• No results found

The fate of emotional memories

N/A
N/A
Protected

Academic year: 2021

Share "The fate of emotional memories"

Copied!
22
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

The  fate  of  emotional  memories  

 

 

Multiple  trace  theory  (MTT)  proposes  that   emotional   memories   are   revised   during   the   reconsolidation   process.   Additionally,   the   effects   of   stress   on   memory   reconsolidation  are  still  controversial,  and   the   effects   of   emotion   on   memory   reconsolidation  is  still  unclear.   Moreover,   it   has   been   suggested   that   men   and   women   differ   in   neural   expression   and   behavior  during  enhancement  of  memory   consolidation   during   emotional   events.   Here,  we  examined  in  healthy  participants   the   impact   of   arousal   during   reconsolidation  of  neutral  memories,  and   the  possible  gender  differences,  related  to   the  alteration  of  an  emotional  expression   during  reconsolidation  of  a  memory  trough   an  amygdala-­dependent  learning  task  (an   object-­context-­episode  task).    The  results   showed   that   participants   did   not   accurately   recognized   more   objects   that   were   reconsolidated   and   related   to   a   shock,   than   reactivated   without   a   shock   and   non   reactivated.   However,   we   found   an   effect   of   reliving   on   recognition   accuracy.   No   differences   were   found   between   genders.   Taken   together,   the   current   findings   suggest   that   further   research   should   be   done   in   order   to   evaluate   the   effect   of   arousal   during   reconsolidation  of  neutral  memories.    

INTROCUCTION    

At   reunions,   you   might   meet   a   bunch   of   new   people.   However,   which   faces   are   you  going  to  remember?  Perhaps,  you  will   remember  the  woman  who  made  you  feel   embarrassed   or   the   guy   that   made   you   laugh.  But,  does  this  means  that  emotions   help   us   to   remember?   In   humans,  

emotionally   arousing   events   are   usually   better   remembered   than   neutral   ones.   This   hypothesis   has   been   called   as   “emotional   enhancement   of   memory”   (EEM)  (Okruszek,  et  al.,  2017).    

 

The   EEM   hypothesis   has   been   demonstrated   in   a   large   number   of   laboratory   studies   with   different   techniques,   using   stimuli   varying   from   words  to  pictures,  to  narrated  slide  shows   (Bradley   et   al,   1992;;   Hamann,   2001;;   Christianson,   1992;;   Finn   &   Roediger,   2011),   as   well   as   autobiographical   memory   studies   (Conway   et   al.,   1994).   The  explanations  of  this  emotional  arousal   are   still   unclear.   However,   some   psychologist   suggests   that   the   emotional   arousal  enhances  novelty,  focus  attention   and  can  be  rehearsed,  being  thus  easier   to   remember.   Nevertheless,   no   experimental  evidence  has  been  found  to   support   this   idea   (Christianson,   1992).   Other   authors   suggest   that   Pavlovian   conditioning   can   be   used   in   the   study   of   processes   mediating   emotional   responses,   particularly,   fear   conditioning   (Davis,  1992).  In  addition,  Dunsmoor  et  al,   suggested   that   initially   weak   memories   can   be   strengthened   if   this   information   later   gains   relevance,   as   result   of   an   adaptation  of  memories.  

 

However,  memories  are  not  just  enhanced   due   to   the   attachment   of   an   emotion,   moreover,   memories   can   become   more   emotional   over   time.   For   example,   post-­ traumatic   stress   disorder   patients   remembering   the   painful   memories   in   an   unsafe  space  without  a  therapist  may  see  

(2)

the  trauma  situation  more  dangerous  than   it  used  to  be  (Foa  et  al.,  2008).  

 

In   general   terms,   the   most   conspicuous   model   of   memory   formation   of   the   last   century   assumes   that   information   is   perceived   by   the   brain   –in   order   to   be   stored   temporarily¬–   forming   the   “short-­ term   memory”   processing.   This   type   of   information   will   be   stored   between   minutes  and  hours.  Then,  the  memory  can   make  a  progressive  transition  from  short-­ term  memory  (STM)  to  long-­term  memory   (LTM)   as   a   result   of   (synaptic)   memory   consolidation   (Nader   and   Hardt,   2009;;   Cowan,  2008).    

 

During   consolidation,   the   cascade   of   processes  that  follows  initial  registration  of   information   and   the   memory   trace   is   stabilized,  becoming  increasingly  resistant   to   interference   by   newer   information   or   other   disturbances   (McGaugh,   2000),   turning  from  a  labile  memory  into  a  stable   memory.   The   model   of   consolidation   assumes   that   memory   and   its   mechanisms  will  gradually  and  irreversible   decline   over   time   (Nader   and   Hardt,   2009).   If   so,   this   model   cannot   explain   such  observations  related  to  the  plasticity   of   memories   as   the   ones   mentioned   before.   In   order   to   understand   how   do   memories   can   become   more   emotional   with  time,  neuroscience  has  to  recognize   memory  as  a  dynamic  process.    

 

In   summary,   we   could   conclude   that   something   about   the   relation   of   arousing   emotion  and  processing  of  emotions  might   contributes  to  therapeutic  uses.  However,   the   specifications   of   what   are   the   things   about   emotions   that   actually   brings   changes   are   still   unclear.   That   is   the   reason  why  a  relevant  part  in  the  study  of  

memory   -­as   a   dynamic   of   arousing   process-­  will  be  the  understanding  on  the   origin  of  the  plasticity  of  neutral  memories.   This  will  help  us  to  prevent  situations  that   make   memories   more   emotional.   For   example,   during   PSTD   or   anxiety   treatment,   the   reactivation   of   some   memories  could  lead  to  a  retrogression  in   therapy,  instead  of  an  improvement  due  to   the   lack   in   the   etiology   of   the   traumatic   memory.    

 

Memory  as  a  dynamic  process.  

 

Pioneer   studies   during   the   late   1960’s   showed  that  consolidated  memories  could   turn   into   labile   memories   again   if   it   is   exposed   to   a   reminder   cue   (Misaning   et   at.,1986).   The   work   by   Misaning   et   al.   opened   a   new   track   in   research   and   encouraged   further   work   to   study   the   possibility   of   reactivation   of   memories   after  “retrieval”,  a  process  caused  by  the   re-­exposure   to   salient   training-­related   information  whereby  a  memory  is  passed   from   an   active   state   into   an   active   one   (Gisquet-­Verrier  &  Riccio,  2012).    

 

Later,  at  the  beginning  of  the  XXI  century,   Nader   and   co,   studied   the   role   of   the   amygdala  in  the  synaptic  consolidation  of   the  Pavlovian  association  of  a  shock  with   a   tone.   Showing   that   the   tone   presented   long   after   consolidation   was   able   to   change   the   susceptibility   of   a   memory   (Nader  et  al.,  2000).    

 

At  the  same  time,  Nadel  and  Moschovitch   developed   an   alternative   theory   of   memory   consolidation,   known   as   the   multiple   trace   theory   (MTT).   This   theory   suggests  the  memory  can  turn  again  into   a  fragile  and  labile  state  when  the  memory   is  retrieved  (Nadel  et  al.,2000),    

(3)

 

These   studies   gave   place   to   a   new   hypothesis   which   explains   memory   as   a   dynamic   process,   adding   a   process   now   known  as  “reconsolidation”,  to  the  old  and   static   model   (Nadel   et   al.,   2000;;   Sara,   2000).  

