• No results found

O over catalyst ZrO –Nb FT-IR spectroscopic investigation of the effect of SO on withpropene the SCR of NO Catalysis Today

N/A
N/A
Protected

Academic year: 2022

Share "O over catalyst ZrO –Nb FT-IR spectroscopic investigation of the effect of SO on withpropene the SCR of NO Catalysis Today"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

CatalysisToday176 (2011) 437–440

ContentslistsavailableatScienceDirect

Catalysis Today

j o ur na l ho me p a g e :w w w . e l s e v i e r . c o m / l o c a t e / c a t t o d

FT-IR spectroscopic investigation of the effect of SO 2 on the SCR of NO x with propene over ZrO 2 –Nb 2 O 5 catalyst

M. Kantcheva

a,∗

, I. Cayirtepe

a

, A. Naydenov

b

, G. Ivanov

b

aDepartmentofChemistry,BilkentUniversity,06800Bilkent,Ankara,Turkey

bInstituteofGeneralandInorganicChemistry,BAS,Sofia1113,Bulgaria

a r t i c l e i n f o

Articlehistory:

Received15September2010

Receivedinrevisedform19October2010 Accepted20October2010

Available online 24 November 2010

Keywords:

ZrO2–Nb2O5solidsolution C3H6-SCRofNOx

EffectofSO2

InsituFT-IRspectroscopy MechanismofSO2poisoning

a b s t r a c t

TheSO2toleranceofacatalystbasedonZrO2–Nb2O5 solidsolution(moleratioZrO2:Nb2O5=1:6)in thecatalyticactivityforNOxreductionwithpropeneinexcessoxygenhasbeenstudied.Nolossinthe C3H6-SCRactivitywasobservedfor2haftertheadditionof56ppmofSO2 tothereactionmixture.

WhentheconcentrationofSO2hasbeenincreasedto200ppm(theso-calledfastpoisoningexperiment) theactivityofthecatalystdecreasedby13%andremainedunchangedformorethan5hunderthese conditions.TheeffectofSO2onthesurfacereactionoftheSCRreactantshasbeeninvestigatedbyinsitu FT-IRspectroscopyandmechanismforthesuppressionofthecatalyticactivityathighconcentrationof thepoisonhasbeenproposed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

SelectivecatalyticreductionofNOxbyhydrocarbons(HC-SCR) hasbeenextensively studied for removalof NOx fromexhaust gasesgenerated bydieselandlean-burngasolineengines[1–4].

Animportant factor determining the efficiencyof DeNOx cata- lysts is their SO2 tolerance. It is assumed that under reaction conditions, the SO2 (which is present in the exhaust) reacts withoxygentoformthermodynamically stablesurfacesulfates.

Thelatterspecies coverthecatalystsurface andblockthesites forNOx adsorption[5].Therefore, thedevelopmentofcatalysts resistant to SO2 poisoning is an important task. It has been reportedthatthedepositionofniobiumonoxidesurfacessuch asalumina[6]orzirconia[7] lowerstheconcentrationofbasic siteswhichshouldresultinimprovedresistancetoSO2 poison- ing.Recently,wehave foundthatzirconia–niobiasolidsolution (mole ratioZrO2:Nb2O5=6:1)is activein theselectivecatalytic reductionofNOxwithpropene(C3H6-SCR)inexcessoxygen[8].

The conversion of NOx reaches maximum at 220C. Based on in situ FT-IR results, we proposed a reaction mechanism with nitroacetone and NCO species as the key intermediates [8]. In thepresentwork,weinvestigatedtheeffectofSO2ontheactiv- ity of the ZrO2–Nb2O5 solid solution for NO reduction with propeneinexcessoxygen.ThesurfacereactionoftheSCRreactants

∗ Correspondingauthor.Tel.:+903122902451;fax:+903122664068.

E-mailaddress:margi@fen.bilkent.edu.tr(M.Kantcheva).

in the presence of SO2 was monitored by in situ FT-IR spec- troscopy.

