• No results found

thin films ZnO Co doping structural induced and optical properties of sol–gelprepared Applied Surface Science

N/A
N/A
Protected

Academic year: 2022

Share "thin films ZnO Co doping structural induced and optical properties of sol–gelprepared Applied Surface Science"

Copied!
5
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Applied Surface Science

j o ur na l ho me pa g e :w w w . e l s e v i e r . c o m / l o c a t e / a p s u s c

Co doping induced structural and optical properties of sol–gel prepared ZnO thin films

Ebru Gungor

a,∗

, Tayyar Gungor

a

, Deniz Caliskan

b

, Abdullah Ceylan

c

, Ekmel Ozbay

b

aEnergySystemsEngineeringDepartment,MehmetAkifErsoyUniversity,Burdur15030,Turkey

bNanotechnologyResearchCenter,BilkentUniversity,Ankara06800,Turkey

cSNTGLaboratory,PhysicsEngineeringDepartment,HacettepeUniversity,Ankara06800,Turkey

a r t i c l e i n f o

Articlehistory:

Received15November2013 Receivedinrevisedform14June2014 Accepted20June2014

Availableonline27June2014

Keywords:

ZnO Co:ZnO Thinfilm

Ultrasonicspraypyrolysis

a b s t r a c t

ThepreparationconditionsforCodopingprocessintotheZnOstructurewerestudiedbytheultrasonic spraypyrolysistechnique.StructuralandopticalpropertiesoftheCo:ZnOthinfilmsasafunctionofCo concentrationswereexamined.ItwasobservedthathexagonalwurtzitestructureofZnOisdominantup tothecriticalvalue,andafterthevalue,thecubicstructuralphaseofthecobaltoxideappearsintheX-ray diffractionpatterns.Everyband-edgeofCo:ZnOfilmsshiftstothelowerenergiesandallareconfirmed withthePLmeasurements.CosubstitutioninZnOlatticehasbeenprovedbytheopticaltransmittance measurementwhichisobservedasthelossoftransmissionappearinginspecificregionduetoCo2+

characteristictransitions.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Zincoxide(ZnO)is a II–VIcompound semiconductor witha widedirectbandgapof3.37eVatroomtemperature.Inaddition totheelectricalandopticalpropertiesofundopedZnO,thetran- sitionmetaldopedZnOformsarepromisingcandidatematerials inthefieldofspintronics(spin-electronics).Variousmethodssuch aspulsedlaserdeposition[1],chemicalvaportransport[2],elec- trodeposition[3],co-precipitation[4]andsolid-statereaction[5], andspraypyrolysis[6]canbeusedtosynthesizeZnO.Amongthese methods,spraypyrolysistechniquecanbeapplicablewithoutvac- uumenvironment;ofcourse,thistechniqueischeapanddisplaying comparablepropertiesandcompetitivefunctionalitywiththatpro- ducedbyothertechniques.Theresearchhasbeenincreasedon theternarysemiconductorssuchastransitionmetaldopedZnO owingtoitshighCurietemperaturefortheferromagnetictran- sitioncalculatedinbulkmaterialsandfoundtobearound300K [7–10].

CodopingcreatesaconsiderablechangeinthebandgapofZnO [11–14],butthisvariationhasbeenreportedasanincreaseinsome otherresearchandasadecreaseinthebandgapforZnOinother research.Thiscaseindicatestheuncertainty.Areasonforthiscan bestructuraldefectsintheZnOcrystallatticeaswellasbecause

∗ Correspondingauthor.

E-mailaddress:egungor@mehmetakif.edu.tr(E.Gungor).

ofthevacanciesinthecrystalstructureorinterstitials[15].The uncontrolledcasesasthestructuraldefectsand/orimpuritiesthat ariseasgrowingthefilmaffectsthebondingnature,chargetransfer andthebandstructureinthematerial.Thismakesitverydifficult toobtainreproducibledeviceperformanceand reliability.Some authorsreportedintheliteraturethatred-shiftisattributedtothe sp–dexchangeandsomeotherauthorsobservedthatblue-shiftis attributedtotheBurnstein–MosseffectconsideringtheCocon- centration.Whenthevolumesolubilitylimit intwo-component andmulticomponentalloyshasreachedacertainconcentration, thefirstphaseremainsconstantandthentheextraphasesappear.