 

Broadly   speaking,   reconsolidation   is   the   process   by   which   memories   –previously   consolidated–   are   recalled   and   actively   consolidated.    This  process  might  help  to   maintain,  enhance  and  change  long-­term   memories  by  the  reactivation  of  them  after   retrieval  (Nadel  et  al.,  2000;;  Sara,  2000).   This  reconsolidation  process  provides  an   additional   chance   of   amending   or   even   disrupt   access   to   the   memory   under   appropriate   circumstances   (Lane   et   al.,   2015)  

 

Several  cellular  and  molecular  processes,   as   well   as   several   anatomical   regions,   were   found   to   be   exclusively   enrolled   during   reconsolidation   (Lee   et   al.,   2004;;   Tronel   &   Sara,   2002;;   Kelly   et   al.,   2003;;   Bahar  et  al.,  2003;;  Gutiérrez  et  al.,  2003).   This   allowed   opening   a   new   level   of   the   understanding   of   the   potential   role   of   reconsolidation  during  memory  updating.      

As   we   mentioned   before,   the   consolidation  process  cannot  explain  how   does   memories   could   be   updated   with   emotionality.   However,   the   observations   on   the   reconsolidation   hypothesis,   completely  change  the  theories  about  fate   memories,   into   a   more   plastic   and   malleable   idea   of   memories   that   we   expected.  So,  in  these  terms,  it  looks  like   our  study  of  interest  could  be  mediated  by   reconsolidation?  

 

How  does  emotional  arousal  can  affect   consolidation  and  reconsolidation  

 

In  consolidation    

 

The   enhancement   of   memories   attached   to  an  emotional  event  has  been  attributed   to   the   activation   of   the   amygdala   during   arousal   by   noradrenaline.   In   general   terms,   the   amygdala   is   the   structure   in   humans   that   encodes   emotional   information   (Stegener   et   al.,   2005),   and   the  noradrenaline  mediates  the  amygdala   by   the   modulation   of   diverse   hormones   and   neurotransmitters,   as   the   adrenal   stress   hormones,   used   during   consolidation  (Schwarze  et  al.,  2012)    

Specifically,   it   has   been   shown   that   the   molecular   basis   of   enhancement   due   to   emotional  arousal  on  long-­term  memory  is   related  to  the  ß-­Adrenergic  receptor,  when   this   is   blocked   by   its   antagonists,   the   memory  enhancing  effects  are  blocked  as   well  (Cahill  et  al.,  1994;;  Nielson  &  Jensen,   1994;;   van   Stegeren   et   al.,   1998).   At   the   same   time,   in   human   subjects   with   selective   lesions   of   the   amygdala,   emotional  arousal  also  does  not  enhance   long-­term   memory   of   the   arousing   material   (McGaugh,   2000),   pointing   out   that   enhancement   of   memory   due   to   emotionally   arousing   events   may   then   critically   be   based   on   the   specific   interactions   between   the   amygdala   and   the  hippocampus  (Anderson  et  al.,  2006).    

Parallel,   fMRI   studies   in   humans   have   shown   that   the   influence   of   emotions   on   memory   is   regulated   by   multiple   brain   systems,  in  which  their  activation  depends   on   the   stage   of   information   processing.     During   the   study   of   the   relationship   between   declarative   memories   and  

(4)

emotions,  frontotemporal  brain  regions  act   together   to   promote   the   retention   of   emotionally   arousing   events   (LaBar   &   Cabeza,   2006).   Additionally,   the   enhancement  of  memory  due  to  emotional   arousal   involves   interactions   between   subcortical  and  cortical  structures  and  the   activation   of   central   and   peripheral   neurohormonal   systems   that   are   modulated   by   the   amygdala   (LaBar   &   Cabeza,  2006).    

 

There  is  still  some  controversy  related  on   what  does  EEM  hypothesis  is  base  on.  For   example,   Taimi   et   al.,   have   found   that   emotional  stimuli  not  only  promote  arousal   but   also,   intensifies   cognitive   processes   that   contribute   to   the   enhanced   memory   (Taimi  et  al.,  2007).    In  this  case,  the  EEM   hypothesis   will   be   based   on   cognitive   characteristics  of  emotional  stimuli  rather   than  on  arousal.  In  contrast,  Schwarze  et   al.,   studied   the   effects   of   arousal   on   memory   formation   independent   of   cognitive   processes,   finding   only   enhancement   of   neutral   memories   by   arousal   after   consolidation   in   item   familiarity   but   not   in   recollection,   proving   that  memory  do  not  differ  with  respect  of   cognitive   factors   as   distinctiveness   or   semantic   relatedness   (Schwarze   et   al.,   2012).   The   dualities   of   this   controversy   might  rely  on  when  does  the  EEM  occurs   during  the  memory  information  process.    

In  reconsolidation    

 

As  we  mentioned  before,  reconsolidation   occurs   after   retrieval.   According   to   the   MTT   hypothesis,   every   time   that   an   episodic  memory  is  retrieved,  there  will  be   a   more   detailed   memory   trace   or   an   expanded  representation  of  the  details  of   the   old   memory   that   will   make   more  

accessible  to  be  effectively  retrieved  in  the   future.   Specifically,   every   time   that   a   memory  is  retrieved  and  re-­encoded,  the   updated  trace  will  incorporate  information,   including  emotions  (Lane  et  al  2015).    

Furthermore,   studies   on   the   dynamic   interplay   between   retrieval   and   reconsolidation  of  memories  have  shown   that  the  reactivation  of  a  memory  can  be   given  just  using  a  reminder  of  the  spatial   context   of   the   original   event   to   control   fearful   responses,   and   when   the   consolidation  is  blocked  with  ansyomycin   followed   by   the   reminder,   showed   no   conditional   fear   (Nadel   et   al.,   2012).   These   results   suggest   that   after   every   retrieval   of   a   fear   memory,   a   reconsolidation  process  will  occur  and  that   the   disruption   of   the   reconsolidation   process  can  occur  due  to  the  elimination   of   the   previous   fear   response   (Nader   et   al.,  2012).        

 

Moreover,   MTT   provides   a   way   to   understand   how   afflictive   emotional   memories   can   be   altered   or   enhanced   through  the  corrective  experience  (Lane  et   al.,   2015).   In   this   case,   the   emotional   reaction   integrates   the   memory,   as   the   spatial  and  temporal  contexts  do,  creating   an   autobiographical   memory.   So,   the   more   highly   arousing   the   emotional   reaction,   the   more   likely   the   evoking   situation   will   be   remembered   later   on   (McGaugh  2003).  

 

Likewise,  it  has  been  shown  that  when  the   memory   is   recalled,   the   emotional   response   incorporated   into   this   memory   will   be   re-­engaged,   reactivating   the   sympathetic   response   of   the   amygdala.   Thus,   after   a   traumatic   incident,   the   memory   will   be   strengthened,   and   the  

(5)

emotional   response   attached   to   it   will   intensify  after  reconsolidation  (Lane  et  al.,   2015).  

 

At   the   same   time,   MTT   proposes   that   emotional   memories   are   revised   during   the   reconsolidation   process.   With   this,   during   psychotherapy,   patients   can   re-­ evaluate  the  original  experience  and  even   turn  it  into  a  more  positive  one  (Lane  et  .,   2015).    

 

Taking   into   account   the   reconsolidation   process,  researches  started  to  investigate   a   way   to   modify   traumatic   memories   previously   consolidated,   using   drugs,   such   as   propranolol,   to   block   the   emotional   response   during   reconsolidation.   In   rats,   propranolol   –a   beta-­adrenergic  antagonist–  has  found  to   have   an   indirect   effect   on   protein   synthesis   in   the   amygdala,   blocking   the   reconsolidation   process   (Debiec   &   Ledoux,   2004).   At   the   same   time,   some   studies   in   humans   demonstrated   the   effect   of   propranolol   in   reconsolidation,   specifically,   blocking   or   decreasing   the   emotional   response   attached   to   ferly   memories  (Schwabe  et  al.,  2012;;  Pitman   et  al.,  2002;;  Brunet  et  al.,  2008).  Although   the   use   of   propanol   as   a   treatment   in   psychotherapy   offers   a   promising   effect,   there  is  still  a  debate  regarding  the  ethical   and   legal   issues   that   this   represents   (Tenenbaum  &  Reese  2007).  