2. Experimental

Mixedzirconium–niobiumoxidewaspreparedbyimpregnation ofhydratedzirconiawithacidicsolution(pH∼0.5)ofperoxonio- bium(V)complex,[Nb2(O2)3]4+,ensuringZrO2:Nb2O5moleratio of6:1.Detailsaboutthemethodofpreparationandcharacteriza- tionofthesurfaceacidityaregivenelsewhere[9].TheBETsurface areaofthematerialcalcinedat600C(denotedas25NbZ-P)was 42m2/g.AccordingtoXRDtheobtainedsamplehasthestructureof Zr6Nb2O17.Theadsorptionof2,6-dimethylpyridineonthe25NbZ-P samplerevealedthepresenceofstrongBrønstedacidity.

The equipment and the conditions of catalytic tests of NOx

reductionbypropeneweredescribedearlier[8].Theconversion degreesofNOxweretakenasameasureofthecatalyticactivity.

TheSO2poisoningexperimentwasperformedwith56ppmofSO2 intheinletandunderfastpoisoningconditions(200ppmofSO2) attemperaturecorrespondingtothemaximumNOxconversion.

TheFT-IRspectrawererecordedusinga BomemHartman&

BraunMB-102modelFT-IRspectrometerwithaliquid-nitrogen cooledMCTdetector ata resolutionof 4cm−1 (128 scans).The self-supportingdiscs(∼0.01g/cm2)wereactivatedin theIRcell by heating for 1h in a vacuumat 450C, and in oxygen(100 mbar,passedthroughatrapcooledinliquidnitrogen)atthesame temperature,followedbyevacuationfor1hat450C.Theexperi- mentswerecarriedoutunderstaticconditions.Thespectraofthe 0920-5861/$seefrontmatter © 2010 Elsevier B.V. All rights reserved.

doi:10.1016/j.cattod.2010.10.072

(2)

438 M.Kantchevaetal./CatalysisToday176 (2011) 437–440

600 500

400 300

200 100

400 45 50 55 60 65 70 75

SO2 cut SO2: 200 ppm

SO2: 56 ppm

NOx conversion, %

Time, min

Fig.1. ResultsoftheSO2poisoningexperimentat220Cusing56and200ppmof SO2intheinlet.(Reactionconditions:245ppmNOx(NO/NO2=1.77),504ppmC3H6, 9vol.%O2,GHSV=10,000h−1).

adsorbedcompoundswereobtainedbysubtractingthespectraof theactivatedsamplefromthespectrarecorded.Thesamplespectra werealsogas-phasecorrected.ThegasesNO(99.9%),C3H6(99.9) andSO2(99.9%)usedintheinsituFT-IRexperimentsweresupplied byAirProducts.

3. Resultsanddiscussion

3.1. CatalyticactivityinthepresenceofSO2

Weshowedearlier[8]thattheNOxconversionintheC3H6-SCR reactionoverthe25NbZ-Pcatalystreachesmaximum of62%at 220Candthandecreasesasthecombustionofpropenebecomes predominant.TheconversionofC3H6 iscloseto100%at250C.

Thecatalystdisplaysstableactivityatthetemperatureofmaxi- mumNOxconversion(thedurationofcatalyticactivitytestswas limitedto10h).The25NbZ-Pcatalystshows goodresistanceto SO2 poisoning(Fig.1).ThereisnolossintheC3H6-SCRactivity for2haftertheadditionof56ppmofSO2tothereactionmixture.

WhentheconcentrationofSO2hasbeenincreasedto200ppm(the so-calledfastpoisoningexperiment)theactivityofthe25NbZ-P catalystdecreasestoapproximately54%of NOx conversionand remainsunchangedformorethan5hundertheseconditions.

