• No results found

Low spontaneous variability in cerebral blood flow velocity in non-survivors after cardiac arrest

N/A
N/A
Protected

Academic year: 2021

Share "Low spontaneous variability in cerebral blood flow velocity in non-survivors after cardiac arrest"

Copied!
6
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Resuscitation

j o ur na l h o me p a g e:ww w . e l s e v i er . c o m / l o c a t e / r e s u s c i t a t i o n

Clinical

paper

Low

spontaneous

variability

in

cerebral

blood

flow

velocity

in

non-survivors

after

cardiac

arrest

J.M.D.

van

den

Brule

,

E.J.

Vinke,

L.M.

van

Loon,

J.G.

van

der

Hoeven,

C.W.E.

Hoedemaekers

DepartmentofIntensiveCare,RadboudUniversityNijmegenMedicalCentre,Nijmegen,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received14October2016

Receivedinrevisedform5December2016 Accepted12December2016

Keywords: Meanflowvelocity Meanarterialpressure Variability

Cerebralbloodflow Coëfficiëntofvariation

a

b

s

t

r

a

c

t

Objective:Toinvestigatespontaneousvariabilityinthetimeandfrequencydomaininmeanflowvelocity

(MFV)andmeanarterialpressure(MAP)incomatosepatientsaftercardiacarrest,anddeterminepossible

differencesbetweensurvivorsandnon-survivors.

Methods:AprospectiveobservationalstudywasperformedattheICUofatertiarycareuniversity

hos-pitalintheNetherlands.Westudied11comatosepatientsand10controls.MFVinthemiddlecerebral

arterywasmeasuredwithsimultaneouslyrecordingofMAP.Coefficientofvariation(CV)wasusedasa

standardizedmeasureofdispersioninthetimedomain.Inthefrequencydomain,theaveragespectral

powerofMAPandMFVwerecalculatedintheverylow,lowandhighfrequencybands.

Results:InsurvivorsCVofMFVincreasedfrom4.66[3.92–6.28]to7.52[5.52–15.23]%atT=72h.In

non-survivorsCVofMFVdecreasedfrom9.02[1.70–9.36]to1.97[1.97–1.97]%.CVofMAPwaslow

immediatelyafteradmission(1.46[1.09–2.25]%)andremainedlowat72h(3.05[1.87–3.63]%)(p=0.13).

TherewerenodifferencesinCVofMAPbetweensurvivorsandnon-survivors(p=0.30).Wenoticed

significantdifferencesbetweensurvivorsandnon-survivorsintheVLFbandforaveragespectralpower

ofMAP(p=0.03)andMFV(p=0.003),wherebythepowerofbothMAPandMFVincreasedinsurvivors

duringadmission,whileremaininglowinnon-survivors.

Conclusions:Cerebralbloodflowisalteredaftercardiacarrest,withdecreasedspontaneousfluctuations

innon-survivors.Mostlikely,thesechangesaretheconsequenceofimpairedintrinsicmyogenicvascular

functionandautonomicdysregulation.

©2016TheAuthor(s).PublishedbyElsevierIrelandLtd.ThisisanopenaccessarticleundertheCCBY

license(http://creativecommons.org/licenses/by/4.0/).

Introduction

The incidence of post-anoxic encephalopathy after cardiac arrestishigh,resultinginhighmortalityandmorbidity.1Crucialin

theICUtreatmentaftercardiacarrestistocreateanoptimal envi-ronment,forcerebralrecoveryincludingadequatecerebralblood flow(CBF).

Abbreviations:ABP,arterialbloodpressure;CBF,cerebralbloodflow;CV, coef-ficientofvariation;HF,highfrequency;LF,lowfrequency;MAP,meanarterial pressure;MCA,middlecerebralartery;MFV,meanflowvelocity;TCD,transcranial Doppler;VLF,verylowfrequency.

夽 ASpanishtranslatedversionoftheabstractofthisarticleappearsasAppendix inthefinalonlineversionathttp://dx.doi.org/10.1016/j.resuscitation.2016.12.005. ∗ Correspondingauthorat:RadboudUniversityNijmegenMedicalCentre, Depart-mentof Intensive Care,P.O. Box9101, 6500 HB Nijmegen,The Netherlands. Fax:+31243541612.

E-mailaddress:J.vandenBrule@radboudumc.nl(J.M.D.vandenBrule).

