• No results found

University of Groningen Ecological resilience of soil microbial communities Jurburg, Stephanie

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Ecological resilience of soil microbial communities Jurburg, Stephanie"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Ecological resilience of soil microbial communities

Jurburg, Stephanie

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Jurburg, S. (2017). Ecological resilience of soil microbial communities. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)
(3)

R

A

Allison, S. D., and Martiny, J. B. H. (2008). Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. 105, 11512.

Ammann, A. B., Kölle, L., and Brandl, H. (2011). Detection of bacterial endospores in soil by terbi-um fluorescence. Int. J. Microbiol. 2011, 10–15. doi:10.1155/2011/435281.

Aslan, K., Previte, M. J. R., Zhang, Y., Gallagher, T., Baillie, L., and Geddes, C. D. (2008). Extraction and detection of DNA from Bacillus anthracis spores and the vegetative cells within 1 min.

Anal. Chem. 80, 4125–4132. doi:10.1021/ac800519r.

Attard, E., Poly, F., Commeaux, C., Laurent, F., Terada, A., Smets, B. F., et al. (2010). Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential ni-trite oxidation to changes in tillage practices. Environ. Microbiol. 12, 315–326. doi:10.1111/ j.1462-2920.2009.02070.x.

Awasthi, A., Singh, M., Soni, S. K., Singh, R., and Kalra, A. (2014). Biodiversity acts as insurance of productivity of bacterial communities under abiotic perturbations. ISME J.

B

Bach, H. J., Tomanova, J., Schloter, M., and Munch, J. C. (2002). Enumeration of total bacteria and bacteria with genes for proteolytic activity in pure cultures and in environmental samples by quantitative PCR mediated amplification. J. Microbiol. Methods 49, 235–45. Available at: http://www.ncbi.nlm.nih.gov/pubmed/11869788.

Balser, T. C., and Firestone, M. K. (2005). Linking microbial community composition and soil processes in a California annual grassland and mixed-conifer forest. Biogeochemistry 73, 395–415. doi:10.1007/s10533-004-0372-y.

Balser, T. C., Kinzig, A. P., and Firestone, M. K. (2002). “Linking soil microbial communities and eco-system functioning,” in The functional consequences of biodiversity: empirical progress and

theoretical extensions., eds. A. P. Kinzig, S. W. Pacala, and D. Tilman (Princeton, New Jersey:

Princeton University Press), 265–293.

Bardgett, R. D., and van der Putten, W. H. (2014). Belowground biodiversity and ecosystem func-tioning. Nature 515, 505–511. doi:10.1038/nature13855.

Barnard, R. L., Osborne, C. A., and Firestone, M. K. (2013). Responses of soil bacterial and fungal communities to extreme desiccation and rewetting. ISME J. 7, 2229–2241.

Bazin, M. J., and Prosser, J. I. eds. (1988). Physiological Models in Microbiology, Volume II. Boca Ra-ton, Florida: CRC Press, Inc.

Beaumont, H. J. E., Gallie, J., Kost, C., Ferguson, G. C., and Rainey, P. B. (2009). Experimental evolu-tion of bet hedging. Nature 462, 90–93.

Beijerinck, M. W. (1901). Ueber Oligonitrophile Mikroben. Zentralbl. Bakteriol. Parasitenkd. Infekt.

Hyg. Abt II 7, 561–582.

Beisner, B. E., Haydon, D. T., and Cuddington, K. (2016). Alternative stable states in ecology. 1, 376–382.

Bell, T., Newman, J. A., Silverman, B. W., Turner, S. L., and Lilley, A. K. (2005). The contribution of species richness and composition to bacterial services. Nature 436, 1157–1160.

Belova, S. E., Pankratova, T. a., Detkova, E. N., Kaparullina, E. N., and Dedysh, S. N. (2009). Acidiso-ma tundrae gen. nov., sp. nov. and AcidisoAcidiso-ma sibiricum sp. nov., two acidophilic, psychro-tolerant members of the Alphaproteobacteria from acidic northern wetlands. Int. J. Syst.

(4)

REFERENCES

R

Bérard, A., Ben Sassi, M., Renault, P., and Gros, R. (2012). Severe drought-induced community tol-erance to heat wave. An experimental study on soil microbial processes. J. Soils Sediments 12, 513–518. doi:10.1007/s11368-012-0469-1.

Berg, J., Brandt, K. K., Al-Soud, W. A., Holm, P. E., Hansen, L. H., Sørensen, S. J., et al. (2012). Selec-tion for Cu-tolerant bacterial communities with altered composiSelec-tion, but unaltered rich-ness, via long-term Cu exposure. Appl. Environ. Microbiol. 78, 7438–7446.

Berg, J. M., Tymoczko, J. L., and Stryer, L. (2002). “Biochemistry,” in Biochemistry (W H Freeman). Bissett, A., Richardson, A. E., Baker, G., and Thrall, P. H. (2011). Long-term land use effects on soil

microbial community structure and function. Appl. Soil Ecol. 51, 66–78. doi:http://dx.doi. org/10.1016/j.apsoil.2011.08.010.

Blazewicz, S. J., Barnard, R. L., Daly, R. A., and Firestone, M. K. (2013). Evaluating rRNA as an in-dicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068.

Blum, W. E. H. (1994). Soil resilience general approaches and definition. in proceedings of the 15th

International Symposia on Soil Science, 233–237.

Boer, W. De, Verheggen, P., Klein, P. J. a, Kowalchuk, G. a, Van, J. a, Gunnewiek, P. J. a K., et al. (2003). Microbial Community Composition Affects Soil Fungistasis Microbial Community Composition Affects Soil Fungistasis. Appl. Environ. Microbiol. 69, 835–844. doi:10.1128/ AEM.69.2.835.

Botelho, M. L., Cabo Verde, S., Alves, L., Belchior, a., Reymão, J., Trabulo, S., et al. (2007). Radia-tion sterilizaRadia-tion of antibiotic liposome formulaRadia-tions: A case study. Radiat. Phys. Chem. 76, 1542–1546. doi:10.1016/j.radphyschem.2007.02.069.

Bouskill, N. J., Lim, H. C., Borglin, S., Salve, R., Wood, T. E., Silver, W. L., et al. (2013). Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J. 7, 384–94. doi:10.1038/ismej.2012.113.

Bouskill, N. J., Tang, J., Riley, W. J., and Brodie, E. L. (2012). Trait-based representation of biological nitrification: model development, testing, and predicted community composition. Front.

Microbiol. 3, 364. doi:10.3389/fmicb.2012.00364.

Bressan, M., Mougel, C., Dequiedt, S., Maron, P.-A., Lemanceau, P., and Ranjard, L. (2008). Re-sponse of soil bacterial community structure to successive perturbations of different types and intensities. Environ. Microbiol. 10, 2184–7. doi:10.1111/j.1462-2920.2008.01641.x. Van den Brink, P. J., and Ter Braak, C. J. F. (1999). Principal response curves: Analysis of time‐dependent

multivariate responses of biological community to stress. Environ. Toxicol. Chem. 18, 138–148. Buckley, D. H., Huangyutitham, V., Nelson, T. A., Rumberger, A., and Thies, J. E. (2006). Diversity of Planctomycetes in soil in relation to soil history and environmental heterogeneity. Appl.

En-viron. Microbiol. 72, 4522–4531.

C

Cabrol, L., Poly, F., Malhautier, L. C., Pommier, T., Lerondelle, C., Verstraete, W., et al. (2015). Man-agement of Microbial Communities through Transient Disturbances Enhances the Func-tional Resilience of Nitrifying Gas-Biofilters to Future Disturbances. Environ. Sci. Technol. 50, 338–348. doi:10.1021/acs.est.5b02740.

Cadotte, M. W., Mai, D. V, Jantz, S., Collins, M. D., Keele, M., and Drake, J. A. (2006). On Testing the Competition‐Colonization Trade‐Off in a Multispecies Assemblage. Am. Nat. 168, 704–709. Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L., and Knight, R. (2010a). PyNAST:

a flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010b). QIIME allows analysis of high-throughput community sequencing data. Nat.

Meth-ods 7, 335–336. doi:10.1038/nmeth0510-335.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010c). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. Caporaso, J. G., Lauber, C. L., Walters, W. A., Berg-Lyons, D., Huntley, J., Fierer, N., et al. (2012). Ultra-

high-throughput microbial community analysis on the Illumina HiSeq and MiSeq plat-forms. ISME J. 6, 1621–1624.

Cardenas, E., Kranabetter, J. M., Hope, G., Maas, K. R., Hallam, S., and Mohn, W. W. (2015). Forest harvesting reduces the soil metagenomic potential for biomass decomposition. ISME J. 9, 2465–76. doi:10.1038/ismej.2015.57.

