• No results found

Label-free technology and patient cells: from early drug development to precision medicine

N/A
N/A
Protected

Academic year: 2021

Share "Label-free technology and patient cells: from early drug development to precision medicine"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Label-free technology and patient

cells: from early drug development to precision medicine

Julia M. Hillger, Wai-Ling Lieuw, Laura H. Heitman and Adriaan P. IJzerman

DivisionofMedicinalChemistry,LACDR,LeidenUniversity,TheNetherlands

Drug development requires physiologically more appropriate model systems and assays to increase understanding of drug action and pathological processes in individual humans. Specifically, patient- derived cells offer great opportunities as representative cellular model systems. Moreover, with novel label-free cellular assays, it is often possible to investigate complex biological processes in their native environment. Combining these two offers distinct opportunities for increasing physiological relevance.

Here, we review impedance-based label-free technologies in the context of patient samples, focusing on commonly used cell types, including fibroblasts, blood components, and stem cells. Applications extend as far as tissue-on-a-chip models. Thus, applying label-free technologies to patient samples can produce highly biorelevant data and, with them, unique opportunities for drug development and precision medicine.

Introduction

Two significantchallengestocurrentdrugdevelopmentarethe interindividualvariabilityindrugeffectiveness,andlackoftrans- latabilityofpreclinicalresults.Simultaneously,modernmedicine is shifting towards personalized or precision medicine, which proposestouseindividualcharacteristicsofa specificpatientor subpopulation to tailor drug prescriptions, thereby decreasing risks of ineffective dosing or adverse effects [1]. Challenges to achieve this are associated with a generally perceived lack of understanding of the molecular details of drug action and of pathologicalprocessesinthehumanindividual.Thisisbrought abouttoalargedegreebyinsufficientphysiologicalrepresentabil- ityofthemodelsystemsandassaysusedindrugresearch.Tradi- tional drugresearchhasrelied ona target-focusedapproach by screeningcompoundsininvitroassays.Suchassaystraditionally use reporter systems, for instance radiolabeled or fluorescent probes,dyes,andreportergeneconstructs,allofwhicharemod- ifications that can influence target pharmacology (Box 1). In addition,cellularmodelsandcellsystemsareoftenselectedbased onhabitandtechnicalfeasibilityratherthanondiseaserelevance,

resulting in physiologically less representative heterologous or recombinantcellslines.Suchrenewableinvitrocellsourceshave beenessentialin facilitatingdrugdiscoveryand havemeritsfor studyingtargetordrugactioninmoredetail.However,bothassay andmodelsystemsarefactorsthatcancontributetoaneventual lackofclinicaleffectivenessand, thus,to issuesexperiencedin drugdevelopmenttodate,suchashighattritionrates[2].Tofully comprehend the mechanisms underlying pathologies, drug re- sponse,anditsvariationinindividuals,functionalcharacteriza- tiononaphysiologicallyrelevantmolecularandcellularlevelis essential. Hence, the focus is shifting to more physiologically appropriate cellular models and readout systems. Specifically, patient-derivedcellsoffergreatopportunitieswhenuseddirectly asamodelsystem.Novellabel-freecellularassaysareanewtypeof phenotypicassaythatcanresultinmolecular-levelunderstanding ofcomplexbiologicalprocessesintheirnativeenvironment[1,2].

Applying suchassays to human primary cellscan increasethe physiological relevance of the results [3–5]. In this review, we highlight the reach of these possibilities by focusing on the applicationofonesuchlabel-freecellularassay,basedonimped- ance,tosomeofthemostcommontypesofhumanprimarycells derivedfrompatientsamples.

ReviewsPOSTSCREEN

Correspondingauthor:IJzerman,A.P. (ijzerman@lacdr.leidenuniv.nl)

1808 1359-6446/ã2017TheAuthors.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).

(2)

Advantages of label-free cellular assay technologies

Thetwocurrentlymost-usedformsoflabel-freecellularbiosensors areimpedance-or optics-basedbiosensors.Extensivereviewson thedetectionprinciplesareprovidedelsewhere[6–8].Inshort,the ECIS,xCELLigence, and CellKey systemsuse anelectrode array biosensor to measure impedance changes in a cell monolayer (Fig.1).Opticalsystems,suchastheEPICandBIND,useresonant waveguidegratingtodetectdynamicmassredistributionincells.

Bothopticalandimpedancemethodsdetectaspectrumofcellular changes,fromcelladhesiontolifecycleprocesses,suchasprolif- eration,growth, and death; aswell aspathogen infectionsand response;cellmigration;andsignaling,suchasreceptorsignaling orcell–cellcommunication[6].Hence,theselabel-freeassaysare alsoknownasphenotypicassays.

Inthisreview,wefocusonimpedance-basedassays,whichare applicable to a range of samples, are highly versatile and can integratemanyassaysintoone(Fig.2).Forinstance,suchassays

record a variety of cellular parameters,including proliferation, adhesion,andcellularmorphology,inonecombinedread-outin real-time(Fig.1andFig.2a).Thisisaparticularadvantageover manytraditionalassays,whichofteninterrogateoneaspectonly ofagivenpathwayoracellularresponse(e.g.,secondmessenger accumulation).Impedance-basedassaysofferthedistinctadvan- tageofadirectread-outofdrugactioninreal-time.Althoughthere arealso traditionalassays thatrecordspecificfunctions inreal- time (e.g., Ca2+-mobilization assays),impedance measurements offerthe benefitsofreal-timemeasurementsinbothacute(e.g., directreceptorsignaling)andchronicsettings(e.g.,cellularpro- liferation).Besides recordingtheabovementionedcellularfunc- tions, impedance-based label-free assays also provide some specialist applications, such as electrical stimulation for pore formation(Fig.2d)andco-culturewithoutcontact(Fig.2h),al- thoughthesecanrequirespecializedrecordingorplateequipment (Fig.2b,e,h).Overall,impedance-basedassayshavealreadybeen successfullyappliedtoanextensivelistoftargets,includingim- portant drugtarget classes,suchasG-protein-coupledreceptors (GPCRs)[6,9],nuclearreceptors[10],andreceptortyrosinekinases [11]. Applications extend as far as toxicity screens on cardiac function [12] and migrationof cancer cellsin 3D cultures[13]

(Fig. 2b,e). Furthermore, almost any cell type can be studied.

