• No results found

Relative quantitation goes viral: An RT-qPCR assay for a grapevine virus

N/A
N/A
Protected

Academic year: 2021

Share "Relative quantitation goes viral: An RT-qPCR assay for a grapevine virus"

Copied!
9
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal of Virological Methods

jou rn al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j v i r o m e t

Relative quantitation goes viral: An RT-qPCR assay for a grapevine virus

R.Bestera,P.T.Peplera,J.T.Burgera,H.J.Mareea,b,∗

aDepartmentofGenetics,StellenboschUniversity,PrivateBagX1,Matieland7602,SouthAfrica

bARCInfruitec-Nietvoorbij(TheFruit,VineandWineInstituteoftheAgriculturalResearchCouncil),PrivateBagX5026,Stellenbosch7599,SouthAfrica

Articlehistory:

Received2July2014 Receivedinrevisedform 16September2014 Accepted24September2014 Availableonline5October2014

Keywords:

GLRaV-3

Relativequantification RT-qPCR,SubgenomicRNA Grapevineleafrolldisease SYBRgreen

a b s t r a c t

Accuratedetectionandquantitationofvirusescanbebeneficialtoplant–virusinteractionstudies.In thisstudy,threeSYBRgreenreal-timeRT-PCRassaysweredevelopedtoquantitategrapevineleafroll- associatedvirus3(GLRaV-3)ininfectedvines.Threegenomicregions(ORF1a,coatproteinand3UTR) weretargetedtoquantitateGLRaV-3relativetothreestablyexpressedreferencegenes(actin,GAPDH and␣-tubulin).TheseassayswereabletodetectallknownvariantgroupsofGLRaV-3,includingthe divergentgroupVI,withequalefficiency.Nolinkcouldbeestablishedbetweentheconcentrationratios ofthedifferentgenomicregionsandsubgenomicRNA(sgRNA)expression.However,asignificantlower virusconcentrationratioforplantsinfectedwithvariantgroupVIcomparedtovariantgroupIIwas observedfortheORF1a,coatproteinandthe3UTR.Significanthigheraccumulationofthevirusinthe growthtipwasalsodetectedforbothvariantgroups.Thequantitationofviralgenomicregionsunder differentconditionscancontributetoelucidatingdiseaseaetiologyandenhanceknowledgeaboutvirus ecology.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

Acomplexnetworkofcellularprocessesregulatesgeneexpres- sion in plants to ensure normal development and appropriate responsestoenvironmentalstresses.Bioticstressesfromfungal, bacterialandviralpathogensareamajorconstrainttotheproduc- tionofagriculturalcrops.Itisthereforeimperativetounderstand plant–pathogeninteractionsbeforetranslatingthisknowledgeinto managementstrategies.Researchintoplant–pathogeninteractions canbeapproachedfromtheperspectiveofthehostplantorthe pathogen(Boydet al.,2013).Studyingthehostwilllead tothe identificationofgenesinvolvedinpartialorpermanentpathogen resistancewhilestudyingthepathogenleadstotheidentification of factorsthat could triggertheplant’s defence response.Both approachesbenefitfromaccuratedetectionandquantitationofthe pathogen.Specificallyforviruses,thequantitationofnotonlythe viralparticleswithELISA,butalsodifferentviralgeneswithRT- qPCRcancontributetoourunderstandingofthediseaseaetiology.

Reverse transcription quantitative PCR (RT-qPCR) is cur- rently one of themost sensitivetechniques for analysinggene

∗ Correspondingauthorat:DepartmentofGenetics,StellenboschUniversity,Pri- vateBagX1,Matieland7602,SouthAfrica.Tel.:+27218089579.