Carpenter, S. R., and Brock, W. A. (2008). Adaptive capacity and traps. Ecol. Soc. 13, 40.

Cavaletti, L., Monciardini, P., Bamonte, R., Schumann, P., Rohde, M., Sosio, M., et al. (2006). New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl. Environ.

Mi-crobiol. 72, 4360–4369.

Chaer, G., Fernandes, M., Myrold, D., and Bottomley, P. (2009). Comparative resistance and resil-ience of soil microbial communities and enzyme activities in adjacent native forest and ag-ricultural soils. Microb. Ecol. 58, 414–424.

Clarke, K. R. (1993). Non‐parametric multivariate analyses of changes in community structure.

Aust. J. Ecol. 18, 117–143.

Clements, F. E. (1916). Plant succession: an analysis of the development of vegetation. Carnegie In-stitution of Washington.

Cline, L. C., and Zak, D. R. (2015). Soil Microbial Communities are Shaped by Plant-Driven Changes in Resource Availability During Secondary Succession. Ecology.

Cohan, F. M. (2002). What are bacterial species? Annu. Rev. Microbiol. 56, 457–487.

Cohen, D. (1966). Optimizing reproduction in a randomly varying environment. J. Theor. Biol. 12, 119–129.

Condon, C., Squires, C., and Squires, C. L. (1995). Control of rRNA transcription in Escherichia coli.

Microbiol. Rev. 59, 623–645.

Costanza, R., D’Arge, R., De Groot, R., Farber, S., Grasso, M., Hannon, B., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature 387, 253–260.

Crowther, J. A. (1924). Some Considerations Relative to the Action of X-Rays on Tissue Cells. Proc.

R. Soc. London. 96, 207–211.

Culhane, A. C., Perrière, G., Considine, E. C., Cotter, T. G., and Higgins, D. G. (2002). Between-group analysis of microarray data. Bioinformatics 18, 1600–1608.

D

Darwin, C. (1859). On the origin of species by means of natural selection.

Dassonville, N., Guillaumaud, N., Piola, F., Meerts, P., and Poly, F. (2011). Niche construction by the invasive Asian knotweeds (species complex Fallopia): impact on activity, abundance and community structure of denitrifiers and nitrifiers. Biol. Invasions 13, 1115–1133.

Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F., and Cordero, O. X. (2016). Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7.

Degens, B. P., Schipper, L. A., Sparling, G. P., and Duncan, L. C. (2001). Is the microbial community in a soil with reduced catabolic diversity less resistant to stress or disturbance? Soil Biol.

(5)

REFERENCES

R

Deng, H. (2012). A review of diversity-stability relationship of soil microbial community: What do we not know? J. Environ. Sci. 24, 1027–1035. doi:10.1016/S1001-0742(11)60846-2.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., et al. (2006). Green-genes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.

Appl. Environ. Microbiol. 72, 5069–5072.

Dethlefsen, L., and Relman, D. A. (2011). Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc. Natl. Acad. Sci. 108, 4554–4561.

Dias, A. C. F., Hoogwout, E. F., Pereira e Silva, M. D. C., Salles, J. F., van Overbeek, L. S., and van Elsas, J. D. (2012). Potato cultivar type affects the structure of ammonia oxidizer communities in field soil under potato beyond the rhizosphere. Soil Biol. Biochem. 50, 85–95. doi:10.1016/j. soilbio.2012.03.006.

Díaz, S., Fargione, J., Chapin, F. S., and Tilman, D. (2006). Biodiversity loss threatens human well-being. PLoS Biol. 4, e277. doi:10.1371/journal.pbio.0040277.

Dini-Andreote, F., Stegen, J. C., van Elsas, J. D., and Salles, J. F. (2015). Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial suc-cession. Proc. Natl. Acad. Sci. 112, 1326–1332.

Donat, M. G., Lowry, A. L., Alexander, L. V, Gorman, P. A. O., and Maher, N. (2016). More extreme pre-cipitation in the world’s dry and wet regions. Nat. Clim. Chang. doi:10.1038/NCLIMATE2941. Doughari, H. J., Ndakidemi, P. A., Human, I. S., and Benade, S. (2011). The ecology, biology and

pathogenesis of Acinetobacter spp.: an overview. Microbes Environ. 26, 101–112.

Dray, S., and Dufour, A.-B. (2007). The ade4 package: implementing the duality diagram for ecol-ogists. J. Stat. Softw. 22, 1–20.

Drury, W. H., and Nisbet, I. C. T. (1973). Succession. J. Arnold Arbor. 54, 331–368.

E

Eberspächer, J., and Lingens, F. (2006). “The Genus Phenylobacterium,” in The Prokaryotes, eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (New York, USA: Springer+Business Media, LLC), 250–256.

Ederer, M. M., Crawford, R. L., Herwig, R. P., and Orser, C. S. (1997). PCP degradation is mediated by closely related strains of the genus Sphingomonas. Mol. Ecol. 6, 39–49.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST.

Bioinformat-ics 26, 2460–2461.

Edgar, R. C. (2013). UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat.

Methods 10, 996–998. Available at: http://dx.doi.org/10.1038/nmeth.2604.

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., and Knight, R. (2011). UCHIME improves sen-sitivity and speed of chimera detection. Bioinformatics 27, 2194–2200. doi:10.1093/bioin-formatics/btr381.

Eisenhauer, N., Schulz, W., Scheu, S., and Jousset, A. (2013). Niche dimensionality links biodiver-sity and invasibility of microbial communities. Funct. Ecol. 27, 282–288.

van Elsas, J. D., Chiurazzi, M., Mallon, C. A., Elhottovā, D., Krištůfek, V., and Salles, J. F. (2012). Mi-crobial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad.

Sci. 109, 1159–1164.

Van Elsas, J. D., Dijkstra, A. F., Govaert, J. M., and Van Veen, J. A. (1986). Survival of Pseudomonas fluorescens and Bacillus subtilis introduced into two soils of different texture in field micro-plots. FEMS Microbiol. Ecol. 2, 151–160.

van Elsas, J. D., Jansson, J. K., and Trevors, J. T. eds. (2006a). Modern Soil Microbiology. 2nd ed. Boca Raton, Florida: CRC Press Available at: http://books.google.nl/books?id=QUNHqU_KHCQC. van Elsas, J. D., Jansson, J. K., and Trevors, J. T. (2006b). Modern Soil Microbiology, Second Edition.

Taylor & Francis.

Evans, S. E., and Wallenstein, M. D. (2012). Soil microbial community response to drying and re-wetting stress: does historical precipitation regime matter? Biogeochemistry 109, 101–116. Evans, S. E., and Wallenstein, M. D. (2014). Climate change alters ecological strategies of soil

bac-teria. Ecol. Lett. 17, 155–164.

F

Ferreira, A. C., Nobre, M. F., Moore, E., Rainey, F. A., Battista, J. R., and da Costa, M. S. (1999). Char-acterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles 3, 235–238.

Fiegna, F., Moreno-Letelier, A., Bell, T., and Barraclough, T. G. (2015). Evolution of species interactions determines microbial community productivity in new environments. ISME J. 9, 1235–1245. Fierer, N. (2015). Verrucomicrobia and their role in soil methanol consumption. in Fall Meeting,

AGU (San Francisco, CA).

Fierer, N., Bradford, M. A., and Jackson, R. B. (2007). Toward an ecological classification of soil bac-teria. Ecology 88, 1354–1364.

Fierer, N., and Jackson, R. B. (2006). The diversity and biogeography of soil bacterial communities.

Proc. Natl. Acad. Sci. 103, 626–631.

Fierer, N., Nemergut, D., Knight, R., and Craine, J. M. (2010). Changes through time: Integrating microorganisms into the study of succession. Res. Microbiol. 161, 635–642. doi:10.1016/j. resmic.2010.06.002.

Fierer, N., Schimel, J. P., and Holden, P. A. (2003). Influence of drying–rewetting frequency on soil bacterial community structure. Microb. Ecol. 45, 63–71.

Finlay, B. J., Maberly, S. C., and Cooper, J. I. (1997). Microbial diversity and ecosystem function. Oikos 80, 209–213.

Foster, K. R., and Bell, T. (2012). Competition, not cooperation, dominates interactions among culturable microbial species. Curr. Biol. 22, 1845–1850.

Funke, G., Hutson, R. a., Bernard, K. a., Pfyffer, G. E., Wauters, G., and Collins, M. D. (1996). Isolation of Arthrobacter spp. from clinical specimens and description of Arthrobacter cumminsii sp. nov. and Arthrobacter woluwensis sp. nov. J. Clin. Microbiol. 34, 2356–2363.

