• No results found

Monitoring biodiversity change through effective global coordination

N/A
N/A
Protected

Academic year: 2021

Share "Monitoring biodiversity change through effective global coordination"

Copied!
12
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Monitoring

biodiversity

change

through

effective

global

coordination

Laetitia

M

Navarro

1,2

,

Ne´stor

Ferna´ndez

1,2

,

Carlos

Guerra

1,2

,

Rob

Guralnick

3

,

W

Daniel

Kissling

4

,

Maria

Cecilia

London˜o

5

,

Frank

Muller-Karger

6

,

Eren

Turak

7,8

,

Patricia

Balvanera

9

,

Mark

J

Costello

10

,

Aurelie

Delavaud

11

,

GY

El

Serafy

12,13

,

Simon

Ferrier

14

,

Ilse

Geijzendorffer

15

,

Gary

N

Geller

16,17

,

Walter

Jetz

18,19

,

Eun-Shik

Kim

20

,

HyeJin

Kim

1,2

,

Corinne

S

Martin

21

,

Melodie

A

McGeoch

22

,

Tuyeni

H

Mwampamba

9

,

Jeanne

L

Nel

23,24

,

Emily

Nicholson

25

,

Nathalie

Pettorelli

26

,

Michael

E

Schaepman

27

,

Andrew

Skidmore

28,29

,

Isabel

Sousa

Pinto

30

,

Sheila

Vergara

31

,

Petteri

Vihervaara

32

,

Haigen

Xu

33

,

Tetsukazu

Yahara

34

,

Mike

Gill

35

and

Henrique

M

Pereira

1,2,36

Theabilitytomonitorchangesinbiodiversity,andtheirsocietal impact,iscriticaltoconservingspeciesandmanaging ecosystems.Whileemergingtechnologiesincreasethe breadthandreachofdataacquisition,monitoringeffortsare stillspatiallyandtemporallyfragmented,andtaxonomically biased.Appropriatelong-terminformationremainstherefore limited.TheGrouponEarthObservationsBiodiversity ObservationNetwork(GEOBON)aimstoprovideageneral frameworkforbiodiversitymonitoringtosupport decision-makers.Here,wediscussthecoordinatedobservingsystem adoptedbyGEOBON,andreviewchallengesandadvancesin itsimplementation,focusingontwointerconnectedcore components—theEssentialBiodiversityVariablesasa standardframeworkforbiodiversitymonitoring,andthe BiodiversityObservationNetworksthatsupportharmonized observationsystems—whilehighlightingtheirsocietal relevance.

Addresses

1GermanCentreforIntegrativeBiodiversityResearch(iDiv)

Halle-Jena-Leipzig,DeutscherPlatz5e,04103Leipzig,Germany

2InstituteofBiology,MartinLutherUniversityHalleWittenberg,Am

Kirchtor1,06108Halle(Saale),Germany

3UniversityofFloridaMuseumofNaturalHistory,UniversityofFloridaat

Gainesville,Gainesville,FL32611-2710,USA

4InstituteforBiodiversityandEcosystemDynamics(IBED),Universityof

Amsterdam,P.O.Box94248,1090GEAmsterdam,TheNetherlands

5

InstitutodeInvestigacio´ndeRecursosBiolo´gicos,Alexandervon Humboldt,Bogota´,Colombia

6InstituteforMarineRemoteSensing/ImaRS,CollegeofMarine

Science,UniversityofSouthFlorida,1407thAve,SouthStPetersburg, FL33701,USA

7

NSWOfficeofEnvironmentandHeritage,10ValentineAvenue, Parramatta2150,NSW,Australia

8AustralianMuseum,6CollegeSt,Sydney,NSW2000,Australia

9InstitutodeInvestigacionesenEcosistemasySustentabilidad(IIES),

UniversidadNacionalAuto´nomadeMe´xico,ApdoPostal27-3,StaMa deGuido,MoreliaMichoacan58090,Mexico

10

InstituteofMarineScience,UniversityofAuckland,23Symonds Street,Auckland1142,NewZealand

11FrenchFoundationforResearchonBiodiversity(FRB),Institut

d’Oce´anographie,195rueSaint-Jacques,75005Paris,France

12StichtingDeltares,MarineandCoastalSystemsUnit,Boussinesqweg

1,2629HVDelft,P.O.Box177,2600MHDelft,TheNetherlands

13DelftUniversityofTechnology,FacultyofElectricalEngineering,

MathematicsandComputerScience,AppliedMathematics,Mekelweg 4,2628CDDelft,TheNetherlands

14CSIROLandandWater,GPOBox1700,Canberra2601,ACT,

Australia

15TourduValat,ResearchInstitutefortheConservationof

MediterraneanWetlands,Sambuc,13200Arles,France

16GrouponEarthObservations,Geneva,Switzerland 17NASAJetPropulsionLaboratory,Pasadena,CA,USA 18

DepartmentofEcologyandEvolutionaryBiology,YaleUniversity, 165ProspectStreet,NewHaven,CT06520,USA

19DepartmentofLifeSciences,ImperialCollegeLondon,SilwoodPark,

AscotSL57PY,Berks,UnitedKingdom

20DepartmentofForestry,Environment,andSystems,Kookmin

University,Seoul02707,RepublicofKorea

21UNEnvironmentWorldConservationMonitoringCentre

(UNEP-WCMC),219HuntingdonRoad,CambridgeCB30DL,UnitedKingdom

22SchoolofBiologicalSciences,MonashUniversity,Clayton3800,

Australia

23

InstituteforEnvironmentalStudies,FacultyofScience,Vrije UniversiteitAmsterdam,DeBoelelaan1087,1081HVAmsterdam,The Netherlands

24SustainabilityResearchUnit,NelsonMandelaMetropolitanUniversity,

PrivateBagX6531,George6530,SouthAfrica

25

DeakinUniversity,SchoolofLifeandEnvironmentalSciences,Centre forIntegrativeEcology,221BurwoodHwy,Burwood3125,Australia

26InstituteofZoology,ZoologicalSocietyofLondon,Regent’sPark,

LondonNW14RY,UnitedKingdom

27RemoteSensingLaboratories,UniversityofZurich,

(2)

28FacultyofGeo-InformationScienceandEarthObservation(ITC),

UniversityofTwente,TheNetherlands

29DepartmentofEnvironmentalScience,MacquarieUniversity,NSW

2106,Australia

30

InterdisciplinaryCentreforMarineandEnvironemntalResearch (CIIMAR)andUniversityofPorto,TerminaldeCruzeirosdoPortode Leixo˜es,AvenidaGeneralNortondeMatos,S/N,Matosinhos,Portugal

31BiodiversityInformationManagement,ASEANCentreforBiodiversity,

ForestryCampus,UPLB,LosBanos,Laguna4031,Philippines

32

FinnishEnvironmentInstitute(SYKE),BiodiversityCentre,P.O.Box 140,Mechelininkatu34a,FI-00251Helsinki,Finland

33NanjingInstituteofEnvironmentalSciences,MinistryofEnvironmental

ProtectionofChina,Nanjing210042,China

34

InstituteofDecisionScienceforaSustainableSociety,Kyushu University,744Moto-oka,Fukuoka819-0395,Japan

35PolarKnowledgeCanada,P.O.Box162,Canning,NovaScotia,

CanadaB0P1H0

36Ca´tedraIP-Biodiversidade,CIBIO/InBIO,CentrodeInvestigac¸a˜oem

BiodiversidadeeRecursosGene´ticos,UniversidadedoPorto,Campus Agra´riodeVaira˜o,R.PadreArmandoQuintas,4485-661Vaira˜o,Portugal Correspondingauthor:Navarro,LaetitiaM(laetitia.navarro@idiv.de)

CurrentOpinioninEnvironmentalSustainability2018,29:158–169 ThisreviewcomesfromathemedissueonEnvironmentalchange issues

EditedbyBernhardSchmid,CorneliaKrug,Debra Zuppinger-Dingley,MichaelESchaepman,NormanBackhausandOwen Petchey

Received:31October2017;Revised:25January2018;Accepted:12 February2018

https://doi.org/10.1016/j.cosust.2018.02.005

1877-3435/ã2018TheAuthors.PublishedbyElsevierB.V.Thisisan openaccessarticleundertheCCBYlicense(http://creativecommons. org/licenses/by/4.0/).