Undernormalcircumstances,CBFexhibitsrapidspontaneous fluctuations,inordertomaintaincerebrovascularhomeostasis.The adaptationofCBFtoperturbationsincerebralperfusionpressure isregulatedbycentralcontrolmechanisms2,3andbyanintrinsic

variationviamyogenicvasoconstriction.4,5

Arterial pressure also varies spontaneously. Beat-to-beat changesinarterialpressureareregulatedbycardiovascularcontrol mechanisms,suchasthearterialbaroreflex,6therenin-angiotensin

system,7 the vascular myogenic response8 and the endothelial

nitricoxiderelease.9Bloodpressurefluctuationselicitedby

sympa-theticmodulationofvasculartoneoccurinthelowfrequencyband (LF,0.07–0.15Hz).Intrinsicvascularmyogenicchangesinarterial bloodpressureaffectsboththeLFandverylowfrequency(VLF, 0.02–0.07Hz)componentsofcardiovascularvariability. Endothe-lialNOaffectsbloodpressurevariabilityinthehighfrequencyrange inanimals(HF,0.15–0.40Hz).TheeffectofNOinhumansis con-troversialsincetheHFbandislargelydependentonrespiration. Theimpactoftherenin-angiotensinsystemonbloodpressure vari-abilityisunknown.Towhatlevelcerebralbloodflowvariabilityis http://dx.doi.org/10.1016/j.resuscitation.2016.12.005

(2)

dependentonpressurevariabilityisamatterofdebateinhealthy subjectsandyetunknowninpatientsaftercardiacarrest.10

Blood pressure variability is a well known risk factor for end organ damage in patientswithchronic conditions suchas hypertension.11,12 In acute ischemicstroke, beat to beat blood

pressurevariabilitywasassociatedwithdeathanddependencyat 30days.13Incontrast,inacutebraininjurypatientsnodifferences

inbloodpressurevariabilitybetweensurvivorsandnon-survivors weredetected.14Theimpactofbloodpressurevariabilityinthe

timeandfrequencydomainsinacutebraindamagesuchasafter cardiacarrest,isunknown.

Themainobjectiveofourstudywastodeterminethe sponta-neousvariabilityinthetimeandfrequencydomaininmeanflow velocity((MFV)and meanarterialpressure((MAP)incomatose patientsduringthefirst72haftercardiacarrest.Inaddition, pos-sibledifferencesinspontaneousvariabilitybetweensurvivorsand non-survivorsweredetermined.

Materialsandmethods

Study

AprospectiveobservationalstudywasperformedattheICUof atertiarycareuniversityhospitaltheNetherlands.Thelocal Insti-tutionalReviewBoardapprovedthestudyandwaivedtheneedfor informedconsent.

Population

Westudied11comatosepatientssuccessfullyresuscitatedfrom acardiacarrestandtreatedwithmildtherapeutichypothermia. Inclusioncriteriawereage≥18yearsandaGlasgowComaScore≤6 afterreturnofspontaneouscirculation.Wealsostudied10normal controlsubjects.SevencontrolswerepatientsadmittedtotheICU forpre-operativehaemodynamicoptimizationonedaybefore elec-tiveesophagectomywithreconstructivesurgerybecauseofcancer. Threecontrolpatientswerehealthyvolunteersthatparticipatedin anexperimentalhumanendotoxemiastudy.Thesecontrolswere includedafterwritteninformedconsentandapprovalofthe pro-tocolbythelocalInstitutionalReviewBoard(documentnumber 2015-2079,NCT02675868).

Exclusioncriteriaforallgroupswereanirregularheartrhythm, absenttranstemporalbonewindow,pregnancy,thrombolytic ther-apy,refractorycardiogenicshockandlifeexpectancylessthan24h. Patientmanagement

Thepost-cardiacarrestpatientsweretreatedwith hypother-miaby rapid infusion of 30mL/kgbodyweight ofcold Ringer’s lactateat4◦Cfollowedbyexternalcoolingusingwater-circulating blankets(BlanketrollII,CincinnatiSubzero,TheSurgicalCompany, Amersfoort, The Netherlands). Temperature was maintained at 32–34◦Cfor24h,followedbypassiverewarmingto normother-mia(definedas37◦C).Allpatientsweresedatedwithmidazolam and/orpropofolandsufentanil.Sedationwasstoppedassoonas thebodytemperaturewas≥36◦C. Incaseof shivering,patients

wereparalysedusingintravenousbolusinjectionsofrocuronium. Allpatientswereintubatedandmechanicallyventilatedtoobtaina PaO2>75mmHgandaPaCO2between34and41mmHg.Theradial

orfemoralarterywascannulatedformonitoringofarterialblood pressure(ABP)andsamplingofarterialblood.Accordingtoourlocal protocol,MAPwasmaintainedbetween80–100mmHg.If neces-sary,patientsweretreatedwithvolumeinfusionanddobutamine and/ormilrinoneand/ornoradrenaline(norepinephrine).

Allmeasurementsinthecontrolgroupwereperformedwhile subjectswereawake,withoutmechanicalventilationandbefore

fluidresuscitationorotherpre-operativeorresearchinterventions wereinitiated.

Datacollection

Demographic, pre-hospital and clinical data were collected uponandduringadmission.Anarterialcatheterwasusedfor mon-itoring of blood pressure and samplingof arterial blood in all patients.