 

In   conclusion,   the   MTT   hypothesis   suggests   that   during   reconsolidation   the   memories  are  not  created  again,  instead,   the   memories   are   transformed   in   fundamental   ways,   including   the   emotional   responses   associated   to   it   (Lane  et  al.,  2015).    

 

Taking   these   criteria   into   consideration,   arousal   during   reconsolidation   might   influence   the   strength   of   neutral   memories,   due   to   the   beta-­adrenergic   receptors  activation  in  the  amygdala  that   this  causes?      

 

Effects   of   manipulation   on   arousal,  

emotion,   or   stress   during  

reconsolidation  

 

To  solve  the  question  previously  exposed,   some   authors   have   work   in   the   relation   between   emotional   learning   and   strengthening  of  memories.  For  example,   Finn   and   Roediger   provided   novel   evidence   of   memory   improvement   by   manipulation   of   the   reconsolidation   process   in   humans.   In   which,   the   relationship   between   the   amygdala   and   the   hippocampus   may   play   an   essential   role.   Specifically,   they   demonstrate   that   retrieval   is   essential   for   emotional   enhancement   of   memories   during   reconsolidation,   showing   that   emotion   influences   the   accuracy   of   memory.   However,  the  study  occurred  in  the  same   day  and  giving  participants  a  short  period   of  time  to  study  the  words.  In  this  case,  we   can  question,  if  the  information  was  even   consolidated,  because  for  episodic  details   to   persist   in   long-­term   memory,   the   memories   have   to   stabilize   by   long-­term   potentiation   process,   a   process   that   involves  a  prolonged  period  after  learning.   (McKenzie   &   Eichenbaum,   2012;;   Dunsmor  et  al.,  2015)    

 

When  relates  to  the  relationship  between   stress   and   reconsolidation   of   memories,   various   authors   have   found   a   positive   relation.   For   example,   Cocccoz   et   al.,   found  that  a  naturalistic  mild  stressor  can   improve   reconsolidation   by   the  

(6)

enhancement  of  the  long-­term  expression   of  the  declarative  memory.  Similarly,  Bos   et  al  (2014b)  found  that  exposure  to  stress   after  reactivation  of  memories  leads  to  the   improvement   of   recalling,   implying   that   mild  stress  can  enhance  reconsolidation,   which   in   turn,   strength   declarative   memory.   When   relates   to   the   “stress   hormone”,  i.e.  cortisol,  studies  in  humans   suggest   that   cortisol   response   mediates   the   effect   of   the   post-­reactivation   stress   manipulation   on   contextualization   of   emotional   memories   (Bos   et   al.,   2014a).     And,  exposure  to  stress  after  reactivation   of  memories  leads  to  the  improvement  of   recalling,   implying   that   mild   stress   can   enhance   reconsolidation,   which   in   turn,   strength   declarative   memory   (Bos   et   al.,   2014b).    

 

In  contrast,  other  studies  showed  that  the   effects  of  stress  on  memory  in  humans  are   negative,   impairing   the   reconsolidation   process   (Schawabe   &   Wolf   2010),   and   having   a   negative   impact   in   reactivated   components   of   declarative   memory   (Hupbach  &  Dotskind,  2014).  

 

 As   we   saw,   the   effects   of   stress   on   memory   reconsolidation   is   still   controversial,   and   the   effects   of   emotion   on  memory  reconsolidation  is  still  unclear.   So,   our   refined   knowledge   until   know   about   the   conditions   under   which   reconsolidation   of   memories   may   occur   still   unclear.   We   thus   will   examine   the   impact  of  arousal  during  reconsolidation  of   neutral   memories.   Based   on   the   MTT   theory,  we  expect  that  arousal  during  the   reconsolidation   window   will   render   an   initial   neutral   memory   into   a   more   emotional  one.  

 

 

Gender  differences    

 

In   humans,   during   consolidation   women   tend   to   produce   memories   faster,   or   a   more  intense  response  to  cues  than  men   during  reconsolidation.  At  the  same  time,   women   report   more   vivid   memories   and   recall   more   emotional   autobiographical   events  in  a  timed  test  (Herz  and  Cupchik,   1992;;   Canli   et   al.,   2002).
Canli   and   co-­ workers  mentioned  some  explanations  of   this   gender   differences,   such   as   women   experience  life  more  intensively,  resulting   in  a  better  memory;;  or  gender  differences   relate   to   encoding,   rehearsing   and   thinking   of   emotional   experiences,   that   can   guide   into   a   different   response   of   memory.    

 

Furthermore,  it  has  been  shown  that  with   MRI   studies,   the   activation   pattern   of   neural   networks   during   emotional   experience  and  memory  encoding  differs   between   men   and   women   (Canli   et   al.,   2012).  

   

Moreover,   it   has   been   suggested   that   there   is   an   estrogen-­mediated   modification   of   emotional   enhancement   via  the  amygdala.  Pruis  et  al.,  showed  that   higher  levels  of  estrogen  in  older  women   resulted   in   higher   arousal   for   negative   stories   and   images,   without   affecting   memory.  They  propose  that  this  hormone   could   affect   the   response   of   emotion   by   the   amygdala   and   prefrontal   cortex,   and   the   reason   of   why   they   didn’t   find   any   differences   in   memory   it   could   be   due   to   the   age-­related   changes   in   the   hippocampus  of  older  women.  

 

In   contrast,   Anderson   et   al.   did   not   find   significant   differences   between   men   and   women  in  subjective  arousal  reactions  to  

(7)

emotionally   arousing   events.   However,   they   explained   that   this   might   be   due   to   the  lack  of  power  of  their  test.  

 

In   addition,   according   to   LaBar   and   Cabeza   (2006),   the   hemispheric   distribution  of  encoding-­related  amygdala   activity   differs   from   men   to   women.   Specifically,   the   distribution   in   women   shows   a   left-­lateralized   effect   meanwhile   in   men   there   is   a   right-­lateralized   effect.   This   lateralization   pattern   is   more   conspicuous  when  relates  to  the  activation   of  the  amygdala  by  memory,  and  is  found   less   often   as   an   effect   of   emotion   on   perceptual   processing.   The   explanations   for   this   emotional   memory   gender   differences  remain  unclear.  However,  they   constitute   an   active   area   of   current   research.  

 

In   conclusion,   men   and   women   differ   in   neural   expression   and   behavior   during   enhancement   of   memory   consolidation   during  emotional  events.  If  the  differences   are   present   during   the   encoding   of   emotional  experiences  in  different  parts  of   the   brain,   then   this   differences   could   be   also  present  during  post-­encoding  events   and  retrieval.    Suggesting  that  the  gender   differences   already   observed   during   consolidation   can   be   also   present   during   reconsolidation.    

 

In  the  present  work,  we  will  also  analyze  if   there  are  gender  differences  related  to  the   alteration   of   an   emotional   expression   during   reconsolidation   of   a   memory.   Expecting   that   reactivated   memories   added   to   arousal   will   show   a   stronger   physiological   reaction   as   compared   to   a   memory   that   was   reactivated   but   without   arousal,  and  this  difference  will  be  bigger   for  women  than  for  men.    

