the   companies   that   go   public   and   from   the   ex-­‐post   consequences   of   this   decision.   First,   I   will   explain   about   IPOs,   why   firms   would   like   to   get   listed   and   how   one   is   structured.   Furthermore,   Section   2.1   elaborates   on   the   fluctuating  number  of  IPOs,  as  it  seems  that  IPOs  are  clustered  in  time.  The  second  subsection  goes  into   further   detail   about   liquidity   after   an   IPO   and   what   variables   influence   after-­‐market   liquidity.   Third,   Section  2.3  and  2.4  explain  liquidity  and  liquidity  commonality.  

The  main  contribution  of  this  paper  is  researching  how  liquidity  commonality  and  liquidity  risks   exert  influence  on  the  number  of  IPOs.  A  general  note  for  the  equations  in  this  paper:  many  equations   are   used   to   calculate   variables   for   the   market   portfolio,   sector   portfolio   and   the   portfolio   containing   only   IPO   firms.   The   difference   is   indicated   by   superscripts  𝑚, 𝑠, 𝑖  for   market,   sector   and   firm   values   respectively.  Some  equations  might  be  presented  in  a  different  notation  than  in  their  original  paper  for  a   better  understanding  and  comparison.  

     

(6)

2.1  IPOs  

An  Initial  public  offering  is  one  of  the  most  important  events  on  the  capital  markets  for  a  company.  The   desire  to  raise  capital  and  create  a  market  where  shareholders  can  convert  their  shares  into  cash  are  the   main  reasons  for  companies  to  go  public  (Ritter  and  Welch,  2002;  Ellis,  Michaely,  and  O'Hara,  2000).  To   guide  the  IPO  process  a  company  usually  needs  an  investment  firm  as  underwriter.  Theoretically  a  firm   does   not   need   an   underwriter   but   the   process   it   needs   to   go   through   is   extensive   and   complicated.   Many  requirements  by  the  SEC  need  to  be  fulfilled  and  several  reports  with  qualitative  and  quantitative   analyses  have  to  be  handed  in.  Underwriters  have  the  knowledge  and  experience  to  guide  the  process.   An   IPO   can   be   structured   in   multiple   ways.   In   a   firm-­‐commitment   the   underwriter   guarantees   that   a   certain   amount   will   be   raised   by   buying   the   entire   offer   and   selling   it   to   the   pubic.   A   best-­‐effort   agreement  does  not  give  such  a  guarantee.  In  that  case  the  firm  takes  the  risk  of  not  raising  as  much  as   it   would   like.   An   investment   firm   can   diversify   its   risk   by   establishing   a   syndicate   with   multiple   investment  firms.  One  firm  will  lead  the  IPO  while  others  sell  a  part  of  the  shares  and  take  on  part  of  the   risk.   This   initial   agreement   protects   the   underwriter   against   uncovered   expenses   (Ellis,   Michaely,   and   O'Hara,  2000).  

When   the   terms   of   the   initial   agreement   between   the   underwriter   and   issuer   are   set,   the   registration   statement   is   filed   at   the   SEC   with   a   S-­‐1   form   according   to   the   Securities   Act   of   1933   (Loughran  and  McDonald,  2013).  Information  about  financial  statement,  insider  holdings,  management   background   and   the   offering   is   disclosed.   During   the   ensuing   required   cooling   period   by   the   SEC   the   company   and   the   underwriter   go   on   a   road   show   with   a   preliminary   prospectus   (“Red   Herring”)   to   create  interest  in  the  company  among  investors  (Jenkinson  and  Ljungqvist,  2001).  When  interest  in  the   issue   is   build   up,   both   parties   decide   on   the   price.   Two   of   the   most   important   determinants   of   a   successful  IPO  are  the  current  market  conditions  and  the  success  of  the  roadshow  besides  the  potential   success   of   the   company.   After   the   issue   date   the   underwriter   ensures   stabilization   by   buying   shares   when  order  imbalances  arise  (Ellis,  Michaely,  and  O'Hara,  2000).  Table  1,  a  simplified  version  of  table  1   on  page  1044  in  the  paper  of  Ellis,  Michaely,  and  O'Hara  (2000),  provides  a  clear  overview  of  the  IPO   process.  

  The  path  of  an  IPO  offers  opportunities  for  behavioral  factors  but  other,  more  rational,  factors   appear   to   be   more   dominant   (Ritter   and   Welch,   2002).   By   going   public,   CEOs   help   facilitate   the   acquisition  of  their  company  for  a  higher  value  than  they  would  get  by  remaining  private  (Brau,  Francis,   and  Kohers,  2003).  The  paper  of  Ritter  and  Welch  (2002)  further  names  being  publicly  listed  itself  adds  

(7)

to   a   bigger   public   role   and   better   visibility.   Chemmanur   and   Fulghieri   (1999)   develop   the   more   conventional  wisdom  that  listed  firms  offer  more  dispersion  of  ownership  and  hence  try  to  reduce  the   principal-­‐agent  problem.  

 

Table  1:  IPO  process  

Steps  of  the  IPO  process  with  the  main  events  displayed.  Credits  for  this  table  go  to  Ellis,  Michaely  and   O’Hara  (2000)  who  provide  an  extended  version  of  this  table  in  their  paper  on  page  1044.  