Inordertodeterminethesolubilitylimit, onehastofollow the changeofthelatticespacingandconcentrationobtainedfromthe X-raydiffraction(XRD)andSEM-EDSspectrum,respectively.There isuncertaintyaboutsolubilitylimitforCodopedZnO. Leeetal.

[16]reportedthatthedopedCoionwasfullysubstitutedintoa ZnOlatticeat5mol%,butthesecondaryphaseoftheCo3O4 was formedabove5mol%ofCodoping.However,otherreports[17,18]

haveindicatedthatCocanbeincorporatedinthematrixofZnOup to7–10at%withoutforminganysecondphase.Allthesereports thusindicatethatCohasalimitedsolubilityinZnOupto10at%.In contrasttothis,Rath[19]observedthatallthepeaksmatchwell withthewurtzitestructureofZnOinbothpureandCodopedZnO samplesuptoacobaltconcentrationof20%.

Inthisstudy,weaimedtocontributetoclarifytheuncertainty forbandgapshift.Thatiswhy,weinvestigatethestructuraland opticalpropertiesofZnOandCo:ZnO(CZO)thinfilmsthatwere http://dx.doi.org/10.1016/j.apsusc.2014.06.132

0169-4332/©2014ElsevierB.V.Allrightsreserved.

(2)

ZnOandCo:ZnO(CZO)thinfilmsweredepositedontoultrason- icallycleanedglasssubstratesusingtheultrasonicspraypyrolysis (USP)method.Forconventional USPmethod,thesubstratesare fixedandprecursorsolutionsprayedoverahotsubstrate.Thesub- stratetemperaturewaskeptat400C. Thesaltsofzinc acetate dehydrate(Zn(CH3COO)2·2H2O,99.9%-Merck)andcobaltacetate tetrahydrate(Co(CH3COO)2·4H2O,99.9%-Merck)wereusedasthe metalsourceswhich weresolvedinmethanol.In ordertopro- duceaclearandhomogeneoussolutionmonoethanolamine(MEA) andaceticacidwereaddedintotheprecursorsolutionwhichwas stirredat60Catamoderatespeedfor1h.Inthestartingsolu- tions,Cocontentswerechangedfrom0.01Mto0.05Mandsamples werelabeledasCZO1–CZO5(Table1).Zncontent(0.05M)washeld atconstant.Thesolutionflowratewasheldconstantat5ml/min.

Nozzle,100kHzoscillatorfrequency,usedinthisstudywasina downwardverticalconfigurationandthenozzletosubstratedis- tancewas12cm.Compressedairwasusedasthecarriergas.The filmsweredepositedforabout10min.Amoredetaileddescription ofthemethodtoobtainthethinfilmsandthecharacteristicsof thespraypyrolysisdeviceusedwerereportedinpreviouspaper [6].X-raydiffraction(XRD)spectrawerecollectedwithaD-MaxX- raydiffractometer(RigakuInternationalCorp.,Japan)withCuK␣ (=1.5405 ´˚A)toobtainthestructuralinformationofthefilms.The chemicalcompositionofthethinfilmswasmeasuredusingenergy dispersivespectroscopy(EDS)withaJeolJSM-7000F-EDSelectron microscope.TheopticalmeasurementsoftheCo:ZnOthinfilms werecarriedoutatroomtemperatureusingT70ModelSpectropho- tometer(PG Instrument)in thewavelength range 300–900nm.

Photoluminescence(PL)spectraweremeasuredusinga100mW He-Cdlaser (=325nm)astheexcitationsourceanda HORIBA Jobin-Yvon1mmonochromator.