 

In   summary,   to   investigate   the   effect   of   arousal   during   reconsolidation   of   neutral   memories   and   their   gender   differences,   we  used  an  amygdala-­dependent  learning   task  (an  object-­context-­episode  task  form   Pavlovian   fear   conditioning).   The   encoding   session   occurred   in   three   phases,  during  three  consecutive  days.  In   phase   1,   also   called   learning   phase,   subjects  were  introduced  to  a  set  of  visual   stimuli   –each   consisting   on   a   context   image   followed   by   the   appearance   of   a   central  image  within  it–  of  120  trials.  Shock   electrodes   were   not   attached   during   phase   1   and   there   was   no   explicit   motivation  or  instruction  to  remember  any   of   the   pictures.   However,   participants   were   asked   to   try   to   remember   the   background  image  in  combination  with  the   object   as   vivid   as   possible   and   rate   it.   Elapsed   24   hours,   in   phase   2,   electric   shock   electrodes   were   attached   to   the   wrist  of  the  hand  opposite  to  the  dominant   one,   and   just   from   the   one   hundred   and   twenty   background   images   were   presented,  eighty  of  them  were  paired  with   a   shock   (reactivated+shock,   RS+),   while  

the   fourty   images   left  

(reactivated+noshock,   RS-­)   were   unpaired.   The   participants   were   asked   – while  looking  at  the  background  image–  to   remember  the  whole  mental  image  of  the   previous   day   and   to   rate   the   extend   in   which  the  background  image  gives  them  a   feeling   of   complete   reliving.   After   conditioning,  the  following  day,  in  phase  3,   subject   classified   240   central   images   as   novel   or   old,   based   on   the   images   presented  during  day  1.  Skin  conductance   and   heart   rate   responses   were   acquired   during  the  3  consecutive  days.  

   

(8)

METHODS      

1.1  Participants.  

 

A   total   of   44   healthy   participants   were   recruited   via   online   advertisements   to   participate   under   the   present   study   (Age=23.18  ±  4.90  years  (mean  ±  s.d.),  12   males).   Six   subjects   were   removed   from   the   analysis   for   equipment   failures   with   stimulus   presentation   software.   The   final   sample   included   38   subjects   (Age=22.58   ±   3.77   years   (mean   ±   s.d.),   12   males).   Sample  size  was  based  on  prior  studies.   No   statistical   method   was   used   to   predetermine   sample   size.   Prior   to   the   study,   candidate   participants   receive   information  about  the  study  conducted  on   three   consecutive   days   and   a   screening   form   via   email.   Candidates   were   eligible   for   inclusion   if   they   meet   the   following   criteria:   (i)   age   18-­35   years;;   (ii)   Dutch   speakers,   (iii)   first   time   as   participants   in   an  experiment  ruled  by  Vanessa  van  Ast.   Participants  were  excluded  from  the  trial  if   they   met   the   following   criteria:   (i)   any   neurological  or  psychiatric  illnesses;;  (ii)  be   under  any  psychiatric  disorder  treatment;;   (iii)   any   cardiovascular   problems;;   (iv)   pregnancy;;   (v)   drug   or   alcohol   abuse.   Information   about   these   criteria   was   obtained   by   questionnaires   (explained   below).   The   participants   received   partial   course   credit   or   financial   compensation   (€40)  in  return  for  their  participation.  The   study   was   approved   by   the   Ethics   Department   of   the   Psychology   Department   of   the   University   of   Amsterdam.  

 

1.2  Stimuli    

 

The  images  used  in  this  study  were  taken   from  Internet.  The  images  were  shown  in  

random   order   to   each   subject   with   the   exception  of  the  first  ten  images.  Images   were   presented   on   a   standard   computer   screen   located   approximately   2   feet   in   front  of  a  subject.    

 

One   hundred   and   twenty   pictures   of   different   backgrounds   served   as   neutral   background   scenes   indoor,   while   240   different   images   of   objects   served   as   neutral  object  pictures.  

 

1.3  Skin  conductance  response      

Electrodermal   activity   (EDA)   was   measured   by   two   curved   Ag/ACl   electrodes   of   20   by   16   mm   that   were   attached  with  Micropore  Surgical  Tape  ½   inch   to   the   medial   phalanges   of   the   first   and   third   fingers   of   the   hand   opposite   to   the  dominant  one.    The  amplifier,  built  by   the   University   of   Amsteredam,   applied   a   sineshaped  excitation  voltage  (1  V  peak-­ peak)   of   50   Hz   derived   from   the   mains   frequency   to   the   electrodes   in   order   to   detect   changes   in   the   electrodermal   activity.   The   signal   from   the   input   device   was   led   through   a   signal-­conditioning   amplifier.  The  analog  output  was  digitized   at   1000   S/s   by   a   16-­bit   ADconverter   (National   Instruments,   NI-­6224).   The   signal   was   recorded   with   the   software   program   VSSRP98   v6.0   (Versatile   Stimulus  Response  Registration  Program,   1998;;   Technical   Support   Group   of   the   Department   of   Psychology,   University   of   Amsterdam).  

 

1.4  Heart  rate  activity    

 

Heart   rate   variability   was   collected   using   three   Ag–Ag   electrodes.   The   electrodes   were   fixed   to   the   participant   skin   using   adhesive  patches  (3M  Red  Dot  Electrode  

(9)

with   Micropore   Tape   2239).   The   electrodes   were   stuck   on   three   specific   points  of  their  torso:  one  was  placed  below   the  right  clavicle,  the  other  one  on  the  left   side  of  the  chest,  just  below  the  sixth  rib,   and  the  ground  electrode  was  fixed  under   the  left  clavicle.  The  signal  was  recorded   with  the  software  program  VSSRP98  v6.0   (Versatile   Stimulus   Response   Registration   Program,   1998;;   Technical   Support   Group   of   the   Department   of   Psychology,   University   of   Amsterdam),   acquiring   at   a   sampling   rate   of   1000   samples  per  second.  

 

1.5  Shock  administration.  

 

One  30  per  40  mm  Ag/AgCl  electrode  with   a   conductive   gel   (Signa,   Parker)   was   attached  to  the  wrist  of  the  hand  opposite   to   the   dominant   one.     Shocks   were   administered   using   a   Digitimer   Constant   Current   Stimulator   DS7A   (www.   digitimer.com).  Shock  consisted  of  a  4mA   current   of   1   s.   Shock   intensity   was   adjusted   to   be   uncomfortable   but   not   painful  per  participant.  

 

1.6  Subjective  measures    

 

Participants  filled  out  Dutch  translations  of   the   trait   portion   of   the   state-­trait   anxiety   inventory   (STAI-­T;;   Spielberger   et   al.,   1970;;   Van   Der   Ploeg   et   al.,   1980),   perceived  stress  scale  (PSS;;  Cohen  et  al.,   1983;;   De   Vries,   1998)   and   the   survey   of   recent   life   events   (SRLE;;   Kohn   and   Macdonald,  1992;;  Majella  De  Jong  et  al.,   1996).   Furthermore,   to   assess   the   influence   of   hydrocortisone   on   self-­ reported  affective  state,  participants  filled   out   the   state-­anxiety   inventory   (STAI-­S;;   Spielberger  et  al.,  1970;;  Van  Der  Ploeg  et   al.,   1980)   and   the   positive   affect   and  

negative  affect  schedule  (PANAS;;  Watson   et  al.,  1988).  Subjective  evaluation  of  the   conditioned   stimuli   on   arousal   and   valence  dimensions  was  assessed  online   using  self-­assessment    

 

Participants  filled  out  Dutch  translations  of   the   trait   portion   of   the   Spielberg   Trait   Anxiety   Inventory   (STAI-­T;;   Spielberger   and   Gorsuch,   1983),   and   the   Beck   Depression   Inventory   (BDI;;   Beck   et   at.,   1961),   the   Positive   And   Negative   Affect   Scale  (PANAS;;  Watson  et  al.,  1988),  and   the   Spielberg   State-­Trait   Anxiety   Inventory   (STAI-­S;;   Spielberger   and   Gorsuch,  1983)  test.       1.7  Experimental  task     1.7.1  Learning  phase      

Before   the   task,   participants   were   instructed   to   tried   to   remember   the   background  image  in  combination  with  the   object  as  vivid  as  possible.  They  could  do   this   through   imagining   how   the   background   image   interacts   with   the   object.    