Examples includestandard recombinant cell lines,primary and stemcells,bothadherentaswellassuspensioncelltypes[6,9,14]

(Table 1). This is because, in comparison to many traditional assays,label-freetechnologiesofferasensitive,less-invasivedetec- tion methodology that monitors drug effects on a whole cell.

Furthermore,withouttheneedfortagging,labeling,orrecombi- nant expression, cellular functions can be studied in a more physiologicalcontext,includingavastamountofendogenously expressed targets and pathways. Simultaneously, sensitivity is oftenhighenoughtodistinguishsubtlechangesinmechanisms ofactionin,forexample,GPCRsignalingbias[6,14].Receptorsare linked to various downstream signaling pathways, a feature termed ‘signaling pluridimensionality’. Ligands can be biased towardsoneorsomeparticulardownstreampathways,potentially resultingindifferentpharmacologicaleffects.Forinstance,closely related agonistsofthe

b

2-adrenergicreceptorinduce subtlyyet distinctlydifferentresponsesignaturesasaconsequenceofsuch bias[15,16].

Hence,asseveralreviewshavealreadysummarized,label-free technologiescanofferdistinctadvantagesfordrugdevelopment.

Theycapturecompoundactioninadynamictime-resolvedman- ner, allow for theidentification ofleads independent of prior assumptionsofsignalingpathways,andenabletheuseofmore- nativesystemsathigherthroughput.Asacellphenotypicscreen, theycanbeusedfortargetidentification,compoundscreening, leadselection,investigatingthemechanismofaction,andtest- ingdrugsafetyandtoxicity[14,17].Inthisreview,weparticularly focusonapplicationsinvolvingpatientcells.Thisoffersoppor- tunitiesforboth drugdevelopmentandprecisionmedicinere- search by sensitively detecting an extensive variety of pharmacological effects under minimally invasive conditions in a clinically relevant endogenous context of primary cells, andevenpatientsamples.Nowadays,suchsamplesareincreas- inglyavailabletosupportresearch,forinstancebytheirsystem- aticcollectioninbiobanks.

BOX1

Traditionallabel-basedversuslabel-freeassays Traditionallabel-basedassaysfollowdrugeffectsandcellular functionsbythechemicalattachmentofa‘label’tothedrug molecule,drugtarget,ordownstreameffectors.Thesecan comprise,forinstance,radiolabeledorfluorescentprobesordyes.

Reporter-basedassaysintroducespecificallyregulatedgene promotersasbiomarkersforspecificevents.Commonlyused reportergenesinvolvevisuallyidentifiablecharacteristics,suchas fluorescentandluminescentproteins(FigureI).

Label-freeassaysdonotrequireanysuchmodificationsbecause theymeasurecellularchangesbyalternativedetectionmeans, withouttheneedtointroducechemicalorbioengineered modifications.

FIGUREI

Traditionallabel-basedassays.Starshighlightwhereeffectsareoften measuredbyintroducinglabelsorreporters.Imageconstructedusing componentsfromServierMedicalArtbyServier(www.servier.com/

Powerpoint-image-bank).

ReviewsPOSTSCREEN

(3)

Advantages of primary human cells

Over the past decades, numerous biobanks have emerged to supportmedicalresearchbytheprogrammedstorageofbiological material and corresponding data. These biomaterials include tissues,(stem)cells,blood,andserum,allofwhichhavehada criticalroleinmedicalresearch.Thesematerialsareactivelyused fromtranslationalandpersonalizedmedicineresearchtotarget and drug discovery [18,19]. For human physiology, primary

humancellsareconsideredabettermodelsystemthanthemore traditional cellular models, such as rodent, recombinant, or immortalizednontissuespecifichumancelllines,andevenbetter than in vivo rodent models [20–22]. Although the abovemen- tionedcellularmodelshavemerits,forinstanceeaseofuseorto attain initial understanding of pathways, their physiological relevanceis questionedincreasingly. Inrecombinantcelllines, target overexpression, differences in intracellular metabolic FIGURE1

Principleofimpedance-basedlabel-freecellularassays.Cellattachmenttogoldelectrodesgeneratesimpedancebychangingthelocalionicenvironmentatthe electrode–solutioninterface.Relativechangesinimpedance(Z)arerecordedinreal-time.(a)Beforetheseedingofcells,baselineimpedanceisZ0.(b)Ascells adheretotheelectrodes,impedanceincreasesproportionally.(c)Changesincellnumber,adhesion,viability,andmorphologyaredirectlyreflectedinthe impedanceprofile.Impedance-basedlabel-freecellularassayscandetectarangeofcellularevents,includingcellproliferation,division,growth,death, migration,andsignaling.Alltheseparameterscan,inturn,beaffectedbydrugs.Forinstance,dependingonthemomentofdrugtreatment,drugscanresultin responseAbyinitiatingreceptorsignalingordrugresponseBbydecreasingoverallproliferation.

FIGURE2

Typicalapplicationsofimpedance-basedlabel-freecellularassays.(a)Generallabel-freecellularassayformatsarecapableofmonitoringmanycellularfunctions, suchasadherence,proliferation,viability,andmorphology.Additionalspecializedassayapplicationsexist,forinstance,to(b)monitorcellmigration(e.g., throughaporousmembrane,xCELLigence);(c)measurebarrierfunctionality,forinstance,inawoundscratchassay;(d)applyelectricalimpulses,forexample,to increasecellularpermeability(ECIS);and(e)measure(cardio)-myocytecontractility(xCELLigenceCARDIOsystem).(f)Besidesadherentcells,label-freecellular assaysarealsoapplicabletosuspensioncellsandcapableofmonitoringinteractionsbetweentwocelltypes,forinstanceby(g)cytotoxicityofeffectorcellson anothertypeoftargetcellor(h)cell–cellcommunicationwithoutanycellularcontact(xCELLigenceco-cultureset-up).