E-mailaddresses:hjmaree@sun.ac.za,mareeh@arc.agric.za(H.J.Maree).

expressionandhasbeenappliedforviralquantitation(Eunetal., 2000;Robertsetal.,2000).RT-qPCRassayscanutilisefluorescent dyesorprobe-basedchemistry(Bustin,2000)andquantitationwill involveeitheranabsoluteorrelativequantitationstrategy(Pfaffl, 2001).For viruses,the detectionand quantitation canbe com- plicatedbylowvirusconcentrationandthepresenceofdiverse variants.Therefore,asensitiveRT-qPCRassaythatcandetectall virusvariantswithequalefficiencycanaidresearchfocussedat plant–virusinteractions.

Grapevineisahighlyvaluableagriculturalcommoditythatis hosttothelargestnumberofvirusesofanycropplant(Martelliand Boudon-Padieu,2006;Prosseretal.,2007).Forthepurposeofthis studywefocusedonGrapevineleafroll-associatedvirus3(GLRaV- 3),believedtobethemainaetiologicalagentofGrapevineleafroll disease(GLD)(Mareeetal.,2013).GLRaV-3isthetypespeciesof thegenusAmpelovirusinthefamilyClosteroviridae(Martellietal., 2012).Currently,thecompletegenomesofonlytendistinctGLRaV- 3isolatesareavailablethatcanbedividedintofourmajorgenetic variantgroups(Engeletal.,2008;Mareeetal.,2008;Jarugulaetal., 2010;Joosteetal.,2010;Gouveiaetal.,2011;Sharmaetal.,2011;

Wangetal.,2011;Besteretal.,2012a;Seahetal.,2012;Feietal., 2013).TheisolatesofGLRaV-3are91%similarwhenvariantgroup IiscomparedtovariantgroupIIand88%whenvariantgroupIis comparedtovariantgroupIII.However,isolatesfromvariantgroup VIarelessthan70%identicaltoisolatesfromvariantgroupsI–III

http://dx.doi.org/10.1016/j.jviromet.2014.09.022 0166-0934/©2014ElsevierB.V.Allrightsreserved.

(2)

(Besteretal.,2012a).Threeadditionalvariantgroupshavealsobeen identified,butareonlyrepresentedbypartialsequences(Gouveia etal.,2011;Sharmaetal.,2011;Chooietal.,2013a).Recently,two newGLRaV-3isolates, GH24(GenBank: KM058745) andGTG10 (Goszczynski,2013),wereidentified.Theywerefoundtobemore diversecomparedtoknownvariantgroupsandhavenotyetbeen assignedtoagroup.Thisfindingfurtherhighlightsthegreatextent ofgeneticvariabilitybetweenvariantgroupsofGLRaV-3andwar- rantsthesearchforauniversaldetectionsystem.

Currently, the industry standard for GLRaV-3 detection is enzyme-linkedimmunosorbentassays (ELISA)andconventional end-pointRT-PCRs.ELISAs canbetimeconsuming andlackthe sensitivityneeded forthedetection oflow virusconcentration.

StandardisedELISAprotocolsforGLRaV-3arealsonotabletodetect allGLRaV-3variants withequal sensitivity(Cohenet al.,2012).

Improvement in thespecificity and sensitivity of detectionhas beenachievedbytheintroductionofqPCRassaysbasedonfluo- rescentdetectionsystems.BothSYBRgreenandhydrolysisprobe qPCRhavebeenusedforthediagnosisand/orquantitationofsev- eralgrapevineviruses,includingGLRaV-3(OsmanandRowhani, 2006;Osmanetal.,2007,2008;Margariaetal.,2009;Pacificoetal., 2011;Besteretal.,2012b;Tsaietal.,2012;Chooietal.,2013b;

López-Fabueletal.,2013).

InthisstudythreesensitiveSYBRgreenRT-qPCRassayswere developedthatareabletodetectallvariantgroups(groupsI–III, VI and GH24-like) of GLRaV-3 known to be present in South Africawithequalefficiency.Theseassaysenabledtheevaluation ofdifferent virusgenome regions for theirsuitabilityfor accu- ratecalculationofGLRaV-3virusconcentrationininfectedphloem material.TheRT-qPCRassaysdescribedinthisstudyprovidetools forthestudyofvirusecology.