 

Each  trial  began  with  a  black  background,   followed  by  a  700  ×  933  pixels  background   picture   that   was   shown   for   5   s.   Three   seconds   after   background   picture   onset,   an   object   image   appeared   in   the   foreground   within   a   300   ×   400   pixels   frame.   The   object   was   displayed   for   2   s,   outlasting   background   picture   offset   for   500   ms.   After   that,   participants   were   asked  to  rate  how  vivid  they  imagined  the   interaction   between   background   image   and  object.  They  rated  this  on  a  continues   scale,   starting   from   “not   vivid   at   all”   to   “very  vivid”,  were  mouse  totally  left  meant   “not  vivid  at  all”  and  click  on  the  totally  right  

(10)

meant  “very  vivid”,  in  order  to  know  their   perception   regarding   the   image   combination.  

 

This  phase  consisted  of  120  trials,  where   each   background   image   was   paired   with   one  of  the  object  images.    

 

1.7.2  Reactivation  phase      

To   give   enough   time   to   consolidate   the   image   combination,   all   testing   was   performed  elapsed  at  least  24  hours  after   the  learning  phase.  At  the  beginning  of  the   experiment,   electric   shock   electrodes   were  attached.  

 

Reactivation  trials  began  with  a  3  s  black-­ screen,   followed   by   the   presentation   of   700   ×   933   pixels   background   picture   during   5   s.   After   that,   participants   were   asked   to   rate   to   what   extend   the   background  image  gave  them  the  feeling   of   reliving.   The   extend   of   reliving   was   instructed   to   be   determined   by   recognizing   the   background   image   and   the  extend  in  which  they  remembered  the   corresponding  object  of  the  previous  day.   Participants  rated  the  extend  of  reliving  on   a   continues   scale,   from   ‘no   reliving’   to   ‘a   lot   of   reliving’.   The   scale   had   the   same   system  as  the  previous  day  and  had  5  s  to   rate.  

 

The   reactivation   phase   consisted   of   80   trials,  whereby  40  trials  were  paired  with  a   shock  (reactivated+shock,  RS+),  while  the   40  images  left  (reactivated+noshock,  RS-­ )   were   unpaired.   The   trial   sequence   was   randomized  individually.           1.7.3  Recognition  phase    

Recognition   trials   began   with   a   black   image,  followed  by  the  presentation  of  an   object  image  of  300  ×  400  pixels  frame  for   5   s.   Then,   a   3   s   black   screen   appeared.   After,   participants   were   instructed   to   indicate  whether  they  had  seen  the  object   during   the   encoding   phase   or   not.   To   report   their   answer,   participants   had   to   rate   on   a   6-­point   scale,   that   reflects   how   certain  they  were  about  their  answer.  The   meaning  of  the  numbers  was  as  followed:   1;;  Very  certain  the  object  is  new,  2;;  pretty   certain   the   object   is   new,   3;;   I   guess   the   object  is  new,  4;;  I  guess  this  object  is  old,   5;;   pretty   certain   the   object   is   old,   and   6;;   very  certain  the  object  is  old.    

The   recognition   phase   consisted   of   240   trials,   whereby   40   trials   consisted   in   objects   presented   during   the   learning   phase,  but  their  background  image  did  not   appear  during  the  reactivation  phase  (non   reactivated),   40   trials   of   object   images   presented  during  the  learning  phase,  and   their   background   image   was   presented   and   paired   to   a   shock   during   the   reactivation   phase   (reactivated+shock),     40  trials  of  object  images  presented  during   the   learning   phase,   and   their   bacground   image   was   presented   and   unpaired   to   a   shock   during   the   reactivation   phase   (reactivated+noshock),    the  120  trials  left,   consisted  of  new  object  images.  The  trial   sequence  was  randomized  individually.      

     

Figure  1  Experimental  task.  Adult  human  subjects  

(11)

object  in  the  middle.  During  the  reactivation  phase,   80   context   images   from   the   previous   day   will   be   presented,  and  after  50  of  them,  they  will  receive  a   small   shock.   During   the   recognition   test,   we   will   present   randomly   mix   the   120   target   objects   with   120  new  target  objects.  

 

1.8  Procedure  

 

Participants   were   scheduled   to   three   laboratory   sessions   separated   by   a   one-­ day   interval.   They   were   informed   beforehand  that  during  the  study  electrical   shocks   were   used   and   provided   written   informed  consent.  Experiments  took  place   in  a  light  room  and  were  conducted  using   a   personal   computer.   Each   subject   was   seated  in  front  of  a  22-­inch  wide  monitor   screen   located   approximately   2   feet   in   front  of  a  subject.  

 

In  session  1,  skin  conductance  electrodes,   heart  rate  electrodes,  and  shock  bracelet   were   attached,   followed   by   the   sensitiveness   to   shock   test.   After,   shock   bracelet  was  removed.  Then,  participants   completed   the   STAI-­S,   BDI,   PANAS,   STAI-­S   (all   questionnaires   were   computer-­administrated).   Subsequently,   participants  completed  the  learning  phase   of  the  contextual  memory  task.  During  the   learning   phase,   participants   were   instructed  to  move  as  little  as  possible  and   to  try  to  imagine  how  does  the  background   image   interacts   with   the   object   for   every   trial.   Once   completed,   participants   were   asked   to   fill   once   again   a   PANAS   and   STAI-­S.    

 

In   the   second   laboratory   session,   reactivation   phase   took   place   24   hours   after   the   end   of   the   learning   phase.   Skin   conductance   sensors,   heart   rate   electrodes,   and   shock   bracelet   were   attached.   Afterwards,   participants  

completed   the   PANAS   and   STAI-­S   questionnaires.   Next,   participants   started   the   second   task,   during   the   task,   they   were   instructed   to   move   as   little   as   possible   and   to   try,   while   looking   at   the   background   image,   to   remember   the   whole   mental   image   of   the   previous   day   for   each   trial.   Once   completed   the   reactivation   task,   they   filled   the   PANAS   and   STAI-­S   questionnaires.   Followed   by   the  detachment  of  all  the  electrodes.    

On   the   last   session,   recognition   phase   took   place   24   hours   after   the   end   of   the   reactivation   phase.   Skin   conductance   sensors   and   heart   rate   electrodes   were   attached.   Afterwards,   participants   completed   the   PANAS   and   STAI-­S   questionnaires.   Thereafter,   participants   were   instructed   to   move   as   little   as   possible   during   the   task   and   to   try   to   remember   the   object   they   had   seen   on   day  one  and  rate  it.  Once  completed  the   recognition   task,   they   filled   the   PANAS   and   STAI-­S   questionnaires.   Followed   by   the   detachment   of   all   the   electrodes.   At   the   end,   participants   were   asked   to   fill   a   questionnaire   regarding   the   experiment   and   discussed   with   them   their   opinion   regarding  the  experiment.  

 

 

Figure   2.   Experimental   protocol.   Types   of  

reminders.  The  timing  of  targeting  objects  within  the   context   images   and   timing   for   the   three   days   are   represented.  

(12)

1.9  Gender  differences  

   

To  have  a  stronger  background  of  women   participants,  during  the  medical  screening,   women   had   to   answer   some   specific   questions  related  to  their  menstrual  cycle   and  contraceptive  control.  

 

2.0  Statistical  analysis.  

 

Data   were   analyzed   using   the   statistical   package  IBM  SPSS  statistics  22  (Armonk,   New  York,  USA:  IBM  Corp).    

 

The   recognition   memory   analysis   was   addressed   with   a   one-­way   repeated   measures  analysis  of  variance  (ANOVA).   This  analysis  was  used  in  the  recognition   accuracy  of  participants  and  the  effects  of   the   manipulation   through   physiological   record   responses   (SCL   and   HR).   Recognition  performance  was  defined  as   percentage  of  correct  recognized  objects   as  “old”  on  day  3.  Greenhouse—Geisser   correction   was   applied   when   the   assumption  of  sphericity  was  violated.    