TheMFVinthemiddlecerebralartery(MCA)wasmeasured bytranscranialDoppler(TCD)throughthetemporalwindowwith a 2-Mhz probe (Multi-Dop T Digital, Compumedics DWL, Sin-gen,Germany).Theprobewaspositionedoverthetemporalbone windowabovethezygomaticarchandfixedwithaframe.This procedure ensured that the angle and the individual depth of insonationremainedconstantduringtheinvestigation.The tempo-ralacousticwindowandDopplerdepthgivingthehighestvelocities weredeterminedandusedforallmeasurements.Twoinvestigators performedallmeasurements(J.B.andC.H.).Recordingsweremade withsubjectsinthesupinepositionwiththeheadelevatedto30◦. Aminimumof10–12minwindowsofMFV,heartrateandMAP weresimultaneouslyrecordedonalaptopcomputerandstored onaharddiskwithasamplerateof200HzbyanA/Dconverter (NIUSB-6211,NationalInstrument,Austin,TX,USA).Duringthe measurements,PaO2 andPaCO2 werewithinnormalrangesand

stable.

In thepatientsaftercardiac arrest measurementswere per-formedonadmissiontotheICUandat6,12,24,36,48,60and 72h.Onesinglemeasurementwasperformedinthecontrolgroup.

Dataanalysis

MAPandMFVdatawereanalysedusingcustom-written MAT-LABscripts(MatlabR2014b,TheMathWorksInc.Massachusetts, USA).MAPandMFVwereacquiredusingathirdorderzero phase-lagButterworthfilterwithacut-offfrequencyof0.5Hz.

FromtheseMAPandMFVsignals,5-minwindowswere auto-matically selected based on the least amount of artefacts. By averagingthese5-minwindowsoftheMAPandMFVsignals,mean valuesofMAPandMFVwereacquired.

Coefficientofvariation(CV)wasusedasastandardizedmeasure ofdispersionforbothMAPandMFVinthetimedomain.CVwas definedasthestandarddeviationofthesignaldividedbythemean ofthesignalandwascalculatedfromallfilteredsignals.Thisway, thevariationisexpressedinpercentageofthemean.

Inthefrequencydomain,theaveragespectralpowerofMAPand MFVwerecalculatedintheverylow(VLF,0.02–0.07Hz),low(LF, 0.07–0.15Hz),andhigh(HF,0.15–0.40Hz)frequencybands.This inordertoseewhetherthevariationcanbedesignatedtoacertain frequencybandandwhetherthisoriginofvariationchangesover timeinthepatients.20

Statisticalanalysis

StatisticalanalysiswasperformedusingGraphPadPrism ver-sion5.0(GraphPadSoftware,LaJolla,CA).Dataarepresentedas medianwith25thand75thpercentile.Figuresalsoshowminimum andmaximum(whiskers)values.Changesovertimewereanalyzed withtherepeated-measurestestfornonparametricdata.

Differences betweensurvivors and non-survivors were ana-lyzedwithtwo-wayanalysisofvariance.TheMann–Whitneytest wasusedforcomparisonbetweengroups.Ap-valueof<0.05was consideredtoindicatesignificance.

(3)

Table1

Demographicdataofcardiacarrestpatientsandnormalcontrols.

Characteristic Cardiacarrest Normalcontrols Pvalue

Numberofpatients,n 11 10

Male,n(%) 9(81%) 8(80%)

Age(years) 57[55–61] 65[31–67] 0.75

Numberofsurvivors,n(%) 7(64%) 10(100%) 0.36

Results

Demographicandclinicaldata

Weincluded9maleand2female(n=11)comatosepatients

aftercardiacarrest.Thedemographicdataofthepatientsareshown

inTable1.Eightpatientshadventricularfibrillationorventricular tachycardiaasinitialrhythm,3patientsinitiallyhadapulseless electricalactivityorasystole.FourpatientsdiedintheICU,allasa resultofseverepostanoxicbraindamage.Thedemographicdataof thecontrolgrouparealsosummarizedinTable1.

The clinical data on admissionare summarized in Table 2. Cardiacarrestpatientshadasignificantlyhigherhemoglobin con-centrationonadmission(p=0.03).ThepHwaslower(p=0.002)and thePaCO2wassignificantlyhigher(p=0.02)immediatelyafter

car-diacarrestcomparedtothenormalcontrolpatients,butnormalized rapidlyafteradmission.Ninepercentofthecardiacarrestpatients receivednoradrenalineonadmissiontomaintaintheMAPwithin thetargetrange.Thenormalcontrolswereawakeandbreathing spontaneouslyonroomair.