Step   Main  event  

1.  Initial  step   Select  book-­‐running  manager  and  co-­‐manager  

    Letter  of  intent  

2.  Registration  process   Registration  statement  and  due  diligence  

    Red  Herring  

3.  Marketing   Distribute  prospectus;  road  show  

4.  Pricing  and  allocation   Pricing;  allocation  

5.  Aftermarket  activities   Stabilization;  overallotment;  option  

    Research  coverage  

 

  What  is  interesting  for  this  paper  to  know  is  which  factors  determine  the  timing  of  an  IPO  when   the   decision   to   go   public   has   already   been   made.   Korajczyk,   Lucas   and   McDonald   (1991)   argue   that   adverse   selection   arises   when   a   company   issues   shares.   Insiders   with   superior   information   have   an   incentive  to  issue  shares  when  the  firm  is  overvalued.  Investors  will  lower  their  valuations  of  the  firm’s   equity   consequentially.   Since   firms   disclose   information   on   a   regularly   basis   (ea.   earning   announcements,   annual   reports)   the   price   decline   after   an   issue   will   be   lower   when   information   between  insiders  and  outsiders  is  more  symmetric.  However,  according  to  Ritter  and  Welch  (2002)  IPO   fluctuations  are  unlikely  to  be  explained  by  asymmetric  information  theories  because  entrepreneurs  are   more  inclined  to  sell  shares  after  valuations  in  the  public  markets  have  increased.  This  contradicts  with   the  theory  of  Korajczyk,  Lucas,  and  McDonald  (1991).  What  they  do  agree  on  is  the  finding  that  firms   postpone   their   equity   issue   if   they   know   they   are   currently   undervalued.   More   IPOs   are   seen   in   up   markets   than   in   down   markets.   According   to   research   done   by   Ritter   (2015),   the   number   of   IPOs   is   correlated  with  up  markets  and  the  average  first-­‐day  underpricing.  

  A  difficulty  with  research  on  IPO  timing  is  that  you  only  observe  the  number  of  firms  that  are   actually  going  public.  The  number  of  private  firms  that  could  have  gone  public  is  not  observed.  Pagano,   Panetta,   and   Zingales   (1998)   found   a   unique   private   data   set   of   Italian   firms   that   overcomes   this   problem.  They  observe  that  larger  firms  and  companies  in  industries  with  high  market-­‐to-­‐book  ratios  are   more  likely  to  go  public.  Lerner  (1994)  finds  a  similar  result  for  biotech  companies  in  the  US.  Industry  

(8)

market-­‐to-­‐book   ratios   have   a   substantial   effect   on   the   decision   for   an   IPO.   Investor   sentiment   (measured   by   the   discount   on   closed-­‐end   funds),   growth   opportunities   and   adverse   selection   considerations  all  are  determinants  of  aggregate  IPO  volume  according  to  Lowry  (2003).  

  Lowry  (2003)  includes  a  lagged  value  of  the  number  of  IPOS.  She  does  this  consistently  in  her   papers  to  capture  the  apparent  seasonality  of  IPO  fluctuations.  I  follow  her  treatment.  

 

2.2  IPOs  and  liquidity  

IPO  firms  are  different  than  their  already  listed  peers  (Eckbo  and  Norli,  2005).  They  underperform  in  the   long   run   (3-­‐5   years)   (Ritter   and   Welch,   2002),   have   different   volatility   characteristics   (Pastor   and   Veronesi,  2005;  Loughran  and  McDonald,  2013)  and  are  different  in  liquidity  (Ellul  and  Pagano,  2006).   The   study   done   by   Ellul   and   Pagano   (2006)   shows   that   IPO   underpricing   is   affected   by   after-­‐market   liquidity.  Investors  want  to  be  compensated  not  only  for  fundamental  risk  and  adverse  selection  costs   but  also  for  the  expected  liquidity  of  the  shares  they  buy  and  for  the  risk  of  an  illiquid  secondary  market.   Their  article  concludes  that  greater  aftermarket  liquidity  results  in  lower  IPO  underpricing.  They  come  to   this   conclusion   after   controlling   for   firm   specific   factors   as   the   age,   size   and   leverage   of   a   firm.   Their   results   are   robust   for   market   conditions   such   as   the   number   and   proceeds   of   recent   IPOs.   One   disadvantage  of  their  predictions  is  the  small  time  window  of  337  British  IPOs  between  1998  and  2000.   Their  frame  covers  exactly  the  Dot-­‐com  bubble.  Though  Ellul  and  Pagano  (2006)   only  focus  on  British   IPOs,   Ljungqvist   and   Wilhelm   Jr   (2003)   find   evidence   that   US   IPOs   during   the   Dot-­‐com   bubble   are   significantly  different  from  IPOs  before  and  after  the  bubble.  Especially  Nasdaq  was  highly  attractive  for   technology  firms  to  have  their  IPO  during  the  Dot-­‐com  boom  (Ljungqvist  and  Wilhelm  Jr,  2003).  

  The   paper   of   Ellul   and   Pagano   (2006)   provides   also   evidence   that   liquidity   is   priced   as   the   liquidity-­‐adjusted   CAPM   of   Acharya   and   Pedersen   (2005)   predicts.   They   find   results   that   show   lower   underpricing  for  stocks  with  higher  after-­‐market  liquidity.  Eckbo  and  Norli  (2005)  find  that  IPO  stocks   exhibit   significantly   greater   stock   turnover   when   compared   to   non-­‐IPO   stocks   matched   on   stock   exchange,   equity   size   and   book-­‐to-­‐market   ratio.   This   offers   a   liquidity-­‐based   explanation   for   lower   expected  returns  to  IPO  stocks  on  the  long  run.  In  a  zero-­‐investment  portfolio  with  a  long  position  in  IPO   firms  and  short  positions  in  size-­‐matched  firms  Eckbo  and  Norli  (2005)  find  evidence  of  positive  alpha.   According  to  the  efficient  market  hypothesis  a  positive  alpha  should  not  be  possible  (Basu,  1977)  and   this  again  underlines  the  legitimacy  of  the  Acharya  and  Pedersen  (2005)  model.  

