• No results found

University of Groningen Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes from Microbacterium aurum B8.A involved in native starch degradation Valk, Vincent

N/A
N/A
Protected

Academic year: 2021

Share "University of Groningen Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes from Microbacterium aurum B8.A involved in native starch degradation Valk, Vincent"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes

from Microbacterium aurum B8.A involved in native starch degradation

Valk, Vincent

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Valk, V. (2017). Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes

from Microbacterium aurum B8.A involved in native starch degradation. Rijksuniversiteit Groningen.

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

R e f e r e n c e s

Introduction

The evolutionary origin and possible

functional roles of FNIII domains in two

Microbacterium aurum B8.A granular

starch degrading enzymes, and in other

carbohydrate acting enzymes

References

1 Smith AM (2001) The biosynthesis of starch granules. Biomacromolecules 2, 335–341.

2 Gallant DJ, Bouchet B, Buléon A & Pérez S (1992) Physical properties of starch granules and susceptibility to enzymatic degradation. Eur. J. Clinial Nutr. 46, 3–16.

3 Sarko A & Wu H-CH (1978) The crystal structures of A-, B- and C-polymorphs of amylose and starch. Starch - Stärke 30, 73–78.

4 Yu TS, Kofler H, Häusler RE, Hille D, Flügge UI, Zeeman SC, Smith AM, Kossmann J, Lloyd J, Ritte G, Steup M, Lue WL, Chen J & Weber A (2001) The Arabidopsis sex1 mutant is defective in the R1 protein, a general regulator of starch degradation in plants, and not in the chloroplast hexose transporter. Plant Cell 13, 1907–1918.

5 Smith AM, Zeeman SC & Smith SM (2005) Starch degradation. Annu. Rev. Plant Biol. 56, 73–98. 6 Tako M, Tamaki Y, Teruya T & Takeda Y (2014) The principles of starch gelatinization and

retrogradation. Food Nutr. Sci. 5, 280–291.

7 Blaak EE & Saris WHM (1995) Health aspects of various digestible carbohydrates. Nutr. Res. 15, 1547–1573.

8 Englyst HN & Macfarlane GT (1986) Breakdown of resistant and readily digestible starch by human gut bacteria. J. Sci. Food Agric. 37, 699–706.

9 Englyst KN, Englyst HN, Hudson GJ, Cole TJ & Cummings JH (1999) Rapidly available glucose in foods: an in vitro measurement that reflects the glycemic response. Am. J. Clin. Nutr. 69, 448–454.

10 Sajilata MG, Singhal RS & Kulkarni PR (2006) Resistant starch–a review. Compr. Rev. Food Sci.

Food Saf. 5, 1–17.

11 Birt DF, Boylston T, Hendrich S, Jane J, Hollis J, Li L, Mcclelland J, Moore S, Phillips GJ, Rowling M, Schalinske K, Scott MP & Whitley EM (2013) Resistant starch : promise for improving human health. Am. Soc. Nutr. 4, 587–601.

12 Raigond P, Ezekiel R & Raigond B (2015) Resistant starch in food: a review. J. Sci. Food Agric. 95, 1968–1978.

13 Woo KS & Seib PA (2002) Cross-linked resistant starch: preparation and properties. Cereal

Chem. J. 79, 819–825.

14 Seneviratne HD & Biliaderis CG (1991) Action of α-amylases on amylose-lipid complex superstructures. J. Cereal Sci. 13, 129–143.

15 Lehmann U & Robin F (2007) Slowly digestible starch - its structure and health implications: a review. Trends Food Sci. Technol. 18, 346–355.

16 Dronamraju SS, Coxhead JM, Kelly SB, Burn J & Mathers JC (2009) Cell kinetics and gene expression changes in colorectal cancer patients given resistant starch: a randomised controlled trial. Gut 58, 413–420.

17 Canani RB, Costanzo M Di, Leone L, Pedata M, Meli R & Calignano A (2011) Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World J. Gastroenterol. 17, 1519–1528.

18 Brouns F, Kettlitz B & Arrigoni E (2002) Resistant starch and “the butyrate revolution.” Trends

Food Sci. Technol. 13, 251–261.

19 Gao Z, Yin J, Zhang J, Ward RE, Martin RJ, Lefevre M, Cefalu WT & Ye J (2010) Butyrate improves insulin sensitivity and increases energy expenditure in mice. 58, 1–14.

20 Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM & Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 42, D490–D495.

(3)

R e f e r e n c e s

21 Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, Sonnhammer ELL, Tate J & Punta M (2014) Pfam: the protein families database. Nucleic Acids Res. 42, D222–D230.

22 Letunic I, Doerks T & Bork P (2014) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res., 10–13.

23 Galperin MY, Makarova KS, Wolf YI & Koonin E V. (2015) Expanded microbial genome coverage and improved protein family annotation in the COG database. Nucleic Acids Res. 43, D261– D269.

24 Haft DH (2003) The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373. 25 Klimke W, Agarwala R, Badretdin A, Chetvernin S, Ciufo S, Fedorov B, Kiryutin B, O’Neill K,

Resch W, Resenchuk S, Schafer S, Tolstoy I & Tatusova T (2009) The national center for biotechnology information’s protein clusters database. Nucleic Acids Res. 37, 216–223. 26 Yin Y, Mao X, Yang J, Chen X, Mao F & Xu Y (2012) dbCAN: a web resource for automated

carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445-451. 27 Eddy SR (1996) Hidden Markov models. Curr. Opin. Struct. Biol. 6, 361–365.

28 Altschul SF, Gish W, Miller W, Myers EW & Lipman DJ (1990) Basic local alignment search tool.

J. Mol. Biol. 215, 403–10.

29 Kelley L a, Mezulis S, Yates CM, Wass MN & Sternberg MJE (2015) The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858.

30 Fischer EH & Stein EA (1960) Alpha amylases, 2nd editio (P. D. Boyer, H. Lardy, and K. Myrbäck, eds.) Academic Press, New York.

31 van der Maarel MJEC, van der Veen B, Uitdehaag JCM, Leemhuis H & Dijkhuizen L (2002) Properties and applications of starch-converting enzymes of the α-amylase family. J.

Biotechnol. 94, 137–155.

32 Buisson G, Duée E, Haser R & Payan F (1987) Three dimensional structure of porcine pancreatic α-amylase at 2.9 A resolution. Role of calcium in structure and activity. EMBO J. 6, 3909– 3916.

33 Matsuura Y, Kusunoki M, Harada W & Kakudo M (1984) Structure and possible catalytic residues of Taka-amylase A. J. Biochem. 95, 697–702.

34 Machius M, Wiegand G & Huber R (1995) Crystal structure of calcium-depleted Bacillus

licheniformis α-amylase at 2.2 Å resolution. J. Mol. Biol. 246, 545–559.

35 Nahoum V, Roux G, Anton V, Rougé P, Puigserver A, Bischoff§ H, Henrissat B & Payan F (2000) Crystal structures of human pancreatic α-amylase in complex with carbohydrate and proteinaceous inhibitors. Biochem. J. 346, 201–208.