Introduction

TheagreementontheAichiBiodiversityTargetsbythe

PartiesoftheConventiononBiologicalDiversity(CBD)

[1], the Sustainable Development Goals of the UN

Agenda 2030 (Resolution 70/1), and the establishment

of the Intergovernmental Platform on Biodiversity and

Ecosystem Services (IPBES) [2] are encouraging

responsestothebiodiversitycrisis[3].However,forthese

internationaleffortstobesuccessful,ourabilitytoassess

biodiversity changemust drasticallyimprove. The

con-cept of biodiversity itself is complex and multifaceted,

embracingseveraldimensionsoflifeonearth,fromgenes

to speciesand ecosystems, operatingat multiple scales

[4,5].The datacurrentlysupportingbiodiversity

assess-mentsvaryspatially,temporally,and/orthematically(e.g.

taxons,realms)[6,7].Thisimpairsourabilitytoderive

meaningfulconclusionsabouttheintensityanddriversof

biodiversitychange[8],theirconsequencesforthe

deliv-eryofbenefitstosociety[9],andtoassessthe

effective-nessofconservationmeasures[7].Furthermore,spatial

gaps are particularly problematic when available

biodi-versity data do not overlap with areas of current and

predictedincreasesinimpacts,forexamplefromhabitat

lossand fragmentation[6,10].

Toaddressthesechallenges,theGrouponEarth

Obser-vations BiodiversityObservation Network (GEO BON)

wasestablishedin2008,asaglobalinitiativethataimsto

improve the acquisition, coordination and delivery of

biodiversity observations and related services to users

includingdecision-makersandthescientificcommunity

[4].Tenyearslater,GEOBONhasdevelopedaglobally

coordinated strategy for the monitoring of biodiversity

changebasedontwofundamentalcomponents:an

Essen-tialBiodiversityVariables(EBVs)framework[11],anda

system of coordinated Biodiversity Observation

Net-works (BONs)for sustained,operationalmonitoring.

Here,wereviewprogressmadeinthedevelopmentofthe

EBVsandtheirconceptualframework,discussthe

ratio-naleforBONsasamechanismtomeasureandinterpret

EBVs,andthechallengesinestablishingBONs.Finally,

we reiteratethesocietalrelevanceofacoordinated

bio-diversityobservationsystem.

A

global

observing

system

for

biodiversity

GEO BON, the biodiversity flagship of the Group on

Earth Observations (GEO), aims to integrate existing

biodiversitymonitoringefforts,currentlyscatteredacross

regions,tobuildacoordinatedandharmonisedsystemof

observing systemsfor biodiversity.Thedevelopmentof

thisobservingsystemisdrivenbytheneedsofusers[12],

ranging fromthescientificcommunity,to local

commu-nities,industry andNGOs,to nationalandsub-national

policy makers, and intergovernmental bodies. GEO

BON’sapproachisbasedontheinterconnectionbetween

theEBVframeworkandtheBONdevelopmentprocess

(Figure 1). These two components are connected via

capacitybuildingandknowledgeexchangemechanisms

fortools,techniques,andbestpractices.Asaresult,GEO

BON’sstructurehasevolvedfrombeingoriginally

orga-nized aroundrealms(e.g. marine,terrestrial) and

moni-toringmethods(insitu,remotesensing),toacross-realm

and cross-method approach centred on the different

levelsoforganizationofbiodiversity,andrelated

ecosys-temservices[13].Thisstructureisorganizedaroundthe

top-down development of the EBV framework, within

working groups, and the bottom-up development of

BONsthat bothtesttheframework andincrease

biodi-versity observationcapacity(Figure1).

InspiredbytheEssentialClimateVariables(ECVs)[14],

GEO BONput forwardtheconceptof Essential

Biodi-versityVariables.Theseareaminimumsetofbiological

state variables,complementary to one another, thatare

needed to detect biodiversity change [11]. The EBV

(3)

observation systems and facilitate data sharing across

habitatsand regions.EBVs are producedbyintegrating

biodiversityobservations(primarydata), obtainedviain

situ monitoring or remote sensing, in space and time,

oftenthroughtheuseofmodelsandotherenvironmental

observationsandancilliarydata[15](Figure2).EBVsare

organizedaroundsixclasses(GeneticComposition,

Spe-cies Populations,Species Traits, Community

Composi-tion, Ecosystem Structure, and Ecosystem Function

[11]).Variables are prioritizedfrom the many potential

biodiversitychangevariablesbased onrelevance,

sensi-tivitytochange,generalizabilityacrossrealms,scalability,

feasibility,anddataavailability[16].Thesecriteriamake

EBVswell-suitedtobethebuildingblocksofbiodiversity

indicators(Figure2),suchasthoseusedtotrackprogress

against the international and national targets for

biodi-versityand sustainability[17,18,19],andwithinIPBES

assessments[20].EBVsarealsoimportantforsupporting

thedevelopmentofglobalandregionalchangescenarios

(Figure 2). Properties such as scalability make them

particularlyusefulforthenextgenerationofmulti-scale

scenarios[21].

AlongsideEBVdevelopment,GEOBONhasbeen

facil-itating the development of Biodiversity Observations

Networks (BONs) to improve the coordination and

harmonization of observation systems. BONs are

organized aroundthree categories: thematic BONsthat

focusonaspecificbiologicaltheme,suchasthe

freshwa-terandmarinerealms; nationalBONsthatareendorsed

by national governments; and regional BONs. Species

andecosystems, andthepressuresthataffect them,are

not constrained by political borders. Therefore the

regionaland thematicBONsconnectmonitoringefforts

for different dimensions and scales of biodiversity.

NationalBONsaredirectly orientedto servetheneeds

of national and sub-national policy-makers and

corre-spondtotheoperationalscaleofmanymonitoring

initia-tives.Inparticular,theyaddresspolicyneedsforreporting

on multilateral environmental agreements (e.g. CBD,

RamsarConvention)andsupportprocessessuchas

eco-system accounting, Environmental Impact Assessment,

orland andoceanuse planning.Inpractice,BONs

pro-duce, testand applytools to deliver EBV-relevantdata

thatcanbeupscaledanddownscaledtosupport

sustain-abledevelopmentandconservationdecisions[22,23].By

beingpartofaglobalframeworkandasystemof

obser-vationsystems,BONsalsoreinforcethescientificbasisof

bothbiodiversitymonitoringandindicatordevelopment.

Progress

in

the

development

of

EBVs

across

the

dimensions

of

biodiversity

AfteraninitialphaseduringwhichtheEBVconcepthas

been consolidated, disseminated to, and endorsed by

Figure1

Current Opinion in Environmental Sustainability

EssentialBiodiversityVariablesrequiretheintegrationofprimarybiodiversityobservationsfrommultiplesources.GEOBONcoordinatesand promotesEBVdevelopmentbyfacilitatingcollaborationbetweenbiodiversityexperts–organisedinWorkingGroups-andBiodiversityObservation Networks.TheEBVs,andderivedindicators,canthenbeusedforassessmentsatmultiplespatialandtemporalscalestosupportpolicyand decisionmakingprocesses.

(4)

stakeholders (e.g. [16]; UNEP/CBD/COP/DEC/XI/3),

the development of EBVs has faced the challenge of

producing global coverage of spatially and temporally

consistentobservations.Majorprogressintheproduction

of EBVs is expected for variables enabled by satellite

remote sensing observations [24]. An example is the

Global Forest Change project [25] which, building on

freely available and consistently processed Landsat

images, delivers decade-long time series of data which

canbeusedto produce EBVs onecosystem extentand

fragmentationfromsub-nationaltoglobalscales.Further

agreementandcommunitysupportonaprioritizedlistof

EBVs isimportantinorder toencouragespaceagencies

and the Committee on Earth Observation Satellites

(CEOS)toinvestintonewproductsthatfillcriticalgaps

in monitoringbiodiversitychange[26,27].