For   the   reliving   amount   effect   analysis   (containing   recognition   accuracy,   SCL   and   HR   measurements)   an   explorative,   two-­way,  2x3  factorial  repeated  measures   ANOVA   was   conducted,   with   two   levels   for  reactivation  conditions  (RS+,  RS-­)  and   3   levels   of   reliving   rates   (High,   Some,   Low).   To   test   the   effectiveness   of   our   reactivation   manipulation,   participants   were   asked   to   measure   the   amount   of   “reliving”  when  faced  the  reminder  cue  on   day   2.   The   results   were   categorized   into   even  33rd  percentiles.  

 

For  gender  differences  analysis  (including   recognition   accuracy,   SCL   and   HR   measurements)   a   factorial   repeated  

measures   ANOVA   was   conducted   with   Memory   Condition   Scores   as   within-­ subject   factor   and   Gender   as   between-­ subject   factor.   In   case   of   significant   results,   partial   eta   squared   (hp2)   is   reported   as   a   measure   of   effect   size.   An   alpha-­level  of  0.05.     RESULTS       Participant  characteristics    

Six  participants  (all  female)  were  excluded   prior   to   analysis;;   two   participants   were   absent  during  the  “recognition  phase”,  two   participants  indicated  not  having  received   any   electric   shocks   during   the   “reactivation  phase”,  and  two  participants   did  not  report  any  reliving  ratings.  The  final   sample  consisted  of  38  participants  with  a   mean   age   of   22.58   years   (SD=3.77,   12   males).  

 

Recognition  memory.    

 

To  investigate  the  effect  of  arousal  during   reconsolidation   of   neutral   memories,   memory   performance   was   examined   using   number   of   hits   during   the   recognition   phase.   A   one-­way   ANOVA   with  RS+(0.77±0.14)  RS-­  (0.76±0.16)  and   non  reactivated  memories  (0.75±0.15),  as   repeated  measures  showed  no  significant   effect   on   memory   conditions   on   recognition  accuracy  (F  [2,  78]  =  1.31,  p  =   0.49,  ηp2  =  0.03),  as  shown  in  Figure  3A.    

Moreover,  skin  conductance  is  one  of  the   most   sensitive   measures   of   mental   activity.   Specifically,   in   conditioning   studies,   the   skin   conductance   response   has  been  interpreted  as  an  indicative  of  a   neutral  stimulus  acquiring  the  signal  value   of   the   unconditioned   stimulus,   allowing  

(13)

assessment   of   the   degree   of   learning   or   unlearning.   (Vila   2004).   Therefore,   we   analyzed  the  skin  conductance  responses   (SCR)  during  the  recognition  phase  with  a   one-­way   repeated   measures   ANOVA   of   the   3   memory   conditions   (RS+,   RS-­   and   non   reactivated).   All   skin   conductance   data   of   10   participants   were   lost   due   to   technical   issues   (malfunctions   in   the   measuring   equipment).   Our   results   showed   no   significant   main   effect   of   reactivation   condition   on   skin   conductance   (F   [2,   54]   =   1.16,   p   =   0.32,   ηp2  =  0.04),  finding  RS+(0.18±0.19),  RS-­   (0.22±0.23)   and   non   reactivated   memories   (0.19±0.27).   A   two   paired   sample   t-­test   provided   confirmation   that   the   conditioning   manipulation   was   noneffective  at  generation  higher  arousal   in   RS+   (0.18   ±   0.19)   than   RS-­   (0.22   ±   0.23)  trials.  p=0.163.  

 

Additionally,  during  recognition  and  recall   tasks,   heart   rate   (i.e.   beats   per   minute)   changes   have   been   related   to   memory   load   and   performance   (Jennings   &   Hall   1980;;  Subotnik  et  al.,  2012;;  Sawyer  et  al.,   2015).   Thus,   differences   in   the   heart   change   (see   Figure   3C)   were   analyzed   with   a   one-­way   repeated   measures   ANOVA,  as  were  performed  for  SCR.  Due   to   malfunctions   in   the   measuring   equipment,   physiological   data   of   nine   participants   had   to   be   excluded,   leaving   heart-­rate   data   of   29   participants.   Same   as   what   we   observed   in   the   other   physiological  test  (SCR),  the  measures  of   HR   change   did   not   appear   to   be   as   sensitive  to  memory  condition  (F  [1.67,  58]   =   1.09,   p   =   0.34),   having   values   of   -­ 6.53±0.43   for   RS+,   of   -­6.55±0.4   for   RS-­   and   of   -­6.91±0.44   for   non   reactivated   memories.      

A

Per cen tage of r ec og nition ac cur ac y Reactivated + Shock Reactivated + No Shock Non reactivated 0 0.05 0.1 0.15 0.2 0.25 0.3 Per cen tage of SCL v ar ia tion Reactivated + Shock Reactivated + No Shock Non reactivated

B

-8 -7 -6 -5 -4 -3 -2 -1 0 1 Reactivated + Shock Reactivated + No Shock Non reactivated

C

BP M 0.9 0.8 0.5 0.6 0.7 0.1 0.2 0.3 0.4

(14)

             

FIGURE   3.   Performance   during   recognition   phase.   (A)   Recognition   performance   index   by   percentage  

recalled  images  at  test  during  day  3.  Errors  bars  represent  the  SD  of  the  mean.  (B)  Skin  conductance  responses.   Mean  square-­root-­normalized  skin  conductive  responses  for  the  RS+,  RS-­  and  non  reactivated  trials.  Error  bars   are  standard  error  means.  (C)  Heart  rate  (HR)  response  measurement.  Bar  height  indicates  beats  per  minute   (BPM).  Data  are  presented  for  RS+,  RS-­  and  non  reactivated  trials.  The  error  bars  represent  SD.  No  significant   differences  were  identified.  

   

Reliving  amount  effect  

 

Opposite   to   what   we   were   expecting,   as   we   shown   above,   exposure   to   the   shock   manipulations   did   not   significantly   elevated   subjective   arousal,   did   not   finding   differences   on   the   effect   of   reactivation   conditions   on   recognition   accuracy.   An   extensive   research   has   shown   that   in   order   to   reconsolidate   a   memory,   it   is   necessary   to   reactivate   it   (Crestani   et   al.,   2015,   Liu   et   al.,   2012).   Therefore,   our   results   could   be   due   to   a   fault   during   the   reactivation   phase,   suggesting   that   during   day   2,   the   reactivation  of  memories  was  not  efficient,   making   the   shock   manipulations   unsuccessful.   Consequently,   in   order   to   test   the   effectiveness   of   our   reactivation   manipulation,   during   day   2,   we   asked   participants   to   what   extend   the   background   image   gave   them   a   reliving   feeling.   The   resulting   ratings   were   categorized   into   tree   standardized   categories   of   33.33%   each,   as:   Low   Reliving,   Some   Reliving   and   High   Reliving.  We  assumed  that  High  Reliving   scores  of  objects  could  be  categorized  as   a   successful   reactivation   of   the   memory,   improving  the  recognition  accuracy  during   day  3.  In  contrast,  the  Low  Reliving  effect   objects,  will  not  evoke  any  recalling  effect,   affecting  than  the  recognition  accuracy  of   the   objects.   To   study   the   effect   of   our   manipulation,   we   performed   a   two   way   repeated   measures   ANOVA   finding   for  

High   Reliving:   RS+(0.28±0.09)   RS-­   (0.25±0.06);;   for   Some   Reliving:   RS+(0.23±0.08)  RS-­  (0.22±0.09);;  and  for   Low   Reliving:   RS+(0.23±0.06)   and   RS-­   (0.25±0.08).   The   results   showed   a   main   effect   of   reliving   on   recognition   accuracy   presenting   (F   [1.43,   74]   =   4.38,   Greenhouse-­Geisser,   p   =   0.03,   ηp2   =   0.11).   Moreover,   additional   analyses   of   the  interaction  effect  between  degrees  of   reliving   and   reactivation   conditions   on   recognition  accuracy  with  a  2x3  repeated   measures   factorial   ANOVA   revealed   marginally   differences   based   in   the   degree  of  reliving  (F  [1.72,  63.63]  =  2.48,   p  =  .10,  ηp2  =  .06).  Significant  differences   were  revealed  with  evoked  High  Reliving   rates   in   memory   accuracy   between   the   reactivation  conditions  (p  =  .04),  as  shown   in  Figure  4A.    