36 Fisher SZ, Govindasamy L, Tu C, Agbandje-McKenna M, Silverman DN, Rajaniemi HJ & McKenna R (2006) Structure of human salivary alpha-amylase crystallized in a C-centered monoclinic space group. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun. 62, 88–93.

37 Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N & Imanaka T (1992) Action of neopullulanase: neopullulanase catalyzes both hydrolysis and transglycosylation at α-(1-4)- and α-(1-6)-glucosidic linkages. J. Biol. Chem. 267, 18447–18452.

38 MacGregor EA, Janeček Š & Svensson B (2001) Relationship of sequence and structure to specificity in the α-amylase family of enzymes. Biochim. Biophys. Acta - Protein Struct. Mol.

Enzymol. 1546, 1–20.

39 Stam MR, Danchin EGJ, Rancurel C, Coutinho PM & Henrissat B (2006) Dividing the large glycoside hydrolase family 13 into subfamilies: Towards improved functional annotations of α-amylase-related proteins. Protein Eng. Des. Sel. 19, 555–562.

40 Ramasubbu N, Paloth V, Luo Y, Brayer GD & Levine MJ (1996) Structure of human salivary alpha-amylase at 1.6 A resolution: implications for its role in the oral cavity. Acta Crystallogr. D.

(4)

R e f e r e n c e s

41 Brayer GD, Luo Y & Withers SG (1995) The structure of human pancreatic α-amylase at 1.8 A resolution and comparisons with related enzymes. Protein Sci. 4, 1730–42.

42 Janeček Š, Svensson B & MacGregor EA (2014) α-Amylase: an enzyme specificity found in various families of glycoside hydrolases. Cell. Mol. Life Sci. 71, 1149–1170.

43 Bozonnet S, Jensen MHMT, Nielsen MM, Aghajari N, Jensen MHMT, Kramhøft B, Willemoës M, Tranier S, Haser R & Svensson B (2007) The “pair of sugar tongs” site on the non-catalytic domain C of barley α-amylase participates in substrate binding and activity. FEBS J. 274, 5055–5067.

44 Mehta D & Satyanarayana T (2014) Domain C of thermostable α-amylase of Geobacillus

thermoleovorans mediates raw starch adsorption. Appl. Microbiol. Biotechnol. 98, 4503–19.

45 Kurakata Y, Uechi A, Yoshida H, Kamitori S, Sakano Y, Nishikawa A & Tonozuka T (2008) Structural insights into the substrate specificity and function of Escherichia coli K12 YgjK, a glucosidase belonging to the glycoside hydrolase family 63. J. Mol. Biol. 381, 116–128.

46 Boraston AB, Bolam DN, Gilbert HJ & Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem. J. 382, 769–781.

47 Guillén D, Sánchez S & Rodríguez-Sanoja R (2010) Carbohydrate-binding domains: multiplicity of biological roles. Appl. Microbiol. Biotechnol. 85, 1241–1249.

48 Janeček Š, Svensson B & MacGregor EA (2011) Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. Enzyme Microb. Technol. 49, 429–440.

49 Boraston AB, Healey M, Klassen J, Ficko-Blean E, Lammerts van Bueren A & Law V (2006) A structural and functional analysis of α-glucan recognition by family 25 and 26 carbohydrate-binding modules reveals a conserved mode of starch recognition. J. Biol. Chem. 281, 587– 598.

50 Tomme P, van Tilbeurgh H, Pettersson G, van Damme J, Vandekerckhove J, Knowles J, Teeri T & Claeyssens M (1988) Studies of the cellulolytic system of Trichoderma reesei QM 9414. Eur.

J. Biochem. 170, 575–581.

51 Hayashida S & Yoshino E (1978) Formation of active derivatives of glucoamylase I during the digestion with fungal acid protease and α-mannosidase. Agric. Biol. Chem. 42, 927–933. 52 Hayashida S, Kunisaki S, Nakao M & Flor PQ (1982) Evidence for raw starch-affinity site on

Aspergillus awamori glucoamylase I. Agric. Biol. Chem. 46, 83–89.

53 Van Tilbeurgh H, Tomme P, Claeyssens M, Bhikhabhai R & Pettersson G (1986) Limited proteolysis of the cellobiohydrolase I from Trichoderma reesei. FEBS Lett. 204, 223–227.

54 Gilkess NR, Antony R, Warren J, Miller RC & Kilburn DG (1988) Precise excision of the cellulose binding domains from two cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J. Biol. Chem. 263, 10401–10407.

55 Gilkes NR, Jervis E, Henrissat B, Tekant B, Miller RC, Warren RAJ & Kilburn DG (1992) The adsorption of a bacterial cellulase and its two isolated domains to crystalline cellulose. J.

Biol. Chem. 267, 6743–6749.

56 Kraulis J, Clore GM, Nilges M, Jones TA, Pettersson G, Knowles J & Gronenborn AM (1989) Determination of the three-dimensional solution structure of the C-terminal domain of cellobiohydrolase I from Trichoderma reesei. A study using nuclear magnetic resonance and hybrid distance geometry-dynamical simulated annealing. Biochemistry 28, 7241–7257. 57 Svensson B, Jespersen H, Sierks MR & MacGregor E a (1989) Sequence homology between

putative raw-starch binding domains from different starch-degrading enzymes. Biochem. J.

264, 309–311.

58 Svensson B, Svendsen TG, Svendsen IB, Sakai T & Ottesen M (1982) Characterization of two forms of glucoamylase from Aspergillus niger. Carlsberg Res. Commun. 47, 55–69.

(5)

R e f e r e n c e s

containing a novel non-catalytic xylan-specific binding domain. Biochem. J. 307 ( Pt 1, 191– 195.

60 Watanabe T, Ito Y, Yamada T, Hashimoto M, Sekine S & Tanaka H (1994) The roles of the C-terminal domain and type III domains of chitinase A1 from Bacillus circulans WL-12 in chitin degradation. J. Bacteriol. 176, 4465–4472.

61 Dalmia BK, Schutte K & Nikolov ZL (1995) Domain E of Bacillus macerans cyclodextrin glucanotransferase: an independent starch-binding domain. Biotechnol. Bioeng. 47, 575– 584.

62 Hua YW, Chi MC, Lo HF, Kuo LY, Ku KL & Lin LL (2005) Adsorption-elution purification of chimeric

Bacillus stearothermophilus leucine aminopeptidase II with raw-starch-binding activity. World J. Microbiol. Biotechnol. 21, 689–694.

63 Ohdan K, Kuriki T, Takata H, Kaneko H & Okada S (2000) Introduction of raw starch-binding domains into Bacillus subtilis α- amylase by fusion with the starch-binding domain of

Bacillus cyclomaltodextrin glucanotransferase. Appl. Environ. Microbiol. 66, 3058–3064.

64 Sumitani J, Tottori T, Kawaguchi T & Arai M (2000) New type of starch-binding domain: the direct repeat motif in the C-terminal region of Bacillus sp. no. 195 α-amylase contributes to starch binding and raw starch degrading. Biochem. J. 350, 477–484.