For EBVsthat rely on insitu observations, GEO BON

faceschallengesemergingfromthelackofglobal

moni-toringschemes,theintegrationofdatasetsresultingfrom

differentcollectionmethods,andtechnicalissuesrelated

to data product structure, storage, workflow execution,

and legal interoperability[10,12].Consequently, EBV

productionworkflowsarenowbeingdesignedtoprovide

thenecessarystepsfromidentificationandaggregationof

candidate datasets to the elaboration of consistent and

reproducible EBVs [28].The developmentof suitable

datastandards iskey in thisprocess. The Darwin Core

[29] has already catalysed the global sharing of species

occurrence data. Its recent Event Core extension now

connectsrelatedsamplingeventsandtheproposed

Hum-boltCorestandard[30]extendsthistocaptureinventory

processesbroadly—allaimedatcapturingmorerelevant

information for EBV production (e.g. absences,

abun-dance). Furtheradvancesin thecoordinatedproduction

of EBVs will require developing data standards and

minimum informationspecificationsthatcanbeapplied

accrossall EBVclasses.

Below, we outline recent progress and perspectives for

coordinatingtheproductionofEBVswithinthemultiple

dimensionsof biodiversity.

Geneticlevel

Variables informing ongeneticdiversityof populations,

structure and inbreeding based on the number and

Figure2 In situ observations Biodiversity Change Indicator Citizen science 1 2 Primary observations Surveys Data integration Remote sensing eDNA EBV Integration Biodiversity models Reporting units

e.g. countries, ecoregions

Essential Biodiversity Variables Species distribution time Indicator Scenarios Ecosystem extent 1 2 time time time time

Current Opinion in Environmental Sustainability

FromobservationstotheproductionofEBVsandindicators.Inthisexample,integrateddatafromdifferentprimarysourcesofobservations(e.g. insitu,remotesensing)arecombinedwithinbiodiversitymodelstoproducelayersofspatialandtemporalvariationinecosystemextentand speciesdistributionEBVs.InsomecasesoneEBVcanbeaninputforamodeltoproduceanotherEBV.Thisinformationisthenintegratedand summarisedwithinreportingunits((1)and(2)inthefigure)tocalculateanindicatorofbiodiversitychange,whichcanthenbeused,forinstance, forreportingprogresstowardsanAichiconservationtarget.Notethatthisindicatorcanbeprocessedwithinanyspatialunit(e.g.froman ecoregion,toacountry,oranentirebiome).EBVsandmodelscanalsobeusedtoprojectchangesintheindicatorusingscenarios.Although bothrawobservationsandindicatorsmightchangeinthefuture,includingwiththedevelopmentofnewobservationtechniquesandthe expressionofnewuserneeds,theEBVsshould,bydefinition,remainthesame.

(5)

frequencyofallelesmeasuredacrosstimeandspeciesare

consideredkeycandidateEBVs.Theydirectlyinformon

thegeneticstatusatthepopulationandspecieslevelsand

aresuitableformonitoringgeneticerosionovertime[31].

Whileaconsultationprocessforagreeingonaprioritized

listofgeneticcompositionEBVshasstilltobecompleted,

thescarcityofstudiescollectinggeneticinformationfrom

populationsover time,andtheiruneven taxonomicand

geographiccoverage,aremajorchallengesforproducing

these variables in alignment with the requirements of

global,regional,and nationalreportingand assessments

regardingsafeguardinggeneticdiversityasstatedinthe

Aichi Biodiversity Targets and elsewhere (e.g. CBD’s

NagoyaProtocol)[32].Progressisneededin the

imple-mentation of coordinated genetic monitoring systems

withtheserequirementsinmind,forexample,combining

monitoring of a necessarily reduced set of (indicator)

specieswithmodelsofgeneticvariation[33].The

popu-larization of Next Generation Sequencing and other

techniquesthatprovidehighlydetailedgenetic

informa-tion, and a wider use of the vast amount of biological

materialstoredinmuseumcollectionsasacomplementto

contemporarygeneticmonitoring[34],havethepotential

toboosttheproductionofmorecomprehensivetemporal

seriesofgeneticdataandof EBVs.

Specieslevel

Species-level EBVs capture dimensions of biodiversity

relatedtopopulationsandtraits.Forspeciespopulations,

spatiotemporally explicit data on their distribution and

abundancearegrowing,thanksto increaseddata

collec-tion, sharing, and integration activities, and to a rapid

growth in citizen science that fill important data gaps

[35,36]. The development of the species distribution

EBV has benefitted from data infrastructures such as

the Global Biodiversity Information Facility (GBIF),

the Ocean Biogeographic Information System (OBIS),

and Map of Life [37]. Moreover, increasingly

sophisti-catedmodellingapproachesthatcombinespecies

obser-vationswith remotelysensed environmental datamake

theglobal monitoringof speciesdistributionsand

abun-dance increasingly tractable [38,39]. However, major

gaps in the spatial, taxonomic, and temporal coverage

continuetoimposeconstraintsontheglobalandregional

productionofSpeciesPopulationsEBVs[10,40].Future

directions include the implementationof workflows for

dataintegration[28,37]andthedevelopmentofmodels

thatlinkinsituobservationstoenvironmentalcovariates

supportingEBVproduction[39,41].Anon-going

prior-ityapplicationoftheSpeciesDistributionEBVis

moni-toringinvasivealienspeciesfromnationaltoglobalscales

[42,43].

ThedevelopmentofspeciestraitEBVshasbeenslowed

by the challenge of measuring traits repeatedly across

time. Most available datasets (e.g. plants [44]) do not

provide within species temporal variation of traits.

Exceptionsarerepeatedmeasurementsoffishbodysize

and plant phenology [19], and work is under way to

integrate, standardize, and harmonize such

measurements.

Ecosystemlevel

Because of the interdependence between ecosystem

composition, structure and function, and all other

dimensionsofbiodiversity,EBVsattheecosystemlevel

provideasynopticperspectiveofcriticalcomponentsof

biodiversitychange.Satelliteinformationthatcan

sup-port monitoringofstructuralandfunctional aspectsof

ecosystemsgloballyhasbeenrecentlydetailed[24],but

agreement on EBVs per structure and function still

needstobereached.Adaptedworkflowsfortranslating

potentiallyusabledatasetsintoEBVs,asrecentlydone

forspeciespopulations[28],nowneedtobeconsidered

forecosystems. One suggested priority formonitoring

ecosystemsisdevelopingmetricsincorporating

descrip-tions of properties such as canopy height, leaf area,

biomass[45],aswellasstructuralbiochemical

compo-nents. For ecosystem function EBVs, a typology of

ecosystem functions that underpins the identification

ofEBVshasbeenproposed[46];theseEBVsnowneed

tobeagreedontobetterinformglobalinitiativesandto

quantifythestatus,degradationandcollapseof

ecosys-tems(e.g.[47]).

Developmentof EBVs addressingcommunity

composi-tionwithinecosystemshasreceivedfarlessattention to

date than ecosystem structure and function. Existing

approaches to deriving variables of potentialrelevance,

such as alpha and beta diversity, typically involve

esti-matingthese collectivevariables fromobservations and

models of multiple individual species [48]. Rapid

advances in observation technologies such as

metage-nomic analysis of eDNA samples, and hyperspectral

remote sensing, provide unprecedented potential for

direct large-scaled monitoring of community changes

[39,49,50].Mostsignificantly,thisincludesthepotential

tomovebeyondderivingvariablessimplyasanaggregate

function of species co-occurring at a given location, to

consider the full diversity of traitsand relationships of

individualorganismsintomeasuresofoverallcommunity

composition.

A

cross-scale

approach

for

identifying

EBVs

and

users’

needs

Todate,theprocessofidentifyingandprioritizingEBVs

haslargelybeenbasedonexpertknowledgeabout

glob-allyrelevantbiodiversitymeasurements[11].While

nec-essary, this approach has not yet been systematically

driven or informed by users’ needs at the regional,

national,or localscales. Thereisaneedto make

biodi-versitydatamorerelevantforarangeofusers(e.g.CBD,

IPBES,nationalandlocalauthorities,NGOs)[51],anda

(6)

ensuredataqualityandcomparabilityacrossscales.This

leadstothedevelopmentofacomplementarybottom-up

approachtoformulatingaconsistentsetofEBVsglobally

(Figure 3) by considering context-specific user needs

across a range of applications at sub-global scales (e.g.