3.2. InsituFT-IRspectroscopicinvestigations

3.2.1. Co-adsorptionofSO2+O2overZrO2and25NbZ-Psamples InordertofindouttheeffectofincorporationofNb(V)intozir- coniaontheformationofsurfaceSOxspeciesweinvestigatedthe adsorptionof(0.5mbarSO2+10mbarO2)mixtureontheZrO2and 25NbZ-Psamplefor15minatvarioustemperatures.Thepredom- inantsurfaceSOxcompoundsobservedinthespectraofzirconia takenbelow200CareadsorbedSO32−species(thespectraarenot shown).Theweakbandat1362cm−1detectedonzirconiaat200C (Fig.2,dottedspectrum(a))ischaracteristicofthehigh-frequency componentof thesplit3 modeofhighly covalentsurfacesul- fates[10,11].Thestrongabsorptionbetween1100and900cm−1 (presentalsointhespectradetectedbelow200C)isattributedto thevibrationalmodesofSO32−ionscoordinatedthroughtheSatom tothesurface[12,13].Thebandat1000cm−1isassignedtothe1

mode,whereasthebandsat1020and935cm−1correspondtothe split3stretchingvibrationsofSO32−ions[12,13].Thisassignment issupportedbythefactthatat25C,theadsorptionof0.5mbarof SO2onthezirconiasamplecausestheappearanceofabsorptions at1020,1000and930cm−1whoseintensitiesarenotaffectedby

960 1080

1200 1320

1440

Absorbance

Wavenumber [cm-1]

a b c

1362

10200.2 1000 935

1060

Fig.2.FT-IRspectracollectedduringtheexposureofzirconia(dottedline)and 25NbZ-Psample(solidline)toa(0.5mbarSO2+10mbarO2)mixturefor10minat 200C(a),250C(b)and300C(c).

theincreaseinthetemperatureoftheisolatedIRcellupto350C.

Inaddition,thebandat1362cm−1hasnotbeenobservedunder theseconditions(thespectraarenotshown).

Theheatingat300Ccausessignificantincreaseintheintensity ofthesulfatebandat1362cm−1attheexpenseoftheabsorption correspondingtothesulfitespecies(Fig.2,dashedspectrum(c)).

Theshoulderat1060cm−1isassignedtothelow-frequencycom-

1000 1200 1400 1600 1800 2000 2200 2400

Absorbance

Wavenumber [cm-1] a

b c

2270 1900

1740 1680

1544

1450 1346 1044 1013

1610 1570

1655

1277 1245

0.2 1415

Fig.3. FT-IRspectraofthe25NbZ-Psamplecollectedduringtheexposurefor10min toa(2mbarC3H6+6mbarNO+4mbarO2)mixtureintheabsence(dottedline)and presenceof0.5mbarSO2(solidline)at25C(a),150C(b)and200C(c).

(3)

M.Kantchevaetal./CatalysisToday176 (2011) 437–440 439

Table1

Assignmentoftheabsorptionbandsinthespectraof25NbZ-Pcatalystobservedinthe25–350Ctemperaturerangeduringtheinvestigationof thereactivityofsurfacespeciesformeduponroom-temperatureadsorptionofNO+C3H6+O2mixtureintheabsenceandpresenceofSO2.

Species Bandposition(cm−1) Vibration

NCO 2270 as(NCO)

N2O3(ads) 1900 (N O)

Nitroacetone(ads) 1740 (C O)

Acetone(ads) 1680 (C O)

BridgedNO3(twotypes)

BidentateNO3 1655,1610,1245

1570,1275

(N O),as(NO2)

(N O),as(NO2)

CH3COO(twotypes) 1570,1544,1450,

1415,1346,1315

as(COO),s(COO),ı(CH3)

SO42− 1346,1044–1013 (S O),(S−O)

ponentofthesplit3 modeof theSO42 groups[10,11].These resultsshowthatnoticeableoxidationofSO2overzirconiastarts at300C.Inthisprocess,mostlikely,surfaceoxygenvacanciesare involvedfacilitatingtheactivationofO2.Between200and300C, thesametypeofsurfaceSOxspeciesaredetectedonthe25NbZ- Psample,howeverwithsignificantlylowerconcentrations(Fig.2, solidtraces).ThisindicatesthattheincorporationofNb5+ionsinto zirconiasuppressestheoxidationofSO2toSO3.