2. Materialsandmethods

2.1. Plantmaterialandsamplepreparation

SixVitisviniferacultivarCabernetSauvignonplants,fromavirus isolatecollection(VitisLaboratory,StellenboschUniversity,South Africa),wereprunedbackandlefttogrowfor60daysinthegreen- house.Onlyoneshootwasallowedtogrowandallside shoots wereconstantlyremoved.Threeplantseach,infectedwithGLRaV- 3variantgroupIIandVI,respectivelywereselected.Plantswere negativeforfrequentlyoccurringgrapevineviruses,exceptGLRaV- 3.GLRaV-3variantgroupstatusofallplantswasconfirmedusing thepreviouslydesignedreal-timeRT-PCRhigh-resolutionmelting curveanalysisassay(Besteretal.,2012b).Theshootfromeachplant wasdividedinto5equalsegmentstorepresentdifferentgrowth stageswithsegment1representingtheolder(bottom)partofthe shootandsegment5theactivelygrowingyoungmaterialatthetop oftheplant.DuetoGLRaV-3beingaphloem-limitedvirus,phloem materialofeachsegmentwascollectedandstoredat−80C.

2.2. TotalRNAextraction

TotalRNAwasextractedfrom2gofphloemmaterialusinga modifiedCTABextractionprotocol(Carraetal.,2007).TheCTAB buffercontained2%CTAB,2.5%PVP-40,100mMTris–HCL(pH8), 2MNaCl,25mMEDTA(pH8)and2%␤-mercaptoethanol.TotalRNA wasprecipitatedbyadding2.5volumes100%ethanoland0.1vol- umes3Msodiumacetate(pH5.2)totheupperphaseofthe5MNaCl andchloroform–isoamylalcohol(24:1)extractionstep(Carraetal., 2007).RNAwasprecipitatedfor1hat−20Candcentrifugedat 13,500rpmfor30minat4C.Pelletswerewashedwith80%ethanol andresuspendedin100␮lMilli-QH2O(MilliporeCorporation,Bil- lerica,USA).Integrityandpuritywasassessedusingagarosegel

electrophoresisandspectrophotometry(NanoDropND-100,Nano- DropProducts,Wilmington,USA).

10␮g of total RNA wastreated withRQ1RNase-free DNase (Promega,Madison,USA)in50␮lreactionsaccordingtomanufac- turer’sinstructions.450␮lof10mMTris–HCl(pH8.5)wasadded totheDNAsetreatmentmixtureandanacidicphenol:chloroform- isoamylalcohol(5:1)extractionwasperformedwithanethanol andsodiumacetateprecipitation(2.5volumesof100%ethanoland 0.1 volumesof3MSodium acetate(pH5.2)).After awash step with80% ethanol, pelletswere driedand resuspended in 30␮l Milli-QH2O.Integrityandpuritywasassessedusingagarosegel electrophoresisandspectrophotometry.

2.3. cDNAsynthesis

Complementary DNA(cDNA) were synthesised from1␮g of totalRNAusing0.15␮grandomhexamers(Promega)andAvian myeloblastosisvirus(AMV)reversetranscriptase(ThermoScien- tific,Massachusetts,USA)inafinalvolumeof20␮laccordingto manufacturer’sinstructions.10␮lofeachcDNAsamplewaspooled anda 5-folddilutionserieswaspreparedtoconstructstandard curvesforallprimersets.TheremainingcDNAwasdiluted1:24 andtreatedastheunknownsamplesforquantitation.AllcDNA dilutionswerestoredat−20C.