[23]).Thisapproachmobilizeslocalknowledge,placing

it inabroader context,byfocusingontherelationships

betweenvariablestounderstandinformationneedsunder

specific management and conservation contexts

(Fig-ure3).By promotingaglobalbiodiversityinfrastructure

basedonmultiplenodes,italsoallowsdatatobequickly

mobilized andstandardizedacrossscales, while

empow-ering local and national organizations to develop their

own monitoringschemes.

Developing

monitoring

systems

and

observation

networks

ThedevelopmentofBiodiversityObservationNetworks

aims to build a global community of practice for the

collection, curation, analysisand communicationof

bio-diversitydata.Suchacommunitywillorganize,enhance

andlinkexistingmonitoringandobservationsystemsand

facilitatetheexchangeofstandardsinmethods,tools,and

frameworks to provide data and information to users,

whileavoiding theduplicationof effortsacrossseparate

initiatives.ThedevelopmentofBONsshouldbefocused

onfeasibleimplementation,buildinguponexistingdata,

observation platforms,and monitoringprogramssuchas

the InternationalLong TermEcologicalResearch

Net-work [52].

CurrentstatusofthenetworkofBONs

BONsframetheirobservationsystemstodirectlyaddress

user needs,making them diverse, flexible, and

autono-mousinthewaytheyoperate.Therearecurrentlyseven

formally endorsedBONswithinGEOBON [22,53–57].

National BONs, in China, France,and Colombia, have

developed intensive monitoring schemes [54] or

biodi-versity(meta)datahubs[53].TheChinaBONisanotable

exampleofasystematic,country-widemonitoringdesign

withbroadspatialandtaxonomicextent:441sitesarepart

ofanobservationsystemofover9000transectsandpoint

counts for birds, amphibians,mammals,butterflies, and

vascularplantswiththeparticipationofvolunteercitizen

scientists at each site [54]. Illustrating a different

approach, the French BON hasset as its initial aim to

document existing data, acquisition methods and

stan-dards to facilitate their access, sharing, and use by

researchers and decision makers, and to support

biodi-versity managementandnationalreporting[53].

Regional BONs are also diverse and autonomous. The

Asia PacificBON is active in promotingresearch

colla-borations,capacitybuilding,andacultureofdatasharing

[56].TheArcticBONfocusesonlinkingandintegrating

existingbiodiversityobservationeffortsanddatato

sup-portconservationplanningandpolicy-making[55].The

publication in 2017 of the ‘State of the Arctic Marine

BiodiversityReport’[58]wastheculminationofthefirst

five-year implementation phase for the Arctic Marine

BiodiversityMonitoringPlan.

Figure3 EBV user needs guidelines and support data mobilisation data mobilisation Plot, Local, Landscape scale

National monitoring system

[cross-comparison and EBV prioritisation] decision

support

decision support

Regional, Ecosystem, and/or Management scale

variable identification

indicators and

modelling frameworks data

mobilisation

Global scale monitoring Policy, Management, and Conservation options

Cross-border Harmonisation

Biodiversity Monitoring

Current Opinion in Environmental Sustainability

Across-scaleapproachforglobalbiodiversitymonitoring.Nationalmonitoringsystemshavetorelyonakeysetofpolicy,managementand conservationoptions/questionstodefinetheirmonitoringprioritiesthatprovideinformationfordecisionmaking.Oncetheseprioritiesareset, indicatorsandmodellingframeworkscanbeidentifiedanddescribedtoproduceeffectivemonitoringsystemsthatallowfordatamobilization acrossscales.Ontheotherside,whilenationscollaboratetomobilizedatatoinformEBVs,GEOBONcontributestothenationaleffortsby providingguidanceandsupportforBONdevelopmentanddatastandards.Inparallel,nationsprovideuserneedsforthedevelopmentofEBVs whilecontributingtotheglobaldatapoolonbiodiversityandecosystems.Greenarrowsindicatebiodiversitydatamobilizationflows,blackarrows indicatedecisionsupportflows,andfinallyredarrowsindicatetheidentificationofuserneeds.

(7)

Attheglobalscale,theMarineBON(MBON)isworking

incoordinationwiththeGlobalOceanObservingSystem

(GOOS)andtheOceanBiogeographicInformation

Sys-tem(OBIS)todevelopEssentialOceanVariables[22,59].

The MBON facilitates the development of a common

framework for the integration of marine biodiversity

observationswithenvironmentalvariables[13].Thegoal

istofacilitatethesharingofregionalobservationsthrough

common data standards while offering access to the

advancedgeospatialanalysistoolsofOBIS,whichwould

inturn supportfuture WorldOceanAssessmentsofthe

UN[59], or theneedsof the BarcelonaConvention for

instance.MBONisalsoworkingwiththeremotesensing

community to define newsatellite sensorspecifications

to, inter alia, monitor EBVs in coastal wetlands and

aquaticenvironments[27].Therecentlyendorsed

Fresh-waterBON (FWBON)is alsousingthe EBVsfor

orga-nizingand prioritizing thesteps needed to monitorthe

differentcomponentsoffreshwaterbiodiversityand

facil-itateits globalassessment [13,57],whilesupportingthe

needsoftheRamsarConvention.

AprocessforBONdevelopment

ThegeneralapproachforBONdevelopmentisguidedby

a framework that ensures the resulting system directly

servesusers’needs[60],whileallowingfor

interoperabil-ity with other observation systems (Figure 4a). This

framework emphasises the establishment of conduits

betweendatacollection,management,analysis,and

com-munication that are driven and validated by the users.

Figure4

Focal ecosystems, conceptual models, EBVs and primary observations Data collection methods Sampling framework Data management, analysis and reporting 5 6 7 8 IMPLEMENTATION 9

Design and implementation team Scientific community

Decision and policy makers STAKEHOLDERS USERS MANAGERS System design Implementation (a) (b) COMMUNICATION TACIT KNOWLEDGE ENGAGEMENT

Create an authorizing environment Establish design and implementation team

2 1

ASSESSMENT

DESIGN

User needs assessment and choice of regional assessment units

Inventory of data, tools and platforms 4 3 Data bases Data standards Data Protocols Citizen Science DATA COLLECTION DATA MANAGEMENT Key Questions Reports Narratives Indicators Information DATA ANALISIS E XP LICIT KNOWLEDGE

Current Opinion in Environmental Sustainability

FrameworkanddevelopmentprocessofBiodiversityObservationNetworks(BONs).(a)Conceptualframeworkfornationalandregional

biodiversityobservationSystemsorganizedaroundtheinteractionbetween(andintegrationof)basicandappliedscience,andend-users.(b)Nine stepprocessforBONdevelopmentdefinedaroundtheengagementofthedifferentstakeholdergroups;theassessmentofuserneedsand availabledata,tools,andplatforms;thedesignoftheBONperse;andfinally,itsimplementation.

(8)

BuildingtheBONsarounduserneedsfurthercontributes

toensuringtheirsustainabilitybeyondthelifespanofthe

fundedprojectsthatmighthaveinitiatedtheprocessofa

BON development.

In practice, GEO BON suggests a stepwise, iterative

approachtoestablishingandimplementingBONs,

draw-ing upon existing processes, standards, and tools. An

exampleof suchsequencedprocessisdividedintonine

steps applied to build eachcomponent of anobserving

system (Figure 4b) and involves four development

phases:engagement,assessment,design,and

implemen-tation.Thisflexibleapproachhasbeenusedandadapted

fortheArctic[55],Australia’sNewSouthWales[23]and

ismore recentlybeingappliedin Colombia.