MAP was measured continuously in the patients after car-diacarrest andchangedsignificantly(p=0.04)duringthestudy periodaccording toa U-shapedpattern (electronic Supplement Fig. 1). MFV was low (28.00 [25.00–39.00]cm/s) upon admis-sion after cardiac arrest and increased significantly to 78.00 [65.00–123.00]cm/sat72h(p=0.008,electronicSupplementFig. 2). Therewere nodifferences in MAP at any measuring point betweensurvivorsandnon-survivors(p=0.09,datanotshown). MFVincreasedmoreinnon-survivors(from33.00[25.00–40.00] to71.50[61.25–96.75]cm/s)compared tosurvivors(from23.50 [20.25–28.25]to136.00[136.00–136.00]cm/s)inthecardiacarrest group(p<0.001).

Variabilityinthetimedomain MFV

TheCVofMFVaftercardiacarrestremainedstablewith5.37 [3.38–7.74]ont=0and7.49[4.09–14.97]%at72hafteradmission (p=0.44,datanotshown).InsurvivorstheCVofMFVincreased from4.66[3.92–6.28]to7.52[5.52–15.23]%.Incontrast,in

non-Table2

Clinicalandlaboratorydataofcardiacarrestpatientsandnormalcontrolson admission.

Characteristic Cardiacarresta Normalcontrols Pvalue

Mechanicalventilation 11(100%) 0(0%) MAP(mmHg) 91.0[84.5–114.5] 91.1[86.3–105.1] 0.92 Heartrate(bpm) 85.0[80.0–92.0] 69.5[62.5–76.5] 0.09 Temperature(◦C) 35.5[34.3–35.9] 37.0[36.8–37.1] 0.006 Norepinephrine 1(9.1%) 0(0%) Dose(␮g/kg/min) 0.12 Milrinone 0(0%) 0(0%) Dobutamine 0(0%) 0(0%) Hemoglobin(g/dL) 14.7[12.9–14.7] 11.6[10.8–12.6] 0.03 pH 7.31[7.26–7.37] 7.45[7.43–7.46] 0.002 PaO2(mmHg) 102[81–168] 87[78–105] 0.28 PaCO2(mmHg) 42.0[39.0–43.5] 35.6[34.5–36.8] 0.01 aDatarepresentvaluesuponadmissiontotheICU.

A

0 6 12 24 36 48 60 72 0 5 10 15 20 25 survivors non-survivors controls

Time after admission to the ICU (hrs)

CV M F V (% )

B

0 6 12 24 36 48 60 72 0 2 4 6 8 survivors non-survivors controls

Time after admission to the ICU (hrs)

CV M

A

P

(%

)

Fig.1.(A)CVofMFVinsurvivorsandnon-survivorssuccessfullyresuscitatedfrom acardiacarrestandtreatedwithmildtherapeutichypothermia,during72hof ICUadmissionandCVofMFVinnormalcontrols.(B)CVofMAPinsurvivorsand non-survivorssuccessfullyresuscitatedfromacardiacarrestandtreatedwithmild therapeutichypothermia,during72hofICUadmissionandCVofMAPinnormal controls.

CVMFV=coefficientofvariationofmeanflowvelocity. CVMAP=coefficientvariationmeanarterialpressure.

survivorstheCVofMFVdecreasedfrom9.02[1.70–9.36]to1.97 [1.97–1.97]%(Fig.1).TheCVofMFVwas7.40[4.95–12.98]in nor-malcontrols(Fig.1),anddidnotdiffersignificantlycomparedto thecardiacarrestgroup(p=0.14).

MAP

TheCVofMAPinthecardiacarrestgroupwaslowimmediately afteradmissiontotheICU(1.46[1.09–2.25])andremainedlowat 72h(3.05[1.87–3.63])(p=0.13,Fig.1).Therewerenodifferences inCVofMAPbetweensurvivorsandnon-survivorsinthecardiac arrestgroup(p=0.30,Fig.1).Normalcontrolshadasignificantly higherCVofMAP(4.10[3.23–6.43])comparedtothecardiacarrest grouponadmission(p=0.004,Fig.1).

Variabilityinthefrequencydomain MFV

Inthefrequencydomain,theaveragespectral powerofMFV increased from 0.28 [0.06–0.69] to 11.38 [1.58–30.86](cm/s)2

between admission and 72h after the arrest in the VLF band (p=0.008,Fig.2).ThisincreaseinspectralpowerofMFVintheVLF bandwasduetoanincreaseinthefavourableoutcomegroup dur-ingadmissionfrom0.38[0.10–0.59]to15.54[2.67–31.31](cm/s)2

(p=0.001), whereas VLF spectral power remained low in the patientswithanunfavourableoutcome(0.19[0.06–1.00]to1.58 [1.58–1.58](cm/s)2 (p=0.23)(Fig.3).Therewerenochanges in

(4)

0 6 12 24 36 48 60 72 0 10 20 30 40

Time after admiss

ion to the ICU

(hrs)

Sp

ec

tr

a

l p

o

w

e

r V

LF

(c

m

/sec

)

2 0 6 12 24 36 48 60 72 0 5 10 15 20 25

Time after admission

to the ICU (hrs)

Sp

ec

tr

al

p

o

we

r L

F

(

c

m

/s

e

c

)

2 0 6 12 24 36 48 60 72 0 5 10 15 20 25

Time after admission

to the ICU (hrs)

Sp

ec

tr

a

l

po

we

r H

F

(

c

m

/s

e

c

)

2

Fig.2. TheaveragespectralpowerofMFVincreased,inthewholecardiacarrest group,betweenadmissionand72hafterthearrestintheVLFband.Therewasno increaseordecreaseintheLFandHFbands.