G

Galperin, M. Y. (2013). Genome diversity of spore-forming Firmicutes. Microbiol. Spectr. 1, TBS–0015. Gans, J., Wolinsky, M., and Dunbar, J. (2005). Computational improvements reveal great bac-terial diversity and high metal toxicity in soil. Science (80-. ). 309, 1387–90. doi:10.1126/ science.1112665.

Garbeva, P., Van Veen, J. A., and Van Elsas, J. D. (2003). Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45, 302–316. Garcia-Gonzalez, L., Geeraerd, a. H., Spilimbergo, S., Elst, K., Van Ginneken, L., Debevere, J.,

et al. (2007). High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future. Int. J. Food Microbiol. 117, 1–28. doi:10.1016/j. ijfoodmicro.2007.02.018.

(6)

REFERENCES

R

Gelfand, I., and Yakir, D. (2008). Influence of nitrite accumulation in association with seasonal patterns and mineralization of soil nitrogen in a semi-arid pine forest. Soil Biol. Biochem. 40, 415–424. doi:10.1016/j.soilbio.2007.09.005.

Gilbert, J. A., Field, D., Swift, P., Thomas, S., Cummings, D., Temperton, B., et al. (2010). The taxo-nomic and functional diversity of microbes at a temperate coastal site: a “multi-omic”study of seasonal and diel temporal variation. PLoS One 5, e15545.

Girvan, M. S., Campbell, C. D., Killham, K., Prosser, J. I., and Glover, L. A. (2005). Bacterial diversity promotes community stability and functional resilience after perturbation. Environ.

Micro-biol. 7, 301–313. doi:10.1111/j.1462-2920.2005.00695.x.

Gitay, H., and Noble, I. R. (1997). “What are functional types and how should we seek them?,” in Plant functional types: their relevance to ecosystem properties and global change, eds. T. Smith, H. Shugart, and W. FI (Cambridge University Press).

Gleason, H. A. (1926). The individualistic concept of the plant association. Bull. Torrey Bot. Club, 7–26. Goberna, M., Navarro-Cano, J. A., Valiente-Banuet, A., García, C., and Verdú, M. (2014). Abiotic

stress tolerance and competition related traits underlie phylogenetic clustering in soil bac-terial communities. Ecol. Lett. 17, 1191–1201.

Gordon, H., Haygarth, P. M., and Bardgett, R. D. (2008). Drying and rewetting effects on soil mi-crobial community composition and nutrient leaching. Soil Biol. Biochem. 40, 302–311. Graham, D. W., Knapp, C. W., Van Vleck, E. S., Bloor, K., Lane, T. B., and Graham, C. E. (2007).

Exper-imental demonstration of chaotic instability in biological nitrification. ISME J. 1, 385–93. doi:10.1038/ismej.2007.45.

Griffiths, B. S., Bonkowski, M., Roy, J., and Ritz, K. (2001a). Functional stability, substrate utili-sation and biological indicators of soils following environmental impacts. Appl. Soil Ecol. 16, 49–61. doi:10.1016/S0929-1393(00)00081-0.

Griffiths, B. S., Hallett, P. D., Kuan, H. L., Gregory, a. S., Watts, C. W., and Whitmore, a. P. (2007). Func-tional resilience of soil microbial communities depends on both soil structure and micro-bial community composition. Biol. Fertil. Soils 44, 745–754. doi:10.1007/s00374-007-0257-z. Griffiths, B. S., Kuan, H. L., Ritz, K., Glover, L. a, McCaig, a E., and Fenwick, C. (2004). The relation-ship between microbial community structure and functional stability, tested experimen-tally in an upland pasture soil. Microb. Ecol. 47, 104–13. doi:10.1007/s00248-002-2043-7. Griffiths, B. S., and Philippot, L. (2012). Insights into the resistance and resilience of the soil

micro-bial community. FEMS Microbiol. Rev. 7, 112–129. doi:doi:10.1111/j.1574- 6976.2012.00343.x. Griffiths, B. S., and Philippot, L. (2013). Insights into the resistance and resilience of the soil mi-crobial community. FEMS Microbiol. Rev. 37, 112–29. doi:10.1111/j.1574-6976.2012.00343.x. Griffiths, B. S., Ritz, K., Bardgett, R. D., Cook, R., Christensen, S., Ekelund, F., et al. (2000). Ecosys-tem response of pasture soil communities to fumigation-induced microbial diversity re-ductions: an examination diversity function relationship. Oikos 90, 279–294.

Griffiths, B. S., Ritz, K., Wheatley, R., Kuan, H. L., Boag, B., Christensen, S., et al. (2001b). An exam-ination of the biodiversity- ecosystem function relationship in arable soil microbial com-munities. Soil Biol. Biochem. 33, 1713–1722.

H

Hamilton, N. (2015). ggtern: An Extension to’ggplot2’, for the Creation of Ternary Diagrams. R package version 1.0. 5.0.

Hammer, Ø., Harper, D. a. T., and Ryan, P. D. (2001). Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9–18. doi:10.1016/j.bcp.2008.05.025.

Hansel, C. M., Fendorf, S., Jardine, P. M., and Francis, C. a (2008). Changes in bacterial and archaeal community structure and functional diversity along a geochemically variable soil profile.

Appl. Environ. Microbiol. 74, 1620–33. doi:10.1128/AEM.01787-07.

Hart, S. C., Stark, J. M., Davidson, E. A., and Firestone, M. K. (1994). Nitrogen mineralization, immo-bilization, and nitrification. Methods Soil Anal. Part 2—Microbiological Biochem. Prop., 985– 1018.

Hartmann, D. L., Klein Tank, A. M. G., Rustucci, M., Alexander, L. V, Bronnimann, S., Charabi, Y., et al. (2013). Observations: Atmosphere and Surface in: Climate Change 2013: The Physical Science Basis. Contrib. Work. Gr. I to fifth Assess. Rep. Intergov. panel Clim. Chang. Cambridge

Univ. Press. Cambridge, United Kingdom New York, NY, USA.

Hatzenpichler, R. (2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–10. doi:10.1128/AEM.01960-12.

Haugwitz, M. S., Bergmark, L., Priemé, A., Christensen, S., Beier, C., and Michelsen, A. (2014). Soil microorganisms respond to five years of climate change manipulations and elevated at-mospheric CO2 in a temperate heath ecosystem. Plant Soil 374, 211–222. doi:10.1007/ s11104-013-1855-1.

Hawkes, C. V, and Keitt, T. H. (2015). Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–25. doi:10.1111/ele.12451.

Head, I. M., Hiorns, W. D., Embley, T. M., McCarthy, a J., and Saunders, J. R. (1993). The phylogeny of autotrophic ammonia-oxidizing bacteria as determined by analysis of 16S ribosomal RNA gene sequences. J. Gen. Microbiol. 139 Pt 6, 1147–1153. doi:10.1099/00221287-139-6-1147. Hervé, M. (2012). RVAideMemoire: Diverse basic statistical and graphical functions. R package

version 0.9-11.

Hirsch, P. R., Mauchline, T. H., and Clark, I. M. (2010). Culture-independent molecular techniques for soil microbial ecology. Soil Biol. Biochem. 42, 878–887.

Hodgson, D., McDonald, J. L., and Hosken, D. J. (2015). What do you mean,“resilient”? Trends Ecol.

Evol. 30, 503–506.

Holden, J. F., Adams, M. W. W., and Baross, J. a (1999). Heat shock response in hyperthermophilic microorganisms. Microb. Biosyst. New Front.

Holling, C. S. (1973). Resilience and stability of ecological systems. Annu. Rev. Ecol. Evol. Syst., 1–23. Holm, N. C., Gliesche, C. G., and Hirsch, P. (1998). Genetic diversity and population dynamics of Hyphomicrobium spp. in a sewage treatment plant and its receiving lake. Water Sci.

Tech-nol. 37, 113–116. doi:10.1016/S0273-1223(98)00092-4.

Hooper, D., Chapin, F., Ewel, J., Hector, A., Inchausti, P., Lavorel, S., et al. (2005). Effects of biodiver-sity on ecosystem functioning: A consensus of current knowledge. Ecol. Monogr. 75, 3–35. Houghton, R. A. (1994). The worldwide extent of land-use change. Bioscience 44, 305–313. Hu, S., Zhang, Y., Shi, R. J., Han, S. Q., Li, H., and Xu, H. (2013). Temporal variations of soil

microbi-al biomass and enzyme activities during the secondary succession of primary broadleaved- Pinus koraiensis forests in Changbai Mountains of Northeast. J. Appl. Ecol. 24, 366–372.