The assessment phase of the development process of

BONs (Figure 4b) aims to capitalize on existing

infra-structures,monitoringefforts,andcapacity,while

identi-fyingstrengthandweaknessesintermsofEBV

develop-ment.Forinstance,theFrenchBONidentifiedover130

insituobservationinfrastructures,mostlyobservingEBVs

withinthespeciestraits,speciespopulations,andgenetic

compositionclasses[53].Similarly,aFinnishassessment

ofthenationalindicatorsandthebiodiversitymonitoring

programs underlying them [18]showed that aside from

speciespopulationsandecosystemstructure,mostEBV

classesarestillpoorlycoveredbytheFinnishmonitoring

system. The same observation was made for the

ColombiaBONwhichidentifiednonethelessover100

dif-ferent tools for biodiversity observation, data

manage-ment and reporting [61]. These assessments thus help

governmentsandorganizationstoprioritizeand

strategi-callyfillkeygapsintheirexistingordeveloping

observa-tionsystems.

BON-in-a-Box:acatalogueforknowledgeexchange

Coretotheestablishmentofagloballyharmonized

sys-temofsystemsistheneedforthescientificcommunityto

sharedata,knowledgeandtoolstoensurethe

accessibil-ity, interoperability,and reporting of biodiversity

infor-mationacrossscales[62](Figure4a).Thereareexcellent

tools,protocolsandsoftwarethatfacilitateeffective

bio-diversitymonitoring,butthesearenotnecessarilyeasily

discoverableoravailable.Withthisinmind,GEOBON

hasdevelopedBON-in-a-Boxasatechnologytransferand

capacity-building mechanism to improve the quantity,

quality and interoperability of biodiversity observations

and furthersupport BONsdevelopment(e.g. Colombia

[61]). BON-in-a-Box is an online catalogue that will

connect decision makers, scientists and tool developers

aroundtheworld,ensuringaccesstothelatest

technolo-gies andmethodologies (https://boninabox.geobon.org/).

BON-in-a-Box will also allow the thematic BONs and

working groups to provide regional and national BONs

withstate-of-the-artapproachesandtoolsforbiodiversity

observations. Having such a platform for capacity

building and knowledge exchange will further support

theintegration ofthetop-down EBVdevelopment

pro-cesswiththebottom-upapproachfor BONdesign.

From

biodiversity

monitoring

to

addressing

societal

needs

Policyrelevanceandindicators

The policy relevanceof GEO BON wasacknowledged

early on. Its establishment was recognisedby the

Con-ference of theParties of the CBD (UNEP/CBD/COP/

DEC/IX/15),andithasbeenidentifiedasakeypartnerof

the IPBES [2]. EBVs have also been proposed by the

IPBES as anappropriate framework to determine

com-monmetricsforthebiodiversitymodelling,reporting,and

observation communities [20]. In practice, monitoring

progress towards conservation and sustainable

develop-ment targets and the effectiveness of policy decisions,

will befacilitated byBONs thatapply theEBV

frame-work [17,32] (Figure 1). For instance, the linkages

betweentheIntergovernmentalOceanographic

Commis-sionofUNESCOandGEOBONarebasedonthevalue

chain betweendatacollectors (GOOS),acommunityof

practice that shares standards (MBON), and the data

hosting and analysis services established by OBIS as a

contribution to BON-in-a-Box.Furthermore, to support

national reporting needs for CBD Aichi Target 9,37 a

modular approach was designed to set up national

schemes to monitor the occurrence of invasive alien

species while allowing cross-border cooperation, and

accommodatingfor varyingcapacity[42,43].

AlthoughEBVsthemselvescanbeconceptuallylinkedto

manyoftheAichiTargets[11,32]andSustainable

Devel-opmentGoals[13],itistheindicatorsderivedfromthem

thatareparticularlyusefultostakeholders[17,18]

(Fig-ure2).GEOBON and itspartners aretherefore

devel-opingasetofGlobalBiodiversityChangeindicators[48]

thatdirectlyreport ontheprogresstowardssomeof the

Aichi Targets, and caninform the IPBES assessments.

For instance, indicators that combine EBVs on species

populationsand/orcommunitycomposition,and

ecosys-temstructure,suchasthe‘SpeciesHabitatIndices’and

the ‘Biodiversity Habitat Index’ [48] can inform Aichi

Targets 5 (‘habitat loss halved or reduced’) and 12

(‘reducing risk of extinctions’). Highlighting the

rele-vanceofEBVsasthebuildingblocksoftheseindicators

canfurtherincreaseawarenessamongstpolicymakersof

thevalueof globallycoordinatedmonitoring.

Monitoringecosystemservices

Monitoring thecontribution of nature to people [63] is

critical to inform policy [64,65]. Data on ecosystem

37Target9:By2020,invasivealienspeciesandpathwaysareidentified

andprioritized,priorityspeciesarecontrolledoreradicatedand mea-suresareinplacetomanagepathwaystopreventtheirintroductionand establishment.

(9)

services suffers from the same patchiness and

incom-pletenessasbiodiversitydata.Thisisfurthercomplicated

bytheneedtointegrateecologicalandsocialdata.

How-ever, there have been some promising methodological

developments in recent years [66,67]. These include

theintegrationofnationalstatistics(e.g.censusdata)with

in situ measurements, community monitoring, remote

sensingand modeloutputs[9,66].Therefore,an

impor-tantsteptoadvancethemonitoringofecosystemservices

isthe definition of aconceptualand operational

frame-workfor EssentialEcosystemServiceVariables(EESV)

and thedevelopmentof multidisciplinary interoperable

datastandards[13,67].TheEESVframeworkincludes

several classes of variables,covering thedifferent

com-ponentsoftheecosystemserviceflowfromecosystemsto

society, thedifferent types of values of ecosystem

ser-vices and the actual benefits obtained by society [11].

EESVsexplicitly linkthemonitoring of ecosystem

ser-vicesto identifyingprogresstowardsmeetingtheSDGs

andAichitargets,asdemonstratedinarecentassessments

oncurrentuseofecosystemservicedatainreporting[68].

MainstreamingEBVs

Thevalueof EBVsto policywillbedetermined bythe

degreetowhichtheyenabletheproductionofindicators

and their incorporation into decision making to help

countriesmeettheirinternalandinternationalobligations.

Sincetheywereproposedinthe1990s,theECVsarenow

widelyacceptedandusedtostructurenationalreportingto

theUNFrameworkConventiononClimateChange,for

global climate annual assessments, and to support the

workoftheIntergovernmentalPanelonClimateChange

[14]. Similarly, EBVs need to be both accessible and

usable by a variety of stakeholders regardless of their

familiarity with theirproduction process. To be useful,

EBVdatasetswillneedtoadheretoscientificstandardsof

peer-review, replicability and sensitivity to detect

changes,as well as theinclusionof uncertaintymetrics,

allofwhichmustbefullyreported.Atransparentprocess

needs to be developed for the endorsement of EBV

datasetsbytheGEOBONcommunitytoensure

appro-priate data and metadata for measuring biodiversity

change.EBVdataproductsneedtobemadefreely

avail-ableaccordingtoOpenDataprinciples,i.e.beaccessible

withoutrestrictionsonuse,modificationandsharing[28].

Moreover, EBVdata products and indicators should be

resourced in a waythat maximizes discoverability. One

suchmechanismisaGEOBONPortalthatenhancesthe

accessibilityofendorsedEBVdatasets.Thisonline

clear-inghousewillserveasthebiodiversityequivalentof the

GlobalObservingSystemsInformationCentre(GOSIC)

for climate variables [14], and will feedinto the Global

EarthObservationSystemof Systems(GEOSS).

Conclusion

Thebiodiversitycrisis[3]callsforboththeadoptionofa

commonframeworkforbiodiversitymonitoring,andthe

establishment of a system of harmonised biodiversity

observation systems that supports it. In ten years of

existence, GEO BON, largely as a volunteer effort,

designedamonitoringframeworkaroundEssential

Bio-diversity Variables which supports the development of

biodiversitychangeindicators.The nextdecadewillbe

critical for the development of those EBVs and will

requiretheirrefinementacrossalllevelsofbiodiversity,

thewidespread useofcommondataandmetadata

stan-dards,andthedesignof workflows.GEOBONhasalso

facilitatedtheestablishmentofseveralnational,regional,

andthematicBONs,anddeveloped acapacitybuilding

andknowledgetransferplatformto furtherimprovethe

designof biodiversityobservation systems.