65 Yamaguchi R, Tokunaga H, Ishibashi M, Arakawa T & Tokunaga M (2011) Salt-dependent thermo-reversible α-amylase: cloning and characterization of halophilic α-amylase from moderately halophilic bacterium, Kocuria varians. Appl. Microbiol. Biotechnol. 89, 673–684.

66 Mosher DF (1993) Assembly of fibronectin into extracellular matrix. Curr. Opin. Struct. Biol. 3, 214–222.

67 Clark RA (2016) Fibronectin. Cell 59, 775–776.

68 Campbell ID & Spitzfaden C (1994) Building proteins with fibronectin type III modules. Structure

2, 333–337.

69 Pankov R & Yamada KM (2002) Fibronectin at a glance. J. Cell Sci. 115, 3861–3863.

70 Konkel ME, Larson CL & Flanagan RC (2010) Campylobacter jejuni FlpA binds fibronectin and is required for maximal host cell adherence. J. Bacteriol. 192, 68–76.

71 Watanabe T, Suzuki K, Oyanagi W, Ohnishi K & Tanaka H (1990) Gene cloning of chitinase A1 from Bacillus circulans WL-12 revealed its evolutionary relationship to Serratia chitinase and to the type III homology units of fibronectin. J. Biol. Chem. 265, 15659–15665. 72 Dickinson CD, Veerapandian B, Dai XP, Hamlin RC, Xuong N huu, Ruoslahti E & Ely KR (1994)

Crystal structure of the tenth type III cell adhesion module of human fibronectin. J. Mol.

Biol. 236, 1079–1092.

73 Chuang H-H, Lin H-Y & Lin F-P (2008) Biochemical characteristics of C-terminal region of recombinant chitinase from Bacillus licheniformis implication of necessity for enzyme properties. FEBS J. 275, 2240–2254.

74 Lin H-Y, Chuang H-H & Lin F-P (2008) Biochemical characterization of engineered amylopullulanase from Thermoanaerobacter ethanolicus 39E-implicating the non-necessity of its 100 C-terminal amino acid residues. Extremophiles 12, 641–650.

75 Lin FP, Ho YH, Lin HY & Lin HJ (2012) Effect of C-terminal truncation on enzyme properties of recombinant amylopullulanase from Thermoanaerobacter pseudoethanolicus.

Extremophiles 16, 395–403.

76 Lo H-F, Lin L-L, Chiang W-Y, Chie M-C, Hsu W-H & Chang C-T (2002) Deletion analysis of the C-terminal region of the α-amylase of Bacillus sp. strain TS-23. Arch. Microbiol. 178, 115– 123.

77 Hamilton LM, Kelly CT & Fogarty WM (1999) Production and properties of the raw starch-digesting α-amylase of Bacillus sp. IMD 435. Process Biochem. 35, 27–31.

(6)

R e f e r e n c e s

α-amylase of Bacillus sp. IMD 434. Biotechnol. Lett. 21, 111–115.

79 Mamo G & Gessesse A (1999) Purification and characterization of two raw-starch-digesting thermostable α-amylases from a thermophilic Bacillus. Enzyme Microb. Technol. 25, 433– 438.

80 Mitsuiki S, Mukae K, Sakai M, Goto M, Hayashida S & Furukawa K (2005) Comparative characterization of raw starch hydrolyzing α-amylases from various Bacillus strains. Enzyme

Microb. Technol. 37, 410–416.

81 Vidilaseris K, Hidayat K, Retnoningrum DS, Nurachman Z, Noer AS & Natalia D (2009) Biochemical characterization of a raw starch degrading α-amylase from the Indonesian marine bacterium

Bacillus sp. ALSHL3. Biologia (Bratisl). 64, 1047–1052.

82 Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J & Sayers EW (2009) GenBank. Nucleic Acids

Res. 37, D26–D31.

83 Itkor P, Tsukagoshi N & Udaka S (1989) Purification and properties of divalent cation-dependent raw-starch-digesting α-amylase from Bacillus sp. B1018. J. Ferment. Bioeng. 68, 247–251. 84 Itkor P, Shida O, Tsukagoshi N & Udaka S (1989) Screening for raw starch digesting bacteria.

Agric. Biol. Chem. 53, 53–60.

85 Itkor P, Tsukagoshi N & Udaka S (1990) Nucleotide sequence of the raw-starch-digesting amylase gene from Bacillus sp. B1018 and its strong homology to the cyclodextrin glucanotransferase genes. Biochem. Biophys. Res. Commun. 166, 630–636.

86 Lin L-L, Chyau C-C & Hsu W-H (1998) Production and properties of a raw-starch-degrading amylase from the thermophilic and alkaliphilic Bacillus sp. TS-23. Biotechnol. Appl. Biochem.

28, 61–68.

87 Satoh E, Uchimura T, Kudo T & Komagata K (1997) Purification, characterization, and nucleotide sequence of an intracellular maltotriose-producing α-amylase from Streptococcus bovis 148. Appl. Environ. Microbiol. 63, 4941–4944.

88 Satoh E, Niimura Y, Uchimura T, Kozaki M & Komagata K (1993) Molecular cloning and expression of two alpha-amylase genes from Streptococcus bovis 148 in Escherichia coli. Appl. Environ.

Microbiol. 59, 3669–73.

89 Mizokami K, Kozaki M & Kitahara K (1978) Crystallization and properties of raw starch hydrolyzing enzyme produced by Streptococcus bovis. J. Japanese Soc. Starch Sci. 25, 132–139. 90 Giraud E, Champailler A & Raimbault M (1994) Degradation of raw starch by a wild amylolytic

strain of Lactobacillus plantarum. Appl. Environ. Microbiol. 60, 4319–4323.

91 Giraud E & Cuny G (1997) Molecular characterization of the α-amylase genes of Lactobacillus

plantarum A6 and Lactobacillus amylovorus reveals an unusual 3’ end structure with direct

tandem repeats and suggests a common evolutionary origin. Gene 198, 149–157.

92 Yang C-H & Liu W-H (2007) Cloning and characterization of a maltotriose-producing alpha-amylase gene from Thermobifida fusca. J. Ind. Microbiol. Biotechnol. 34, 325–30.

93 Viksø-Nielsen A, Andersen C, Hoff T & Pedersen S (2006) Development of new α-amylases for raw starch hydrolysis. Biocatal. Biotransformation 24, 121–127.

94 Sarikaya E, Higasa T, Adachi M & Mikami B (2000) Comparison of degradation abilities of α- and β-amylases on raw starch granules. Process Biochem. 35, 711–715.

95 Gawande BN, Goel A, Patkar AY & Nene SN (1999) Purification and properties of a novel raw starch degrading cyclomaltodextrin glucanotransferase from Bacillus firmus. Appl.

Microbiol. Biotechnol. 51, 504–509.

96 Roy JK, Borah A, Mahanta CL & Mukherjee AK (2013) Cloning and overexpression of raw starch digesting α-amylase gene from Bacillus subtilis strain AS01a in Escherichia coli and application of the purified recombinant α-amylase (AmyBS-I) in raw starch digestion and baking industry. J. Mol. Catal. B Enzym. 97, 118–129.