3. Resultsanddiscussion

3.1. Structuralproperties

TheX-raypatternsforCo:ZnOthinfilmsatroomtemperature andreferencepeakpositionsarepresentedinFig.1a.Theresults pointedoutshowedthatthere isnoimpurityand/orunreacted phaseofZnandCoconsideringthereferencepeakpositions,(100), (002),(101),and(103)peaksofZnOwereobserved.However, (111)and(200)peaksat36.9 and42.7 Braggangleofcobalt oxide,respectively, wereobserved. The starting molarity upto 0.03MofprecursorsolutionincludedCo,(002)peakofhexagonal wurtzitestructurebecomesmoreintensivecomparingwithother peaks(Fig.1b).Inthesefilms,upto0.03M,thehexagonalwurtzite structureofZnOseemstobeprotected.Inthedopingprocess,itis observedthatthereisalimitationofCodopingintotheZnOstruc- ture.Themolarityisthengreaterand/orequaltothe0.03Mvalue,

Fig.1. X-raydiffractionpatternsofCo:ZnOthinfilms(a),andintensitydifferences of(002)and(200)peaksforthefilms(b).“|”and“”symbolsindicatethereference forZnO(JCPDS36-1451)andforCoO(JCPDS43-1004),respectively.Thevariation oftheCoconcentrationobtainedfromEDSwithstartingsolutionmolarity(c).

(200)peakwhichbelongstothecubicstructureofcobaltoxide whichthenstartstooccur.ThislimitvalueisconfirmedusingEDS measurements.Table1summarizestherelativechemicalcontent oftheoxygen,zincandcobaltpresentinthefilmsasafunctionof contentofthecobaltacetatetetrahydrateinsertedinthestarting solution.WeobservedthattheCosubstitutedZnsiteupto12%

(Fig.1c)whichcorrespondedto0.03Mwithoutshowinganyextra phaseinXRDspectra.Peakscorrespondingtotheglasssubstrate elementssuchasSiandCawerealsodetected.The(002)peakindi- catingastrongorientationalongthec-axisofZnOwithhexagonal wurtzitestructureisreplacedby(200)orientationwiththecubic structureasComolarityincreases.Thepeakpositionof(002)shifts

(3)

Fig.2.StructuralparametersofCo:ZnOthinfilmsaccordingtotheXRDresultsvs Comolarity;forc-latticeparameter(“䊉”symbol)anddiffractionangle2for(002) peak(“”symbol).

Fig.3.NormalizedexperimentalopticaltransmissionspectraforCo:ZnOthinfilms accordingtotransmissionvalueat800nm.

tothehigherBraggangle,andalsothecalculatedc-latticeparame- terdecreasesduetotheincreasingofCoconcentrationintheZnO structure(Fig.2).Buttheintensityof(200)peakdecreaseswhen CoisdopedintotheZnOstructurewiththemolarityvalueofmore than0.04M.

3.2. Opticalproperties

TheopticaltransmissionspectraofZnOandCodopedZnOthin filmsamplesareshowninFig.3.TheeffectsofCodopingintothe ZnOlatticeareclearlyobservedintheopticaltransmissionspectra.

TheincreaseofCoconcentrationintheZnOstructuredecreasesthe opticaltransmittanceandimpartsdeepgreencolortothesamples (Fig.4).Inaddition,increasingCoconcentrationalsomodifiesopti- caltransmittanceforthespecificregionduetoCo2+characteristic transitions.Thesetransitionsalsosuppresstheinterferencefringes inthisregionofCo:ZnOfilmsifthefilmthicknessissufficientto createinterferencefringe.In ordertoeliminatetheinfluenceof differencesinsamplethickness,normalizedtransmittancetothe valueat800nmweretakenintoaccount.Theabsorptionpeaks, indicated with arrows in Fig. 3, centered at 571nm (2.18eV), 619nm(2.01eV)and 662nm(1.88eV),arerelatedtocharacter- isticfeaturesofd–dtransitionofCo2+ions.Theyareassignedto transition from4A2(F)state to2E(G), 4T1(P) and 2A1(G) states, respectively[15].Thisisaclearevidencetoprovetheexistenceof

Fig.4.Experimentalopticaltransmissionspectra(solidline)of0.02MCocontent instartingsolutionforCo:ZnOthinfilm:Alsothetheoreticalopticaltransmission spectra(“o”symbol)areshownforcomparison.