(9)

2.3  Liquidity  

Pastor  and  Stambaugh  (2003)  explain  liquidity  as  follows:  “Liquidity  is  a  broad  and  elusive  concept  that   generally  denotes  the  ability  to  trade  large  quantities  quickly,  at  low  cost,  and  without  moving  the  price”.   Liquidity  is  measured  by  the  bid-­‐ask  spread  of  a  stock.  The  quoted  spread:  

  𝑄!!= 1 𝑛!! 𝐴𝑠𝑘!!− 𝐵𝑖𝑑 ! ! 𝑚!! !!! !!! ,   (1)    

and  the  effective  spread:     𝐸!! = 1 𝑛!! 𝑝!!− 𝑚!! 𝑚!! !!! !!! ,   (2)    

are   the   most   common   bid-­‐ask   spread   measures,   where  𝑝!!  denotes   the   actual   transaction   price   of  

company  𝑖  at   time  𝑡,  and  𝑚!!  denotes   the   midpoint   of   the   bid-­‐ask   spread,   expressed   in   percentages  

(Chordia,  Roll,  and  Subrahmanyam,  2000).  Illiquid  stocks  have  higher  expected  returns  since  there  is  risk   in  being  not  able  to  sell  shares  for  a  fair  price  (Acharya  and  Pedersen,  2005).  Liquidity  is  identified  as  a   risk   factor,   which   is   furthermore   supported   by   Amihud   and   Mendelson   (1986),   Chordia,   Roll   and   Subrahmanyam  (2001)  and  Avramov,  Chordia,  and  Goyal  (2006).  All  studies  find  that  less  liquid  stocks   have  higher  expected  returns  due  to  increased  transaction  cost.  It  is  more  costly  for  an  investor  to  trade   when  the  bid-­‐ask  spread  is  larger.  More  liquid  stocks  generally  have  a  lower  premium  to  compensate   investors.    

  In   extreme   situations   market   liquidity   can   dry   up.   The   model   of   Brunnermeier   and   Pedersen   (2009)   sheds   light   on   flights   to   quality.   This   can   occur   in   periods   of   high   market   uncertainty.   Risky   securities   become   highly   illiquid   because   investors   choose   to   hold   more   liquid   assets.   Market   makers   must   hold   margins   for   their   positions.   These   positions   are   financed   by   their   capital   and   their   margin   cannot  be  larger  than  the  amount  of  capital  on  the  balance.  When  it  is  difficult  to  find  capital  for  their   balance,  funding  liquidity,  this  can  have  a  spillover  effect  on  market  liquidity.  In  case  of  a  market  wide   phenomena,  this  decrease  in  market  liquidity  affects  on  its  turn  funding  liquidity.  This  spiral  effect  can   cause  market  liquidity  to  dry  up.  

  Furthermore,  liquidity  affects  market  volatility  (Brunnermeier  and  Pedersen,  2009).  In  times  of   uncertainty   in   the   market,   market   makers   widen   their   spread   between   the   bid-­‐   and   ask   price   which  

(10)

immediately  results  in  less  liquid  stocks.  This  enlarged  bid-­‐ask  spread  has  the  effect  to  increase  volatility   in  stock  prices  (Brunnermeier  and  Pedersen,  2009).  Volatility  in  its  turn  affects  expected  returns (French,   Schwert,  and  Stambaugh,  1987).  This  demonstrates  the  importance  of  liquidity  in  the  stock  market.     The   best   measure   for   liquidity   is   the   bid-­‐ask   spread   (Amihud,   2002).   Unfortunately,   data   to   calculate  the  spread  is  not  always  available.  CRSP  records  bid  and  ask  data  for  NYSE  only  since  December   28,  1992  (CRSP,  2015).  Amihud’s  measure  (2002)  is  highly  correlated  with  the  bid-­‐ask  spread  and  data  to   produce  the  measure  is  better  available  before  1992  than  the  spread  data.  Besides  the  Amihud  (2002)   measure  there  are  more  liquidity  proxies  (Goyenko,  Holden  and  Trzcinka,  2009).  Roll’s  measure,  which  is   a  low  frequency  measure,  is  an  estimator  of  the  effective  spread  based  on  the  serial  covariance  of  the   change  in  price  (Roll,  1984).  Holden  (2009)  and  Goyenko,  Holden,  and  Trzcinka  (2009)  develop  a  proxy  of   the  effective  spread  based  on  observable  price  clustering,  named  the  effective  tick.  Holden’s  measure   (2009)   uses   both   serial   correlation   and   price   clustering   and   combines   Roll’s   (1984)   measure   and   the   effective  tick  (2009),  which  are  special  cases  of  Holden’s  measure.  These  three  measures  are  better  at   explaining   liquidity   transaction   costs   than   at   estimating   price   impact.   Amihud’s   (2002)   illiquidity,   Amivest  liquidity  and  Pastor  and  Stambaugh’s  measure  (2003)  are  constructed  to  measure  price  impact   of  liquidity.  Goyenko,  Holden  and  Trzcinka  (2009)  find  evidence  in  favor  of  the  Amihud’s  (2002)  illiquidity   measure   in   order   to   estimate   price   impact.   Amihud’s   (2002)   illiquidity   predicts   price   impact   more   accurately  than  the  other  two  price  impact  proxies.  