(7)

R e f e r e n c e s

digesting α-amylase from a marine bacterium Bacillus subtilis S8-18. J. Basic Microbiol. 54, 802–11.

98 Lei Y, Peng H, Wang Y, Liu Y, Han F, Xiao Y & Gao Y (2012) Preferential and rapid degradation of raw rice starch by an α-amylase of glycoside hydrolase subfamily GH13_37. Appl. Microbiol.

Biotechnol. 94, 1577–1584.

99 Liu Y, Lei Y, Zhang X, Gao Y, Xiao Y & Peng H (2012) Identification and phylogenetic characterization of a new subfamily of α-amylase enzymes from marine microorganisms. Mar. Biotechnol.

14, 253–260.

100 Jeang C-L, Chen L-S, Chen M-Y & Shiau R-J (2002) Cloning of a gene encoding raw-starch-digesting amylase from a Cytophaga sp. and its expression in Escherichia coli. Appl. Environ.

Microbiol. 68, 3651–3654.

101 Haki G, Anceno A & Rakshit S (2008) Atypical Ca2+-independent, raw-starch hydrolysing α-amylase from Bacillus sp. GRE1: characterization and gene isolation. World J. Microbiol.

Biotechnol. 24, 2517–2524.

102 Liu XD & Xu Y (2008) A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: purification and characterization. Bioresour. Technol. 99, 4315–4320.

103 Hostinová E, Janeček Š & Gašperík J (2010) Gene sequence, bioinformatics and enzymatic characterization of α-amylase from Saccharomycopsis fibuligera KZ. Protein J., 1–10. 104 Gangadharan D, Ramachandran P, Paramasamy G, Pandey A, Nampoothiri MK & Nampoothiri

KM (2010) Molecular cloning, overexpression and characterization of the raw-starch-digesting α-amylase of Bacillus amyloliquefaciens. Biologia (Bratisl). 65, 392–398.

105 Finore I, Kasavi C, Poli A, Romano I, Oner ET, Kirdar B, Dipasquale L, Nicolaus B & Lama L (2011) Purification, biochemical characterization and gene sequencing of a thermostable raw starch digesting α-amylase from Geobacillus thermoleovorans subsp. stromboliensis subsp. nov. World J. Microbiol. Biotechnol. 27, 2425–2433.

106 Božić N, Ruiz J, López-Santín J & Vujčić Z (2011) Production and properties of the highly efficient raw starch digesting α-amylase from a Bacillus licheniformis ATCC 9945a. Biochem.

Eng. J. 53, 203–209.

107 Arasaratnam V & Balasubramaniam K (1993) Synergistic action of α-amylase and glucoamylase on raw corn. Starch/Stärke 45, 231–233.

108 Annette Gnrtzsche-Larsen;Scott Shore;Lori Gregg (1999) Termamyl LC an α-amylase preparation produced by Bacillus licheniformis expressing a gene encoding a modified α-amylase from Bacillus lichenformis. GRAS appllication.

109 Puspasari F, Radjasa OK, Noer AS, Nurachman Z, Syah YM, van der Maarel M, Dijkhuizen L, Janeček S, Natalia D, Van der M & Jane─ìek ┼á (2013) Raw starch-degrading α-amylase from Bacillus aquimaris MKSC 6.2: isolation and expression of the gene, bioinformatics and biochemical characterization of the recombinant enzyme. J. Appl. Microbiol. 114, 108–120. 110 Gawande BN & Patkar AY (2001) Purification and properties of a novel raw starch degrading-cyclodextrin glycosyltransferase from Klebsiella pneumoniae AS- 22. Enzyme Microb.

Technol. 28, 735–743.

111 Kim C-H, Sata H, Taniguchi H & Maruyama Y (1990) Cloning and expression of raw-starch-digesting α-amylase gene from Bacillus circulans F-2 in Escherichia coli. Biochim. Biophys.

Acta - Gene Struct. Expr. 1048, 223–230.

112 Taniguchi H, Odashima F, Igarashi M, Maruyama Y & Nakamura M (1982) Characterization of a potato starch-digesting bacterium and its production of amylase. Agric. Biol. Chem. 46, 2107–2115.

113 Taniguchi H, Jae CM, Yoshigi N & Maruyama Y (1983) Purification of Bacillus circulans F-3 amylase and its general proterties. Agric. Biol. Chem. 47, 511–519.

(8)

R e f e r e n c e s

of raw starch-binding amylase of Clostridium butyricum T-7 isolated from mesophilic methane sludge. Agric. Biol. Chem. 51, 399–405.

115 Hayashida S, Teramoto Y & Inoue T (1988) Production and characteristics of raw-potato-starch-digesting α-amylase from Bacillus subtilis 65. Appl. Environ. Microbiol. 54, 1516–1522. 116 Maktouf S, Kamoun A, Moulis C, Remaud-Simeon M, Ghribi D & Chaabouni SE (2013) A new

raw-starch-digesting α-amylase: production under solid-state fermentation on crude millet and biochemical characterization. J. Microbiol. Biotechnol. 23, 489–498.

117 Nurachman Z, Kono A, Radjasa OK & Natalia D (2010) Identification a novel raw-starch-degrading- α -amylase from a tropical marine bacterium. Am. J. Biochem. Biotechnol. 6 6, 300–306.

118 Vishnu C, Naveena BJ, Altaf M, Venkateshwar M & Reddy G (2006) Amylopullulanase - A novel enzyme of L. amylophilus GV6 in direct fermentation of starch to L(+) lactic acid. Enzyme

Microb. Technol. 38, 545–550.

119 Kim J, Nanmori T & Shinke R (1989) Thermostable, raw-starch-digesting amylase from Bacillus

stearothermophilus. Appl. Environ. Microbiol. 55, 1638–1639.

120 Buranakari L (1988) Purification characterization of a raw starch-digestive amylase from non-sulfur purple photosynthetic bacterium. 10, 173–179.

121 Kadziola A, Søgaard M, Svensson B & Haser R (1998) Molecular structure of a barley alpha-amylase-inhibitor complex: implications for starch binding and catalysis. J. Mol. Biol. 278, 205–217.

122 Cockburn D, Wilkens C, Ruzanski C, Andersen S, Willum Nielsen J, Smith AM, Field R a., Willemoës M, Abou Hachem M & Svensson B (2014) Analysis of surface binding sites (SBSs) in carbohydrate active enzymes with focus on glycoside hydrolase families 13 and 77 — a mini-review. Biologia (Bratisl). 69, 705–712.

123 Vujičić-Žagar A & Dijkstra BW (2006) Monoclinic crystal form of Aspergillus niger α-amylase in complex with maltose at 1.8 Å resolution. Acta Crystallogr. Sect. F Struct. Biol. Cryst.

Commun. 62, 716–721.

124 Lyhne-Iversen L, Hobley TJ, Kaasgaard SG & Harris P (2006) Structure of Bacillus halmapalus α-amylase crystallized with and without the substrate analogue acarbose and maltose. Acta

Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 62, 849–854.