MFV=meanflowvelocity. VLF=verylowfrequency. LF=lowfrequency. HF=highfrequency.

averagespectralpowerofMFVintheLFandHFbandsafter admis-sion(respectivelyp=0.55and0.65,Fig.2).

TheaveragespectralpowerofMFVintheVLFbandwas signifi-cantlylowerinthecardiacarrestgrouponadmissioncomparedto thecontrolgroup(0.28[0.10–0.69]to9.01[4.53–19.71])(cm/s)2,

p=0.002,Fig.3).TheaveragespectralpowerofMFVdidnot dif-fersignificantlybetweencardiacarrestpatientsonadmissionand controlsin theLF(0.17 [0.11–2.38] to1.99[0.47–2.45](cm/s)2,

p=0.21) and HF (0.11 [0.07–0.37] to 0.05 [0.03–0.12](cm/s)2,

p=0.13)bands.Inaddition,nodifferencesbetweensurvivorsand

0 6 12 24 36 48 60 72 0 5 10 15 20 25 survivors non-survivors controls

Time after admission to the ICU (hrs)

Sp ec tra l po we r V LF (c m /sec ) 2

Fig.3.SpectralpowerofMFVintheVLFbandinsurvivorsandnon-survivors successfullyresuscitatedfromacardiacarrestandtreatedwithmildtherapeutic hypothermia,during72hofICUadmissionandspectralpowerofMFVintheVLF bandinnormalcontrols.

MFV=meanflowvelocity. VLF=verylowfrequency.

non-survivorswerefoundintheLFandHFbands(electronic Sup-plementFig.3).

MAP

TheaveragespectralpowerofMAPdidnotchangeinthefirst 72haftercardiacarrestintheVLF(p=0.76),LF(p=0.91),andHF (p=0.14)frequencybands(datanotshown).

The average spectral power of MAP in the VLF frequency band increased in survivors from 0.70 [0.50–1.93] to 2.10 [1.03–5.54]mmHg2duringadmission,whileremaininglowin

non-survivors 0.34[0.01–0.47] to0.68 [0.68–0.68] mmHg2 (p=0.03, Fig.4).

Therewerenosignificantdifferencesforaveragespectralpower ofMAPandMFVbetweensurvivorsandnon-survivorsintheLFand HFbands(datanotshown).

TheaveragespectralpowerofMAPwassignificantlylowerin thecardiac arrestgrouponadmissioncompared tothecontrol groupintheVLF(0.57[0.27–1.02]to5.79[3.59–10.02]mmHg2,

p=0.001),LF(0.37[0.13–0.67]to2.6[1.99–4.68]mmHg2,p<0.001)

and HF (0.08 [0.01–0.40] to 0.91 [0.26–2.24]mmHg2, p=0.02)

bands.

Discussion

ThespontaneousvariabilityofMFVMCA waslowaftercardiac

arrest. MFV variability returned to normal values in survivors whereasvariabilitydecreasedfurtherinnon-survivorsafter

car-0 6 12 24 36 48 60 72 0 5 10 15 survivors non-survivors controls

Time after admission to the ICU (hrs)

Sp ec tra l po we r V LF (m m H g ) 2

Fig.4. SpectralpowerofMAPintheVLFbandinsurvivorsandnon-survivors successfullyresuscitatedfromacardiacarrestandtreatedwithmildtherapeutic hypothermia,during72hofICUadmissionandspectralpowerofMAPintheVLF bandinnormalcontrols.

MAP=meanarterialpressure. VLF=verylowfrequency.

(5)

diacarrest.ThevariabilityoftheMAPremainedlowduringthe entirestudyperiodaftercardiacarrest.

TheaveragepowerintheVLFspectrumof theMFVMCA was

low aftercardiacarrest and restored towardsnormal values in survivors.ThepersistentlylowpowerintheVLFdomainin non-survivorssuggestperturbationsintheintrinsicmyogenicvascular function.8 In normal subjects,thecorrelation betweencerebral

bloodflowvelocity andMAPfluctuationsislowfor frequencies below0.1Hz,suggestingthatinthisfrequencyrangeotherfactors mayleadtofluctuationsincerebralbloodflowvelocity.21Indeed,in

normalvolunteers,changesinMFVMCAoscillationsinafrequencyof

0.03–0.15Hzcanprecedethoseinbloodpressureandheartrate.22

Thissuggeststhattheselowfrequencyoscillationshaveamore cen-tralcerebraloriginandaretransmitted“upstream”tothelarger cerebralarteries.Probably,theselowfrequencyoscillationsarise inthecerebralcirculationasaresultofautonomic(sympathetic) stimulation.