  Proxies   for   liquidity   also   differ   per   geographical   region   (Lesmond,   2005;   Bekaert,   Harvey,   and   Lundblad,  2007;  Loughran,  Ritter,  and  Rydqvist,  1994).  Countries  that  are  less  accurate  and  disciplined  in   recording   data   from   their   exchange   require   a   measure   that   corrects   for   the   frequency   of   this   data.   Lesmond  (2005)  finds  that  price-­‐based  liquidity  measures  such  as  Roll’s  (1984)  measure  perform  better   at  representing  cross-­‐country  liquidity  effects  than  do  volume  based  liquidity  measures.  Within-­‐country   liquidity   is   best   measured   with   the   liquidity   estimates   of   Lesmond,   Ogden,   and   Trzcinka   (1999)   or   Amihud   (2002).   Amihud’s   (2002)   illiquidity   is   downward   biased   in   cross-­‐country   analysis   in   for   low   liquidity   markets.   This   bias   is   manifested   by   zero   returns   that   affect   Amihud’s   (2002)   illiquidity.   This   downward  bias  does  not  exist  in  within-­‐country  analysis  where  Amihud’s  (2002)  illiquidity  is  on  average   50%  correlated  with  bid-­‐ask  spread  (Lesmond,  2005).  

  Focusing   on   Amihud’s   (2002)   illiquidity   measure:   he   finds   evidence   that   over   time   expected   market  illiquidity  affects  the  ex-­‐ante  stock  excess  return.  This  liquidity  effect  appears  to  be  stronger  for   stocks  of  small  firms.  Amihud’s  (2002)  proxy  for  illiquidity:  

(11)

𝐴!! = 1 𝐷!! 𝑅!! 𝑑𝑣𝑜𝑙!! !!! !!!    ,   (3)    

further  named  Amihud’s  (2002)  illiquidity  (3).  This  is  the  daily  ratio  of  absolute  stock  return  to  its  dollar   volume,  averaged  over  some  period,  where  𝑅!!  is  the  price  change  and  not  the  percentage  change  and  

𝑑𝑣𝑜𝑙!!  is  the  traded  volume  multiplied  by  the  closing  stock  price  of  the  same  day.  The  intuition  behind   Amihud’s  measure  is  as  follows:  when  𝐴!!  is  high,  meaning  a  stock  is  illiquid,  the  price  of  a  stock  moves  a  

lot  in  response  to  little  volume.  

  The  reason  why  Amihud  (2002)  uses  this  proposed  measure  is  partly  due  to  the  non-­‐availability   of   spreads   to   measure   liquidity   and   other   proxies.   Only   daily   prices   and   volumes   are   required   to   calculate  the  Amihud  measure  and  this  is  averaged  over  a  span  of  time.  Therefore,  missing  data  will  not   induce  errors  as  long  as  there  are  enough  data  points  per  period  to  give  a  reliable  average.  The  more   complex  proxies  such  as  Holden’s  measure  (Goyenko,  Holden,  and  Trzcinka,  2009)  require  more  data,   which  reduces  the  amount  of  observations  

 

2.4  Liquidity  commonality  

Besides  liquidity  level  there  are  more  characteristics  of  liquidity  (Acharya  and  Pedersen,  2005).  Acharya   and  Pedersen  (2005)  solve  a  simple  equilibrium  model  with  liquidity  risk.  They  modify  the  CAPM  and  add   liquidity,  which  results  in  a  liquidity-­‐adjusted  CAPM:  

  𝐸! 𝑟!!!! = 𝑟!+ 𝐸! 𝑐!!!! + 𝜆! 𝑐𝑜𝑣! 𝑟!!!! , 𝑟 !!!! 𝑣𝑎𝑟! 𝑟!!!! − 𝑐!!!! + 𝜆! 𝑐𝑜𝑣! 𝑐!!!! , 𝑐 !!!! 𝑣𝑎𝑟! 𝑟!!!! − 𝑐!!!! − 𝜆! 𝑐𝑜𝑣! 𝑟!!!! , 𝑐 !!!! 𝑣𝑎𝑟! 𝑟!!!! − 𝑐!!!! − 𝜆! 𝑐𝑜𝑣! 𝑐!!! ! , 𝑟 !!!! 𝑣𝑎𝑟! 𝑟!!!! − 𝑐 !!!!  ,   (4)    

where  𝑐!!!!  is  Amihud’s  (2002)  measure  scaled  to  match  the  mean  and  standard  deviation  of  returns  and  

𝜆! = 𝐸! 𝑟!!!! − 𝑐!!!! − 𝑟!  is  the  risk  premium.  Equation  (4)  states  that  the  required  excess  return  is  the  

expected  relative  illiquidity  cost  𝐸! 𝑐!!!!  plus  four  betas  multiplied  by  the  risk  premium.  The  Acharya  

and  Pedersen  model  (2005)  identifies  liquidity  commonality  and  two  liquidity  risks:  

1.  𝐶𝑜𝑣! 𝑐!!!! , 𝑐!!!!  (liquidity   commonality):   when   a   security’s   illiquidity   co-­‐moves   with   market  

illiquidity  its  expected  return  is  higher.  Ceterus  paribus,  in  times  of  market  illiquidity  a  stock  is  riskier  if  it   gets  more  illiquid.  Stocks  that  have  a  lower  covariance  are  less  sensitive  to  market  illiquidity  and  stay  

(12)

more  liquid.  Therefore,  these  stocks  are  less  risky  and  should  have  a  higher  price  than  their  less  liquid   peers.  The  presence  of  a  time-­‐varying  common  factor  in  stock  and  market  liquidity  is  also  documented   by  (Chordia,  Roll,  and  Subrahmanyam,  2000)  and  (Hasbrouck  and  Seppi,  2001).  Most  stocks’  illiquidities   are  positively  correlated  with  market  illiquidity.  This  is  in  line  with  a  flight  to  liquidity  in  times  of  down   markets  as  the  model  of  Brunnermeier  and  Pedersen  (2009)  proposes.  Acharya  and  Pedersen  (2005)  add   the  effect  of  commonality  on  asset  prices  to  existing  literature  and  find  that  the  commonality  is  priced.  