125 Wijbenga D-J & Binnema D (1996) Starch 96 the book, 1st ed. (H. van Doren and N. van Swaaij, eds.) The Carbohydrate Research Foundation & Zestec bv, Noordwijkerhout.

126 Ze X, Duncan SH, Louis P & Flint HJ (2012) Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 6, 1535–1543.

127 Sarian F, van der Kaaij R, Kralj S, Wijbenga D-J, Binnema D, van der Maarel M & Dijkhuizen L (2012) Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A. Appl. Microbiol. Biotechnol. 93, 645–654.

128 Williamson G, Belshaw NJ, Self DJ, Noel TR, Ring SG, Cairns P, Morris VJ, Clark SA & Parker ML (1992) Hydrolysis of A- and B-type crystalline polymorphs of starch by α-amylase, β-amylase and glucoamylase 1. Carbohydr. Polym. 18, 179–187.

129 Gallant D, Mercier C & Lbot A (1972) Electron microscopy of starch granules modified by bacterial or α-amylase. Cereal Chem. 49, 354–365.

130 Cone JW & Wolters MGE (1990) Some properties and degradability of isolated starch granules.

Starch/Stärke 42, 298–301.

131 Sun H, Zhao P, Ge X, Xia Y, Hao Z, Liu J & Peng M (2010) Recent advances in microbial raw starch degrading enzymes. Appl. Biochem. Biotechnol. 160, 988–1003.

132 Christiansen C & Hachem MA (2009) The carbohydrate-binding module family 20 - diversity, structure, and function. FEBS J. 276, 5006–5029.

(9)

R e f e r e n c e s

and CBM26. Biologia (Bratisl). 69, 1087–1096.

134 Wijbenga D-JDD-J, Beldman G, Veen A & Binnema D (1991) Production of native-starch-degrading enzymes by a Bacillus firmus/lentus strain. Appl. Microbiol. Biotechnol. 35, 180– 184.

135 Marchler-Bauer A, Lu S, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH, Geer LY, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Jackson JD, Ke Z, Lanczycki CJ, Lu F, Marchler GH, Mullokandov M, Omelchenko M V, Robertson CL, Song JS, Thanki N, Yamashita RA, Zhang D, Zhang N, Zheng C & Bryant SH (2011) CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res. 39, D225–D229.

136 Petersen TN, Brunak S, von Heijne G & Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat. Methods 8, 785–786.

137 Tamura K, Stecher G, Peterson D, Filipski A & Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729.

138 Letunic I & Bork P (2011) Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39, W475–W478.

139 Sax SM, Bridgwater AB & Moore JJ (1971) Determination of serum and urine amylase with use of procion brilliant red M-2BS amylopectin. Clin. Chem. 17, 311–315.

140 Groudieva T, Kambourova M, Yusef H, Royter M, Grote R, Trinks H & Antranikian G (2004) Diversity and cold-active hydrolytic enzymes of culturable bacteria associated with Arctic sea ice, Spitzbergen. Extremophiles 8, 475–488.

141 Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680–685.

142 Foo AY & Bais R (1998) Amylase measurement with 2-chloro-4-nitrophenyl maltotrioside as substrate. Clin. Chim. Acta 272, 137–147.

143 Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal.

Chem. 31, 426–428.

144 Fales FW (1951) The assimilation and degradation of carbohydrates by yeast cells. J. Biol.

Chem. 193, 113–124.

145 Yamaguchi R, Arakawa T, Tokunaga H, Ishibashi M & Tokunaga M (2012) Distinct characteristics of single starch-binding domain SBD1 derived from tandem domains SBD1-SBD2 of halophilic Kocuria varians alpha-amylase. Protein J. 31, 250–258.

146 Yamaguchi R, Arakawa T, Tokunaga H, Ishibashi M & Tokunaga M (2012) Effects of salt and ligand concentrations on the thermal unfolding and refolding of halophilic starch-binding domain from Kocuria varians α-amylase. Protein Pept. Lett. 19, 326–332.

147 Yamaguchi R, Ishibashi M, Tokunaga H, Arakawa T & Tokunaga M (2013) Structure of starch binding domains of halophilic alpha-amylase at low pH. Protein Pept. Lett. 20, 755–760. 148 O’Connell Motherway M, Fitzgerald GF, Neirynck S, Ryan S, Steidler L & van Sinderen D (2008)

Characterization of ApuB, an extracellular type II amylopullulanase from Bifidobacterium

breve UCC2003. Appl. Environ. Microbiol. 74, 6271–6279.

149 Christian K. H & Hansen CK (1992) Fibronectin type III-like sequences and a new domain type in prokaryotic depolymerases with insoluble substrates. FEBS Lett. 305, 91–96.

150 Henderson B, Nair S, Pallas J & Williams M a (2011) Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS Microbiol. Rev. 35, 147–200. 151 Lin F-P, Ma H-Y, Lin H-J, Liu S-M & Tzou W-S (2011) Biochemical characterization of two

truncated forms of amylopullulanase from Thermoanaerobacterium saccharolyticum NTOU1 to identify its enzymatically active region. Appl. Biochem. Biotechnol. 165, 1047– 1056.

152 Kataeva IA, Seidel RD, Shah A, West LT, Li X-L & Ljungdahl LG (2002) The fibronectin type 3-like repeat from the Clostridium thermocellum cellobiohydrolase CbhA promotes hydrolysis of

(10)

R e f e r e n c e s

cellulose by modifying its surface. Appl. Environ. Microbiol. 68, 4292–4300.

153 Kim DY, Han MK, Park D-S, Lee JS, Oh H-W, Shin D-H, Jeong T-S, Kim SU, Bae KS, Son K-H & Park H-Y (2009) Novel GH10 xylanase, with a fibronectin type 3 domain, from Cellulosimicrobium

sp. strain HY-13, a bacterium in the gut of Eisenia fetida. Appl. Environ. Microbiol. 75, 7275–

7279.

154 Machovič M & Janeček Š (2006) Starch-binding domains in the post-genome era. Cell. Mol.

Life Sci. 63, 2710–2724.

155 Zobel HF (1988) Molecules to granules: a comprehensive starch review. Starch - Stärke 40, 44–50.

156 Rodriguez-Sanoja R, Ruiz B, Guyot JP & Sanchez S (2005) Starch-binding domain affects catalysis in two Lactobacillus α-amylases. Appl. Environ. Microbiol. 71, 297–302.

157 Southall SM, Simpson PJ, Gilbert HJ, Williamson G & Williamson MP (1999) The starch-binding domain from glucoamylase disrupts the structure of starch. FEBS Lett. 447, 58–60.

158 Vu V V, Beeson WT, Span EA, Farquhar ER & Marletta MA (2014) A family of starch-active polysaccharide monooxygenases. Proc. Natl. Acad. Sci. U. S. A. 111, 13822–7.