Futureadvancesin thedevelopmentof EBVsand

gen-erationofthecorrespondingdataareexpectedgiventhe

current trend in technological improvement for in situ

data acquisition, better availability of satellite remote

sensingdata, widespread useof emerging genetic

tech-niquesand genomic libraries,and theuse of models to

produce spatially and temporally comprehensive EBV

dataproducts.Thesedevelopmentsfurtherbenefitfrom

theestablishmentofnationalandsub-national

biodiver-sity observation systems and the involvement of

end-users in the process so as to produce policy relevant

indicators (Figures 1 and 2). Ten years from now,

GEO BON envisions a wide and robust network of

nationalandregionalBONs,withmultipleEBVproducts

openly available thatcover the differentdimensions of

biodiversityandcomponentsofecosystemservices,allof

whichcontributingtowellinformedlocaltoglobal

assess-ments of the status and trends of biodiversity and its

contributiontosociety.

Acknowledgements

LMN,NF,CG,HJK,andHMParesupportedbytheGermanCentrefor integrativeBiodiversityResearch(iDiv)Halle-Jena-Leipzig,fundedbythe GermanResearchFoundation(FZT118).GES,IG,andCGarealso supportedbyECOPOTENTIAL(http://www.ecopotential-project.eu),a projectfundedbytheEuropeanUnion’sHorizon2020researchand innovationprogramme,undergrantagreementno.641762.WDK acknoweldgesfinancialsupportfromtheEuropeanCommission (GLOBIS-Bproject,grant654003).WJacknowledgessupportbyNASAgrant AIST-16-0092,NSFgrantDBI-1262600,andtheYaleCentreforBiodiverstiyand GlobalChange.ThecontributionofMESissupportedbytheUniversityof ZurichResearchPriorityProgrammeon‘GlobalChangeandBiodiversity’ (URPPGCB).CMandGESaresupportedbyODYSSEA(http:// odysseaplatform.eu/),aprojectfundedbytheEuropeanUnion’sHorizon 2020researchandinnovationprogramme,undergrantagreementno 727277.PVacknowledgesMinistryoftheEnvironment,theFinnishMAES projectandTheStrategicResearchCouncil(SRC)attheAcademyof Finland(grantno:312559).FMKwassupportedinpartbytheNational AeronauticsandSpaceAdministration(NASAgrantsNNX16AQ34Gand NNX14AP62A),theNOAAUSIntegratedOceanObservingSystem/IOOS ProgrammeOffice,theNOAAOceanExplorationProgramme,andthe NOAANationalMarineFisheriesServicethroughtheUSNationalOcean PartnershipProgramme.ThismanuscriptisacontributiontotheMarine BiodiversityObservationNetwork.Finally,theworkdevelopedwithin GEOBONislargelysupportedbythevolunteerdedicationofitsmembers withoutwhomthiswork,andmanymore,wouldnothavebeenpossible.

(10)

References

and

recommended

reading

Papersofparticularinterest,publishedwithintheperiodofreview, havebeenhighlightedas:

 ofspecialinterest ofoutstandinginterest

1. CBD:AichiBiodiversityTargets.2011.

2. LarigauderieA,MooneyHA:TheIntergovernmental science-policyPlatformonBiodiversityandEcosystemServices: movingastepclosertoanIPCC-likemechanismfor biodiversity.CurrOpinEnvironSustain2010,2:9-14.

3. CeballosG,EhrlichPR,DirzoR:Biologicalannihilationviathe ongoingsixthmassextinctionsignaledbyvertebrate populationlossesanddeclines.ProcNatlAcadSci2017,114: E6089-E6096.

4. ScholesRJ,MaceGM,TurnerW,GellerGN,Ju¨rgensN, LarigauderieA,MuchoneyD,WaltherBA,MooneyHA:Towarda globalbiodiversityobservingsystem.Science2008, 321:1044-1045.

5. NossRF:Indicatorsformonitoringbiodiversity:ahierarchical approach.ConservBiol1990,4:355-364.

6. PereiraHM,NavarroLM,MartinsIS:Globalbiodiversitychange: thebad,thegood,andtheunknown.AnnuRevEnvironResour 2012,37:25-50.

7.

 MihoubSchmellerJ-B,DS:HenleSettingK,TiteuxtemporalN,BrotonsbaselinesL,Brummittforbiodiversity:NA, the limitsofavailablemonitoringdataforcapturingthefullimpact ofanthropogenicpressures.SciRep2017,7:srep41591.

Thispapercomparesthetimeframeofbiodiversitydatawiththetimingof anthropogenicpressuresinthe20thcentury,anddiscussesthe limita-tionsofthetemporalbaselinesthatdataavailabilityimposesandtheir implicationforbiodiversityconservation.

8. GonzalezA,CardinaleBJ,AllingtonGRH,ByrnesJ,Arthur EndsleyK,BrownDG,HooperDU,IsbellF,O’ConnorMI, LoreauM:Estimatinglocalbiodiversitychange:acritiqueof papersclaimingnonetlossoflocaldiversity.Ecology2016, 97:1949-1960.

9. TallisH,MooneyH,AndelmanS,BalvaneraP,CramerW,KarpD, PolaskyS,ReyersB,RickettsT,RunningSetal.:Aglobalsystem formonitoringecosystemservicechange.Bioscience2012, 62:977-986.

10.

 Proenc¸BelnapaJ,V,Bo¨hmMartinM,LJ,BrummittPereiraN,HM,Garcı´a-Moreno J,FernandezM,McRaeGregoryL,RD etal.:Globalbiodiversitymonitoring:fromdatasourcesto EssentialBiodiversityVariables.BiolConserv2017, 213:256-263.

Thispaper presentsdifferent biodiversitymonitoring approaches and datasources,theirspatial,temporal,andtaxonomiccoverages,andtheir relationtoEBVsandindicators.

11. PereiraHM,FerrierS,WaltersM,GellerGN,JongmanRHG, ScholesRJ,BrufordMW,BrummittN,ButchartSHM,CardosoAC etal.:EssentialBiodiversityVariables.Science2013, 339:277-278.

12. ScholesRJ,WaltersM,TurakE,SaarenmaaH,HeipCH, TuamaE´O´ ,FaithDP,MooneyHA,FerrierS,JongmanRHetal.: Buildingaglobalobservingsystemforbiodiversity.CurrOpin EnvironSustain2012,4:139-146.

13. GEOBON:GEOBONImplementationPlan2017–2020.Version 1.3.GrouponEarthObservationsBiodiversityObservation NetworkSecretariat;2017.

14. BojinskiS,VerstraeteM,PetersonTC,RichterC,SimmonsA, ZempM:TheconceptofEssentialClimateVariablesinsupport ofclimateresearch,applications,andpolicy.BullAmMeteorol Soc2014,95:1431-1443.

15. HonradoJP,PereiraHM,GuisanA:Fosteringintegration betweenbiodiversitymonitoringandmodelling.JApplEcol 2016,53:1299-1304.

16. WaltersM,PereiraHM,FerrierS,GellerGN,JongmanR, ScholesRJ,BrufordM,ReyersB:EssentialBiodiversity

Variables.SubsidiaryBodyonScientific,Technicaland TechnologicalAdvice(SBSTTA)notes.2013.

17.

 BrummittGeijzendorfferN,ReganIR,RocchiniEC,WeatherdonD,GavishLV,Y,HaaseMartinP,CS,MarshCJ, SchmellerDS:Takingstockofnature:EssentialBiodiversity Variablesexplained.BiolConserv2017,213:252-255.

ThispaperprovidesanexplanationoftheEssentialBiodiversityVariables thatissimpleandaccessibletoawideraudience,byusingananalogy withstockmarket.

18. VihervaaraP,AuvinenA-P,MononenL,To¨rma¨ M,AhlrothP, AnttilaS,Bo¨ttcherK,ForsiusM,HeinoJ,Helio¨la¨ Jetal.:How EssentialBiodiversityVariablesandremotesensingcanhelp nationalbiodiversitymonitoring.GlobEcolConserv2017, 10:43-59.

19. SchmellerDS,WeatherdonLV,LoyauA,BondeauA,BrotonsL, BrummittN,GeijzendorfferIR,HaaseP,KuemmerlenM,MartinCS etal.:Asuiteofessentialbiodiversityvariablesfordetecting criticalbiodiversitychange.BiolRev2017http://dx.doi.org/ 10.1111/brv.12332.