3.3. EffectofSO2ontheC3H6+NO+O2surfacereaction

Theresultsofourpreviousinvestigation[8]haveshownthat overthe25NbZ-Psample,characterizedbystrongBrønstedacid- ity[9],theactivationofpropeneinthepresenceofadsorbedNOx

speciesisquiteeasyatlowtemperatures,producingsurfaceiso- propoxides.Theinteractionofthelatterspecieswiththesurface nitrate complexes leads to the formation of nitroacetone. It is proposed[8]that nitroacetonetransformsthroughtwo parallel reactions. Path(1)involvesthebasicoxidesitesof thecatalyst producingacetatespeciesandaci-nitromethane.Path(2)proceeds throughoxidationofnitroacetonetoacetatesandCOx/H2Owith release ofNO2.The latterprocessis importantat temperatures higherthan200C.Theaci-nitromethanegeneratesNCOspecies coordinatedtothecationicsitesofthemixedoxide.Thesurfaceiso- cyanatesaredetectedalreadyatroomtemperature.Itisproposed that theisocyanates reactwiththeNO3/NO2 surface complex formedbybothoxidationofNOandoxidationofnitroacetone[8].

Fig.3comparesthespectraofthe25NbZ-Psampleobtainedat varioustemperaturesduringtheadsorptionfor15minofgaseous mixturecontaining(2mbarC3H6+6mbarNO+4mbarO2)inthe absence(dottedlines)andpresenceof0.5mbarSO2(solidlines).

Table1givestheassignmentoftheabsorptionbands.

Thespectratakenatroomtemperature,containweakabsorp- tionat2270cm−1indicatingtheformationofNCOspecies[8]in bothcases,inthepresenceandabsenceofSO2(Fig.3,spectra(a)).

Thebroadbandat1900cm−1 ischaracteristicofadsorbedN2O3

[8,11].Someamountsof adsorbednitroacetone(1740cm−1 [8]) andacetone(1680cm−1[8])areobservedaswell.Thedifference betweenbothspectraisintheconcentrationofthesurfacenitrates (bandsat1655,1610,1570,1277and1245cm−1[8,11]),whichis lowerinthepresenceofSO2.Inaddition,theappearanceofbands at1346and1044–1013cm−1correspondingtothesplit3mode ofmultidentateSO42groupscoordinatedtocationicsurfacesites [10,11],revealsformationofsurfacesulfatesatroomtemperature.

ThisindicatesthatthenitratespeciesoractivatedNO2lowersig- nificantlytheoxidationtemperatureofSO2.Mostlikely,thesulfate speciesblocktheactivesites(Nb5+ions)fortheoxidationofNO toNO2[8]leadingtodecreaseintheconcentrationofthesurface nitrates.Asaconsequence,theamountofnitroacetoneformedat 150CinthepresenceofSO2islowerthanthatintheabsenceof thepoison(Fig.3,spectra(b)).Thespectrumtakenat200Cinthe

presenceofSO2 (Fig.3,spectrum(c),solidtrace) showsfurther increaseintheamountofsulfatespecies,whichisevidentbythe enhancementoftheabsorptionsat1346and1044–1013cm−1.The decreaseinthesurfaceconcentrationsofacetoneandnitroacetone at200Cmeasuredagainsttheconcentrationsat150Cisconsid- erablysmallerthanthecorrespondingdecreaseobservedinthe absenceofSO2(Fig.3,comparespectra(b)and(c)).Thisfactleadsto theconclusionthatthesurfacesulfateshinderthetransformation ofnitroacetonetoNCOspecies.Mostlikely, thelow concentra- tionofnitroacetoneandhindranceofitstransformationresultin lowering theconcentrationoftheNCOspecies and decreasein thecatalystactivity.Itshouldbepointedoutthatthemechanism proposedforSO2poisoningshouldoperateathighconcentration ofSO2whichisevidentfromthecatalyticactivitymeasurements (seeFig.1).Theresultsoftheinvestigationshowthatthecatalytic propertiesofthezirconia–niobiasolidsolutioncouldbeofinter- estregardingthedevelopmentofsulfur-tolerant,low-temperature catalystsfortheSCRofNOxwithhydrocarbons.