 

The  influence  of  the  reactivation  condition   and  reliving  over  the  SCR  variations  were   analyzed   using   a   two-­way   reaped   measures   ANOVA.   Differing   our   predictions,   participants   did   not   manifested   significant   main   effects   of   reliving   on   SCL   variability   between   RS+   and   RS-­   (F[2,52]   =   1.56,   p   =   0.21,   ηp2=   .06),   meaning   that   skin   conductance   variation  on  day  3  did  not  differ  based  on   whether  participants  reported  a  high  (M  =   .23,  SD  =  0.05),  some  (M  =  .19,  SD  =  .04)   or  low  (M  =  .18,  SD  =  .04)  level  of  reliving   on   day   2.   Moreover,   no   significant   interaction   effect   was   found   between   reliving  amount  and  condition  on  SCR  (F  

(15)

[2,   54]   =   0.24,   p   =   0.79   ηp2=   0.01),   as   show  in  Figure  4B.  

 

Differences  in  the  HR  change  (See  Figure   4C)  were  analyzed  with  one-­way  repeated   measures  ANOVA.  As  the  results  showed   of  the  SCR  variations,  the  measures  of  HR   change   did   not   appear   to   be   sensitive   to  

conditions  and  reliving  amount  (F  [1,  29]  =   0.14,  p  =  0.7  ηp2=  0.02).                    

FIGURE  4.  Recognition  accuracy  for  three  reliving  conditions.  (A)  The  objects  that  evoked  High  Reliving  

rates,  compared  to  the  Some  Reliving  and  Low  Reliving  objects,  showed  a  significant  difference  in  recognition   accuracy  during  day  3.  *p  <  .04;;  error  bars  represent  S.D.  (B)  SCR  variations  for  the  reliving  and  reactivation   variables;;  error  bars  represent  the  S.D.  (C)  Differences  in  the  minimum  and  maximum  value  of  BPM  for  each   reactivated  condition.  

 

Shock  Intensity  

 

Shock   intensity   was   calibrated   before   experimental   task   began   (see   methods),   measuring   the   level   of   discomfortness.   The   intensity   of   the   shock   differed   individually,   values   ranging   from   0.3mV   and  3.8mV  (M  =  0.86,  SD  =  0.64).  After  the   experimental  task,  participants  rated  their  

level   of   discomfort   towards   the   electric   shocks.  Values  ranged  from  1  to  9,  with  1   being  the  lowest  and  9  the  highest  level  of   discomfort.      

 

To  examinee  the  habituation  effects  of  the   shock   manipulation,   a   paired-­samples   t-­ test   was   conducted   to   compare   the   difference   between   self-­reported  

0 0.05 0.1 0.15 0.2 0.25 0.3 Reactivated + No Shock Reactivated + Shock Low High Medium Reliving * A Por cen tage of r ec og nition ac cur ac y 0 0.05 0.1 0.15 0.2 0.25 0.3 Reactivated + No Shock Low High Medium Reliving Per cen tage of SCL v ar ia tions B 4,00 0 2,00 - 4,00 - 8,00 - 6,00 - 2,00 Reactivated + No shock Reactivated + Shock Minimum

value Maximum value

Reactivation type Hear t r at e (BP M) C Reactivated + Shock

(16)

discomfort   prior   to   the   experimental   task   and  after  the  task.  As  Table  1  shows,  our   results  revealed  a  significant  difference  in   participant   discomfort   prior   testing   (M   =  

5.87,   SD   =   0.23)   and   post-­testing   (M   =   4.82,  SD  =  0.27);;  t  (38)  =  3.24,  p  =  0.002).        

   

  Mean     N     Std.  Deviation     Std.  Error  Mean  

Pre-­  testing  shock  discomfort     5.87   39   1.436   0.230   Post-­  testing  shock  discomfort   4.82   39   1.684   0.270    

Table   1.   Shock   discomfortness.   Paired   Samples   Statistics   of   the   self-­reported   degree   of   discomforts  

experienced  by  the  participants  prior  and  post  the  experimental  task  during  the  Recognition  Phase.      

Gender  differences    

 

Previous  studies  have  shown  that  women   and   men   tend   to   differ   their   emotional   enhancement  of  episodic  memory,  where   women   typically   demonstrated   higher   enhancement   (Cahil   et   al.,   2001;;   Cahil,   2006;;   Canli   et   al.,   2002).   In   the   present   study,   a   mixed   Between-­Within   subjects   repeated   measures   ANOVA   showed   for   women   (n=26):   RS+(0.75±0.14)   RS-­   (0.75±0.15)   and   non   reactivated   memories   (0.74±0.15),   and   for   men   (n=12):   RS+(0.81±0.14)   RS-­   (0.79±0.16)   and   non   reactivated   memories   (0.78±0.18).   Then,   did   not   violating   the   assumptions  of  Levene’s  and  Box’s  tests,   Willi’s   Lamda   test   reported   that   the   interaction   effect   between   reactivation   condition  (RS+,  RS-­)  and  non  reactivated,   and  gender  was  not  statistically  significant   (F   [2,   35]   =   0.54,   p   =   0.589   ηp2=   0.03).   Moreover,   there   was   no   main   effect   in   memory  performance  (F  [2,  35]  =  1.1,  p  =   0.344   ηp2=   0.059),   and   between   groups   the   differences   were   no   statistical   significant  (F  [1,  36]  =  0.91,  p  =  0.345  ηp2=   0.025).  See  Figure  5A.  

 

As   a   manipulation   check   of   the   conditioning   procedure,   we   analyzed   the   SCR  responses  of  the  participants  with  a   mixed   Between-­Within   subjects   repeated  

measures   ANOVA.   Women   (n=21)   presented   for   RS+   0.17±0.23,   for   RS-­   0.23±0.26   and   for   non   reactivated   0.20±0.30.  Men  (n=8)  presented  for  RS+   0.18±0.11,  for  RS-­  0.19±  0.11,  and  for  non   reactivated   0.15±0.11.   The   same   as   our   previous   results,   the   analysis   did   not   violate   the   assumptions   of   Levene’s   and   Box’s   tests,   Willi’s   Lamda   test   reported   that   the   interaction   effect   between   reactivation  condition  (RS+,  RS-­  and  non   reactivated)   and   gender   was   not   statistically  significant  (F  [2,  26]  =  0.486,  p   =  0.621  ηp2=  0.036).  Additionally,  no  main   effect  was  found  in  memory  performance   (F  [2,  26]  =  0.680,  p  =  0.516  ηp2=  0.050).   An   additional   analysis   between   groups,   reported   no   statistical   significant   differences   (F   [1,   27]   =   0.086,   p   =   0.772   ηp2=  0.03).  (See  Figure  5B  below).    