159 Leggio L Lo, Simmons TJ, Poulsen JN, Frandsen KEH, Hemsworth GR, Stringer M a, Freiesleben P Von, Tovborg M, Johansen KS, Maria L De, Harris P V, Soong C, Dupree P, Tryfona T, Lenfant N, Henrissat B, Davies GJ & Walton PH (2015) Structure and boosting activity of a starch-degrading lytic polysaccharide monooxygenase. Nat. Commun. 6, 1–9.

160 Valk V, Eeuwema W, Sarian FD, van der Kaaij RM & Dijkhuizen L (2015) Degradation of granular starch by the bacterium Microbacterium aurum strain B8.A involves a modular α-amylase enzyme system with FNIII and CBM25 domains. Appl. Environ. Microbiol. 81, 6610–6620. 161 Gilbert HJ, Knox JP & Boraston AB (2013) Advances in understanding the molecular basis of

plant cell wall polysaccharide recognition by carbohydrate-binding modules. Curr. Opin.

Struct. Biol. 23, 669–677.

162 Machovič M & Janeček Š (2006) The evolution of putative starch-binding domains. FEBS Lett.

580, 6349–6356.

163 Peng H, Zheng Y, Chen M, Wang Y, Xiao Y & Gao Y (2014) A starch-binding domain identified in α-amylase (AmyP) represents a new family of carbohydrate-binding modules that contribute to enzymatic hydrolysis of soluble starch. FEBS Lett. 588, 1161–1167.

164 Jiang T-Y, Ci Y-P, Chou W-I, Lee Y-C, Sun Y-J, Chou W-Y, Li K-M & Chang MD-T (2012) Two unique ligand-binding clamps of Rhizopus oryzae starch binding domain for helical structure disruption of amylose. PLoS One 7, e41131.

165 Morris VJ, Gunning AP, Faulds CB, Williamson G & Svensson B (2005) AFM images of complexes between amylose and Aspergillus niger glucoamylase mutants, native, and mutant starch binding domains: A model for the action of glucoamylase. Starch-Starke 57, 1–7.

166 Waterhouse AM, Procter JB, Martin DM a, Clamp M & Barton GJ (2009) Jalview version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. 167 Dhir S, Pacurar M, Franklin D, Gaspari Z, Kertesz-Farkas A, Kocsor A, Eisenhaber F & Pongor

S (2010) Detecting atypical examples of known domain types by sequence similarity searching: the SBASE domain library approach. Curr. Protein Pept. Sci. 11, 538–549. 168 Eickholt J, Deng X & Cheng J (2011) DoBo: Protein domain boundary prediction by integrating

evolutionary signals and machine learning. BMC Bioinformatics 12, 43.

169 Cheng J, Sweredoski MJ & Baldi P (2006) DOMpro: Protein domain prediction using profiles, secondary structure, relative solvent accessibility, and recursive neural networks. Data Min.

Knowl. Discov. 13, 1–10.

170 Aslanidis C & de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR).

Nucleic Acids Res. 18, 6069–6074.

(11)

R e f e r e n c e s

using modified plasmid vectors. Biotechniques 13, 515–518.

172 Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD & Bairoch A (2005) Protein identification and analysis tools on the ExPASy Server. In The Proteomics Protocols

Handbook pp. 571–607.

173 Scatchard G (1949) The attractions of proteins for small molecules and ions. Ann. N. Y. Acad.

Sci. 51, 660–672.

174 Voet D & Voet JG (1995) Biochemistry, 3rd Edition, 3rd edditi John Wiley & Sons, Inc., Hoboken, NJ,.

175 Kemmer G & Keller S (2010) Nonlinear least-squares data fitting in Excel spreadsheets. Nat.

Protoc. 5, 267–281.

176 Warren FJ, Royall PG, Gaisford S, Butterworth PJ & Ellis PR (2011) Binding interactions of α-amylase with starch granules: the influence of supramolecular structure and surface area.

Carbohydr. Polym. 86, 1038–1047.

177 Lammerts van Bueren A, Finn R, Ausió J & Boraston AB (2004) α-glucan recognition by a new family of carbohydrate-binding modules found primarily in bacterial pathogens.

Biochemistry 43, 15633–15642.

178 Lammerts van Bueren A, Saraf A, Martens EC & Dijkhuizen L (2015) Differential metabolism of exopolysaccharides from probiotic Lactobacilli by the human gut symbiont Bacteroides

thetaiotaomicron. Appl. Environ. Microbiol. 81, 3973–3983.

179 Notenboom V, Boraston AB, Kilburn DG & Rose DR (2001) Crystal structures of the family 9 carbohydrate-binding module from Thermotoga maritima xylanase 10A in native and ligand-bound forms. Biochemistry 40, 6248–6256.

180 Boraston AB, Creagh AL, Alam MM, Kormos JM, Tomme P, Haynes CA, Warren RAJ & Kilburn DG (2001) Binding specificity and thermodynamics of a family 9 carbohydrate-binding module from Thermotoga maritima Xylanase 10A. Biochemistry 40, 6240–6247.

181 Hudson KL, Bartlett GJ, Diehl RC, Agirre J, Gallagher T, Kiessling LL & Woolfson DN (2015) Carbohydrate-aromatic interactions in proteins. J. Am. Chem. Soc., jacs.5b08424.

182 Penninga D, Van Der Veen B a., Knegtel RM a, Van Hijum S a FT, Rozeboom HJ, Kalk KH, Dijkstra BW & Dijkhuizen L (1996) The raw starch binding domain of cyclodextrin glycosyltransferase from Bacillus circulans strain 251. J. Biol. Chem. 271, 32777–32784.

183 Ezkurdia I & Tress ML (2011) Protein structural domains: definition and prediction. Curr.

Protoc. Protein Sci. Chapter 2, Unit2.14.

184 Machius M, Wiegand G & Huber R (1995) Crystal Structure of Calcium-depleted Bacillus licheniformis a-amylase at 2 . 2 ÅResolution. J. Mol. Biol., 545–559.

185 Han Q, Liu N, Robinson H, Cao L, Qian C, Wang Q, Xie L, Ding H, Wang Q, Huang Y, Li J & Zhou Z (2013) Biochemical characterization and crystal structure of a GH10 xylanase from termite gut bacteria reveal a novel structural feature and significance of its bacterial Ig-like domain.

Biotechnol. Bioeng. 110, 3093–3103.

186 Mesnage S, Fontaine T, Mignot T, Delepierre M, Mock M & Fouet A (2000) Bacterial SLH domain proteins are non-covalently anchored to the cell surface via a conserved mechanism involving wall polysaccharide pyruvylation. EMBO J. 19, 4473–4484.

187 Kern J, Wilton R, Zhang R, Binkowski TA, Joachimiak A & Schneewind O (2011) Structure of surface layer homology (SLH) domains from Bacillus anthracis surface array protein. J. Biol.

Chem. 286, 26042–26049.

188 Vaaje-kolstad G, Westereng B, Horn SJ, Liu Z, Zhai H, Sørlie M & Eijsink VGH (2010) An oxidative enzyme boosting the enzymatic conversion of recalcitrant polysaccharides. Science (80-. ).

330, 219–222.