I

Ingram, L. J., Stahl, P. D., Schuman, G. E., Buyer, J. S., Vance, G. F., Ganjegunte, G. K., et al. (2008). Grazing impacts on soil carbon and microbial communities in a mixed-grass ecosystem.

Soil Sci. Soc. Am. J. 72, 939–948.

Iovieno, P., and Bååth, E. (2008). Effect of drying and rewetting on bacterial growth rates in soil.

(7)

REFERENCES

R

IPCC (2013). Working Group I Contribution To the Ipcc Fifth Assessment Report Climate Change 2013: the Physical Science Basis. Annex 1, 1–85.

IPCC 2007 (2007). Climate change 2007: Synthesis report. Contribution of Working Groups I, II and III

to the Fourth Assessment Report of the Intergovernmnetal Panel on Climate Change. Geneva:

IPCC.

J

Jacquiod, S., Franqueville, L., Cécillon, S., Vogel, T. M., and Simonet, P. (2013). Soil bacterial com-munity shifts after Chitin enrichment: An integrative metagenomic approach. PLoS One 8, 1–13. doi:10.1371/journal.pone.0079699.

Jeffery, S., Gardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., et al. (2010). European Atlas of

Soil Biodiversity. Luxembourg: Publications Office of the European Union.

Jensen, K., and Schrautzer, J. (1999). Consequences of abandonment for a regional fen flora and mechanisms of successional change. Appl. Veg. Sci. 2, 79–88.

Jones, D., and Keddie, R. M. (2006). “The Genus Arthrobacter,” in The Prokaryotes, eds. M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt (New York, USA: Springer Sci-ence+Business Media, LLC), 945–960.

Jousset, a, Schmid, B., Scheu, S., and Eisenhauer, N. (2011a). Genotypic richness and dissimi-larity opposingly affect ecosystem functioning. Ecol. Lett. 14, 537–45. doi:10.1111/j.1461-0248.2011.01613.x.

Jousset, A., Schulz, W., Scheu, S., and Eisenhauer, N. (2011b). Intraspecific genotypic richness and relatedness predict the invasibility of microbial communities. ISME J. 5, 1108–14. doi:10.1038/ismej.2011.9.

Juggins, S. (2015). rioja: Analysis of Quaternary Science Data, R package version (0.9-5).

Jurburg, S. D., Nunes, I., Brejnrod, A., Jacquoid, S., Priemé, A., Sørensen, A., et al. (2016a). Legacy effects on recovery of soil microbial communities from perturbation. submitted.

Jurburg, S. D., Nunes, I., Stegen, J., Roux, X. Le, Prieme, A., Sørensen, S., et al. (2016b). Autogen-ic succession and deterministAutogen-ic recovery following disturbance in soil bacterial communi-ties. submitted.

K

Keiser, A. D., Strickland, M. S., Fierer, N., and Bradford, M. A. (2011). The effect of resource history on the functioning of soil microbial communities is maintained across time.

Biogeoscienc-es 8, 1643–1667. doi:10.5194/bgd-8-1643-2011.

Kembel, S. W., Cowan, P. D., Helmus, M. R., Cornwell, W. K., Morlon, H., Ackerly, D. D., et al. (2010). Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464. Kersting, K. (1984). Normalized ecosystem strain: A system parameter for the analysis of toxic

stress in (micro-) ecosystems. Ecol. Bull., 150–153.

Kim, M., Heo, E., Kang, H., and Adams, J. (2013). Changes in Soil Bacterial Community Structure with Increasing Disturbance Frequency. Microb. Ecol., 1–11.

Kinzig, A. P., Pacala, S. W., and Tilman, D. (2001). The functional consequences of biodiversity:

empir-ical progress and theoretempir-ical extensions. Princeton University Press.

Klumpp, K., Fontaine, S., Attard, E., Le Roux, X., Gleixner, G., and Soussana, J. (2009). Grazing trig-gers soil carbon loss by altering plant roots and their control on soil microbial community.

J. Ecol. 97, 876–885.

Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., et al. (2015). Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira.

Proc. Natl. Acad. Sci. 112, 201506533. doi:10.1073/pnas.1506533112.

Krause, S., Le Roux, X., Niklaus, P. a., Van Bodegom, P. M., Lennon, J. T., Bertilsson, S., et al. (2014). Trait-based approaches for understanding microbial biodiversity and ecosystem function-ing. Front. Microbiol. 5, 1–10. doi:10.3389/fmicb.2014.00251.

Kuan, H. L., Fenwick, C., Glover, L. A., Griffiths, B. S., and Ritz, K. (2006). Functional resilience of mi-crobial communities from perturbed upland grassland soils to further persistent or tran-sient stresses. Soil Biol. Biochem. 38, 2300–2306.

L

Lavorel, S., and Garnier, E. (2002). Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556. doi:10.1046/ j.1365-2435.2002.00664.x.

Lawton, J. H., and Brown, V. K. (1994). “Redundancy in ecosystems,” in Biodiversity and

Ecosys-tem Function, eds. E. D. Schulze and H. A. Mooney (Berlin, Heidelberg: Springer), 255–270.

Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., et al. (2006). Archaea predom-inate among ammonia-oxidizing prokaryotes in soils. Nature 442, 806–9. doi:10.1038/na-ture04983.

Lennon, J. T., Aanderud, Z. T., Lehmkuhl, B. K., and Schoolmaster, D. R. (2012). Mapping the niche space of soil microorganisms using taxonomy and traits. Ecology 93, 1867–79. Available at: http://www.ncbi.nlm.nih.gov/pubmed/22928415.

Lennon, J. T., and Jones, S. E. (2011). Microbial seed banks: the ecological and evolutionary impli-cations of dormancy. Nat. Rev. Microbiol. 9, 119–130.

Lindahl, T. (1993). Instability and decay of the primary structure of DNA. Nature 362, 709–715. doi:10.1038/362709a0.

Lingens, F., Blecher, R., Blecher, H., Blobel, F., Eberspächer, J., Fröhner, C., et al. (1985). Phenylo-bacterium immobile gen. nov., sp. nov., a gram-negative Phenylo-bacterium that degrades the her-bicide chloridazon. Int. J. Syst. Bacteriol. 35, 26–39.

Loreau, M. (2000). Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos 91, 3–17. doi:10.1034/j.1600-0706.2000.910101.x.

Loreau, M. (2004). Does functional redundancy exist ? Oikos 3.

Lu, Y., Slater, F. R., Mohd-Zaki, Z., Pratt, S., and Batstone, D. J. (2011). Impact of operating histo-ry on mixed culture fermentation microbial ecology and product mixture. Water Sci.

Tech-nol. 64, 760–765.

M

Ma, W., Jia, S., Assemien, F., Qin, M., Ma, B., Xie, Z., et al. (2016). Response of microbial functional groups involved in soil N cycle to N , P and NP fertilization in Tibetan alpine meadows. Soil

Biol. Biochem. 101, 195–206.

Mallon, C. A., Poly, F., Le Roux, X., Marring, I., van Elsas, J. D., and Salles, J. F. (2015). Resource puls-es can alleviate the biodiversity-invasion relationship in soil microbial communitipuls-es.

Ecol-ogy 96(4), 915–926.

Marguet, E., and Forterre, P. (1994). DNA stability at temperatures typical for hyperthermophiles.

(8)

REFERENCES

R

Martens-Habbena, W., Berube, P. M., Urakawa, H., de la Torre, J. R., and Stahl, D. a (2009). Am-monia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature 461, 976–9. doi:10.1038/nature08465.

Martiny, J. B. H., Jones, S. E., Lennon, J. T., and Martiny, A. C. (2015). Microbiomes in light of traits: A phylogenetic perspective. Science (80-. ). 350, aac9323–aac9323. doi:10.1126/science. aac9323.

McGuire, K. L., and Treseder, K. K. (2010). Microbial communities and their relevance for ecosys-tem models: Decomposition as a case study. Soil Biol. Biochem. 42, 529–535. doi:10.1016/j. soilbio.2009.11.016.

McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive anal-ysis and graphics of microbiome census data. PLoS One 8, e61217.

Meiners, S. J., Cadotte, M. W., Fridley, J. D., Pickett, S. T. A., and Walker, L. R. (2015). Is succession-al research nearing its climax? New approaches for understanding dynamic communities.

Funct. Ecol. 29, 154–164.

Meisner, A., Bååth, E., and Rousk, J. (2013). Microbial growth responses upon rewetting soil dried for four days or one year. Soil Biol. Biochem. 66, 188–192. doi:10.1016/j.soilbio.2013.07.014. Meisner, A., Rousk, J., and Bååth, E. (2015). Prolonged drought changes the bacterial growth

re-sponse to rewetting. Soil Biol. Biochem. 88, 314–322. doi:10.1016/j.soilbio.2015.06.002. Millenium Ecosystem Assessment (2005). Ecosystems and human well-being: Synthesis. Washington

D.C.: Island Press.