Differences  in  the  HR  change  (Figure  5C)   were  analyzed  with  mixed  Between-­Within   subjects  repeated  measures  ANOVA.  The   minimum   BPM   scores   for   women   (n=20)   were:   RS+(-­5.75±1.78)   RS-­   (-­5.87±2.56)   and   non   reactivated   memories   (-­ 6.01±2.68),   and   for   men   (n=8):   RS+(-­ 8.22±2.62)   RS-­   (-­7.39±1.56)   and   non   reactivated   memories   (-­9.3±0.17).   Later,   did   not   violating   the   assumptions   of   Levene’s  and  Box’s  tests,  Willi’s  Lamdas   test   reported   that   the   interaction   effect  

(17)

between  reactivation  condition  (RS+,  RS-­   and  non  reactivated)  and  gender  was  not   statistical  significant  (F  [2,  25]  =  0.812,  p  =   0.074  ηp2=  0.288).  However,  we  did  find   significant   main   effect   between   minimum   values  in  memory  performance  (F  [2,  25]   =  0.736,  p  =  0.02  ηp2=  0.264).  A  post-­hoc   test   specified   that   the   significant   main   differences   were   between   RS-­   and   non   reactivated   scores   in   men.   Likewise,   the   differences   between   groups   were   statistical  significant  (F  [1,  26]  =  8.31,  p  =   0.008   ηp2=   0.242).   The   maximum   BPM   scores   for   women   (n=20)   were:   RS+(4.23±2.27)   RS-­   (4.22±2.2)   and   non   reactivated  memories  (3.94±1.92),  and  for   men   (n=8):   RS+(3.71±1.6)   RS-­   (3.35±1.13)   and   non   reactivated  

memories  (2.34±1.92).  Willi’s  Lamdas  test   reported   that   the   interaction   effect   between  reactivation  condition  (RS+,  RS-­   and   non   reactivated)   and   gender   is   not   statistical  significant  (F  [2,  25]  =  0.875,  p  =   0.189  ηp2=  0.125).  In  contrast,  we  found   a   main   effect   in   memory   performance   (F   [2,  25]  =  0.734,  p  =  0.021  ηp2=  0.266).  A   post-­hoc   test   (Bonferroni)   revealed   that   the   scores   of   the   max   values   changes   between   RS+   and   non   reactivated   conditions  in  men.  The  statistical  analysis   did   not   report   any   significant   differences   (F  [1,  26]  =  1.792,  p  =  0.192  ηp2=  0.064).              

Figure   5.   Gender   differences   in   the   effect   of   post-­encoding   arousal.   (A)   Differences   on   recognition  

performance   index   by   percentage   recalled   images   at   test   during   day   3   between   women   and   men,   and   no   differences  were  found.  Errors  bars  represent  the  standard  error  means.  (B)  Skin  conductance  responses.  Mean  

Reactivated + No Shock

Non reactivated Reactivated

+ Shock 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Women Men Per cen tage of r ec og nition ac cur ac y

A

0 0.05 0.1 0.15 0.2 0.25 0.3

B

Women Men Reactivated + No Shock

Non reactivated Reactivated

+ Shock Per cen tage of SCL v ar ia tion -10 -8 -6 -4 -2 0 2 4 6 8 10 BP M Minimum values Maximum values * * *** -12 12

C

Women Men Reactivated + No Shock

Non reactivated Reactivated

+ Shock

(18)

square-­root-­normalized  of  differences  between  women  and  men  in  skin  conductive  responses  for  the  RS+,  RS-­   and   non   reactivated   trials.   Error   bars   are   standard   error   means.   (C)   Heart   rate   (HR)   response   differences   measurements  between  women  and  men.  Bar  height  indicates  average  of  beats  per  minute  (BPM)  of  maximum   and  minimum  values  for  each  memory  condition.  Significant  differences  were  identified  between  maximum  score   values  of  non  reactivated  and  RS+  memory  conditions  in  men  (*p=0.021).  On  the  other  hand,  minimum  values   significant   differences   were   found   between   non   reactivated   and   RS-­   values   (*p=0.02).   Statistical   significant   differences  between  groups  were  found  (***p=0.008).  Errors  bars  represent  the  standard  error  means.  

   

DISCUSSION      

In   contrast   with   our   expectations,   the   present   study   was   not   capable   to   demonstrate  a  significant  effect  of  arousal   during   reconsolidation   of   neutral   memories  with  an  object-­context-­episode   task,   in   38   healthy   participants   (Figure   3A).  

 

Our  sample  was  typical,  so  we  doubt  that   our  findings  could  relate  to  this.  However,   there   was   a   possibility   that   our   conditioning   was   ineffective.   To   test   this,   we  analyzed  the  physiological  responses   during  the  recognition  test.    

 

First,   previous   studies   have   shown   that   during  stimuli  and  emotional  arousal,  the   autonomic  nervous  system  responds  and   has   an   impact   at   body   level.   This   effect   can  be  studied  through  measurements  of   skin   conductance   responses   (Lempert   &   Phelps,   2014;;   Sequeira   et   al.,   2009;;   D’Hondt  et  al.,  2010).  Particularly,  higher   SCR   magnitude   responses   have   been   observed   as   an   effect   of   pleasant   and   unpleasant   stimulus,   and   arousal   (D’Hondt   et   al.,   2010).   Based   on   this,   to   confirm   the   reliability   of   our   conditioning,   we   would   expect   basal   responses   in   the   non   reactivated   condition,   middle   scores   on  the  RS-­  condition,  and  high  responses   on   the   RS+   condition.   At   first   sight,   our   results  showed  that  the  basal  levels  were   in   fact   the   non   reactivated   condition.   In   contrast,  the  highest  scores  were  the  ones  

from   the   RS-­   condition   and   the   middle   scores   belonged   to   the   RS+   condition.   However,   the   probabilistic   test   showed   that  these  differences  were  not  significant   (Figure   3B).   The   lack   of   differences   between   the   memory   conditions   and   the   SCL  responses  can  be  translated  to  a  lack   of   effectiveness   of   our   manipulation,   hence  no  effect  on  memory  conditions  on   recognition  accuracy  was  observed.      

Second,   high   HR   responses   correspond   to  enhancement  of  memory  recognition  in   test  after  consolidation  (Larra  et  al.,  2014).   Then,  HR  responses  were  also  used  as  a   feature   to   measure   the   effectiveness   of   our  manipulation.  The  analysis  of  variance   applied   to   the   results   of   this   procedure   revealed   no   significant   differences   between  the  three  conditions  and  their  HR   responses.    

 

Third,   the   frequency   of   responding   to   an   incentive   shock   declines   with   repeated   electrical   stimulation,   this   is   called   habituation   (Spear   &   Campbell,   2014).   Habituation   has   been   studied   in   different   mammals,   as   rats,   cats   and   humans   (Peeke,   2012),   and   is   considered   a   stimulus-­specific   and   response-­general   phenomenon   (Spear   &   Campbell,   2014).   We   discovered   a   significant   difference   in   participant   discomfort   of   the   electrical   shock   before   testing   and   after   testing,   indicating   that   participants   habituated   to   electrical  stimulation,  suggesting  no  effect   of   the   stimuli   to   evoke   higher   arousal  

Referenties

GERELATEERDE DOCUMENTEN

In chapter 2, the effects of a psychosocial stress task on memory retrieval of neutral and emotional words is described, in which the effects of cortisol

Chapter 2: The effects of cortisol increase on long-term 21 memory retrieval during and after psychosocial stress Chapter 3: Long-term outcomes of memory retrieval under

During the retrieval of emotional memories, propranolol might block the access to the emotional responses normally elicited by the amygdala in response to a

While these results may suggest that in humans, adrenergic activation is also necessary for the effect of cortisol to occur on memory retrieval, they did not

Recall of neutral and negative words at 6 months (Session 3), as a percentage of the last learning trial on the encoding day (Session 1) is presented (a) in the

Recognition scores were calculated by subtracting the falsely recognized items from the number of correctly recognized items; neu = neutral; emo = emotional..

No effect of psychosocial stress was found on memory specificity or experience, but cortisol increases tended to be related to less specific, recent memories elicited

An analytical expression is given for the minimum of the mean square of the time-delay induced wavefront error (also known as the servo-lag error) in Adaptive Optics systems..