ReviewsPOSTSCREEN

(4)

conditions,andproductsfromother genescanmodifycellular responses[5].Well-establishedcelllinesderivedfroma patient with a particular disease can be more representative of that specific pathological condition. However, these are generally immortalizedcelllinesderivedfromoneparticularpatientsam- plea long timeago. Prolongedcellculture frequently leadsto problems,suchascontaminationorgenotypicandphenotypic instability.Theseissuesunfortunatelycontributetoirreproduc- ibilityinpreclinicalresearch,whichisanincreasinglywell-rec- ognizedproblem[23].

Ingeneral,primarycellsexpresssignalingpathwaysandretain manycellularfunctionsthatareseeninvivo,thusprovidingamore relevantcontext.Tissueor cellsamplesfromhealthyorpatient volunteersareevenmorerepresentativeof(patho)physiologyand closertothesituationintheclinic.

Application to patient samples and primary human cells

Many patient-related biomaterials can and have already been studied using impedance-based label-free technologies, of whichsomeprominentexamplesarediscussedhere.Thesample types most commonly studied include fibroblasts and blood

components,butapplicationsalsoextendtoendothelial,epithe- lial,andstemcells(Table1).Intheseexamples,label-freeimped- ance-basedassaysareusedtomonitorarangeofcellulareffects, includingspecificfunctions,suchasmigration,epithelialbarrier function,orcardiomyocytebeating(Fig.2).Overall,thehighlight- edexamplesshowthatimpedance-basedlabel-freetechnologyis highlyversatilewithanextensiverangeofapplications.

Fibroblasts

Theearliest applicationsoflabel-free assaysto fibroblastsdate backmorethantwodecades.Inoneearlyexample,bycompar- ing morphologicalchanges oforbitalfibroblasts from patients withandwithoutGraves’diseaseversusdermalfibroblasts,pros- taglandin E2 was shown to have a significant role in Graves’

diseasepathology (Fig.2a).TheauthorschoseECISovertradi- tionallightmicroscopyaftertestingbothmethodologiesheadto head,becauseECISofferedinsightintothesubtle,rapidcellular changes,especiallyintotheunderlyingkinetics,ofthisdisease [24].

Sincethen,label-freecellularassayshavebeenappliedtoother typesoffibroblast.Fibroblastsareinfactthemostcommoncell typeinhumanconnectivetissueandcanoftenretainmemoryof TABLE1

Applicationexamplesofimpedance-basedlabel-freecellulartechnologytopatientsamplesandstemcellrelatedtypes

Type Subtype Technology Materialsource Refs

Bloodcomponents Antibodies xCELLigence PatientswithtypeIdiabetesortypeIIdiabetesandhealthycontrols [37]

PBMCs xCELLigence Fromhealthyvolunteersbuttestedonpatientmaterial [32,33]

Plasmaandcellstherein ECIS Healthyvolunteersversustraumapatients [35]

ECIS PatientswithHantaviruscardiopulmonarysyndrome [36]

Monocytes ECIS Patientswithperipheralvasculardiseaseandabdominalaortic aneurysm

[31]

Neutrophils ECIS Criticallyillpatientswithsepsis [34]

Serum ECIS Patientswithscleroderma [27]

Cancercellsand relatedcells

gdTcells xCELLigence HealthyvolunteersandpatientswithB-cellALL [60]

Glioblastomacells xCELLigence Pairedtumoralandperitumoraltissuesamplesfrompatientswith glioblastoma

[54]

Malignantmelanomacells xCELLigence Malignantmelanomaoftheciliarybodyfromafemalepatient [55]

Malignantpleuraleffusions xCELLigence Patientswithsolidtumors [59]

Mesenchymalchondrosarcomacells xCELLigence Newlyestablishedcelllinefrompatient [56]

Mononuclearcells xCELLigence Normalcontrolsandpatientswithbreastcancer [61]

Myxofibrosarcomacells xCELLigence Patientwithmyxofibrosarcoma [58]

Non-smallcelllungcarcinomacells xCELLigence Patientwithnon-smallcelllungcarcinoma [57]

Normalandneoplasticmammarycells xCELLigence Patient-derivedprimaryhumanbreastcancerepithelialcells [8]

Ovariancancercells xCELLigence Patientwithserousovariancancerandpatientwithendometrioid peritonealcancer

[53]

Chondrocytes Chondrocytesandcartilagetissue xCELLigence PatientswithOA [32]

Fibroblasts Benignprostatichyperplasia xCELLigence Patientswithbenignprostatichyperplasia [26]

Dermal ECIS Patientswithsclerodermaandnormalcontrols [27]

Orbital ECIS PatientswithorwithoutGraves’disease [24]

Synovial xCELLigence PatientswithRAorOA [28–30]

iPSCsandsimilar stemcelltypes

Adiposestromal/stemcells ECIS Healthyhumandonorsofvaryingagegroups [51]

xCELLigence Femalepatientsundergoingliposuction,modelforobesity [52]

iPSCcardiomyocytes xCELLigence HealthyhumandonorsorcommercialfromCellularDynamicsa [12,43–45]

iPSCretinalpigmentepithelium ECIS PatientwithAMDandunaffectedsibling [47]

Mesenchymalstromal/stemcells ECISand xCELLigence

Frombonemarrow(threedonors)andadiposetissue(twodonors) [48]

xCELLigence Fromendometrialliningoftheuterusofpremenopausalwomen [49]

xCELLigence Healthyhumandonors [50]

xCELLigence PatientswithOA [33]

Myoblasts Skeletalmusclemyoblasts andmyotubes

xCELLigence Patientswithchronicheartfailureandage-andgender-matched healthydonors

[62,63]

awww.cellulardynamics.com/products/cardiomyocytes.html.

ReviewsPOSTSCREEN

(5)

theirprevioustissuecontext,thusgivingrisetonumerousfibro- blasttypes(Table1).They arealsoamongthe mostcommonly usedclinicalandbiobankedsamples[25].

For instance, Nolte et al. demonstrated a potential strategy againsthyperproliferatingfibroblastsbytreatingfibroblastsfrom patientswithbenignprostatichyperplasiawithsmallinterfering (si)RNA against the transcription factor serum response factor.