4. Conclusions

TheincorporationofNb(V)intozirconialeadingtotheformation ofzirconia–niobiasolidsolution(moleratioZrO2:Nb2O5=6:1)sup- pressestheoxidationofSO2toSO3.Themixedoxidedisplaysgood resistancetowardSO2poisoningintheC3H6-SCRofNOx.Nolossin theSCRactivityisobservedatlowconcentrationofSO2(56ppm) inthefeedgas.Theactivitydeclinesby13%athighconcentration ofthepoison (200ppm)and remainsunchangedfor morethan 5h. Insitu FT-IRinvestigations showthat thenitratespeciesor activatedNO2 lower(s)theoxidationtemperatureofSO2 tosur- facesulfates.ThepresenceofsurfaceSO42groupsdecreasesthe amountofadsorbednitrates,respectivelynitroacetone,andhin- dersthetransformationof thelattercompound toNCOspecies consideredasreactionintermediates.Thiscausesdecreaseinthe catalyticactivityobservedathighconcentrationsofSO2inthefeed gas.

Acknowledgements

ThisworkwasfinanciallysupportedbyBilkentUniversityand theScientificandTechnicalResearchCouncilofTurkey(TÜBITAK), Project TBAG-106T081.I.C.and M.K.gratefully acknowledge the supportbytheEU7FrameworkprojectUNAM-REGPOT(Grantno 203953).

References

[1]M.Iwamoto,in:A.Corma,F.V.Melo,S.Mendioroz,J.L.G.Fierro(Eds.)Stud.Surf.

Sci.Catal.130(2000)23–47.

[2] R.Burch,J.P.Breen,F.C.Meunier,Appl.Catal.B39(2002)283–303.

[3] R.Burch,Catal.Rev.—Sci.Eng.46(2004)271–334.

[4] M.C.Kung,H.H.Kung,Top.Catal.28(2004)105–110.

(4)

440 M.Kantchevaetal./CatalysisToday176 (2011) 437–440

[5]F.C.Meunier,J.R.H.Ross,Appl.Catal.B24(2000)23–32.

[6] M.A.Abdel-Rehim,A.C.B.dosSantos,V.L.L.Camorim,A.daCostaFaroJr.,Appl.

Catal.A305(2006)211–218.

[7]J.Goscianska,M.Ziolek,E.Gibson,M.Daturi,Catal.Today152(2010)33–41.

[8]I.Cayirtepe,A.Naydenov,G.Ivanov,M.Kantcheva,Catal.Lett.132(2009) 438–449.

[9]M.Kantcheva,H.Budunoglu,O.Samarskaya,Catal.Commun.9(2008)874–879.

[10]C. Morterra,G. Cerrato,F.Pinna, M.Signoretto,J. Phys.Chem.98(1994) 12373–12381.

[11]M.Kantcheva,E.Z.Ciftlikli,J.Phys.Chem.B106(2002)3941–3949.

[12]K.Nakamoto,InfraredandRamanSpectraofInorganicandCoordinationCom- poundsPartB,5thedition,Wiley,NewYork,1997,pp.89–90.

[13]C.C.Chang,J.Catal.53(1978)374–385.

Referenties

GERELATEERDE DOCUMENTEN

From time to time I’ve had something to do with university administration, in particular as dean of the school of natural sciences and mathematics and director of the Thomas

When the importer’s judicial quality is much better than the exporter’s, a higher level of generalized trust from the importing country would cause a drop in trade

 92 massaprocent van de NO x die in de motor ontstaat, wordt in het SCR-systeem door de reactie met ureum omgezet tot stikstof en waterdamp.  8 massaprocent van de NO x

Een element dat ons echter een belangrijke terminus ante quem biedt, is het feit dat zowel de ophoging als de laag met planken en balken doorsneden worden door

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Even if an accurate description of the chemisorption of oxygen on organic metal complexes were available, this would be only a first step towards the

Bij de sortimentskeuze zijn daarnaast kenmerken van de plant van belang die gerelateerd zijn aan de toepassing (sierwaarde of functioneel), zoals dichtheid, bodembedek- king,

In the present study, using a specially constructed bench scale reactor system and a pilot plant, it was shown that an amorphous silica alumina catalyst could be used