Table2

Calculatedfilmthicknesst(nm),refractiveindexnfor532nmwavelengthandEg

(eV)opticalbandgapvaluesoftheCo:ZnO(CZO)thinfilmsvsthemolarityofCoin thestartingsolutions.

Samplename MolarityofCo(M) t(nm) n(532nm) Eg(eV)

ZnO 0.00 75±2 1.73 3.330

CZO1 0.01 105±2 2.23 3.072

CZO2 0.02 95±2 2.42 3.061

CZO3 0.03 160±2 2.73 2.985

CZO4 0.04 170±2 2.63 3.020

CZO5 0.05 180±2 2.59 3.030

CoatthetetrahedralsitesoftheZnOhexagonalwurtzitestructure asCo2+.ComparingtheionicradiiofCo2+(0.058nm)whichisvery closetoionicradii ofZn2+(0.060nm)andtheabsorptionpeaks wecanconcludethattheCoatomicallysubstitutesonZnsites.

Thisisalsoconfirmedinmanygroups,whichincludedavariety ofmethodsandopticalabsorption[15,18,20–22].

Theopticaltransmissionspectrumcanbeusedinthedetermi- nationoftheopticalconstantsofthethinfilmdepositedontothe transparentsubstrate.Whentheproductoftherefractiveindex andfilmthicknessofthefilmhaveallowedtheformationofinter- ference fringes,classicalmethods suchas theenvelope method developedbySwanepoel [23]canbeused.Aswellasthenum- beroftheinterferencefringesanddepthofthefringesarecrucial toperformthismethod.However,PointwiseUnconstrainedMini- mizationAlgorithm(PUMA)[24]andmanyotheriterativemethods [25]canbeusedwhentheinterferencefringesobservedornot observedin thetransmission spectrum.Consideringthenormal dispersionrelation,therefractiveindexdecreaseswiththeincreas- ingwavelength.ThisisnotvalidfortheCo:ZnOthinfilmsforthe region where theloss of transmissiondue to Co2+ characteris- tictransitionswhichmodulatethetransmittancespectrumofour samplesisobserved.Therefore,weusedPUMAtechniqueforthis limitedregionwhichstartsfromtheinflexionwavelengthtothe wavelengthcorrespondingfirstcharacteristictransitionwhichis centeredat571nm(2.18eV).Inflexionwavelengthisdefinedfrom secondderivativeofopticaltransmissioncurve[6,26].Thereisan excellentagreementbetweentheexperimentalspectraandtheo- reticalspectraforallthesamplesandoneoftheexperimentaland computedopticaltransmissionspectrafortheCo:ZnOthinfilmare showninFig.4.Calculatedfilmthicknessandrefractiveindexfor 532nmaregiveninTable2.Thevalueofrefractiveindexispass- ingthroughamaximumconsideringtheCoconcentrationsuchas

(4)

Fig.5. OpticalabsorptionspectraoftheCo:ZnOandZnOthinfilmsas(˛h)2h

behavior.

0.03M.Then,therefractiveindexstartstodecreaseagain.Having suchaturningpointisinagreementwiththeotherobservations suchasXRDandPLmeasurements.

Notonlythefilmthicknessandrefractiveindexbutalsooptical absorptionspectrumcanbeobtainedfromtheopticaltransmission spectrumusingsuitablemethods.Absorptionedgesforthesemi- conductorsinformthethresholdofchargetransitionbetweenthe highestfilledbandandthelowestemptyband.Theopticalbandgap ofthefilmscanbecalculatedusingthefollowingequation[27]:

˛hv=A(hvEg)n (1)

whereAistheprobabilityparameterforthetransition,Eg isthe bandgapofthematerial,histheincidentphoton energy,and nisthetransitioncoefficient.Thevalueofnisknown:,2forthe measurementofanindirectbandgapand1/2foradirectbandgap.