Effectsoncellproliferationandgrowthinhibitionweredetected with the xCELLigence(Fig.2a)[26]. Anothernotable study in- volveddermalfibroblastsandserafrompatientswithscleroderma, whichisdiscussedbelow[27].

Finally,inaclinicallyrelevantsetting,synovialfibroblastsfrom patients with rheumatoid arthritis (RA) or osteoarthritis (OA) obtainedduringkneesurgerywereinvestigated.Inthemostrecent studies,Lowinetal.usedxCELLigencetoshowthattheendocan- nabinoidsystemisinvolvedinregulatinginflammatoryeffectsin RA[28].ThissuggestedapotentialtreatmentforRAwithsynthetic cannabinoids,demonstratedinalaterstudy[29].Similarstudies showedfurthercontributorstothepathogenesisofRAthatmodify the cellular functionsand adhesion ofsynovial fibroblasts, the mostrecentofwhichareincludedinTable1[30].Therelevance andimplicationsofthesefindingsforpotentialtreatmentoptions are oftranslational valuebecause the cellswereobtained from patientswiththedisease.

Bloodcells

Blood is aneasily obtained patient materialand, thus,is often biobanked[25].Hence,varioustypesofbloodcomponentsorcells are usedin medical researchand havebeen investigatedusing impedance-basedlabel-freecellularassays.

Severalstudiesinvolvingmonocyteshavebeenpublished.In- terestingly,monocytesareoftenmeasuredindirectlybyquantify- ingtheireffectonanothercelltype.Alayerofadherenttargetcells isgrownontheelectrodes,afterwhichtheyareexposedtothe effectorcells,heremonocytes,whichinducecytotoxicityinthe target cells,forinstance(Fig.2g). Leeetal. usedECIStoreveal differencesbetweenpatientswithperipheralvasculardiseaseand withabdominalaorticaneurysmtofindbettermethodsfortar- geted therapy. Monocytes of patients with peripheral vascular diseaseinducedhigherendothelialbarrierdysfunction[31]com- paredwiththosefrompatientswithabdominalaorticaneurysms.

Another particularly useful type of blood cell are peripheral blood-derivedmononuclearcells(PBMCs).Hopperetal.showed thatPBMCsenhancedosteoarthritichumanchondrocytemigra- tion, whichcould bethe basisfor atreatment strategyforOA.

PBMCswerederivedfromhealthyvolunteers,whereaschondro- cytesandcartilagetissueexplantswerefrompatientsundergoing total kneereplacement. Here, the migration and chemokinetic potentialofthecellsweremeasuredusingaspecializedmigration assayformatofthexCELLigence(Fig.2b)[32].Later,itwasshown thatPBMCsalsoenhancedthemigrationandchondrogenicdif- ferentiation of multipotent mesenchymal stromal cells (MSCs) fromkneesofpatientswithOA[33].

Othertypesofbloodcomponenthavealsobeenassayedusing label-free technology,althoughmost studiesagainreliedonan indirect measurementthrougheffectson anothercelltype. For instance,neutrophilsfromcriticallyillpatientswithsepsis were foundtoreduceendothelialbarrierintegritytoa greaterextent

thanuntreatednormalneutrophilsinanECISassay[34].Human serumwasalsousedinsomestudies.InanearlyexamplebyHuang etal.,ECISwasusedtodemonstratedifferencesinmicromotionsof dermalfibroblastsfrompatientswithsclerodermaandfromnor- malcontrols,aswellastheeffectofserafrompatientsonfibroblast behavior[27].Rahbaretal.measuredtheeffectsofplasmasamples fromhealthyvolunteersandseverelyinjuredtraumapatientson humanendothelialcellsusingECIS.Materialofpatientswithlow plasmacolloidosmoticpressurecausedanincreaseincellperme- ability[35].Inasimilarmanner,plasmasamplesofpatientswith Hantaviruscardiopulmonarysyndromewereshowntoinducethe lossofcell–celladhesioninepithelialandendothelialcellsinECIS [36].Finally,Jacksonetal.usedxCELLigencetodemonstratethat anticalcium channel autoantibodies from patients with type 1 diabetesmellitusinhibitedtheadherenceofRatinsulinomacells, whileantibodiesfrompatientswithtype2diabetesmellitusand fromhealthycontrolsdidnot[37].

The reason why all these blood components are measured indirectlyistwofold.Onthe onehand,studyingtheir effecton thefunctionofothercelltypesprovidesmorephysiologicalcon- text. On the other hand, many of the cell types involved are suspensioncells.Label-freetechnologywaslongdeemedincom- patiblewithsuspension cells,becausethedetectionmechanism positionedatthebottomofthewellrequirescellstoadhere[7].

However,severalstudiesdemonstratedthatsuspensioncellsare alsoamenable to label-free technologies using eitheropticalor impedance-based biosensors. Interestingly, impedance-based assaysappearlesssusceptibletodecreasedcellularadherencethan doopticalbiosensors[7]and,hence,arepotentiallyapplicableto anbroaderrangeofcelltypes.Examplesincludevarioustypesof bloodcell,onenotablyinvolvingpersonalcelllines.Forinstance, CellKeywasusedto directlymeasure GPCRsignaling inmono- cytes,neutrophils,andPBMCs,althoughthesewerenotpatient material[38,39].xCELLigencewasappliedtolymphoblastoidcell lines(LCLs)fromparticipantsofTheNetherlandsTwinRegisterto showeffectsofsinglenucleotidepolymorphismsonGPCRsignal- ing[9,40].Ontheseoccasions,increasedcelldensitiesandusageof adherence-mediating agents were sufficient to allow measure- ments(Fig. 2f).LCLs are a preferred choice forstoring genetic material,includinginbiobanksofrenownedconsortia,suchasthe InternationalHapMapproject[25,41].