2.  𝐶𝑜𝑣! 𝑟!!!! , 𝑐!!!!  (return  sensitivity  to  market  liquidity):  due  to  the  negative  sign  in  the  model  

investors  are  willing  to  accept  a  lower  return  for  stocks  that  have  higher  returns  in  illiquid  times.  Pastor   and  Stambaugh  (2003)  find  that  the  average  return  of  highly  sensitive  stocks  to  market  liquidity  is  7.5%   higher  annually  than  low  sensitive  stocks.  

3.  𝐶𝑜𝑣! 𝑐!!!! , 𝑟!!!!  (liquidity  sensitivity  to  market  returns):  the  third  effect  can  be  interpreted  as  

the  willingness  to  accept  lower  expected  return  when  a  security  can  easily  be  sold  at  low  cost  in  a  down   market.  This  ability  of  a  stock  is  valuable.  When  an  investor  has  wealth  issues  in  a  down  market  it  lowers   his  transaction  costs  when  his  security  can  be  sold  at  a  reasonable  price.  

Acharya  and  Pedersen  (2005)  test  their  theoretical  model  and  find  evidence  that  the  estimators   of   their   liquidity-­‐adjusted   CAPM   are   significant.   Due   to   collinearity   of   the   measures   it   is   difficult   to   statistically  distinguish  the  relative  return  impact  of  the  individual  measures.  Therefore,  they  use  all  four   estimates  in  their  analysis.  Chordia,  Roll,  and  Subrahmanyam  (2000)  document  the  existence  of  liquidity   commonality  as  they  expect  liquidity  to  be  influenced  by  common,  broader  market  factors.  Hasbrouck   and   Seppi   (2001)   find   a   small   effect   of   common   factors   that   determine   liquidity.   The   effect   of   return   sensitivity  to  market  liquidity  is  empirically  supported  by  Pastor  and  Stambaugh  (2003).  Average  return   of  stocks  who  are  highly  sensitive  to  market  liquidity  exceeds  average  returns  on  lower  sensitive  stocks   by  7.5%  annually,  adjusted  for  size,  value  and  momentum  factors.  

 

Literature   as   mentioned   in   the   section   above   provides   variables   that   influence   the   choice   of   going   public,  as  well  as  factors  that  influence  the  timing  of  an  IPO.  Liquidity  has  its  own  determinants  and  IPOs   have   different   liquidity   characteristics   than   their   already   listed   peers.   However,   the   study   by   Acharya   and   Pedersen   (2005)   implies   that   liquidity   commonality   and   its   two   risks   are   priced   and   it   could   influence  IPO  timing  when  controlled  for  aggregate  industry  and  market  variables.  This  gives  a  better   understanding  of  IPO  waves.  In  the  following  section  I  will  explain  and  examine  the  data  set  and  support   this  with  descriptive  statistics.  

(13)

3.  DATA    

Thomson   One   provides   the   data   for   the   number   of   IPOs   with   its   corresponding   offer   price   and   the   amount  of  raised  capital,  further  named  proceeds.  Thomson  One  offers  extensive  data  about  IPOs  and   therefore  enables  it  to  properly  clean  the  data.  According  to  Ritter  (2015)  not  every  IPO  is  equally  useful   in  research.  Ritter  has  done  extensive  research  in  the  IPO  field  and  I  will  use  his  methodology  regarding   cleaning  IPO  data.  In  most  studies  he  excludes  ADRs,  ADSs,  Beneficial  Interests,  Capital  shares,  Income   Depositary,   Limited   Liability/   Partnership   Interest,   Trust   Receipts,   Units,   Master   Limited   Partnership,   SPERs,  REIT,  financial  firms  and  penny  stocks  (offer  price  of  less  than  $1  per  share).  The  main  reason  for   this  paper  to  exclude  them  is  that  those  firms  might  have  different  motivators  to  go  public  and  therefore   cause  noise  in  the  data.  

  This  research  only  focuses  on  US  data  from  major  exchanges.  Therefore,  I  only  include  IPOs  from   Nasdaq   and   NYSE   (which   includes   Amex).   Firms   that   get   a   listing   on   the   smaller   exchanges   in   the   US   might  do  so  for  specific  reasons.  Again,  this  paper  aims  to  shed  light  on  the  effect  of  liquidity,  liquidity   commonality  and  its  risks  on  the  number  of  IPOs  for  the  general  picture  and  not  for  exceptionalities.     For  that  same  general  picture  it  is  important  to  have  a  large  time  window  to  account  for  year   specific  externalities.  Reliable  data  from  Thomson  One  is  available  from  1972  until  present.  However  I   will  only  use  IPO  data  from  January  1983  until  March  2015  because  CRSP  does  not  provide  accurate  data   on  volume  entries   before  1983.   I   am   therefore   unable   to  reliably  calculate   Amihud’s   (2002)   illiquidity   ratio.  

Amihud’s  (2002)  illiquidity  is  calculated  following  equation  (3).  I  compute  the  illiquidity  for  each   portfolio  and  market  portfolio  as  

  𝐴!! = 𝑤 !!𝐴!! ! !!! ,   (5)    

where  𝐴!!  is   the   daily   Amihud   (2002)   illiquidity   for   stock  𝑖  and  𝐴!!  is   the   monthly   averaged   Amihud  

according  equal  weighted  factor  𝑤!!.  For  market  values,  𝑠  is  replaced  for  𝑀.  Table  A10  in  the  Appendix  

lists  the  number  of  IPOs  per  year  and  per  SIC  sector  for  more  detail.  The  improved  version  of  SIC,  NAICS,   started  in  1997  and  therefore  is  not  in  line  with  the  large  time  window  this  research  needs.  Panel  C  of   Table  A10  describes  the  major  divisions.  To  have  enough  observations  I  drop  sectors  that  only  saw  10   IPOs  or  less  between  1983  and  March  2015.  