2.4. Primerdesign

Primersweredesignedtargetingthreedifferentregionsofthe GLRaV-3 genome. Open reading frame 1a (ORF1a), ORF6 (coat protein)andthe3UTRwereselectedtorepresentgenes/regions with different levels of subgenomic RNAs (sgRNAs) (Jarugula et al., 2010; Maree et al., 2010). By constructing a multiple sequence alignment using CLC main workbench 6.5 (CLC bio, Aarhus,Denmark),conservedregionsinthechosengenes/regions ofGLRaV-3wereidentified.AlltheGLRaV-3complete genomes available(GenBank:AF037268.2,GenBank:JQ423939.1,GenBank:

JQ655296.1,GenBank: JQ655295.1,GenBank: EU259806.1,Gen- Bank:EU344893.1,GenBank:JX559645.1,GenBank:JQ796828.1, GenBank: GQ352633.1, GenBank: GQ352632.1, GenBank:

GQ352631.1, GenBank: GU983863.1, GenBank: KM058745) were includedin themultiple sequence alignment in order to designprimersthatwereabletodetectallvariantgroupsknown to be present in South Africa. All primers were subjected to anNCBI BLAST screen for specificity. Fivedifferent primer sets targetingVitisviniferareferencegeneswereselectedfromtheReid etal.(2006)studytoevaluatetheirexpressionstabilityacrossall samplesusedinthisstudy.

2.5. RT-qPCR

2.5.1. PCRandcycleconditions

RT-qPCRs were performed using the Rotor-Gene Q thermal cycler (Qiagen, Venlo, Netherlands) and the SensiMixTM SYBR No-ROX Kit (Bioline, Taunton, USA). Reactions contained 2× SensiMixTMSYBRNo-ROX,Milli-QH2Oand0.4,0.48or0.56␮M forwardandreverseprimers(IDT,Coralville,USA),dependingon theprimerset(Table1).2.5␮lcDNAwasaddedtoeachreactiontoa finalreactionvolumeof12.5␮l.ThesamecDNAdilutionserieswas usedtoconstructalleightprimer-specificstandardcurvesandthe same1:24dilutionofeachofthe“unknown”sampleswasscreened withtheeightprimersetsforquantitation.No-templatecontrols, negativeplantcontrols(negativeforGLRaV-3)andthethirddilu- tionpoint(1/25)ofthefive-folddilutionserieswereincludedin allruns. To test for theextent of genomicDNA contamination

“no-reversetranscription”controlqPCRswereperformedforall samplesusinganintron-spanningprimersetfortheactingene.

(3)

Table1

PrimersetstargetingGLRaV-3genomicregionsofinterestandVitisviniferareferencegenes.

Primer Sequence Ampliconsize Target Primer

concentration (␮M)

Annealing temperature(C)

Reference

LR36995F GGGRACGGARAAGTGTTACC 144 GLRaV-3

ORF1a

0.4 53 Thisstudy

LR37138R TCCAAYTGGGTCATRCACAA

LR314586F ATGAAYGARAARGTYATGGC 140 GLRaV-3Coat

protein(CP)

0.48 50 Thisstudy

LR314725R CTAAACGCYTGYTGYCTAG

LR318345F CCTCACGGTTTAATACTCTG 144 GLRaV-33untranslated region(3UTR)

0.4 54 Thisstudy

LR3 18488R ATTGTCGATAAGTTAGCCTC

Vv actin F CTTGCATCCCTCAGCACCTT 82 Vitisvinifera

actin

0.4 55 Reidetal.(2006)

VvactinR TCCTGTGGACAATGGATGGA

Vv␣-tubulinF CAGCCAGATCTTCACGAGCTT 119 Vitisvinifera

alpha-tubulin

0.4 55 Reidetal.(2006)

Vv␣-tubulinR GTTCTCGCGCATTGACCATA

VvUBCF GAGGGTCGTCAGGATTTGGA 75 Vitisvinifera

Ubiquitin-conjugatingenzyme

0.4 55 Reidetal.(2006)