Montecchia, M. S., Correa, O. S., Soria, M. a., Frey, S. D., García, A. F., and Garland, J. L. (2011). Mul-tivariate approach to characterizing soil microbial communities in pristine and agricultural sites in Northwest Argentina. Appl. Soil Ecol. 47, 176–183. doi:10.1016/j.apsoil.2010.12.008. Moroenyane, I., Chimphango, S. B. M., Wang, J., Kim, H. K., and Adams, J. M. (2016).

Determinis-tic assembly processes govern bacterial community structure in the Fynbos, South Africa.

Microb. Ecol., 1–11.

Müller, A. K., Westergaard, K., Christensen, S., and Sørensen, S. J. (2002). The diversity and function of soil microbial communities exposed to different disturbances. Microb. Ecol. 44, 49–58. doi:10.1007/s00248-001-0042-8.

N

Naeem, S. (1998). Species redundancy and ecosystem reliability. Conserv. Biol. 12, 39–45. Naeem, S., and Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature 390, 507–509.

doi:10.1038/37348.

Nalin, R., Simonet, P., Voge, T. M., and Normandl, P. (1999). Rhodanobacter lindaniclasticus gen. nov., sp. nov., a lindane-degrading bacterium. Int. J. Syst. Bacteriol. 49, 19–23.

Nelson, S. O. (1996). A Review and Assessment of Microwave Energy for Soil Treatment To Con-trol Pests. Am. Soc. Agric. Eng. 39, 281–289.

Nemergut, D. R., Knelman, J. E., Ferrenberg, S., Bilinski, T., Melbourne, B., Jiang, L., et al. (2015). Decreases in average bacterial community rRNA operon copy number during succession.

ISME J., 1–10. doi:10.1038/ismej.2015.191.

Nemergut, D. R., Schmidt, S. K., Fukami, T., O’Neill, S. P., Bilinski, T. M., Stanish, L. F., et al. (2013). Pat-terns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev. 77, 342–56. doi:10.1128/MMBR.00051-12.

Nemergut, D. R., Shade, A., and Violle, C. (2014). When , where and how does microbial commu-nity composition matter? Front. Microbiol. 5, 497. doi:10.3389/fmicb.2014.00497.

Neuwirth, E. (2011). RColorBrewer: ColorBrewer palettes, R package version 1.0-5.

Normand, P., Daffonchio, D., and Gtari, M. (2014). “The family Geodermatophilaceae,” in The

Pro-karyotes (Springer), 361–379.

Nowka, B., Daims, H., and Spieck, E. (2015). Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Appl. Environ. Microbiol. 81, 745–53. doi:10.1128/AEM.02734-14.

Nunes, I., Mesquita, N., Cabo Verde, S., Carolino, M. M., Portugal, A., and Botelho, M. L. (2013). Bioburden assessment and gamma radiation inactivation patterns in parchment docu-ments. Radiat. Phys. Chem. 88, 82–89.

Nunes, I., Mesquita, N., Cabo Verde, S., João Trigo, M., Ferreira, A., Manuela Carolino, M., et al. (2012). Gamma radiation effects on physical properties of parchment documents: Assess-ment of Dmax. Radiat. Phys. Chem. 81, 1943–1946. doi:10.1016/j.radphyschem.2012.07.016. Odum, E. P. (1989). Ecology and our endangered life-support systems. Sinauer Associates.

O

Okabe, S., Satoh, H., and Watanabe, Y. (1999). In Situ Analysis of Nitrifying Biofilms as Determined by In Situ Hybridization and the Use of Microelectrodes In Situ Analysis of Nitrifying Bio-films as Determined by In Situ Hybridization and the Use of Microelectrodes. Appl. Environ.

Microbiol. 65.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., minchin, P. R., O’Hara, R. B., et al. (2007). The vegan package. Community Ecol.

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., minchin, P. R., O’Hara, R. B., et al. (2013). vegan: Community Ecology Package, R package version 2.0-10.

Orwin, K. H., and Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biol. Biochem. 36, 1907–1912. doi:10.1016/j. soilbio.2004.04.036.

Overbeek, L. van, Van Elsas, J. D., Trevors, J. T., and Wellington, E. M. H. (1997). Adaptation of bac-teria to soil conditions: applications of molecular physiology in soil microbiology. Mod. soil

Microbiol., 441–477.

P

Pacala, S. W., and Rees, M. (1998). Models suggesting field experiments to test two hypotheses explaining successional diversity. Am. Nat. 152, 729–737.

Pace, N. R. (1997). A Molecular View of Microbial Diversity and the Biosphere. Science 276, 734–740. doi:10.1126/science.276.5313.734.

Pagaling, E., Strathdee, F., Spears, B. M., Cates, M. E., Allen, R. J., and Free, A. (2013). Communi-ty history affects the predictabiliCommuni-ty of microbial ecosystem development. ISME J. 8, 19–30. Available at: http://dx.doi.org/10.1038/ismej.2013.150.

Paine, R. T., Tegner, M. J., and Johnson, E. A. (1998). Compounded Perturbations yield ecological surprises. Ecosystems 1, 535–545.

Palatinszky, M., Herbold, C., Jehmlich, N., Pogoda, M., Han, P., von Bergen, M., et al. (2015). Cya-nate as an energy source for nitrifiers. Nature 524, 105–8. doi:10.1038/nature14856. Palleroni, N. J., Krieg, N. R., and Holt, J. G. (1984). Bergey’s Manual of Systematic Bacteriology, vol. 1. Paradis, E., Claude, J., and Strimmer, K. (2004). APE: Analyses of Phylogenetics and Evolution in R

(9)

REFERENCES

R

Parks, D. H., Tyson, G. W., Hugenholtz, P., and Beiko, R. G. (2014). STAMP: Statistical analysis of tax-onomic and functional profiles. Bioinformatics 30, 3123–3124. doi:10.1093/bioinformatics/ btu494.

Parmegiani, L., Accorsi, A., Cognigni, G. E., Bernardi, S., Troilo, E., and Filicori, M. (2010). Steriliza-tion of liquid nitrogen with ultraviolet irradiaSteriliza-tion for safe vitrificaSteriliza-tion of human oocytes or embryos. Fertil. Steril. 94, 1525–1528. doi:10.1016/j.fertnstert.2009.05.089.

Pedrós-Alió, C. (2012). The rare bacterial biosphere. Ann. Rev. Mar. Sci. 4, 449–466.

Pellegrino, P. M., Fell, N. F., and Gillespie, J. B. (2002). Enhanced spore detection using dipicolinate extraction techniques. Anal. Chim. Acta 455, 167–177. doi:10.1016/S0003-2670(01)01613-0. Pereira e Silva Semenov, A.V., Schmitt, H, van Elsas, J.D., Falcao Salles, J., M. C. (2012). Microbe-

mediated processes as indicators to establish the normal operating range of soil function-ing. Biol. Biochem. submitted.

Pereira e Silva, M. C., Dias, A. C. F., van Elsas, J. D., and Salles, J. F. (2012a). Spatial and temporal vari-ation of archaeal, bacterial and fungal communities in agricultural soils. PLoS One 7, e51554. Pereira e Silva, M. C., Poly, F., Guillaumaud, N., van Elsas, J. D., Salles, J. F., and Pereira E Silva, M. C.

(2012b). Fluctuations in ammonia oxidizing communities across agricultural soils are driv-en by soil structure and pH. Front. Microbiol. 3, 77. doi:10.3389/fmicb.2012.00077.

Pereira e Silva, M. C., Semenov, A. V, van Elsas, J. D., and Salles, J. F. (2011). Seasonal variations in the diversity and abundance of diazotrophic communities across soils. FEMS Microbiol. Ecol. 77, 57–68. doi:10.1111/j.1574-6941.2011.01081.x.

Pereira e Silva, M. C., Semenov, A. V., Schmitt, H., van Elsas, J. D., and Salles, J. F. (2013). Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biol. Biochem. 57, 995–1002. doi:10.1016/j.soilbio.2012.10.002.

Pereira e Silva, M., Schlotter-Hai, B., Poly, F., Guillaumaud, N., Schloter, M., van Elsas, J., et al. Phy-logenetic distance and abundance of thaumarchaeal ammonia oxidizing communities af-fect potential nitrification rates in agricultural soils. submitted.

Pesaro, M., Nicollier, G., Zeyer, J., and Widmer, F. (2004). Impact of soil drying-rewetting stress on microbial communities and activities and on degradation of two crop protection products.