189 Novick RP (2000) Sortase: the surface protein anchoring transpeptidase and the LPXTG motif.

(12)

R e f e r e n c e s

190 Roche FM, Massey R, Peacock SJ, Day NPJ, Visai L, Speziale P, Lam A, Pallen M & Foster TJ (2003) Characterization of novel LPXTG-containing proteins of Staphylococcus aureus identified from genome sequences. Microbiology 149, 643–654.

191 Paldi T, Levy I & Shoseyov O (2003) Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Biochem. J. 372, 905–910.

192 Bogracheva TY, Wang YL, Wang TL & Hedley CL (2002) Structural studies of starches with different water contents. Biopolymers 64, 268–281.

193 Shoseyov O, Shani Z & Levy I (2006) Carbohydrate binding modules: biochemical properties and novel applications. Microbiol. Mol. Biol. Rev. 70, 283–295.

194 Wheelan SJ, Marchler-Bauer A & Bryant SH (2000) Domain size distributions can predict domain boundaries. Bioinformatics 16, 613–618.

195 Islam SA, Luo J & Sternberg MJ (1995) Identification and analysis of domains in proteins.

Protein Eng. 8, 513–525.

196 Nelson KE, Weinstock GM, Highlander SK, Worley KC, Creasy HH, Wortman JR, Rusch DB, Mitreva M, Sodergren E, Chinwalla AT, Feldgarden M, Gevers D, Haas BJ, Madupu R, Ward DV, Birren BW, Gibbs RA, Methe B, Petrosino JF, Strausberg RL, Sutton GG, White OR, W ZD (2010) A catalog of reference genomes from the human microbiome. Science (80-. ). 328, 994–999.

197 Fuentes-Zaragoza E, Sánchez-Zapata E, Sendra E, Sayas E, Navarro C, Fernández-Lõpez J & Pérez-Alvarez J a. (2011) Resistant starch as prebiotic: A review. Starch/Staerke 63, 406–415. 198 Silvi S, Rumney CJ, Cresci A. & Rowland IR (1999) Resistant starch modifies gut microflora and

microbial metabolism in human flora-associated rats inoculated with faeces from Italian and UK donors. J. Appl. Microbiol. 86, 521–530.

199 Doyon Y, Home W, Daull P & LeBel D (2002) Effect of C-domain N-glycosylation and deletion on rat pancreatic alpha-amylase secretion and activity. Biochem. J. 362, 259–264.

200 Ben Abdelmalek I, Urdaci MC, Ali M Ben, Denayrolles M, Chaignepain S, Limam F, Bejar S & Marzouki MN (2009) Structural investigation and homology modeling studies of native and truncated forms of α-amylases from Sclerotinia sclerotiorum. J. Microbiol. Biotechnol. 19, 1306–1318.

201 Valk V, Lammerts van Bueren A, van der Kaaij RM & Dijkhuizen L (2016) Carbohydrate Binding Module 74 is a novel starch binding domain associated with large and multi-domain α-amylase enzymes. FEBS J. 283, 2354–2368.

202 Matsubara T, Ben Ammar Y, Anindyawati T, Yamamoto S, Ito K, Iizuka M & Minamiura N (2004) Degradation of raw starch granules by alpha-amylase purified from culture of Aspergillus

awamori KT-11. J. Biochem. Mol. Biol. 37, 422–428.

203 Sun H, Ge X & Zhang W (2007) Production of a novel raw-starch-digesting glucoamylase by

Penicillium sp. X-1 under solid state fermentation and its use in direct hydrolysis of raw

starch. World J. Microbiol. Biotechnol. 23, 603–613.

204 Wankhede DB & Ramteke RS (1982) Synergistic digestibility of several native starches by amylolytic enzymes. Starch - Stärke 34, 309–312.

205 Wong DWS, Robertson GH, Lee CC & Wagschal K (2007) Synergistic action of recombinant α-amylase and glucoamylase on the hydrolysis of starch granules. Protein J. 26, 159–164. 206 Brückner J (1955) Estimation of monosaccharides by the orcinol–sulphuric acid reaction.

Biochem. J. 60, 200–205.

207 Kelley LA & Sternberg MJE (2009) Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4, 363–371.

208 Janeček Š (2002) How many conserved sequence regions are there in the α -amylase family?

Biologia (Bratisl). 57, 29–41.

(13)

R e f e r e n c e s

sp. SK3-4 amylopullulanase: characterization and its relationship in carbohydrate utilization. Int. J. Mol. Sci. 14, 11302–11318.

210 Kim DY, Ham SJ, Kim HJ, Kim J, Lee MH, Cho HY, Shin DH, Rhee YH, Son KH & Park HY (2012) Novel modular endo-β-1,4-xylanase with transglycosylation activity from Cellulosimicrobium

sp. strain HY-13 that is homologous to inverting GH family 6 enzymes. Bioresour. Technol.

107, 25–32.

211 Lin F-P & Leu K-L (2002) Cloning, expression, and characterization of thermostable region of amylopullulanase gene from Thermoanaerobacter ethanolicus 39E. Appl. Biochem.

Biotechnol. 97, 33–44.

212 Mathupala SP, Lowe SE, Podkovyrov SM & Zeikus JG (1993) Sequencing of the amylopullulanase (apu) gene of Thermoanaerobacter ethanolicus 39E, and identification of the active site by site-directed mutagenesis. J. Biol. Chem. 268, 16332–16344.

213 Suzuki K, Taiyoji M, Sugawara N, Nikaidou N, Henrissat B & Watanabe T (1999) The third chitinase gene (chiC) of Serratia marcescens 2170 and the relationship of its product to other bacterial chitinases. Biochem. J. 343 Pt 3, 587–96.

214 Takasuka TE, Acheson JF, Bianchetti CM, Prom BM, Bergeman LF, Book AJ, Currie CR & Fox BG (2014) Biochemical properties and atomic resolution structure of a proteolytically processed β-mannanase from cellulolytic Streptomyces sp. SirexAA-E. PLoS One 9, e94166. 215 Yin XH, Gerbaud C, Francou FX, Guérineau M & Virolle MJ (1998) amlC, Another amylolytic

gene maps close to the amlB locus in Streptomyces lividans TK24. Gene 215, 171–180. 216 Sheehan H & McCleary B V. (1988) A new procedure for the measurement of fungal and

bacterial α-amylase. Biotechnol. Tech. 2, 289–292.

217 Hashim SO, Delgado OD, Martínez MA, Kaul R-H, Mulaa FJ & Mattiasson B (2005) Alkaline active maltohexaose-forming α-amylase from Bacillus halodurans LBK 34. Enzyme Microb.

Technol. 36, 139–146.

218 Hayashi T, Akiba T & Horikoshi K (1988) Production and purification from alkalophilic of new maltohexaose-forming amylases from alkalophilic Bacillus sp. H-167. Agric. Biol. Chem. 52, 443–448.

219 Hayashi T, Akiba T & Horikoshi K (1988) Properties of new alkaline maltohexaose-forming amylases. Appl. Microbiol. Biotechnol. 28, 281–285.