Cerebral blood flow is tightly regulated at the level of the neurovascularunitthroughamyriadofmetabolic,myogenicand autonomicpathways.23Cerebralbloodflowisdecreasedafter

car-diacarrest and restores towards normal values in survivors.24

Non-survivorshaveasignificantlystrongerincreaseinMFVMCAin

thefirst72hafterthearrest.25Apparently,vasoactivetoneislost

inpatientswithpooroutcome,resultinginadecreaseincerebral vascularresistanceandsubsequentincreaseincerebralbloodflow. Theseobservationsareinaccordancewithourcurrentstudythat intrinsicmyogenicvascularfunctionandsympatheticautonomic regulationmaybeimpairedinnon-survivorsaftercardiacarrest. Theimportanceof theautonomicnervous systemin regulation ofthecerebralbloodflowiswelldocumentedinhumans.Upper thoracic sympathectomy in patientswith palmarhyperhidrosis resultedin increasedblood volumeandbloodflow velocitiesin theMCA.26Trimetaphan(aso-calledganglionblocker,becauseit

blocksthecholinergicsynaptictransmissioninsympatheticand parasympatheticpathways)changesstaticanddynamiccerebral autoregulationinhumans,indicatingthatremovalofautonomic neuralactivityplaysanimportantroleintheregulationofcerebral bloodflow.27

Beat to beat changes in cerebral blood flow are under the controlof myogenic and autonomicmechanisms under normal conditions.Cardiacarrestinducesastronginflammatoryresponse, accompanied by changes in NO production and production of reactiveoxygen species resulting in endothelium-dependent relaxation.28,29Animbalancebetweenlocalvasoconstrictorsand

vasodilators, characterized by high endothelin levels and ini-tiallylow but gradually increasingcGMP levels issuggested to underlie the cerebral perfusion changes after cardiac arrest.30

Otherfactorsthatcontributetothisreducedbloodflow include areductioninneuronalactivity,vasospasm,edema,plateletand leukocyteadhesionand changes inviscosity.30–35 We

hypothe-sizethatthesepathophysiologicalchangescancontributetothe changesinMFVMCA variabilityaftercardiacarrestandinfluence

thestateofdynamicautoregulationinthesepatients.

The spontaneous variability in MAP in post-cardiac arrest patientswassignificantlylowercomparedtoage-andsex-matched controlpatients.Similarly,heartratevariabilityisreducedinboth low and high frequency power spectra in survivors and non-survivorsaftercardiacarrest,suggestingadecreaseinautonomic cardiovascularfunction,thataffectsMAPvariabilityin asimilar manner.36,37 The relativelylow averagespectral powerof MAP

intheVLFfrequencybandsupportsthishypothesisofautonomic failure.

This study has a number of limitations. We performed an observationalstudyin arelatively smallpopulation.We cannot excludethat in ourpatientsuseof medicationmayhave influ-enced these results. In the first hours after cardiac arrest, use

ofsedativesandvasopressiveagentswerecommon,whereas ␤-blockerswerefrequentlyusedafterrewarmingtonormothermia. Allpatientsweretreatedwithhypothermia.Hypothermiabyitself resultsin increasedheartratevariabilityinboth thelowerand higherfrequencyspectra,mostlikelyasaresultofthehypothermia inducedbradycardia.38Theuseofsedatives,vasoactiveagentsand

hypothermiawassimilarinsurvivorsandnon-survivorsafter car-diacarrest.In addition,differencesinsystemic parameterssuch as MAP, pHor PaCO2 didnot account for these differences in

MFVMCAandMAPvariability(datanotshown).Wecannotexclude

otherunmeasuredeffectsoncerebralbloodflowandthe individ-ualpatient’sautoregulatorythresholdisunknown.Althoughthe observationalnatureofthis studydidnotallowmodificationof thesepossibleconfounders,theobservedpathophysiological dif-ferencesincerebralbloodflowvelocityandarterialbloodpressure stronglysuggestadiseasespecificpathophysiologicprocess.

ThechangesinspontaneousfluctuationsinMFVMCAandMAP

suggestchangesindynamicautoregulationaftercardiacarrest.We didnotquantifythestrengthofthedynamicautoregulationinthis population.Transferfunctionanalysisisconsideredthegold stan-dardfortheestimationofdynamiccerebralautoregulation.Since thistechniquereliesonspontaneous(orinduced)fluctuationsin MFVMCAandMAP,reducedvariabilityinoneofbothinputsignals

willstronglyreducethereliabilityoftheresultingoutputsignal.20

Conclusions

Cerebral blood flow is altered after cardiac arrest, with decreasedspontaneousfluctuationsinpatientswithapoor out-come. Most likely, these changes are the consequence of the associated severe brain damage, resulting in impaired intrinsic myogenicvascular functionand autonomicdysregulation.These perturbationsincerebrovascularregulationmayaccountforthe lossofvasoactivetoneandtheincreasedcerebralbloodflow veloc-ityinnon-survivorsaftercardiacarrest.