Appl. Environ. Microbiol. 70, 2577–2587.

Pester, M., Maixner, F., Berry, D., Rattei, T., Koch, H., Lücker, S., et al. (2014). NxrB encoding the beta subunit of nitrite oxidoreductase as functional and phylogenetic marker for nitrite‐ oxidizing Nitrospira. Environ. Microbiol. 16, 3055–3071.

Petchey, O. L., and Gaston, K. J. (2002). Functional diversity (FD), species richness and communi-ty composition. Ecol. Lett. 5, 402–411.

Philippot, L., Andersson, S. G. E., Battin, T. J., Prosser, J. I., Schimel, J. P., Whitman, W. B., et al. (2010). The ecological coherence of high bacterial taxonomic ranks. Nat. Rev. Microbiol. 8, 523–529. Philippot, L., Cregut, M., Chèneby, D., Bressan, M., Dequiet, S., Martin-Laurent, F., et al. (2008).

Effect of primary mild stresses on resilience and resistance of the nitrate reducer com-munity to a subsequent severe stress. FEMS Microbiol. Lett. 285, 51–7. doi:10.1111/j.1574-6968.2008.01210.x.

Philippot, L., Spor, A., Hénault, C., Bru, D., Bizouard, F., Jones, C. M., et al. (2013). Loss in microbi-al diversity affects nitrogen cycling in soil. ISME J. 7, 1609–19. doi:10.1038/ismej.2013.34. Pickett, S. T. A., Collins, S. L., and Armesto, J. J. (1987). A hierarchical consideration of causes and

mechanisms of succession. Vegetatio 69, 109–114. doi:10.1007/BF00038691.

Pimentel, D., Wilson, C., McCullum, C., Huang, R., Dwen, P., Flack, J., et al. (1997). Economic and environmental benefits of biodiversity. Bioscience, 747–757.

Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature 307, 321–326.

Placella, S. A., Brodie, E. L., and Firestone, M. K. (2012). Rainfall-induced carbon dioxide pulses result from sequential resuscitation of phylogenetically clustered microbial groups. Proc.

Natl. Acad. Sci. 109, 10931–10936.

Placella, S. A., and Firestone, M. K. (2013). Transcriptional response of nitrifying communities to wetting of dry soil. Appl. Environ. Microbiol. 79, 3294–3302.

Pohlert, T. (2014). The pairwise multiple comparison of mean ranks package (PMCMR). R Packag. Poly, F., Wertz, S., Brothier, E., and Degrange, V. (2008). First exploration of Nitrobacter diversity in soils by a PCR cloning-sequencing approach targeting functional gene nxrA. FEMS

Mi-crobiol. Ecol. 63, 132–140.

Pregerson, B. S. (1973). The distribution and physiology Sporosarcina ureae.

Price, M. N., Dehal, P. S., and Arkin, A. P. (2009). FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650.

Prosser, J. I. (1990). Autotrophic nitrification in bacteria. Adv. Microb. Physiol. 30, 125–181. Prosser, J. I. (2012). Ecosystem processes and interactions in a morass of diversity. FEMS

Micro-biol. Ecol.

Prosser, J. I. (2015). Dispersing misconceptions and identifying opportunities for the use of “ omics” in soil microbial ecology. Nat. Rev. Microbiol. 13, 439–46. doi:10.1038/nrmicro3468. Prosser, J. I., Bohannan, B. J. M., Curtis, T. P., Ellis, R. J., Firestone, M. K., Freckleton, R. P., et al. (2007).

The role of ecological theory in microbial ecology. Nat. Rev. Microbiol. 5, 384–392.

Prosser, J. I., and Nicol, G. W. (2012). Archaeal and bacterial ammonia-oxidisers in soil: the quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–31. doi:10.1016/j. tim.2012.08.001.

Purkhold, U., Pommerening-Röser, A., Juretschko, S., Schmid, M. C., Koops, H.-P., and Wagner, M. (2000). Phylogeny of all recognized species of ammonia oxidizers based on comparative 16S rRNA and amoA sequence analysis: implications for molecular diversity surveys. Appl.

Environ. Microbiol. 66, 5368–5382.

R

R Core Team (2014a). R: A language and environment for statistical computing.

R Core Team (2014b). R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2012.

Rainey, F. a, Ward-Rainey, N., Gliesche, C. G., and Stackebrandt, E. (1998). Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicro-bium. Int. J. Syst. Bacteriol. 48, 635–639. doi:10.1099/00207713-48-3-635.

Rajon, E., Desouhant, E., Chevalier, M., Débias, F., and Menu, F. (2014). The evolution of bet hedg-ing in response to local ecological conditions. Am. Nat. 184, E1–E15.

Reed, H. E., and Martiny, J. B. H. (2007). Testing the functional significance of microbial com-position in natural communities. FEMS Microbiol. Ecol. 62, 161–170. doi:10.1111/j.1574-6941.2007.00386.x.

Reznicek, O., Luesken, F., Facey, S. J., and Hauer, B. (2015). Draft genome sequence of Phenylo-bacterium immobile strain E (DSM 1986), isolated from uncontaminated soil in Ecuador.

Genome Announc. 3, e00420–15.

Rombke, J., Koolhaas, J. E., Van Gestel, C. A. M., Jones, S. E., Rodrigues, J. M. L., and Moser, T. (2004). Ring-Testing and Field-Validation of a Terrestrial Model Ecosystem (TME)– An Instrument for Testing Potentially Harmful Substances: Effects of Carbendazim on Earthworms.

(10)

REFERENCES

R

Root, R. B. (1967). The Niche Exploitation Pattern of the Blue-Gray Gnatcatcher. Ecol. Soc. Am. 37, 317–350.

Le Roux, X., Poly, F., Currey, P., Commeaux, C., Hai, B., Nicol, G. W., et al. (2007). far-ranging socie-tal and environmensocie-tal impacts. It is the major biotic factor that influences pasture ecosys-tems, Correspondence: Yunfeng Yang, tel. +86-10-62784692, fax +86-10-62785687, e-mail: yangyf@tsinghua.edu.cn © 2012 Blackwell Publishing Ltd which. ISME J. 2, 221–232. Roux, X. Le, Poly, F., Currey, P., Commeaux, C., Hai, B., Nicol, G. W., et al. (2008). Effects of

abo-veground grazing on coupling among nitrifier activity , abundance and community struc-ture. ISME J. 2, 221–232. doi:10.1038/ismej.2007.109.

Le Roux, X., Recous, S., and Attard, E. (2011). “Soil microbial diversity in grasslands and its impor-tance for grassland functioning and services,” in Grassland Productivity and Ecosystem

Ser-vices, eds. G. Lemaire, J. Hodgson, and A. Chabbi (Wallingford: CAB international), 158–165.

Roux-Michollet, D., Czarnes, S., Adam, B., Berry, D., Commeaux, C., Guillaumaud, N., et al. (2008). Effects of steam disinfestation on community structure, abundance and activity of hetero-trophic, denitrifying and nitrifying bacteria in an organic farming soil. Soil Biol. Biochem. 40, 1836–1845. doi:10.1016/j.soilbio.2008.03.007.

Rustad, A. L. E., Campbell, J. L., Marion, G. M., Norby, R. J., Mitchell, M. J., Cornelissen, J. H. C., et al. (2011). A Meta-Analysis of the Response of Soil Respiration, Net Nitrogen mineralization, and Aboveground Plant Growth to Experimental Ecosystem Warming. Ecology 126, 543– 562. doi:10.1007/S004420000544.

Rykiel, E. J. (1985). Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365.

S

Salles, J. F., Poly, F., Schmid, B., and Le Roux, X. (2009). Community niche predicts the functioning of denitrifying bacterial assemblages. Ecology 90, 3324–32. Available at: http://www.ncbi. nlm.nih.gov/pubmed/20120802.

Salles, J. F., Le Roux, X., and Poly, F. (2012). Relating phylogenetic and functional diversity among de-nitrifiers and quantifying their capacity to predict community functioning. Front. Microbiol. 3. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., and Walker, B. (2001). Catastrophic shifts in

eco-systems. Nature 413, 591–6. doi:10.1038/35098000.

Schimel, D. S. (1995a). Terrestrial ecosystems and the carbon cycle. Glob. Chang. Biol. 1, 77–91. Schimel, J. (1995b). “Ecosystem consequences of microbial diversity and community structure,”

in Arctic and alpine biodiversity: patterns, causes and ecosystem consequences (Springer), 239–254.