iPSCandcommonstemcelltypes

Stemcellscarrygreatpromiseforrenderingphysiologicallymore relevantcellmodels,inparticularinducedpluripotentstemcells (iPSCs).Byreprogrammingoffibroblastsintoapluripotentstate, for example, iPSCs can be derived that maintain the disease genotypeand phenotypeindefinitely.TheseiPSCsthenprovide asourceofmodelsforanexpansiverangeofadultdifferentiated cells, possibly even for each individual patient, which has the potentialtopersonalizedrugdiscovery[42].Manyofthecelltypes derivedfromsuchiPSCscanbeinvestigatedusinglabel-freetech- nology. A specific type of application has been developed for xCELLigence, namely a cardiomyocyte-based biosensor. Safety pharmacology studies that evaluate potential cardiac (adverse) effectsofdrugcandidates areanessentialpartofdrugdevelop- ment.ThexCELLigenceRTCACardioSystemdetectsthebeating rhythm of cardiomyocytes (Fig. 2e) and has been applied to

ReviewsPOSTSCREEN

(6)

humaniPSC-derivedcardiomyocytes(hiPS-CMs)onseveralocca- sionstoinvestigaterisksofdrug-inducedarrhythmiaandgeneral cardiotoxicity,ofwhichthemostrecentpublicationsarelistedin Table1[12,43–45].Rhythmicbeatingisessentialforcardiomyo- cyte function,but hastraditionallybeen hard to investigatein simpleinvitroassays.Phenotypicmeasurementsofnativecellular systemsare moresuited forthis [46].The xCELLigence Cardio Systemcapturingcardiacbeatingwasthemostsensitiveofvarious testsfor detecting compoundswith known clinicalcardiac risk [43],andcanbeusedtoevaluatepotentialclinicaldrugcandidates [12].

Another stem cell-based study involved iPSC-derived retinal pigment epithelium (RPE)asa diseasemodel-on-a-chip of age- related maculardegeneration (AMD).Ingeneral, epithelialand endothelialcellsareoftenstudiedusinglabel-freetechnology,and somespecificassayformatsrelatedtoformationanddisruptionof monolayershavebeendevelopedforthese(e.g.,barrierfunction, Fig.2c).Here,RPEcellsfromapatientwithinheritedAMDandan unaffectedsiblingwereexaminedusinganECISelectricalwound- healingassay.Real-timemonitoringovera25-dayperioddemon- strated the establishmentand maturationof RPElayers onthe microelectrodearrays,inwhichspatiallycontrolleddamagetothe celllayerwasintroducedtomimicAMD.Thus,label-freetechnol- ogycanalsobeusedtomeasurelong-termeffectsandissuitedfor tissue-on-a-chip technology. This offers translational value by enablingreal-time,quantitative,andreproduciblepatient-specific studies[47].

AnotherstemcelltypeofinterestareMSCs,whichareattractive candidates for tissue engineering because of their wide meso- dermaldifferentiationpotential.Angstmannetal.comparedECIS and xCELLigence in a search for standardized quality control assaystomonitordifferentiationandhigh-throughputscreening thatisbothnon-invasiveandtime-resolved.Theauthorsstudied MSCsisolatedfromtwodifferenttissuesofvariousdonors,namely bonemarrowandadiposetissue.Impedancemeasurementswere usedtodiscriminateosteogenicfromadipogenicdifferentiation, whichshowedmodulatingeffectsofextracellularmatrixcompo- nents[48]. Label-freeassays werealso used to establishculture conditions for expansion of endometrial MSC (eMSC) isolated fromendometrialliningoftheuterusofpremenopausalwomen [49]ortotestMSClabelingbyanewtypeofnanoparticle[50].

Inanotherinstance,ECISwasusedtomonitorproliferationand osteogenic differentiation of human adipose stem cells (hASC) fromdonorpopulationsofdifferentages.Thisassaycouldbeused topredicttheosteogenicpotentialforpatient-specificbonetissue engineering[51].Finally,Bergeretal.studiedmolecularmecha- nismsin human obesity in hASCs from liposuctionsof female patients.Bystudyinglipiduptakeand adipocytedifferentiation with xCELLigence, the authors identified several dysregulated adipocyte-specific genes involved in fatty acid storage or cell adhesion[52].

Othercelltypes

Label-freeassaysaresuitedforalmostanycelltypeandhavebeen applied to numerous others besides the most commonly bio- bankedsampleshighlightedabove.

Afurthercategoryofparticularinterestarecancerandrelated celltypes.Here,impedance-basedcellularassaysareoftenusedto

measuremigratoryandinvasiveproperties(e.g.,Fig.2b),whichare keycharacteristicsofany(metastatic)cancer type.Forinstance, xCELLigencewasusedtomonitorthemotilityofprimaryhuman normalmammarycellsversuspatient-derived breastcancer epi- thelialcells[8],migrationinvariousovariancancerpatientsam- ples [53]and proliferation and responseto kinase inhibitors in glioblastoma samplesfrompatients [54].Othershaveevaluated (potential)treatmentoptionsonapatient’smalignantmelanoma cells[55]and ona newlyestablishedmesenchymalchondrosar- comacell linefroma patient[56].Twootherpublicationsused xCELLigenceforcharacterizationofnewlyestablishedcelllines from patient samples, offsetting them against parental tumor tissue ortraditionallyusedcarcinomacell lines[57,58].Finally, Ruizetal.appliedxCELLigencetopatients’owncancercellsforthe invitroselectionofthemostpromisingtreatment,inthiscasefor humancarcinomacellsfrommalignantpleuraleffusions[59].This is an illustrative example of possible applications in precision medicine.

Impedance-basedtechnologiesarealsosuitedtotestpotential cell-basedtherapies(Fig.2g).Seideletal.demonstratedthethera- peuticpotentialof

g

dTcellsforantibody-basedimmunotherapy inpediatricpatientswithB-lineageacutelymphoblasticleukemia (ALL).

gd

Tcellswerederivedfromhealthyblooddonorsaswellas from a patient with common ALL. xCELLigence was used to measure

gd

T cell lysisin a breast adenocarcinoma cell linein real-time,andoutperformedthetraditionalendpointassay[60].In asimilarmanner,othershavestudiedtheabilityofmononuclear cellsfrom normal patients and thosewith breastcancer to kill different breast cancer cell lines in the presence or absence of trastuzumab[61].