20. IPBES:TheMethodologicalAssessmentReportonscenariosand modelsofbiodiversityandecosystemservices.Secretariatofthe IntergovernmentalScience-PolicyPlatformonBiodiversityand EcosystemServices;2016.

21. RosaIMD,PereiraHM,FerrierS,AlkemadeR,AcostaLA, AkcakayaHR,BelderE,denFazelAM,FujimoriS,HarfootMetal.: Multiscalescenariosfornaturefutures.NatEcolEvol2017, 1:1416.

22. Muller-KargerF,KavanaughM,MontesE,BalchW,BreitbartM, ChavezF,DoneyS,JohnsE,LetelierR,LomasMetal.:A Frameworkforamarinebiodiversityobservingnetworkwithin changingcontinentalshelfseascapes.Oceanography2014, 27:18-23.

23.

 DunkerleyTurakE,Brazill-BoastG,FernandezJ,M,CooneyFerrierT,S,DrielsmaGillM,JonesM,DelaCruzHetal.:J,Using theessentialbiodiversityvariablesframeworktomeasure biodiversitychangeatnationalscale.BiolConserv2017, 213:264-271.

Thispaperpresentstheapplicationatthenationalscale,usingAustralia asacasestudy,oftheEBVframeworkandEBVselectionprocessto monitorbiodiversitychangeandassessmanagementpolicies. 24. SkidmoreAK,PettorelliN,CoopsNC,GellerGN,HansenM,

LucasR,Mu¨cherCA,O’ConnorB,PaganiniM,PereiraHMetal.: Environmentalscience:agreeonbiodiversitymetricstotrack fromspace.Nature2015,523:403-405.

25. HansenMC,PotapovPV,MooreR,HancherM,TurubanovaSA, TyukavinaA,ThauD,StehmanSV,GoetzSJ,LovelandTRetal.: High-resolutionglobalmapsof21st-centuryforestcover change.Science2013,342:850-853.

26. PaganiniM,LeidnerAK,GellerG,TurnerW,WegmannM:Therole ofspaceagenciesinremotelysensedessentialbiodiversity variables.RemoteSensEcolConserv2016,2:132-140.

27. Muller-KargerF,HestirE,AdeC,RobertsDA,SiegelD,MillerRJ, HummD,IzenbergN,KellerM,MorganF,etal.:Satellitesensor requirementsformonitoringessentialbiodiversityvariablesof coastalecosystems.EcolAppl,inpress.https://doi.org/10.1002/ eap.1682.

28.

 KisslingGarcı´aEA,WD,GuralnickAhumadaRP,JA,IsaacBowserNJB,A,FernandezKellingS,LosM,Ferna´ndezWetal.: N, Buildingessentialbiodiversityvariables(EBVs)ofspecies distributionandabundanceataglobalscale.BiolRev2017

http://dx.doi.org/10.1111/brv.12359.

ThispaperdiscussedthechallengesofEBVdevelopmentandproposesa workflowtooperationalizethebuildingofEBVsoftheSpeciesPopulation classandthatincludestheidentificationandaggregationofvariousraw datasources,dataqualitycontrol,taxonomicnamematchingand sta-tisticalmodellingofintegrateddata.

29. WieczorekJ,BloomD,GuralnickR,BlumS,Do¨ringM,GiovanniR, RobertsonT,VieglaisD:Darwincore:anevolving community-developedbiodiversitydatastandard.PLoSOne2012,7: e29715.

30. GuralnickR,WallsR,JetzW:HumboldtCore—towarda standardizedcaptureofbiologicalinventoriesforbiodiversity

(11)

monitoring,modelingandassessment.Ecography2017, 40:001-012.

31. HobanS,ArntzenJA,BrufordMW,GodoyJA,RusHoelzelA, SegelbacherG,Vila` C,BertorelleG:Comparativeevaluationof potentialindicatorsandtemporalsamplingprotocolsfor monitoringgeneticerosion.EvolAppl2014,7:984-998.

32. GeijzendorfferIR,ReganEC,PereiraHM,BrotonsL,BrummittN, GavishY,HaaseP,MartinCS,MihoubJ-B,SecadesCetal.: Bridgingthegapbetweenbiodiversitydataandpolicy reportingneeds:anEssentialBiodiversityVariables perspective.JApplEcol2016,53:1341-1350.

33. MimuraM,YaharaT,FaithDP,Va´zquez-Domı´nguezE,ColauttiRI, ArakiH,JavadiF,Nu´n˜ez-Farfa´nJ,MoriAS,ZhouSetal.: Understandingandmonitoringtheconsequencesofhuman impactsonintraspecificvariation.EvolAppl2017,10:121-139.

34. HabelJC,HusemannM,FingerA,DanleyPD,ZachosFE:The relevanceoftimeseriesinmolecularecologyand conservationbiology.BiolRev2014,89:484-492.

35. AmanoT,LammingJDL,SutherlandWJ:Spatialgapsinglobal biodiversityinformationandtheroleofcitizenscience. BioScience2016,66:393-400.

36. PimmSL,AlibhaiS,BerglR,DehganA,GiriC,JewellZ,JoppaL, KaysR,LoarieS:Emergingtechnologiestoconserve biodiversity.TrendsEcolEvol2015,30:685-696.

37. JetzW,McPhersonJM,GuralnickRP:Integratingbiodiversity distributionknowledge:towardaglobalmapoflife.Trends EcolEvol2012,27:151-159.

38. WilsonAM,JetzW:Remotelysensedhigh-resolutionglobal clouddynamicsforpredictingecosystemandbiodiversity distributions.PLoSBiol2016,14:e1002415.

39.

 BushMartiusA,C,SollmannZlinszkyR,A,WiltingCalvignac-SpencerA,BohmannK,S,ColeCobboldB,BalzterCAetH,al.: ConnectingEarthobservationtohigh-throughputbiodiversity data.NatEcolEvol2017,1:176.

Thispaper discussedthepotential ofemerging technology,including high-throughputDNA,biodiversitymodelling,andautomatedrecording devices,combinedwithEarthObservationstomoreefficientlyandtimely monitorbiodiversityandbiodiversitychange.

40. MeyerC,KreftH,GuralnickR,JetzW:Globalprioritiesforan effectiveinformationbasisofbiodiversitydistributions.Nat Commun2015,6ncomms9221.

41. FerrierS,JetzW,ScharlemannJ:Biodiversitymodellingaspart ofanobservationsystem.TheGEOHandbookonBiodiversity ObservationNetworks.Springer;2017:239-257.

42. LatombeG,PyekP,JeschkeJM,BlackburnTM,BacherS, CapinhaC,CostelloMJ,Ferna´ndezM,GregoryRD,HobernD etal.:Avisionforglobalmonitoringofbiologicalinvasions.Biol Conserv2017,213:295-308.

43. McGeochMA,GenovesiP,BellinghamPJ,CostelloMJ, McGrannachanC,SheppardA:Prioritizingspecies,pathways, andsitestoachieveconservationtargetsforbiological invasion.BiolInvasions2016,18:299-314.

44. KattgeJ,Dı´azS,LavorelS,PrenticeIC,LeadleyP,Bo¨NischG, GarnierE,WestobyM,ReichPB,WrightIJetal.:TRY—aglobal databaseofplanttraits.GlobChangeBiol2011,17:2905-2935.

45. SaatchiSS,HarrisNL,BrownS,LefskyM,MitchardETA,SalasW, ZuttaBR,BuermannW,LewisSL,HagenSetal.:Benchmark mapofforestcarbonstocksintropicalregionsacrossthree continents.ProcNatlAcadSci2011,108:9899-9904.

46. PettorelliN,SchultetoBu¨hneH,TullochA,DuboisG, Macinnis-NgC,Queiro´sAM,KeithDA,WegmannM,SchrodtF,StellmesM etal.:Satelliteremotesensingofecosystemfunctions: opportunities,challengesandwayforward.RemoteSensEcol Conserv2017http://dx.doi.org/10.1002/rse2.59.