Fig.5a–fshowstheplotof(˛h)2vsthephotonenergy(h)of theCo:ZnOthinfilms.Thedirectbandgapofthefilmswasdeter- minedbytakingtheintersectionoftheextrapolatedlinesfromthe linearverticalandhorizontalregionsneartheband-edgeofthe (˛h)2=0curve.AstheCoconcentrationisincreasedintheZnO

Fig.6. PLspectraofCo:ZnOandZnOthinfilmsatroomtemperature.

Table3

Photoluminescence(PL)analysisfromGaussianfittingprocesswithtwoGaussian peakscenteredat1and2forsamples,andcomputedopticalbandgap(Eg).

MolarityofCo(M) 1(nm) 2(nm) Eg(eV)

0.00 379.65 3.26

0.01 390.95 407.41 3.17

0.02 397.64 415.20 3.12

0.03 401.87 417.93 3.09

0.04 389.01 406.93 3.18

0.05 396.18 412.80 3.13

structure,redshiftisobservedintheabsorptionedgeduetothe sp-dexchangeinteractions betweenthebandelectronsandthe localizedd-electronsoftheCo2+ionssubstitutingZn2+ions.Cal- culatedvalueoftheopticalbandgapwithincreasingComolarity from0to0.05MisgiveninTable1.

Fig. 6 shows the PL spectra of as-grown samples. Photolu- minescencespectraofthesampleshavebeenrecordedatroom temperature.ThePLemissionintheUVbandswasobserved.Band- edgetransitionsaswellasdirect-bandtransitionsforZnOataround 380nm(3.26eV)areobserved.Gaussianfittingwasperformedon thePLspectraofthesamplescontainingCo.Amongthetwopeaks oneiscenteredaround400nm(1)assignedtothebandgaptran- sitionandtheotherpeaksassignedtothenear-band-edge(NBE) emission are centered at 407nm, 415nm, 418nm,407nm and 413nmforthesamplesCZ01,CZ02,CZ03,CZ04andCZ05,respec- tively(Table3).Bandgapvaluesaredecreasinguptoathreshold valueofCoconcentration.Thisbehaviorisalsoobservedinthe refractiveindexvariation.Inaddition,theobservedPLintensity begantodecreasewhenthecobaltwasintroducedintotheZnO structure.

4. Conclusion

ThestructureandopticalpropertiesofCodopedZnOfilmswere studiedwithrespecttocobaltconcentrationinthestartingsolution inwhichthecobaltacetatetetrahydratewasusedasaCosource.

OurstudiesshowthatCodopingaffectsZnOlatticeimmediately.

WhentheComolarityisgreaterthanthe0.03MorCoconcentra- tionobtainedfromEDSanalysisisabout12%,theZnO(002)peak intensitydecreasesandCoO(200)peakintensityincreaseswith increasingCoconcentration.CosubstitutioninZnOlatticehasbeen provedbytheopticaltransmittancemeasurement,whereasitis notclearlyseenintheXRDdiffractogramfortheCZO1andCZO2 sample.The opticaltransmittance decreaseswithincreasing Co concentration.ZnOiswhitecoloredbecauseitdoesnotabsorbany

(5)

visiblelight.WhentheZn2+ionsarereplacedwithCo2+ionsinthe ZnOlattice,thefilmsabsorbvisiblelight,andthecolorofthefilms turntodeepgreen.ThecharacterofthebandgapoftheCZOfilmsis directtypewithcobaltdoping.Whenthecobaltdopingisincreased, Taucplotsarebecomingamoreroundedinshapeandtheinflexion pointmovestothelongerwavelengths.Thebandgapobtainedfrom Tauc’splotshiftingtowardtothelongerwavelengthswasverified withroomtemperaturePLmeasurement.Thebandgapnarrowing canbeattributedthattheconductionbandandthevalenceband shifteddownwardandupward,respectively.Weconcludedthat thered-shiftistypicallyattributedtothesp–dexchangebetween theZnObandelectronsandlocalizedd-electronsassociatedwith thedopedCo2+cations.