Schimel, J., Balser, T. C., and Wallenstein, M. (2007). Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., et al. (2009). Introducing mothur: open-source, platform-independent, community-supported soft-ware for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

Schramm, A., de Beer, D., Wagner, M., and Amann, R. (1998). Identification and Activities In Situ of Nitrosospira and Nitrospira spp. as Dominant Populations in a Nitrifying Fluidized Bed Re-actor. Appl. Environ. Microbiol. 64, 3480–3485. Available at: http://www.ncbi.nlm.nih.gov/ pmc/articles/PMC106750/.

Seybold, C. A., Herrick, J. E., and Brejda, J. J. (1999). Soil resilience: a fundamental component of soil quality. Soil Sci. 164, 224–234.

Shade, A., and Handelsman, J. (2012). Beyond the Venn diagram: the hunt for a core microbiome.

Environ. Microbiol. 14, 4–12. doi:10.1111/j.1462-2920.2011.02585.x.

Shade, A., McManus, P. S., and Handelsman, J. (2013). Unexpected diversity during community succession in the apple flower microbiome. MBio 4, e00602–12.

Shade, A., Peter, H., Allison, S. D., Baho, D. L., Berga, M., Bürgmann, H., et al. (2012). Fundamentals of Microbial Community Resistance and Resilience. Front. Microbiol. 3, 1–19. doi:10.3389/ fmicb.2012.00417.

Shoemaker, W. R., Muscarella, M. E., and Lennon, J. T. (2015). Genome sequence of the soil bacte-rium Janthinobactebacte-rium sp. KBS0711. Genome Announc. 3, e00689–15.

Simonin, M., Le Roux, X., Poly, F., Lerondelle, C., Hungate, B. a, Nunan, N., et al. (2015). Coupling Between and Among Ammonia Oxidizers and Nitrite Oxidizers in Grassland Mesocosms Submitted to Elevated CO2 and Nitrogen Supply. Microb. Ecol. 70, 809–18. doi:10.1007/ s00248-015-0604-9.

Singh, B. K., Bardgett, R. D., Smith, P., and Reay, D. S. (2010). Microorganisms and climate change: terrestrial feedbacks and mitigation options. Nat. Rev. Microbiol. 8, 779–90. doi:10.1038/ nrmicro2439.

Singleton, D. R., Furlong, M. A., Peacock, A. D., White, D. C., Coleman, D. C., and Whitman, W. B. (2003). Solirubrobacter pauli gen. nov., sp. nov., a mesophilic bacterium within the Rubrobacteridae related to common soil clones. Int. J. Syst. Evol. Microbiol. 53, 485–490. doi:10.1099/ijs.0.02438-0.

Sjöstedt, J., Koch-Schmidt, P., Pontarp, M., Canbäck, B., Tunlid, A., Lundberg, P., et al. (2012). Re-cruitment of members from the rare biosphere of marine bacterioplankton communities after an environmental disturbance. Appl. Environ. Microbiol. 78, 1361–1369.

Slade, D., and Radman, M. (2011). Oxidative stress resistance in Deinococcus radiodurans. doi:10.1128/MMBR.00015-10.

Smith, P., Cotrufo, M. F., Rumpel, C., Paustian, K., Kuikman, P. J., Elliott, J. A., et al. (2015a). Biogeo-chemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil

Discuss. 2, 537–586.

Smith, P., House, J. I., Bustamante, M., Sobock??, J., Harper, R., Pan, G., et al. (2016). Global change pressures on soils from land use and management. Glob. Chang. Biol. 22, 1008–1028. doi:10.1111/gcb.13068.

Smith, P., House, J. I., Bustamante, M., Sobocká, J., Harper, R., Pan, G., et al. (2015b). Global change pressures on soils from land use and management. Glob. Chang. Biol.

Song, W., Kim, M., Tripathi, B. M., Kim, H., and Adams, J. M. (2015). Predictable communities of soil bacteria in relation to nutrient concentration and successional stage in a laboratory cul-ture experiment. Environ. Microbiol. doi:10.1111/1462-2920.12879.

Speir, T. W., Cowling, J. C., Sparling, G. P., Went, A. W., and Corderoy, D. M. (1986). Effects of Micro-wave radiation on the Microbial Biomass, Phosphatase Activity and Levels of Extractable N and P in a Low Fertility Soil Under Pasture. Soil Biol. Biochem. 18, 377–382.

Stegen, J. C., Lin, X., Fredrickson, J. K., Chen, X., Kennedy, D. W., Murray, C. J., et al. (2013). Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079. Stegen, J. C., Lin, X., Fredrickson, J. K., and Konopka, A. E. (2015). Estimating and mapping

ecolog-ical processes influencing microbial community assembly. Front. Microbiol. 6.

Stegen, J. C., Lin, X., Konopka, A. E., and Fredrickson, J. K. (2012). Stochastic and deterministic as-sembly processes in subsurface microbial communities. ISME J. 6, 1653–1664.

Strickland, M. S., Lauber, C., Fierer, N., and Bradford, M. A. (2009a). Testing the functional signifi-cance of microbial community composition. Ecology 90, 441–451.

(11)

REFERENCES

R

Strickland, M. S., Osburn, E., Lauber, C., Fierer, N., and Bradford, M. A. (2009b). Litter quality is in the eye of the beholder: initial decomposition rates as a function of inoculum characteris-tics. Funct. Ecol. 23, 627–636.

Suding, K. N., and Goldstein, L. J. (2008). Testing the Holy Grail framework: using functional traits to predict ecosystem change. New Phytol. 180, 559–562.

Suzuki, R., and Shimodaira, H. (2006). Pvclust: an R package for assessing the uncertainty in hier-archical clustering. Bioinformatics 22, 1540–1542. doi:10.1093/bioinformatics/btl117.

T

Tansley, A. G. (1935). The use and abuse of vegetational concepts and terms. Ecology 16, 284–307. Tardy, V., Mathieu, O., Lévêque, J., Terrat, S., Chabbi, A., Lemanceau, P., et al. (2014). Stability of soil microbial structure and activity depends on microbial diversity. Environ. Microbiol. Rep. 6, 173–183.

Thiel, C. S., Tauber, S., Schütte, A., Schmitz, B., Nuesse, H., Moeller, R., et al. (2014). Functional Activity of Plasmid DNA after Entry into the Atmosphere of Earth Investigated by a New Biomarker Stability Assay for Ballistic Spaceflight Experiments. PLoS One 9, e112979. doi:10.1371/journal.pone.0112979.

Tilman, D., Lehman, C. L., and Thomson, K. T. (1997). Plant diversity and ecosystem productivity: Theoretical considerations. Proc. Natl. Acad. Sci. 94, 1857–1861.

Timmis, K. N. (2002). Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ.

Microbiol. 4, 779–781.

Tobor-Kaplon, M. A., Bloem, J., Romkens, P. F. A. ., and Ruiter, P. C. De (2005). Functional stability of microbial communities in contaminated soils. Oikos 111, 119–129.

Tobor-Kaplon, M. A., Bloem, J., and De Ruiter, P. C. (2006). Functional stability of microbial communities from long-term stressed soils to additional disturbance. Environ. Toxicol. Chem. 25, 1993–1999. Torsvik, V., and Øvreås, L. (2002). Microbial diversity and function in soil: From genes to

ecosys-tems. Curr. Opin. Microbiol. 5, 240–245.

Torsvik, V., Ovreas, L., and Thingstad, T. F. (2002). Prokaryotic diversity--magnitude, dynamics, and controlling factors. Science (80-. ). 296, 1064.

Tourna, M., Freitag, T. E., Nicol, G. W., and Prosser, J. I. (2008). Growth, activity and temperature re-sponses of ammonia-oxidizing archaea and bacteria in soil microcosms. Environ. Microbiol. 10, 1357–64. doi:10.1111/j.1462-2920.2007.01563.x.

Trenberth, K. E., Dai, A., van der Schrier, G., Jones, P. D., Barichivich, J., Briffa, K. R., et al. (2014). Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22.

U

Urakami, T., Sasaki, J., Suzuki, K.-I., and Komagata, K. (1995). Characterization and Description of Hy-phomicrobium denitrificans sp. nov. Int. J. Syst. Bacteriol. 45, 528–532. doi:10.1099/00207713-45-3-528.

V

Vaid, A., and Bishop, A. H. (1998). The destruction by microwave radiation of bacterial endo-spores and amplification of the released DNA. J. Appl. Microbiol. 85, 115–122. doi:10.1046/ j.1365-2672.1998.00475.x.

Vela, G. R., and Wu, J. F. (1979). Mechanism of lethal action of 2,450-MHz radiation on microor-ganisms. Appl. Environ. Microbiol. 37, 550–553.