220 Li Z, Wu J, Zhang B, Wang F, Ye X, Huang Y, Huang Q & Cui Z (2015) AmyM, a novel maltohexaose-forming α-amylase from Corallococcus sp. strain EGB. Appl. Environ. Microbiol. 81, 1977– 1987.

221 Momma M (2000) Cloning and sequencing of the maltohexaose-producing amylase gene of

Klebsiella pneumoniae . Biosci. Biotechnol. Biochem. 64, 428–431.

222 Pages C (1988) Nucleotide sequence of the maltohexaose-producing amylase gene from an alkalophilic Bacillus sp. Biochem. Biophys. Res. Commun. 151, 25–31.

223 Zhou JH, Baba T, Takano T, Kobayashi S & Arai Y (1989) Nucleotide sequence of the maltotetraohydrolase gene from Pseudomonas saccharophila. FEBS Lett. 255, 37–41. 224 Zhou J, Baba T, Takano T, Kobayashi S & Arai Y (1992) Properties of the enzyme expressed

by the Pseudomonas saccharophila maltotetraohydrolase gene (mta) in Escherichia coli.

Carbohydr. Res. 223, 255–261.

225 Caddow AJ (2009) GRAS Notice 000277: G4-amylase enzyme preparation from Bacillus

licheniformis expressing the gene encoding a modified maltotetraohydrolase enzyme from Pseudomonas saccharophila. .

226 Valk V, van der Kaaij RM & Dijkhuizen L (2016) Characterization of the starch-acting MaAmyB enzyme from Microbacterium aurum B8.A representing the novel subfamily GH13_42 with an unusual, multi-domain organization. Sci. Rep. 6, 36100.

(14)

R e f e r e n c e s

Proc. Natl. Acad. Sci. 89, 8990–8994.

228 Jee J-G, Ikegami T, Hashimoto M, Kawabata T, Ikeguchi M, Watanabe T & Shirakawa M (2002) Solution structure of the fibronectin type III domain from Bacillus circulans WL-12 chitinase A1. J. Biol. Chem. 277, 1388–1397.

229 Giglio KM, Fong JC, Yildiz FH & Sondermann H (2013) Structural basis for biofilm formation via the Vibrio cholerae matrix protein RbmA. J. Bacteriol. 195, 3277–3286.

230 Han Y, Agarwal V, Dodd D, Kim J, Bae B, Mackie RI, Nair SK & Cann IKO (2012) Biochemical and structural insights into xylan utilization by the thermophilic bacterium Caldanaerobius

polysaccharolyticus. J. Biol. Chem. 287, 34946–34960.

231 Grant JR & Katz LA (2014) Phylogenomic study indicates widespread lateral gene transfer in

Entamoeba and suggests a past intimate relationship with parabasalids. Genome Biol. Evol.

6, 2350–2360.

232 Ma W-T, Lin J-H, Chen H-J, Chen S-Y & Shaw G-C (2011) Identification and characterization of a novel class of extracellular poly(3-hydroxybutyrate) depolymerase from Bacillus sp. strain NRRL B-14911. Appl. Environ. Microbiol. 77, 7924–7932.

233 Rappoport N & Linial M (2012) Viral proteins acquired from a host converge to simplified domain architectures. PLoS Comput. Biol. 8, e1002364.

234 Alahuhta M, Xu Q, Brunecky R, Adney WS, Ding S-Y, Himmel ME & Lunin V V (2010) Structure of a fibronectin type III-like module from Clostridium thermocellum. Acta Crystallogr. Sect.

F, Struct. Biol. Cryst. Commun. 66, 878–880.

235 Hoxha E & Campion SR (2014) Structure–critical distribution of aromatic residues in the fibronectin type III protein family. Protein J. 33, 165–173.

236 Varner JE, Louis S, Lin L-S, Louis S & Lin L-S (1989) Plant cell wall architecture. Cell 56, 231–239. 237 Cockburn D, Nielsen MM, Christiansen C, Andersen JM, Rannes JB, Blennow A & Svensson B

(2015) Surface binding sites in amylase have distinct roles in recognition of starch structure motifs and degradation. Int. J. Biol. Macromol. 75, 338–345.

238 Cockburn D & Svensson B (2013) Surface binding sites in carbohydrate active enzymes: an emerging picture of structural and functional diversity. Carbohydr. Chem. Vol. 39 39, 204– 221.

239 Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J & Flint HJ (2011) Dominant and diet-responsive groups of bacteria within the human colonic microbiota.

ISME J. 5, 220–30.

240 Huang J, Wei N, Li H, Liu S & Yang D (2014) Outer shell, inner blocklets, and granule architecture of potato starch. Carbohydr. Polym. 103, 355–8.

241 Gallant DJ, Bouchet B & Baldwin PM (1997) Microscopy of starch: evidence of a new level of granule organization. Carbohydr. Polym. 32, 177–191.

242 Helbert W, Schülein M & Henrissat B (1996) Electron microscopic investigation of the diffusion of Bacillus licheniformis α-amylase into corn starch granules. Int. J. Biol. Macromol. 19, 165–169.

243 Björklund ÅK, Ekman D & Elofsson A (2006) Expansion of protein domain repeats. PLoS

Comput. Biol. 2, 0959–0970.

244 Martinez-Puig D, Perez JF, Castillo M, Andaluz A, Anguita M, Morales J & Gasa J (2003) Consumption of raw potato starch increases colon length and fecal excretion of purine bases in growing pigs. J. Nutr. 133, 134–139.

245 Kingman SM & Englyst HN (1994) The influence of food preparation methods on the in-vitro digestibility of starch in potatoes. Food Chem. 49, 181–186.

246 Englyst HN, Kingman SM, Hudson GJ & Cummings JH (1996) Measurement of resistant starch in vitro and in vivo. Br. J. Nutr. 75, 749–755.

(15)

N

L

Referenties

GERELATEERDE DOCUMENTEN

Een filosofisch stellingname wordt hier door Sokrates verworpen, louter op grond van de bevinding dat deze zich niet anders laat uitdrukken dan in een taal die de inhoud van

Biochemical characterization and bioinformatic analysis of two large multi-domain enzymes from Microbacterium aurum B8.A involved in native starch degradation..

Scanning electron microscope image of a partly degraded wheat starch granule after 72 hours of incubation with MaAmyA, a heterologously expressed α-amylase enzyme from Microbacterium

The M. aurum B8.A culture fluid degraded wheat starch up to 60% further than incubations with only MaAmyA. Part of this difference can be explained by instability of

Despite this similar domain organization, the individual CBM25 and FNIII domains of MaAmyA do not show high similarity with those from the Paenibacillus enzymes or with the

Most of the identified GH13_42 members share a similar domain organization starting with 2 CBM25 domains, 1 FNIII domain and the catalytic domain (AB- regions) (Fig. 5), which

All initially identified prokaryotic FNIII domains were associated with carbohydrate acting enzymes, but more recently these domains have also been identified in

• Scientific information on the relationship between leader empowerment behaviour, psychological empowerment, and intention to leave of educators in selected