VvUBCR GCCCTGCACTTACCATCTTTAAG

VvGAPDHF TTCTCGTTGAGGGCTATTCCA 70 VitisviniferaGlyceraldehyde

3-phosphatedehydrogenase

0.4 55 Reidetal.(2006)

VvGAPDHR CCACAGACTTCATCGGTGACA

VvEF1␣ F GAACTGGGTGCTTGATAGGC 150 VitisviniferaElongationfactor

1-alpha

0.56 55 Terrieretal.(2005)

Vv EF1␣ R AACCAAAATATCCGGAGTAAAAGA

AllreactionswereperformedintriplicateinQiagenRotor-GeneQ 0.1mltube-and-capstrips.Cyclingparametersincludedaninitial activationof95Cfor10minand45cyclesof95Cfor15s,primer- specificannealingtemperaturefor15s(Table1)and72Cfor15s.

Acquisitiononthegreenchannelwasrecordedattheendofthe extensionstep.MeltingcurveanalysisofPCRampliconswasper- formedwithtemperaturesrangingfrom65Cto95Cwitha1C increaseintemperatureevery5stoidentifyprimer-dimersand non-specificamplification.

2.5.2. Single-variantefficiency

Tobeabletocalculateaccuratelytherelativequantityofviral genomes,irrespectiveofGLRaV-3variantstatus,thePCRefficiency of different GLRaV-3 single-variant infections were compared.

GLRaV-3single-variant infected sampleswere collectedfrom a virusisolatecollection(VitisLaboratory,StellenboschUniversity, SouthAfrica),processedandtreatedasdescribedabove.Thesesam- plesrepresentedGroupsI–VI,aswellasisolateGH24.Afive-fold dilutionserieswaspreparedfromthecDNAandstandardcurves constructedforeachvariantgroupseparately.PCRefficiencieswere calculatedforallGLRaV-3primersets(Rasmussen,2001,Eq.(1)).

2.5.3. Relativelimitofdetection

ThesensitivityofeachGLRaV-3primersetwasevaluatedand comparedbyusingthefive-foldcDNAdilutionseriesusedtocon- structstandardcurvesinthisstudy.Thesamedilutionserieswas usedforallprimersetsin bothreal-timePCRand conventional end-pointPCRinstruments.Thereal-timePCRswereperformed accordingtotheconditionsdescribedabove.Intheend-pointPCRs, a2.5␮laliquotofcDNAwasaddedtoa25␮lPCRreactionmixture containing1×KAPATaqbufferA(KAPABiosystems,CapeTown, SouthAfrica),0.4mMdNTPmix(ThermoScientific),0.4–0.48␮M forwardandreverseprimers(IDT)(Table1)and0.08U/␮lKAPATaq DNApolymerase(KAPABiosystems).Cycleconditionsincludedan initialdenaturationstepat94Cfor5min,followedby35cyclesof 94Cfor15s,primer-specificannealingtemperaturefor15sand elongationat72Cfor15s.Finalextensionwasat72Cfor7min.

Ampliconswerevisualisedonanethidiumbromide-stained2%TAE agarosegel(2MTris,1Mglacialaceticacid,0.05MNa2EDTA,pH 8).

2.5.4. Referencegenestabilitytest

InordertofindreferencegenemRNAthatisstablyexpressed inphloemmaterialacrossthelengthofagrowinggrapevineshoot, fiveV.viniferareferencegeneswereselected(Table1).Thequanti- tationcycle(Cq)data(seeSection2.5.5forCqcalculation)fromall

30samples(sixplants,fivesampleseach)wereusedtocalculate stabilityofreferencegeneexpressionusingtwoExcel-basedappli- cations,Normfinder(Andersenetal.,2004)andBestKeeper(Pfaffl etal.,2004).