47. KeithDA,Rodrı´guez JP,BrooksTM,BurgmanMA,BarrowEG, BlandL,ComerPJ,FranklinJ,LinkJ,McCarthyMAetal.:The IUCNRedlistofecosystems:motivations,challenges,and applications.ConservLett2015,8:214-226.

48. GEOBON:GlobalBiodiversityChangeIndicators.Version1.2. GrouponEarthObservationsBiodiversityObservationNetwork Secretariat;2015.

49. JetzW,Cavender-BaresJ,PavlickR,SchimelD,DavisFW, AsnerGP,GuralnickR,KattgeJ,LatimerAM,MoorcroftPetal.: Monitoringplantfunctionaldiversityfromspace.NatPlants 2016,2nplants201624.

50. SchneiderFD,MorsdorfF,SchmidB,PetcheyO,HueniA,Schimel D,SchaepmanME:Mappingfunctionaldiversityfromremotely sensedmorphologicalandphysiologicalforesttraits.Nat Commun2017,8http://dx.doi.org/10.1038/s41467-017-01530-3. 51. GeijzendorfferIR,TeeffelenAJA,AllisonH,BrainD,HorganK,

Itturate-GarciaM,SantosMJ:Howcanglobaltargetsfor biodiversityandecosystemservicesguidelocalconservation actions.CurrOpinEnvironSustain[dateunknown].

Cosust_2017_110_R1.https://doi.org/10.1016/j.cosust.2017.12. 011.

52. HaaseP,TonkinJD,StollS,BurkhardB,FrenzelM,

GeijzendorfferIR,Ha¨userC,KlotzS,Ku¨hnI,McDowellWHetal.: Thenextgenerationofsite-basedlong-termecological monitoring:linkingessentialbiodiversityvariablesand ecosystemintegrity.SciTotalEnviron2018,613:1376-1384.

53. FondationpourlaRecherchesurlaBiodiversite´:E´tatdeslieuxet analysedupaysagenationaldesobservatoiresderecherchesurla biodiversite´,unee´tudedel’infrastructureECOSCOPE.Ed.Aure´lie DelavaudetRobinGoffaux;2016.

54. XuH,CaoM,WuY,CaiL,CaoY,DingH,CuiP,WuJ,WangZ,LeZ etal.:Optimizedmonitoringsitesfordetectionofbiodiversity trendsinChina.BiodiversConserv2017,26:1959-1971.

55. GillMJ,CraneK,HindrumR,ArnebergP,BysveenI,

DenisenkoNV,GofmanV,Grant-FriedmanA,GudmundssonG, HopcroftRRetal.:ArcticMarineBiodiversityMonitoringPlan. 2011.

56. YaharaT,MaK,DarnaediD,MiyashitaT,TakenakaA,TachidaH, NakashizukaT,KimE-S,TakamuraN,NakanoS,ShirayamaY, YamamotoH,VergaraSG:Developingaregionalnetworkof biodiversityobservationintheAsia-PacificRegion: achievementsandchallengesofAPBON.In Integrative ObservationsandAssessments,EcologicalResearch Monographs.EditedbyNakanoS,YaharaT,NakashizukaT. Tokyo:Springer;2014:3-28 http://dx.doi.org/10.1007/978-4-431-54783-9_1.

57. TurakE,HarrisonI,DudgeonD,AbellR,BushA,DarwallW, FinlaysonCM,FerrierS,FreyhofJ,HermosoVetal.:Essential biodiversityvariablesformeasuringchangeinglobal freshwaterbiodiversity.BiolConserv2017,213:272-279.

58. CAFF:StateoftheArcticMarineBiodiversityReport.Conservation ofArcticFloraandFaunaInternationalSecretariat;2017.

59. CostelloMJ,BasherZ,McLeodL,AsaadI,ClausS,VandepitteL, YasuharaM,GislasonH,EdwardsM,AppeltansWetal.:Methods forthestudyofmarinebiodiversity.TheGEOHandbookon BiodiversityObservationNetworks.Springer;2017:129-163.

60. LindenmayerDB,LikensGE:Adaptivemonitoring:anew paradigmforlong-termresearchandmonitoring.TrendsEcol Evol2009,24:482-486.

61. SierraCA,MahechaM,PovedaG,A´lvarez-Da´vilaE, Gutierrez-VelezVH,ReuB,FeilhauerH,Ana´yaJ,ArmenterasD,

BenavidesAMetal.:Monitoringecologicalchangeduringrapid socio-economicandpoliticaltransitions:Colombian ecosystemsinthepost-conflictera.EnvironSciPolicy2017, 76:40-49.

62. SchmellerDS,Bo¨hmM,ArvanitidisC,Barber-MeyerS, BrummittN,ChandlerM,ChatzinikolaouE,CostelloMJ,DingH, Garcı´a-MorenoJetal.:Buildingcapacityinbiodiversity monitoringattheglobalscale.BiodiversConserv2017http://dx. doi.org/10.1007/s10531-017-1388-7.

63. Dı´az S,PascualU,StensekeM,Martı´n-Lo´pezB,WatsonRT, Molna´rZ,HillR,ChanKMA,BasteIA,BraumanKAetal.: Assessingnature’scontributionstopeople.Science2018, 359:270-272.

(12)

64. MaesJ,EgohB,WillemenL,LiqueteC,VihervaaraP, Scha¨gnerJP,GrizzettiB,DrakouEG,NotteAL,ZulianGetal.: Mappingecosystemservicesforpolicysupportanddecision makingintheEuropeanUnion.EcosystServ2012,1:31-39.

65. PascualU,BalvaneraP,Dı´az S,PatakiG,RothE,StensekeM, WatsonRT,DessaneEB,IslarM,KelemenE:Valuingnature’s contributionstopeople:theIPBESapproach.CurrOpinEnviron Sustain2017,26:7-16.

66. BalvaneraP,QuijasS,KarpDS,AshN,BennettEM,BoumansR, BrownC,ChanKMA,Chaplin-KramerR,HalpernBSetal.: EcosystemServices.TheGEOHandbookonBiodiversity ObservationNetworks.Springer;2017:39-78.

67.

 CordSeppeltAF,R:BraumanPrioritiesKA,toChaplin-KrameradvancemonitoringR,HuthofA,ecosystemZivG, servicesusingEarthObservation.TrendsEcolEvol2017, 32:416-428.

Thispaperpresentsaframeworktointegratesatelliteearthobservation withsocioeconomicdataandmodelbasedanalysisinordertoassessthe supplyanddemandforecosystemservices,alongwiththebenefitsfor humanwell-being,andprovidesfurtherguidanceontheuseofearth observationstomonitorecosystemservices.

68. GeijzendorfferIR,Cohen-ShachamE,CordAF,CramerW, GuerraC,Martı´n-Lo´pezB:Ecosystemservicesinglobal sustainabilitypolicies.EnvironSciPolicy2017,74:40-48.

Referenties

GERELATEERDE DOCUMENTEN

De taalproblemen van kinderen met autisme bevinden zich niet alleen in het domein van de pragmatiek, maar ook in het domein van de syntaxis en semantiek (Hoofdstuk 5, Hoofdstuk

As the information gathered during the interview plays an essential role in the final decision, this set-up leaves a substantial degree of discretion for the EASO employees whereby

Supplementary Materials: The following are available online at www.mdpi.com/1424-8220/18/02/355/s1 , Supplementary Table S1: Antibodies for Western Blot, Supplementary Table

Targeted advertising does bring a positive influence on consumers’ attitude towards the advertisement, but the effects cannot be explained by perceived relevance, privacy

The decline in the relative size of the largest firms in developed countries can be attributed to the lowered political uncertainty, through institutionally strengthened peace, in

I believe that an understanding of how masculinity is presented in police culture in this one police station, as well as the experiences with regard to masculinity among

Let wel, de docent moet blijven lesgeven — het is niet zo dat de docent alle tijd aan zijn onderzoek kan besteden?. Het blijkt in de praktijk een echte kluif

AIs - Aromatase inhibitors; ATAC- Arimidex Tamoxifen, Alone or in Combination; AEs- adverse effects; BMD - Bone mineral density; BMI – Body mass index; BS-ALP- bone-specific alkaline