Acknowledgement

ThisstudywassupportedbyThe ScientificResearch Unitof MehmetAkifErsoyUniversitywithprojectnumbers110-NAP-10, 0172-NAP-13,and0173-NAP-13.

References

[1]M.G.Tsoutsouva,C.N.Panagopoulos,D.Papadimitriou,I.Fasaki,M.Kompitsas, ZnOthinfilmspreparedbypulsedlaserdeposition,MaterSciEngB176(6) (2011)480–483.

[2]S.Kumar,Y.J.Kim,B.H.Koo,H.Choi,C.G.Lee,Ferromagnetisminchemically- synthesizedCo-dopedZnO,J.KoreanPhys.Soc.55(3)(2009)1060–1064.

[3]M.Harati,D.Love,W.M.Lau,Z.Ding,Preparationofcrystallinezincoxidefilms byone-stepelectrodepositioninReline,MaterLett89(2012)339–342.

[4]S.Vempati,A.Shetty,P.Dawson,K.K.Nanda,S.B.Krupanidhi,Solution-based synthesisofcobalt-dopedZnOthinfilms,ThinSolidFilms524(2012)137–143.

[5]S.Karamat,R.S.Rawat,T.L.Tan,P.Lee,S.V.Springham,R.Anis-ur-Rehman, H.D.Chen,Sun,Excitingdilutemagneticsemiconductor:copper-dopedZnO,J.

Supercond.Nov.Magn.26(2013)187–195.

[6]E.Gungor,T.Gungor,Effectofthesubstratemovementontheopticalproperties ofZnOthinfilmsdepositedbyultrasonicspraypyrolysis,Adv.Mater.Sci.Eng.

(2012),articleID:594971(7pages).

[7]M.Tay,Y.Wu,G.C.Han,T.C.Chong,Y.K.Zheng,etal.,Ferromagnetismininho- mogeneousZn1−xCoxOthinfilms,JApplPhys100(2006)063910.

[8]T.Dietl,H.Ohno,F.Matsukura,J.Cibert,D.Ferrand,Zenermodeldescriptionof ferromagnetisminzinc-blendemagneticsemiconductors,Science287(2000) 1019–1022.

[9]K.Sato,H.Katayama-Yoshida,Materialdesignfortransparentferromagnets withZnO-basedmagneticsemiconductors,Jpn.J.Appl.Phys.Pt.2(39)(2000) L555–L558.

[10]K.Sato,H.Katayama-Yoshida,Stabilizationofferromagneticstatesbyelec- trondopinginFe-,Co-orNi-dopedZnO,Jpn.J.Appl.Phys.Pt.2(40)(2001) L334–L336.

[11]K.J.Kim,Y.R.Park,Spectroscopicellipsometrystudyofopticaltransitionsin Zn1−xCoxOalloys,ApplPhysLett81(2002)1420.

[12]M.Bouloudenine,N.Viart,S.Colis,A.Dinia,BulkZn1−xCoxOmagneticsemi- conductorspreparedbyhydrothermaltechnique,ChemPhysLett397(2004) 73–76.

[13]S.V.Bhat,F.L.Deepak,TuningthebandgapofZnObysubstitutionwithMn2+, Co2+andNi2+,SolidStateCommun135(2005)345–347.

[14]X.Liu,E.Shi,Z.Chen,H.Zhang,L.Song,H.Wang,S.Yao,Structural,optical andmagneticpropertiesofCo-dopedZnOfilms,JCrystGrowth296(2006) 135–140.

[15]M.Ivill,S.J.Pearton,S.Rawal,L.Leu,P.Sadik,R.Das,A.F.Hebard,M.Chisholm, J.D.Budai,D.P.Norton,Structureandmagnetismofcobalt-dopedZnOthin films,NewJ.Phys.10(2008)065002.