(14)

  Next   to   Amihud’s   (2002)   measure   of   illiquidity   this   paper   also   replicates   the   scaled   version   according  to  Acharya  and  Pedersen  (2005).  They  normalize  the  illiquidity  measure  to  match  the  same   level  and  variance  with  the  level  and  variance  of  the  effective  spread  as  mentioned  in  Section  2.4  and  to   make  it  stationary.    Acharya  and  Pedersen  (2005)  define  the  normalized  version  of  Amihud  as  follows:    

𝑐!!= min 0.25 + 0.30𝐴

!!𝑃!!!! , 30.00 .   (6)  

 

𝐴!!  is  Amihud’s  (2002)  illiquidity  where  𝑠  indicates  the  sector.  For  market  values  𝑠  should  be  replaced  by  

𝑀.  𝐴!!  is  then  multiplied  by  an  index  ratio  of  market  capitalization  𝑃!!!! .  It  is  the  ratio  of  the  one  month  

lagged  total  market  capitalization  divided  by  the  first  observation  of  the  market  cap.  January  1983  is  the   first  observation  in  this  research.  

 

Figure  1:  IPOs  and  market  liquidity  

The   Amihud   (2002)   illiquidity   measure   calculated   as   an   equal   weighted   average   of   the   available   CRSP   stocks  between  1983  and  March  2015.  The  number  of  IPOs  are  the  available  IPOs  from  the  Thomson   One  database  and  only  from  Nasdaq,  NYSE  and  Amex.  These  are  selected  according  to  the  methodology   of    Ritter  (2015).  Illiquidity  and  IPOs  are  correlated  with  a  value  of  0.1005.  In  line  with  research  of  Ritter   (2015),   the   number   of   IPOs   is   lower   in   down   markets,   shown   as   the   grey   area   below   following   NBER   recessions.   Exact   dates   are   July   1990   until   March   1991,   March   2001   until   November   2001,   and   December  2007  until  June  2009.  

(15)

The   most   important   reason   to   normalize   is   that   Amihud’s   (2002)   illiquidity   is   measured   in   percent  per  dollar  whereas  the  Acharya  and  Pedersen  model  (2005)  is  specified  in  terms  of  dollar  cost   per  dollar  invested.  Though  my  model  does  not  necessarily  require  such  normalization,  it  does  offer  a   robust   view   on   the   model.   A   nice   property   of   the   normalization   is   that   it   made  𝑐!!  stationary.   This   is  

especially  important  for  Acharya  and  Pedersen  (2005)  to  match  stationary  expected  returns.  Stationary   illiquidity  is  more  reliable  with  forecasting  than  a  non-­‐stationary  illiquidity  (Stock  and  Watson,  2012)  and   historical  relationships  can  be  generalized  for  the  future.  As  Figure  1  indicates,  Amihud’s  (2002)  measure   is   not   stationary.   Figure   A4   in   the   Appendix   displays   both  𝐴!!  and   its   normalized   version  𝑐!!.   An  

Augmented  Dickey-­‐Fuller  test  tests  for  stationarity  of  both  variables.  Table  A11  in  the  Appendix  reports   the  results  of  this  test  with  the  number  of  significant  autocorrelated  lags  according  to  Bartlett's  formula   MA(q)   with   95%   confidence   bands.  𝑐!!  is   significantly   autocorrelated   to   20   lags   and   is   significantly  

stationary  with  0  and  30  lags  specified.  However,  the  Augmented  Dickey-­‐Fuller  test  is  sensitive  to  the   number  of  lags  in  a  finite  sample  (Cheung  and  Lai,  1995).  Though  the  results  in  Table  A11  do  no  imply   the  normalization  made  Amihud’s  (2002)  measure  stationary  but  it  is  reasonable  to  say  that  𝑐!!  is  more  

stationary  than  𝐴!!.  

The  effect  of  illiquidity  on  the  number  of  IPOs  is  studied  for  completed  IPOs  on  NYSE  and  Amex   exchanges  between  1983  and  March  2015.  The  data  to  calculate  the  illiquidity  ratios  is  supplied  by  CRSP.   Due  to  the  market  microstructure  of  the  Nasdaq,  that  is  different  than  that  of  NYSE  and  Amex,  Nasdaq   listed  stocks  are  excluded  (Gao  and  Ritter,  2010).  Prior  to  2001  Nasdaq  recorded  trade  volume  as  trades   with   market   makers   and   trades   among   market   makers.   This   created   double   counting   in   most   cases.   Volume   entries   are   needed   to   calculate   Amihud’s   (2002)   measure.   Nasdaq   has   altered   its   way   of   recording   gradually   since   2001   and   since   2004   there   are   no   important   differences   between   recorded   volume   of   Nasdaq   and   NYSE   (Bennett   and   Wei,   2006).   Although   adjustment   factors   exist   for   the   difference  in  recording  (Gao  and  Ritter,  2010),  these  are  estimates  instead  of  real  adjustment  factors.   Therefore  I  will  not  use  stock  data  from  Nasdaq  from  CRSP.    