2.5.5. Dataanalysis

ThePCR efficiency(E)foreach ofthetargetswascalculated usingtheslopeofthestandardcurveconstructedwiththefive-fold dilutionseriesoverthelineardynamicrangeconsistentbetween the primer sets (2nd (1/5) to 6th (1/3125)dilution point) (Eq.

(1)).Therelativevirusconcentrationratio(VCR)wascalculated byanefficiencycorrectionmathematicalmodelusingreference genenormalisation(Pfaffl,2001).Theoriginal(Pfaffl,2001)model utilisesonlytheslopeandCqvariablesduetothey-intercept(b) beingequalforthecontrolandsamplegroup(Eq.(2)).However, sincenoCqvaluewillbeobtainedforsamplesnegativeforGLRaV- 3,thecontrolgroupwillbeabsentandtheinfluenceofbshouldbe considered.TheCqvaluesforallsampleswerecalculatedusingthe thresholdcyclemethod(Pfaffl,2004).Afterimportingtheprimer- specificstandardcurveineachRotor-GeneQrun,bwasadjusted usingthethirddilutionofthestandardcurve.Thisstandardwas includedineachrun,tocompensateforinter-assayvariation.The geometricmeanofthetriplicatereactionsofeachsamplewasused forallcalculations.Thethreemoststablereferencegenes(ref)were selectedfornormalisationandareferencegeneindex(RGI)wascal- culatedusingtheirgeometricmean(Eq.(3)).Normalisationofthe viralgenequantitationvalues,tocalculatetherelativeVCR,was performedusingtheRGIandnotasinglereferencegene(Eq.(4)) (Vandesompeleetal.,2002).TheRotor-geneQsoftwareversion 2.2.3(Qiagen)wasusedtocalculateprimerefficiencies,Cqvalues andgenequantitationvaluesforalltargets.TherelativeVCRswere calculatedusingEq.(4):

E=10[−1/slope] (1)

Quantitationvalue(conc)=10

(Cq−b)

slope (2)

RGI=3

(concref1)×(concref2)×(concref3) (3) VCR(multiplereferencegenes)=conctarget

RGI (4)

2.5.6. Statisticalmodels

AnumberofstatisticalmodelswerefittedusingSASEnterprise Guideversion 5.1(SASInstitute, NC,USA).Due tothedistribu- tionofVCRsbeingpositivelyskewed,thedataweretransformed usingthenaturallogarithm(logbasee)tomeetthedistributional assumptions (normality andhomoscedasticity) ofthestatistical

Referenties

GERELATEERDE DOCUMENTEN

This phenomenon is restricted to surfaces: if we want to construct higher di- mensional examples in a similar fashion, we are doomed to fail since by the Lefschetz hyperplane

Het voorgestelde raamwerk van indicatoren voor de kwaliteit van het landelijke gebied combineert de analyse van omgevingsfactoren (driving forces), met de analyse van de

Verslag BoergerAvond Almelo Op 16 april kwamen dertien mensen uit Almelo en omstreken bij elkaar in De Schouw in Almelo om, in het kader van het netwerk De BoergerGroep, met

Alhoewel leerlingen dit in hun interviews niet noemden gaven de docenten aan dat deze twee ontwikkelingen uiteindelijk kunnen leiden tot de angst om te falen aangezien

In de onderzoeken over de effecten van verplichte roulatie op de auditkwaliteit in China is gebleken dat abnormale (discretionary) accruals en aangepaste

Een aantal actieve mensen uit de buurt heeft de Wetenschapswinkel van Wageningen Universiteit en Researchcentrum (Wageningen UR) gevraagd om een nieuw ontwerp voor het plein te maken,

As the National Commission on Research Science and Technology (2014:61) has conceded, ‘even if the infrastructure issues could be resolve[d] overnight, it is unlikely that

Waarschijnlijk hebben die wel een nog hogere kostprijs tot gevolg, terwijl de kostprijs van de diervriendelijke producten door de veel lagere arbeidsproductiviteit (33 procent