Myoblastsfrommusclebiopsysamplesareanothercelltypeof interest. In a recent example, Sente etal. studied pathological mechanismsofheartfailure. UsingxCELLigence,they observed myoblastadiponectinsignaling,differentiation,proliferation,and viabilityinprimarymyoblastsandmyotubesfrompatientswith chronicheartfailureandage-andgender-matchedhealthydonors [62,63].

From drug discovery to precision medicine

Asaresultoftheirversatility,label-freeassaysand patientcells, when combined, canbe utilized at variousstages ofmedicines research. As a cell-phenotypic screen, label-free assays are well suited for target identification, compound screening, and lead selection. Likewise,they allowtheinvestigation ofmechanisms ofactionandthetestingofdrugefficacyandsafety[14,17].Inthis review,wehaveprovidedtypicalexamplesinvolvingpatientcells, which offer increased physiological context. Given that such patient samples are often in limited supply, this set-up is not regularly used for screening drug candidates, for example, but ratherforunderstandingdiseasemechanismsandtestingpoten- tialtreatments.ThiswasdonebyLowinetal.inthecontextofRA toidentifydrugtargets,subsequentlytestcompounds,anddefine possible treatments[28,41].Ina moreintegratedapproach, the combinationofpatientcellsandlabel-freeassaysresultedintissue- on-a-chiptechnology,asdemonstratedbyGamaletal.[47].Itisto beexpectedthattheadventofstemcelltechnologywillradically changetheavailabilityofpatient-derivedmaterials[42,64],which wouldallowfurtherintegrationoflabel-freeassays.Thiswouldbe

ReviewsPOSTSCREEN

(7)

anidealstartingpointfortheadvancementofprecisionmedicine, if patient-derived material can be made available readily, on demand, and in larger quantities.However, the questionarises whether label-free technologies canbe developedthat takethe three-dimensionalityofadvancedcellularmodelsandorganoids intoaccount[65–67].Indrugsafetyandtoxicityresearch,iPSC- derived cardiomyocytes can be used in a label-free setting to evaluate potential cardiac (adverse) effects of drug candidates [12,43].Finally, the combinationofpatient cells and label-free technology can be used for clinical compound selection, for instancebymeasuringpatientcellresponsesinvitroasmeansof selecting the mostpromising treatment. This hasbeen demon- strated byprofilingdrug treatmentresponsesofpatient-derived malignantpleuraleffusionsinastudybyRuizetal.[59],withthe aimtoprovidedrugtreatmentofcancerinapersonalizedmanner.

Concluding remarks

Physiologically more-appropriate cellular models and readout systemsareneededtoincreaserepresentabilityandtranslational value.Patient-derivedcellscanprovidepathologicalandphysio- logicalcontext,andbiobankinghasincreasedtheavailabilityof humanprimarysamplesforresearch.Label-freeimpedance-based assayscanandhavebeenappliedtoarangeofsuchsamples.These assays increase the physiological representability by omitting reporter-based modifications and measuring physiological cell function in real-time. Thus, combining label-free assays with humanprimarysamplesoffersa uniquelybiorelevantset-upfor thepurposesofdrugdevelopmentandprecisionmedicine.

References

1Kojima,R.etal.(2015)Noveltheranosticagentsfornext-generationpersonalized medicine:smallmolecules,nanoparticles,andengineeredmammaliancells.Curr.

Opin.Chem.Biol.28,29–38

2Moller,C.andSlack,M.(2010)Impactofnewtechnologiesforcellularscreening alongthedrugvaluechain.DrugDiscov.Today15,384–390

3Verdonk,E.etal.(2006)Cellulardielectricspectroscopy:alabel-freecomprehensive platformforfunctionalevaluationofendogenousreceptors.AssayDrugDev.

Technol.4,609–619

4McGuinness,R.(2007)Impedance-basedcellularassaytechnologies:recent advances,futurepromise.Curr.Opin.Pharmacol.7,535–540

5Eglen,R.andReisine,T.(2011)Primarycellsandstemcellsindrugdiscovery:

emergingtoolsforhigh-throughputscreening.AssayDrugDev.Technol.9,108–124 6Fang,Y.(2015)Combininglabel-freecellphenotypicprofilingwithcomputational

approachesfornoveldrugdiscovery.ExpertOpin.DrugDiscov.10,331–343 7Lieb,S.etal.(2016)Label-freeanalysisofGPCR-stimulation:thecriticalimpactof

celladhesion.Pharmacol.Res.108,65–74

8Mandel,K.etal.(2013)CharacterizationofspontaneousandTGF-beta-inducedcell motilityofprimaryhumannormalandneoplasticmammarycellsinvitrousing novelreal-timetechnology.PLoSOne8,e56591

9Hillger,J.M.etal.(2016)Gettingpersonal:endogenousadenosinereceptor signalinginlymphoblastoidcelllines.BiochemPharmacol.115,114–122 10Czajka,A.A.etal.(2016)FamilyofmicroRNA-146regulatesRARbetainpapillary

thyroidcarcinoma.PLoSOne11,e0151968

11Chanakira,A.etal.(2015)Hypoxiadifferentiallyregulatesarterialandvenous smoothmusclecellmigration.PLoSOne10,e0138587

12Zhang,X.etal.(2016)Multi-parametricassessmentofcardiomyocyteexcitation- contractioncouplingusingimpedanceandfieldpotentialrecording:atoolfor cardiacsafetyassessment.J.Pharmacol.Toxicol.Methods81,201–216

13Febles,N.K.etal.(2014)Label-freesinglecellkineticsoftheinvasionofspheroidal coloncancercellsthrough3DMatrigel.Anal.Chem.86,8842–8849

14Rocheville,M.etal.(2013)Miningthepotentialoflabel-freebiosensorsforseven- transmembranereceptordrugdiscovery.ProgressMol.Biol.Transl.Sci.115,123–142 15Fang,Y.andFerrie,A.M.(2008)Label-freeopticalbiosensorforligand-directed

functionalselectivityactingonbeta(2)adrenoceptorinlivingcells.FEBSLett.582, 558–564

16Stallaert,W.etal.(2012)Impedanceresponsesrevealbeta(2)-adrenergicreceptor signalingpluridimensionalityandallowclassificationofligandswithdistinct signalingprofiles.PLoSOne7,e29420

17Fang,Y.(2014)Label-freedrugdiscovery.Front.Pharmacol.5,52

18Artene,S.A.etal.(2013)Biobankinginaconstantlydevelopingmedicalworld.