The  equal-­‐weighted  market  Amihud  (2002)  illiquidity  is  plotted  in  Figure  1  with  the  number  of   IPOs.  In  times  of  recession  (according  to  NBER)  there  is  more  illiquidity  than  in  the  surrounding  years  as   expected  in  theory  and  provided  with  evidence  by  Brunnermeier  and  Pedersen  (2009)  and  Pastor  and   Stambaugh  (2003).  Though  it  appears  that  few  firms  are  going  public  in  illiquid  times,  illiquidity  and  the   number  of  IPOs  are  positively  correlated  with  0.1005.  Exact  regions  specified  by  NBER  are  July  1990  until   March  1991,  March  2001  until  November  2001,  and  December  2007  until  June  2009.  

(16)

  The  monthly  returns  in  the  data  set  of  this  paper  are  daily  stock  returns  from  CRSP  minus  the   three-­‐month   Treasury   bill   as   risk   free   rate   from   the   Federal   Reserve   Bank,   averaged   per   month.   To   construct   a   portfolio   return   for   each   sector   and   a   market   return   portfolio,   the   monthly   returns   are   averaged  per  sector  and  market  respectively:  

   𝑟!!− 𝑟 !!   = 𝑤!!     1 𝐷!! (𝑟!! !!! !!! ! !!! −   𝑟!!),   (7)    

where,  𝑤!!  is  the  equal  for  each  stock,  depending  on  the  number  of  stocks  in  a  sector  month.  𝐷!!  is  the  

number  of  traded  days  for  stock  𝑖  in  month  𝑡.  𝑟!!  Is  the  daily  return  in  percentages  for  stock  𝑖.  For  market  

values,  𝑠  is  replaced  for  𝑀.  Market  return  is  plotted  in  Figure  A5  in  the  Appendix.    

Figure  2:  Ratio  of  IPOs  per  exchange  

The  fractional  distribution  of  IPOs  between  NYSE  and  Nasdaq.  The  percentages  are  the  number  of  IPOs   on  each  exchange  divided  by  the  total  number  of  IPOs  on  NYSE  and  Nasdaq.  Data  from  Thomson  One.  

 

 

  The   number   of   IPOs   is   different   per   exchange.   Between   January   1983   and   March   2015   7,247   companies  have  gone  public.  5,823  (80%)  of  those  IPOs  are  completed  on  Nasdaq  and  1,424  on  NYSE.   This  is  after  cleaning  the  data  according  to  the  methodology  of  Ritter  (2015).  Especially  during  the  Dot-­‐ com  bubble  in  1999  and  2000  Nasdaq  saw  the  majority  of  IPOs.  The  distribution  of  IPOs  between  NYSE   and   Nasdaq   is   plotted   in   Figure   2.   In   1999   and   2000   NYSE   had   only   9%   and   7%   of   the   total   IPOs  

0%   20%   40%   60%   80%   100%   1983   1988   1993   1998   2003   2008   2013   NYSE   Nasdaq  

(17)

The  Dot-­‐com  mania  motivated  many  firms  to  raise  capital  on  equity  markets  (Ljungqvist  and  Wilhelm  Jr,   2003).  After  the  bubble  burst,  the  number  of  IPOs  went  down  dramatically  with  88%  from  2000  until   2003  for  Nasdaq.  

In  Table  2  we  see  the  descriptive  statistics  of  variables  for  sector  portfolio  (Panel  A)  and  market   portfolio  (Panel  B).  Firm  specific  variables  for  IPOs  are  reported  in  Panel  C  of  Table  2.  Market-­‐to-­‐book   (M/B)  ratio  is  calculated  by  dividing  the  market  value  of  equity  by  the  book  value  of  equity.  The  formula   calculates  the  ratio  for  sector  and  market  market-­‐to-­‐book  ratio.  For  the  IPO  observations  I  use  proceeds,   the  amount  of  capital  raised,  divided  by  the  book  value  of  equity.  

The   normalized   Amihud   illiquidity   of   Acharya   and   Pedersen   (2005)   has   an   average   value   of   0.0152%  for  the  market  portfolio.  Monthly  market  return  is  averaged  at  0.203%.  The  normalized  value   represents   the   cost   of   illiquidity   according   to   Acharya   and   Pedersen   (2005).   These   results   correspond   with  the  findings  of  Acharya  and  Pedersen  (2005)  since  the  net  monthly  return  is  on  average  positive   0.1878%.  All  important  variables  and  controlling  variables  appear  to  have  expected  properties.  

Market   and   sector   optimism   are   calculated   by   the   average   price-­‐earnings   ratio   (P/E)   and   market-­‐to-­‐book   ratio   (M/B).   Derrien   (2005)   and   Lowry   (2003)   use   the   same   method   for   market   optimism.  The  P/E  ratio  is  calculated  as  the  share  price  divided  by  the  earnings  per  share.  In  a  similar   fashion  as  M/B,  Cash  and  Leverage  ratios  are  computed.  The  Cash  ratio  is  the  cash  proportion  of  assets.   The  Leverage  ratio  is  the  proportion  of  long-­‐term  debt  of  total  assets.  Data  needed  to  calculate  these   control  variables  comes  from  Compustat.  

Although  cash  holdings  are  not  suggested  by  academic  literature,  intuitively  it  can  influence  the   choice   of   wanting   your   firm   publicly   listed.   When   a   firm   has   the   availability   of   highly   liquid   assets   to   make  investments  it  is  less  inclined  to  go  through  the  whole  procedure  of  an  IPO.  Based  on  this  simple   intuition,  the  expectation  is  that  cash  holdings  will  be  relatively  low  for  certain  IPOs.  It  differs  per  sector   since  some  sectors  are  more  prone  to  hold  cash.  There  are  more  reasons  for  a  firm  to  hold  cash  than   only  investment  purposes  and  the  correlation  Table  A12  in  the  Appendix  does  not  indicate  collinearity   issues.  Therefore  it  is  added  as  control  variable  at  firm-­‐level.  

