• No results found

Optimization and approximation on systems of geometric objects - Contents

N/A
N/A
Protected

Academic year: 2021

Share "Optimization and approximation on systems of geometric objects - Contents"

Copied!
4
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Optimization and approximation on systems of geometric objects

van Leeuwen, E.J.

Publication date

2009

Link to publication

Citation for published version (APA):

van Leeuwen, E. J. (2009). Optimization and approximation on systems of geometric objects.

General rights

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons).

Disclaimer/Complaints regulations

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible.

(2)

Contents

1 Introduction 1

1.1 Optimization Problems and Systems of Geometric Objects . . . 1

1.2 Application Areas . . . 2

1.2.1 Wireless Networks . . . 2

1.2.2 Wireless Network Planning . . . 3

1.2.3 Computational Biology . . . 4 1.2.4 Map Labeling . . . 4 1.2.5 Further Applications . . . 4 1.3 Thesis Overview . . . 4 1.3.1 Published Papers . . . 7

I

Foundations

9

2 Primer on Optimization and Approximation 11 2.1 Classic Notions . . . 11

2.2 Asymptotic Approximation Schemes . . . 14

3 Guide to Geometric Intersection Graphs 17 3.1 Intersection Graphs . . . 17

3.1.1 Interval Graphs and Generalizations . . . 18

3.1.2 Intersection Graphs of Higher Dimensional Objects . . . 20

3.2 Disk Graphs and Ball Graphs . . . 21

3.2.1 Models for Wireless Networks . . . 23

3.3 Relation to Other Graph Classes . . . 25

3.3.1 Relation to Planar Graphs . . . 26

4 Geometric Intersection Graphs and Their Representation 29 4.1 Scalable and -Separated Objects . . . 29

4.2 Finite Representation . . . 33

4.3 Polynomial Representation and Separation . . . 34

4.3.1 From Representation to Separation . . . 35

4.3.2 From Separation to Representation . . . 37

II

Approximation on Geometric Intersection Graphs 41

Overview . . . 43

Problems . . . 43

Previous Work . . . 44 vii

(3)

viii Contents 5 Algorithms on Unit Disk Graph Decompositions 49

5.1 Graph Decompositions . . . 49

5.2 Thickness . . . 53

5.3 Algorithms on Strong, Relaxed Tree Decompositions . . . 54

5.3.1 Maximum Independent Set and Minimum Vertex Cover 55 5.3.2 Minimum Dominating Set . . . 56

5.3.3 Minimum Connected Dominating Set . . . 59

5.4 Unit Disk Graphs of Bounded Thickness . . . 62

6 Density and Unit Disk Graphs 67 6.1 The Density of Unit Disk Graphs . . . 67

6.2 Relation to Thickness . . . 68

6.3 Approximation Schemes . . . 70

6.3.1 Maximum Independent Set . . . 71

6.3.2 Minimum Vertex Cover . . . 74

6.3.3 Minimum Dominating Set . . . 77

6.3.4 Minimum Connected Dominating Set . . . 79

6.3.5 Generalizations . . . 82

6.4 Optimality . . . 84

6.5 Connected Dominating Set on Graphs Excluding a Minor . . . 88

7 Better Approximation Schemes on Disk Graphs 91 7.1 The Ply of Disk Graphs . . . 91

7.2 Approximating Minimum Vertex Cover . . . 92

7.2.1 A Close to Optimal Vertex Cover . . . 93

7.2.2 Properties of the size- and sol-Functions . . . 93

7.2.3 Computing the size- and sol-Functions . . . 95

7.2.4 An eptas for Minimum Vertex Cover . . . 98

7.3 Approximating Maximum Independent Set . . . 99

7.4 Further Improvements . . . 104

7.5 Maximum Nr. of Disjoint Unit Disks Intersecting a Unit Square 106 8 Domination on Geometric Intersection Graphs 113 8.1 Small -Nets . . . 114

8.2 Generic Domination . . . 116

8.3 Dominating Set on Geometric Intersection Graphs . . . 119

8.3.1 Homothetic Convex Polygons . . . 119

8.3.2 Regular Polygons . . . 123

8.3.3 More General Objects . . . 125

8.4 Disk Graphs of Bounded Ply . . . 126

8.4.1 Ply-Dependent Approximation Ratio . . . 127

8.4.2 A Constant Approximation Ratio . . . 129

8.4.3 A Better Constant . . . 138

8.5 Hardness of Approximation . . . 145

(4)

Contents ix

8.5.2 Intersection Graphs of Fat Objects . . . 148

8.5.3 Intersection Graphs of Rectangles . . . 150

III

Approximating Geometric Coverage Problems

157

Overview . . . 159

Problems . . . 159

Previous Work . . . 161

9 Geometric Set Cover and Unit Squares 165 9.1 A ptas on Unit Squares . . . 165

9.1.1 Geometric Budgeted Maximum Coverage . . . 175

9.1.2 Optimality and Relation to Domination . . . 177

9.2 Hardness of Approximation . . . 178

10 Geometric Unique and Membership Coverage Problems 181 10.1 Unique Coverage . . . 181

10.1.1 Approximation Algorithm on Unit Disks . . . 182

10.1.2 Budgets and Satisfactions . . . 185

10.1.3 Approximation Algorithm on Unit Squares . . . 187

10.2 Unique Coverage on Disks of Bounded Ply . . . 188

10.2.1 Properties of the cost- and sol-Functions . . . 189

10.2.2 Computing the cost- and sol-Functions . . . 192

10.2.3 The Approximation Algorithm . . . 194

10.3 Geometric Membership Set Cover . . . 196

10.4 Hardness of Approximation . . . 199 11 Conclusion 207 Bibliography 209 Author Index 237 Index 243 Samenvatting 249 Summary 251 Acknowledgments 253

Referenties

GERELATEERDE DOCUMENTEN

82 Kennis van de wereld heeft geen betrekking op iets dat benaderbaar is zonder enige mensurae, maar dit impliceert niet dat onze kennis geheel en al gedetermineerd wordt door

[Philosophy of Science Association] p671.. incommensurability of two approaches must entail that mutually no common concepts can be proposed, the claim that physical phenomena are

J.: Ochêma - geschiedenis en zin van het hylisch pluralisme Assen 1954 (dl. Popper, K.: Conjectures and Refutations London 1963 [Routledge]. Popper, K.: 'Normal science and its

It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly

If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons.. In case of

Ofschoon in feite een vraag naar de betekenis van een filosofische term, raakt dit onderzoek aan enkele eeuwenoude filosofische vragen, zoals die naar de invloed van concepten

A LPHA glutathione S-transferase (alpha-GST) is a cytosolic enzyme predominantly located in hepato- cytes with a uniform distribution in the liver.’ Several

grain size distribution could be present in the circumbinary disk. The blackbody emission would be due to the entire sur- face instead of the individual grains. The visible grains