ScientificWorldJournal2013,343275

19Astrin,J.J.andBetsou,F.(2016)Trendsinbiobanking:abibliometricoverview.

Biopreserv.Biobank14,65–74

20Al-Ahmad,A.etal.(2013)Nature-inspiredantimicrobialpolymers:assessmentof theirpotentialforbiomedicalapplications.PLoSOne8,e73812

21Seok,J.etal.(2013)Genomicresponsesinmousemodelspoorlymimichuman inflammatorydiseases.Proc.Natl.Acad.Sci.U.S.A.110,3507–3512

22Schulz,S.etal.(2012)Interactivefibroblast-keratinocyteco-cultures:aninvivo-like testplatformfordentalimplant-basedsofttissueintegration.TissueEng.CMethods 18,785–796

23Freedman,L.P.etal.(2015)Reproducibility:changingthepoliciesandcultureofcell lineauthentication.Nat.Methods12,493–497

24Reddy,L.etal.(1998)Assessmentofrapidmorphologicalchangesassociatedwith elevatedcAMPlevelsinhumanorbitalfibroblasts.Exp.Cell.Res.245,360–367 25Daniele,N.etal.(2016)Biobanksandclinicalresearch:an‘interesting’connection.

PeertechzJ.Cytol.Pathol.1,034–043

26Nolte,A.etal.(2013)SmallinterferingRNAtransfectionagainstserumresponse factormediatesgrowthinhibitionofbenignprostatichyperplasiafibroblasts.

NucleicAcidTher.23,62–70

27Huang,C.N.etal.(1999)Serafrompatientswithsclerodermainhibitfibroblast micromotionsmonitoredelectrically.J.Rheumatol.26,1312–1317

28Lowin,T.etal.(2015)Anti-inflammatoryeffectsofN-acylethanolaminesin rheumatoidarthritissynovialcellsaremediatedbyTRPV1andTRPA1inaCOX-2 dependentmanner.ArthritisRes.Ther.17,015–0845

29Lowin,T.etal.(2016)ThesyntheticcannabinoidWIN55,212-2mesylatedecreases theproductionofinflammatorymediatorsinrheumatoidarthritissynovial fibroblastsbyactivatingCB2,TRPV1,TRPA1andyetunidentifiedreceptortargets.J.

Inflamm.13,016–0114

30Bohm,M.etal.(2016)alpha-MSHmodulatescelladhesionandinflammatory responsesofsynovialfibroblastsfromosteoarthritispatients.Biochem.Pharmacol.

116,89–99

31Lee,E.S.etal.(2012)Monocyticadhesionmoleculeexpressionandmonocyte- endothelialcelldysfunctionareincreasedinpatientswithperipheralvascular diseaseversuspatientswithabdominalaorticaneurysms.J.Surg.Res.177, 373–381

32Hopper,N.etal.(2015)Peripheralbloodderivedmononuclearcellsenhance osteoarthritichumanchondrocytemigration.ArthritisRes.Ther.17,199 33Hopper,N.etal.(2015)Peripheralbloodderivedmononuclearcellsenhancethe

migrationandchondrogenicdifferentiationofmultipotentmesenchymalstromal cells.StemCellsInt.2015,323454

34Fox,E.D.etal.(2013)Neutrophilsfromcriticallyillsepticpatientsmediate profoundlossofendothelialbarrierintegrity.Crit.Care17,R226

35Rahbar,E.etal.(2015)Endothelialglycocalyxsheddingandvascularpermeability inseverelyinjuredtraumapatients.J.Transl.Med.13,117

36Bondu,V.etal.(2015)Elevatedcytokines,thrombinandPAI-1insevereHCPS patientsduetoSinNombrevirus.Viruses7,559–589

37Jackson,M.W.andGordon,T.P.(2010)Anovelimpedance-basedcellularassayfor thedetectionofanti-calciumchannelautoantibodiesintype1diabetes.J.Immunol.

Methods361,31–36

38Leung,G.etal.(2005)Cellulardielectricspectroscopy:alabel-freetechnologyfor drugdiscovery.J.Assoc.Lab.Automat.10,258–269

39MolecularDevicesInc(2008)Analysingendogenousreceptorsinnon-adherentcell linesandprimarycellswiththeCellKeysmallsample96Wmicroplate.CellKeySyst.

Appl.Highlight5,1–2

40Hillger,J.M.etal.(2017)Phenotypicscreeningofcannabinoidreceptor2ligands showsdifferentsensitivitytogenotype.Biochem.Pharmacol.130,60–70 41Welsh,M.etal.(2009)Pharmacogenomicdiscoveryusingcell-basedmodels.Pharm.

Rev.61,413–429

42Hosoya,M.andCzysz,K.(2016)Translationalprospectsandchallengesinhuman inducedpluripotentstemcellresearchindrugdiscovery.Cells5,46

ReviewsPOSTSCREEN

(8)

43Doherty,K.R.etal.(2015)Structuralandfunctionalscreeninginhumaninduced- pluripotentstemcell-derivedcardiomyocytesaccuratelyidentifiescardiotoxicityof multipledrugtypes.Toxicol.Appl.Pharmacol.285,51–60

44Chaudhari,U.etal.(2016)Identificationofgenomicbiomarkersforanthracycline- inducedcardiotoxicityinhumaniPSC-derivedcardiomyocytes:aninvitrorepeated exposuretoxicityapproachforsafetyassessment.Arch.Toxicol.90,2763–2777 45Hu,N.etal.(2015)High-performancebeatingpatternfunctionofhumaninduced

pluripotentstemcell-derivedcardiomyocyte-basedbiosensorsforhERGinhibition recognition.Biosens.Bioelectron.67,146–153