Overall  there  is  no  danger  for  multicollinearity  as  few  variables  are  highly  correlated  (Table  A12).   Most  sector  variables  are  highly  correlated  with  its  market  equivalents  but  this  is  evident,  the  market   portfolio  is  partly  constructed  by  the  same  stocks  that  built  the  sector  portfolios.  But  there  are  more   variables   highly   correlated.   Proceeds   are   correlated   with   market   value.   This   is   not   completely   anticipated   by   theory   although   it   can   be   reasoned   that   market   value   represents   a   form   of   market   optimism  and  the  relative  easiness  of  raising  capital.  Further  analysis  on  this  topic  lies  outside  the  scope    

(18)

 

Table  2:  Descriptive  statistics  of  basic  variables  

Data  is  structured  by  the  SIC  classification  and  month-­‐year.  IPOs  per  sector  are  the  number  of  IPOs  for  a   specific  SIC  sector  per  month  in  a  given  year.  That  describes  also  the  natural  logarithm  IPOs  per  sector.   IPOs  market  is  the  number  of  IPOs  for  the  total  market  per  month  in  a  given  year.  The  time  window   starts   at   January   1983   and   continues   until   March   2015,   data   is   monthly.   Table   A10   in   the   Appendix   provides  more  detail  about  the  number  of  IPOs  per  sector  and  per  month-­‐year.  Amihud  per  sector  and   market  are  the  Amihud  illiquidity  measure  following  equation  (3)  and  averaged  for  each  SIC  sector  and   the   market   according   to   (5),   respectively.   The   normalized   Amihud   of   Acharya   and   Pedersen   (2005)   follows   the   procedure   of   (6).   Excess   returns   are   reported   as   monthly   values   in   percentages.   Panel   C   displays  observations  for  the  IPO  firms.  Market-­‐to-­‐book  ratio  is  calculated  as  the  proceeds  divided  by   the  book  value  of  equity.  

Variable   #  of  observations   Mean   Std.  Dev.   Min   Max   Skewness   Kurtosis   Panel  A:  Sector  observations  

Number  of  IPOs   4,356   1.315   0.901   1   14   5.343   43.574  

Natural  logarithm  of  

the  number  of  IPOs   4,356   0.7986   0.2492   0.6931   2.7081   2.932   13.325  

Amihud   44,848   0.0523   0.1051   0.0000   2.8005   6.573   82.860  

Normalized  Amihud   44,772   0.0158   0.0361   0.0000   1.2104   8.889   157.685  

Excess  sector  return  

in  %   44,700   -­‐0.196   10.416   -­‐91.692   78.003   -­‐0.847   17.354  

Proceeds  in  $  mln   4,356   94.851   77.156   2.500   980.012   1.889   9.849   IPO  underpricing  in  %   3,809   19.832   43.994   -­‐99.400   636.360   5.316   46.241  

MV  mln  $   44,850   4,713   11,102   1.705   301,747   8.342   125.611  

M/B  ratio   44,459   1.4542   9.9647   0.0034   818.882   48.328   2966.67  

P/E  ratio   44,469   1.592   4.016   0.001   129.077   10.816   163.928  

                               

Panel  B:  Market  observations  

Number  of  IPOs   4,356   29.092   16.630   1   80   0.578   2.853  

Natural  logarithm  of  

the  number  of  IPOs   4,356   3.2204   0.6553   0.6931   4.3944   -­‐0.693   3.092  

Amihud   387   0.0546   0.0330   0.0095   0.1866   0.742   3.313  

Normalized  Amihud   387   0.0152   0.0067   0.0039   0.0397   1.218   4.659  

Excess  market  return  

in  %   386   0.203   4.050   -­‐18.581   14.678   -­‐0.807   6.390  

Proceeds  in  $  mln   4,356   101.503   97.1745   12.2566   548.509   2.308   9.292   IPO  underpricing  in  %   3,949   19.039   19.465   -­‐19.920   183.470   3.032   14.589  

MV  mln  $   387   4,256   2,974   755.89   12,280   0.697   2.688  

M/B  ratio   387   0.4114   0.1161   0.0821   0.6287   5.276   54.238  

P/E  ratio   387   2.585   0.717   1.477   4.867   0.736   3.044  

                               

Panel  C:  IPO  observations  

M/B  ratio   3,049   2.1476   23.3688   0.0006   1052.632   37.243   1530.49  

Referenties

GERELATEERDE DOCUMENTEN

ƒ In the post-exilic Jerusalem community they had a diarchic model of two prominent leaders: Zerubbabel the political leader and Joshua, the religious leader.. In South Africa we

This study aims to bridge the gap between the impact of both financial leverage and liquidity on disclosure levels on a quantitative basis and the actual impact on the quality

B.2 Tools Needed to Prove The Second Fundamental Theorem of Asset Pricing 95 C Liquidity Risk and Arbitrage Pricing Theory 98 C.1 Approximating Stochastic Integrals with Continuous

This was achieved by overexpression of whole endogenous MEP pathway in a single regulated operon together with high expression of terpene synthases for various

Political resistance is a term that has been given different definitions by scholars over the years. This thesis does not seek to question the existence of political resistance

It was clear that VTT needed partners to attain its aims to scientifically prove the health benefits of rye and bring the results to the attention of the larger population,

From a measured resistance of 1.18 V over a wire length of 399 mm with a cross-sectional area of 60.4 ¡ 2.3 mm 2 , a resistivity of 43 ¡ 19 mVcm (average over three different

The semi-structured interviews with board members of the case organisations studied were primarily aimed at collecting input for answering the first sub-question of this