[16]H.-J.Lee,S.H.Choi,C.R.Cho,H.K.Kim,S.-Y.Jeong,Theformationofprecipitates intheZnCoOsystem,EurophysLett72(1)(2005)76–82.

[17]M.Bouloudenine,N.Viart,S.Colis,J.Kortus,A.Dinia,ApplPhysLett87(2005) 052501.

[18]C.B.Fitzgerald,M.Venkatesan,J.G.Lunney,L.S.Dorneles,J.M.D.Coey,Cobalt- dopedZnOatroomtemperaturedilutemagneticsemiconductor,ApplSurfSci 247(2005)493–496.

[19]C.Rath,S.Singh,P.Mallick,D.Pandey,N.P.Lalla,N.C.Mishra,Effectofcobalt substitutiononmicrostructureandmagneticpropertiesinZnOnanoparticles, IndianJ.Phys.83(4)(2009)415–421.

[20]A.C.Tuan,etal.,A.C.Tuan,J.D.Bryan,A.B.Pakhomov,V.Shutthanandan,S.The- vuthasan,D.E.McCready,D.Gaspar,M.H.Engelhard,J.W.RogersJr.,K.Krishnan, D.R.Gamelin, S.A. Chambers, Epitaxial growth andproperties ofcobalt- dopedZnOonalpha-Al2O3 single-crystalsubstrates,PhysRevB70(2004) 054424.

[21]C.Song,F.Zeng,K.W.Geng,X.B.Wang,Y.X.Shen,F.Pan,Themagneticprop- ertiesofCo-dopedZnOdilutedmagneticinsulatorfilmspreparedbydirect currentreactivemagnetronco-sputtering,JMagnMagnMater309(2007) 25–30.

[22]K.Samanta,P.Bhattacharya,R.S.Katiyar,OpticalpropertiesofZn1−xCoxOthin filmsgrownonAl2O3(0001)substrates,ApplPhysLett87(2005)101903.

[23]R.Swanepoel,Determinationofthethicknessandopticalconstantsofamor- phoussilicon,J.Phys.E.:Sci.Instrum.16(1983)1214–1222.

[24]E.G.Birgin,I.Chambouleyron,J.M.Martinez,Estimationofopticalconstants ofthinfilmsusingunconstrainedoptimization,J.Comput.Phys.151(1999) 862–888.

[25]T.Güngör,B.Saka,Calculationoftheopticalconstantsofathinlayerupona transparentsubstratefromthereflectionspectrumusingageneticalgorithm, ThinSolidFilms467(2004)319–325.

[26]R.Dolbec,M.A.ElKhakani,A.M.Serventi,M.T.Rudeau,R.G.Saint-Jacques, Microstructureandphysicalpropertiesofnanostructuredtinoxidethinfilms grownby meansofpulsed laserdeposition,ThinSolidFilms419(2002) 230–236.

[27]J.Tauc,R.Grigorovici,A.Vancu,Opticalpropertiesandelectronicstructureof amorphousgermanium,Phys.Stat.Solidi15(1966)627.

Referenties

GERELATEERDE DOCUMENTEN

Using the modeled spectra, we measure the response to continuum variations for the deblended and absorption-corrected individual broad emission lines, the velocity-dependent profiles

KEYWORDS: photothermal microscopy, single-molecule imaging, single-particle absorption spectroscopy, nanoparticles, label-free imaging, thermoplasmonics, nonlinear

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

De hoek tussen de vlakken ABFE en CDHG is gelijk aan de hoek tussen AB en CD... ik ga er vanuit dat hoek AOB

Table 2: Values of the constants c, d and c/d for the Huber (with different cutoff values β), Logistic, Hampel and Myriad (for different parameters δ) weight function at a

Alternatively, a per tone equalizer (PTEQ) can be used, which has a  -taps FEQ for each tone individually, hence maximizing the SNR on each tone separately [1].. In the presence

that Sch9 is operating in a parallel pathway with respect to the Tor kinases, but it further supports the idea that Sch9 controls changes in transcription of the stress-

[r]