Conflictofintereststatement

Noconflictofinterest.

AppendixA. Supplementarydata

Supplementarydataassociatedwiththisarticlecanbefound, intheonlineversion,athttp://dx.doi.org/10.1016/j.resuscitation. 2016.12.005.

References

1.NeumarRW,NolanJP,AdrieC,etal.Post-cardiacarrestsyndrome: epidemiol-ogy,pathophysiology,treatment,andprognostication.Aconsensusstatement fromtheInternationalLiaisonCommitteeonResuscitation(AmericanHeart Association,AustralianandNewZealandCouncilonResuscitation,European ResuscitationCouncil,HeartandStrokeFoundationofCanada,InterAmerican HeartFoundation,ResuscitationCouncilofAsia,andtheResuscitationCouncil ofSouthernAfrica);theAmericanHeartAssociationEmergency Cardiovascu-larCareCommittee;theCouncilonCardiovascularSurgeryandAnesthesia;the CouncilonCardiopulmonary,Perioperative,andCriticalCare;theCouncilon ClinicalCardiology;andtheStrokeCouncil.Circulation2008;118:2452–83.

2.FujiiK,HeistadDD,FaraciFM.Vasomotionofbasilararteriesinvivo.AmJPhysiol 1990;258:H1829–34.

3.HudetzAG,RomanRJ,HarderDR.Spontaneousflowoscillationsinthecerebral cortexduringacutechangesinmeanarterialpressure.JCerebBloodFlowMetab 1992;12:491–9.

4.NewellDW,AaslidR,StoossR,ReulenHJ.Therelationshipofbloodflowvelocity fluctuationstointracranialpressureBwaves.JNeurosurg1992;76:415–21.

5.ZernikowB,MichelE,KohlmannG,SteckJ, SchmittRM,JorchG.Cerebral autoregulationofpretermneonates—anon-linearcontrolsystem?ArchDis ChildFetalNeonatalEd1994;70:F166–73.

6.TzengYC,SinPY,LucasSJ,AinsliePN.Respiratorymodulationofcardiovagal baroreflexsensitivity.JApplPhysiol2009;107:718–24.

(6)

7.GouedardO,BlancJ,GaudetE,PonchonP,ElghoziJL.Contributionofthe renin-angiotensinsystemtoshort-termbloodpressurevariabilityduringblockadeof nitricoxidesynthesisintherat.BrJPharmacol1996;119:1085–92.

8.StaussHM.Identificationofbloodpressurecontrolmechanismsbypower spec-tralanalysis.ClinExpPharmacolPhysiol2007;34:362–8.

9.NafzB,JustA,StaussHM,etal.Blood-pressurevariabilityisbufferedbynitric oxide.JAutonNervSyst1996;57:181–3.

10.ZhangR,ZuckermanJH,GillerCA,LevineBD.Transferfunctionanalysisof dynamiccerebralautoregulationinhumans.AmJPhysiol1998;274:H233–41.

11.FrattolaA,ParatiG,CuspidiC,AlbiniF,ManciaG.Prognosticvalueof24-hour bloodpressurevariability.JHypertens1993;11:1133–7.

12.ParatiG,PomidossiG,AlbiniF,MalaspinaD,ManciaG.Relationshipof 24-hourbloodpressuremeanandvariabilitytoseverityoftarget-organdamage inhypertension.JHypertens1987;5:93–8.

13.DawsonSL,ManktelowBN,RobinsonTG,PaneraiRB,PotterJF.Which param-etersofbeat-to-beatbloodpressureandvariabilitybestpredictearlyoutcome afteracuteischemicstroke.Stroke2000;31:463–8.

14.PapaioannouV,GiannakouM,MaglaverasN,SofianosE,GialaM.Investigationof heartrateandbloodpressurevariability,baroreflexsensitivity,andapproximate entropyinacutebraininjurypatients.JCritCare2008;23:380–6.

20.ClaassenJA,Meel-vandenAbeelenAS,SimpsonDM,PaneraiRB,International CerebralAutoregulationResearchN.Transferfunctionanalysisofdynamic cerebralautoregulation:awhitepaperfromtheInternationalCerebral Autoreg-ulationResearchNetwork.JCerebBloodFlowMetab2016;36:665–80.

21.Panerai RB, Moody M,EamesPJ, PotterJF. Dynamiccerebral autoregula-tion during brain activation paradigms. Am J Physiol Heart Circ Physiol 2005;289:H1202–8.

22.CencettiS,LagiA,CiprianiM,FattoriniL,BandinelliG,BernardiL.Autonomic controlofthecerebralcirculationduringnormalandimpairedperipheral cir-culatorycontrol.Heart1999;82:365–72.