Velikonja, B. H., Tkavc, R., and Pašić, L. (2014). Diversity of cultivable bacteria involved in the for-mation of macroscopic microbial colonies (cave silver) on the walls of a cave in Slovenia. Int.

J. Speleol. 43, 45–56. doi:10.5038/1827-806X.43.1.5.

Vellend, M. (2010). Conceptual synthesis in community ecology. Q. Rev. Biol. 85, 183–206. Velthorst, E. J. (1993). Manual for chemical water analyses. Department of Soil Science and

Geol-ogy, Agricultural University.

Voigt, W., Perner, J., and Hefin Jones, T. (2007). Using functional groups to investigate commu-nity response to environmental changes: Two grassland case studies. Glob. Chang. Biol. 13, 1710–1721. doi:10.1111/j.1365-2486.2007.01398.x.

Vos, M., Wolf, A. B., Jennings, S. J., and Kowalchuk, G. A. (2013). Micro-scale determinants of bac-terial diversity in soil. FEMS Microbiol. Rev., 1–19. doi:10.1111/1574-6976.12023.

Vos, P., Garrity, G., Jones, D., Krieg, N. R., Ludwig, W., Rainey, F. A., et al. eds. (2009). Bergey’s

Man-ual of Systematic Bacteriology, Volume 3: The Firmicutes. 2nd ed. New York, USA: Springer.

de Vries, F. T., Liiri, M. E., Bjørnlund, L., Setälä, H. M., Christensen, S., and Bardgett, R. D. (2012). Legacy effects of drought on plant growth and the soil food web. Oecologia 170, 821–833. De Vries, F. T., and Shade, A. (2014). Controls on soil microbial community stability under climate

change. Microb. Regul. Glob. Biogeochem. Cycles, 132.

W

Wagg, C., Bender, S. F., Widmer, F., and van der Heijden, M. G. a (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. 111, 5266–70. doi:10.1073/pnas.1320054111.

Wainwright, M., Killham, K., and Diprose, M. F. (1980). Effects of 2450 MHz microwave radi-ation on nitrificradi-ation, respirradi-ation and S-oxidradi-ation in soil. Soil Biol. Biochem. 12, 489–493. doi:10.1016/0038-0717(80)90085-1.

Walker, B. H. (1992). Biodiversity and ecological redundancy. Conserv. Biol. 6, 18–23.

Wallenstein, M. D., and Hall, E. K. (2012). A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning.

Biogeochemis-try 109, 35–47.

Wang, B., Zhao, J., Guo, Z., Ma, J., Xu, H., and Jia, Z. (2015). Differential contributions of ammo-nia oxidizers and nitrite oxidizers to nitrification in four paddy soils. ISME J. 9, 1062–75. doi:10.1038/ismej.2014.194.

Warnes, G. R., Bolker, B., Bonebakker, L., Gentleman, R., Liaw, W. H. A., Lumley, T., et al. (2015). gplots: Various R Programming Tools for Plotting Data. R package version 2.17.0.

Watson, S. W., Bock, E., Valois, F. W., Waterbury, J. B., and Schlosser, U. (1986). Nitrospira mari-na gen. nov. sp. nov.: a chemolithotrophic nitrite-oxidizing bacterium. Arch. Microbiol. 144, 1–7. doi:10.1007/BF00454947.

Weon, H. Y., Kim, B. Y., Yoo, S. H., Lee, S. Y., Kwon, S. W., Go, S. J., et al. (2006). Niastella koreensis gen. nov., sp. nov. and Niastella yeongjuensis sp. nov., novel members of the phylum Bac-teroidetes, isolated from soil cultivated with Korean ginseng. Int. J. Syst. Evol. Microbiol. 56, 1777–1782. doi:10.1099/ijs.0.64242-0.

Wertz, S., Degrange, V., Prosser, J. I., Poly, F., Commeaux, C., Freitag, T., et al. (2006). Mainte-nance of soil functioning following erosion of microbial diversity. Environ. Microbiol. 8, 2162–2169.

(12)

REFERENCES

Wertz, S., Degrange, V., Prosser, J. I., Poly, F., Commeaux, C., Guillaumaud, N., et al. (2007). Decline of soil microbial diversity does not influence the resistance and resilience of key soil mi-crobial functional groups following a model disturbance. Environ. Microbiol. 9, 2211–2219. Wertz, S., Leigh, A. K. K., and Grayston, S. J. (2012). Effects of long-term fertilization of forest soils on

potential nitrification and on the abundance and community structure of ammonia oxidizers and nitrite oxidizers. FEMS Microbiol. Ecol. 79, 142–54. doi:10.1111/j.1574-6941.2011.01204.x. Wertz, S., Poly, F., Le Roux, X., and Degrange, V. (2008). Development and application of a PCR-

denaturing gradient gel electrophoresis tool to study the diversity of Nitrobacter-like nxrA sequences in soil. FEMS Microbiol. Ecol. 63, 261–271.

Widder, S., Allen, R. J., Pfeiffer, T., Curtis, T. P., Wiuf, C., Sloan, W. T., et al. (2016). Challenges in mi-crobial ecology: building predictive understanding of community function and dynamics.

ISME J., 1–12. doi:10.1038/ismej.2016.45.

Williams, S. T., Shameemullah, M., Watson, E. T., and Mayfield, C. I. (1972). Studies on the ecology of actinomycetes in soil—vi. the influence of moisture tension on growth and survival. Soil

Biol. Biochem. 4, 215–225.

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., et al. (2009). Ini-tial community evenness favours functionality under selective stress. Nature 458, 623–626.

X

Xia, W., Zhang, C., Zeng, X., Feng, Y., Weng, J., Lin, X., et al. (2011). Autotrophic growth of nitrifying community in an agricultural soil. ISME J. 5, 1226–36. doi:10.1038/ismej.2011.5.

Xie, Z., Le Roux, X., Wang, C., Gu, Z., An, M., Nan, H., et al. (2014). Identifying response groups of soil nitrifiers and denitrifiers to grazing and associated soil environmental drivers in Tibetan alpine meadows. Soil Biol. Biochem. 77, 89–99.

Y

Yachi, S., and Loreau, M. (1999). Biodiversity and ecosystem productivity in a fluctuating environ-ment: the insurance hypothesis. Proc. Natl. Acad. Sci. 96, 1463.

Yu, Y., Lee, C., Kim, J., and Hwang, S. (2005). Group-specific primer and probe sets to detect meth-anogenic communities using quantitative real-time polymerase chain reaction. Biotechnol.

Bioeng. 89, 670–679.

Z

Zhang, B., Deng, H., Wang, H., Yin, R., Hallett, P. D., Griffiths, B. S., et al. (2010a). Does microbial hab-itat or community structure drive the functional stability of microbes to stresses following re-vegetation of a severely degraded soil? Soil Biol. Biochem. 42, 850–859. doi:10.1016/j. soilbio.2010.02.004.

Zhang, K., Wang, Y., Tang, Y., Dai, J., Zhang, L., An, H., et al. (2010b). Niastella populi sp. nov., iso-lated from soil of Euphrates poplar (Populus euphratica) forest, and emended description of the genus Niastella. Int. J. Syst. Evol. Microbiol. 60, 542–545. doi:10.1099/ijs.0.012112-0. Zhang, X., Liu, S., Li, X., Wang, J., Ding, Q., Wang, H., et al. (2016). Changes of soil prokaryotic com-munities after clear-cutting in a karst forest: evidences for cutting-based disturbance pro-moting deterministic processes. FEMS Microbiol. Ecol. 92, fiw026.

Referenties

GERELATEERDE DOCUMENTEN

Within the Original groups, the relative abundances for OTUs in O1 decreased immediately following disturbance, while O2 and O3 were dominat- ed by slow-growing bacteria such

To focus on the effect of the disturbances rather than environmental variability, we set up soil microcosms and exposed these to an initial, heat shock (along with un-

We measured the temporal changes in the abundances of these nitrifier groups as well as nitrification enzyme activity (NEA) for five disturbance histories: two successive heat

To evaluate changes in community composition in response to the extreme precipitation treatments we created ternary plots of taxa with average abundances greater than 0.1% in samples

es on the community’s recovery or successional trajectory. In Chapter 7, we assessed the applicability of our findings to real-world disturbances, to which soils have often

The concentration of the purified second PCR products was measured by Pico Green (Life Technologies, Nærum, Denmark) in a LightCycler 96 (Roche, Hvidovre, Denmark) and equal

Thus, in a third experiment, I subjected model soil microcosms to a first heat shock, and then subjected them to an identical, second heat shock or to a novel cold shock, and

I want to thank James for letting me into his complex mathematical world, and Xavier for offering his honest and thoughtful support when I needed it. Jan Dirk, I want to thank