46Li,X.etal.(2016)Cardiotoxicityscreening:areviewofrapid-throughputinvitro approaches.Arch.Toxicol.90,1803–1816

47Gamal,W.etal.(2015)Real-timequantitativemonitoringofhiPSC-basedmodelof maculardegenerationonElectricCell-substrateImpedanceSensing

microelectrodes.Biosens.Bioelectron.71,445–455

48Angstmann,M.etal.(2011)Monitoringhumanmesenchymalstromalcell differentiationbyelectrochemicalimpedancesensing.Cytotherapy13,1074–1089 49Rajaraman,G.etal.(2013)Optimizationandscale-upcultureofhuman

endometrialmultipotentmesenchymalstromalcells:potentialforclinical application.TissueEng.CMethods19,80–92

50Skopalik,J.etal.(2014)Mesenchymalstromalcelllabelingbynewuncoated superparamagneticmaghemitenanoparticlesincomparisonwithcommercial Resovist-aninitialinvitrostudy.Int.J.Nanomed.9,5355–5372

51Nordberg,R.C.etal.(2016)Electricalcell-substrateimpedancespectroscopycan monitorage-groupedhumanadiposestemcellvariabilityduringosteogenic differentiation.StemCellsTransl.Med.7 2015–0404

52Berger,E.etal.(2015)Pathwayscommonlydysregulatedinmouseandhuman obeseadiposetissue:FAT/CD36modulatesdifferentiationandlipogenesis.

Adipocyte4,161–180

53Jacob,F.etal.(2014)TheglycosphingolipidP(1)isanovariancancer-associated carbohydrateantigeninvolvedinmigration.Br.J.Cancer111,1634–1645 54Cruceru,M.L.etal.(2013)Signaltransductionmoleculepatternsindicating

potentialglioblastomatherapyapproaches.OncoTargetsTher.6,1737–1749 55Li,J.etal.(2014)Theproliferationofmalignantmelanomacellscouldbeinhibited

byranibizumabviaantagonizingVEGFthroughVEGFR1.Mol.Vis.20,649–660

56deJong,Y.etal.(2016)InhibitionofBcl-2familymemberssensitizesmesenchymal chondrosarcomatoconventionalchemotherapy:reportonanovelmesenchymal chondrosarcomacellline.Lab.Invest.96,1128–1137

57Bartscht,T.etal.(2012)TheSrcfamilykinaseinhibitorsPP2andPP1 effectivelyblockTGF-beta1-inducedcellmigrationandinvasioninboth establishedandprimarycarcinomacells.CancerChemother.Pharmacol.70, 221–230

58Lohberger,B.etal.(2013)ThenovelmyxofibrosarcomacelllineMUG-Myx1 expressesatumourigenicstem-likecellpopulationwithhighaldehyde dehydrogenase1activity.BMCCancer13,563

59Ruiz,C.etal.(2016)Cultureanddrugprofilingofpatientderivedmalignantpleural effusionsforpersonalizedcancermedicine.PLoSOne11,e0160807

60Seidel,U.J.etal.(2014)gdTcell-mediatedantibody-dependentcellularcytotoxicity withCD19antibodiesassessedbyanimpedance-basedlabel-freereal-time cytotoxicityassay.Front.Immunol.5,618

61Kute,T.etal.(2012)Understandingkeyassayparametersthataffectmeasurements oftrastuzumab-mediatedADCCagainstHer2positivebreastcancercells.

Oncoimmunology1,810–821

62Sente,T.etal.(2016)Primaryskeletalmusclemyoblastsfromchronicheartfailure patientsexhibitlossofanti-inflammatoryandproliferativeactivity.BMC Cardiovasc.Disord.16,107

63Sente,T.etal.(2016)Tumornecrosisfactor-alphaimpairsadiponectinsignalling, mitochondrialbiogenesis,andmyogenesisinprimaryhumanmyotubescultures.

Am.J.Physiol.HeartCirc.Physiol.310,26

64Rony,I.K.etal.(2015)Inducingpluripotencyinvitro:recentadvancesand highlightsininducedpluripotentstemcellsgenerationandpluripotency reprogramming.CellProlif.48,140–156

65Lee,J.etal.(2017)Nonmediated,label-freebaseddetectionofcardiovascular biomarkerinabiologicalsample.Adv.Healthc.Mater.21,201700231 66Smout,M.J.etal.(2010)Anovelhighthroughputassayforanthelminticdrug

screeningandresistancediagnosisbyreal-timemonitoringofparasitemotility.

PLoSNegl.Trop.Dis.4,e885

67Shin,S.R.etal.(2017)Label-freeandregenerativeelectrochemicalmicrofluidic biosensorsforcontinualmonitoringofcellsecretomes.Adv.Sci.4,1600522

ReviewsPOSTSCREEN

Referenties

GERELATEERDE DOCUMENTEN

Writing apparatus controlled by head movements for motor handicapped people.. There can be important differences between the submitted version and the official published version

Single-particle detection: (A) conceptual graphics relating the analyte-induced changes of the LSPR ’s wavelength Δλ (magnitude exaggerated for visibility) to the respective changes

Although the current RPA condition could prevent false-positive signal production in RT-RPA, purified product from this reaction could still give a smear at approximately 100 bp

(a) Meniscus formation at the contact of two rough surfaces in the presence of adsorbed water films (b) strategy to find meniscus-wetted asperities (c) a schematic diagram of

 (C)  Differences  in  the  minimum  and  maximum  value  of  BPM  for  each   reactivated  condition...  Errors  bars  represent  the  standard

Zowel d project  geschikt fragmen gehele w gehele w present   Figuur 3   Leerkra Voor elk beproev leerdoe met de  aangege een acti gegeven tijdsind   Toetsen Voor aa

In dit onderzoek is er gebruik gemaakt van een within-subject design voor de hoofdhypotheses; binnen proefpersonen werd vergeleken of wanneer het verschil in hertz groter werd

Within this, being able to view their body language for feelings of trust to occur for patients is also important (Brown and Calnan, 2012: 39). Private-interactive experiences link