23.WillieCK,TzengYC,FisherJA,AinsliePN.Integrativeregulationofhumanbrain bloodflow.JPhysiol2014;592:841–59.

24.BisschopsLL,HoedemaekersCW,SimonsKS,vanderHoevenJG.Preserved metaboliccouplingandcerebrovascularreactivityduringmildhypothermia aftercardiacarrest.CritCareMed2010;38:1542–7.

25.BuunkG,vanderHoevenJG,MeindersAE.Prognosticsignificanceofthe differ-encebetweenmixedvenousandjugularbulboxygensaturationincomatose patientsresuscitatedfromacardiacarrest.Resuscitation1999;41:257–62.

26.JengJS,YipPK,HuangSJ,KaoMC.Changesinhemodynamicsofthecarotidand middlecerebralarteriesbeforeandafterendoscopicsympathectomyinpatients withpalmarhyperhidrosis:preliminaryresults.JNeurosurg1999;90:463–7.

27.ZhangR,ZuckermanJH,IwasakiK,WilsonTE,CrandallCG,LevineBD. Auto-nomicneuralcontrolofdynamiccerebralautoregulationinhumans.Circulation 2002;106:1814–20.

28.DucheminS,BoilyM,SadekovaN,GirouardH.Thecomplexcontributionof NOSinterneuronsinthephysiologyofcerebrovascularregulation.FrontNeural Circuits2012;6:51.

29.FaraciFM.Reactiveoxygenspecies:influenceoncerebralvasculartone.JAppl Physiol2006;100:739–43.

30.BuunkG,vanderHoevenJG,FrolichM,MeindersAE.Cerebral vasoconstric-tionincomatosepatientsresuscitatedfromacardiacarrest.IntensiveCareMed 1996;22:1191–6.

31.Beckstead JE, Tweed WA, Lee J, MacKeen WL. Cerebral blood flow and metabolisminmanfollowingcardiacarrest.Stroke1978;9:569–73.

32.BisschopsLL,PopGA,TeerenstraS,StruijkPC,vanderHoevenJG,Hoedemaekers CW.Effectsofviscosityoncerebralbloodflowaftercardiacarrest.CritCareMed 2014;42:632–7.

33.ForsmanM,AarsethHP,NordbyHK,SkulbergA,SteenPA.Effectsofnimodipine oncerebralbloodflowandcerebrospinalfluidpressureaftercardiacarrest: correlationwithneurologicoutcome.AnesthAnalg1989;68:436–43.

34.SafarP.Cerebralresuscitationaftercardiacarrest:researchinitiativesandfuture directions.AnnEmergMed1993;22:324–49.

35.SafarP,StezoskiW,NemotoEM.Ameliorationofbraindamageafter12minutes’ cardiacarrestindogs.ArchNeurol1976;33:91–5.

36.DoughertyCM,BurrRL.Comparisonofheartratevariabilityinsurvivorsand nonsurvivorsofsuddencardiacarrest.AmJCardiol1992;70:441–8.

37.HuikuriHV,LinnaluotoMK,SeppanenT,etal.Circadianrhythmofheartrate variabilityinsurvivorsofcardiacarrest.AmJCardiol1992;70:610–5.

38.TiainenM,ParikkaHJ,MakijarviMA,TakkunenOS,SarnaSJ,RoineRO. Arrhyth-miasandheartratevariabilityduringandaftertherapeutichypothermiafor cardiacarrest.CritCareMed2009;37:403–9.

Referenties

GERELATEERDE DOCUMENTEN

Maar uit pure angst voor dit wezen, dat mens was maar ook weer niet, rende Frankenstein bij hem weg, en liet hem aan zijn lot over?. De angst voor mensachtige robots heeft hier

Alle proeven zijn in het oogstbare stadium beoordeeld door vertegenwoor- digers van alle betrokken partijen (zaadbedrijven, N.A.K.G., tuinders, gewasspecialist van het Proefstation

Om vast te stellen welke oorzaken ten grondslag liggen aan het ziektebeeld is onderzoeker Daniël Ludeking samen met zijn collega Rozemarijn de Vries een inventarisatie gestart

inevitable, as well as the fact that erosion of the material might be an influence as well on blocks that are near the edges of the ranges. It would be interesting to see how these

Throughout Chapter 3, 4 and 5, the deliberation of travel habits is studied among those who already made the choice to adopt an e-bike (e-bike commuters in Chapter 3, rural

First, the influence of virtual reality navigation training on overall navigation ability was examined for participants in the control group, control group with

Individual difference in path integration was also found to be associated with grey matter density in retrosplenial cortex, hippocampus, and medial prefrontal cortex while

The first notable difference between the gifted group and the non-gifted groups can be found in question 10 of the vocabulary acquisition survey: “I best memorize and learn