• No results found

Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters

N/A
N/A
Protected

Academic year: 2021

Share "Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Research Article

Dietmar Gallistl

Adaptive Nonconforming Finite Element Approximation

of Eigenvalue Clusters

Abstract: This paper analyses an adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear ap-proximation classes) for the apap-proximation of the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Applications include eigenvalues of the Laplacian and of the Stokes system.

Keywords: Eigenvalue Problem, Eigenvalue Cluster, Adaptive Finite Element Method, Stokes Operator, Opti-mality

MSC 2010: 65M12, 65M60, 65N25 ||

Dietmar Gallistl:Institut fรผr Mathematik, Humboldt-Universitรคt zu Berlin, Unter den Linden 6, 10099 Berlin, Germany,

e-mail: gallistl@math.hu-berlin.de

1 Introduction

Nonconforming finite element methods (FEMs) are of high interest in computational fluid dynamics where they provide stable low-order discretisations with favourable local mass conservation properties. Especially for eigenvalue problems, the nonconforming discretisation is even more attractive because it allows for a convenient computation of guaranteed lower eigenvalue bounds [16]. In many practical situations the eigen-values of interest form an eigenvalue cluster where all eigenfunctions have to be discretised simultaneously in adaptive algorithms. This paper applies and generalises the technique of the recent work [33] to the non-conformingP1discretisation of the Laplace and Stokes eigenvalue problems and proves optimal convergence rates of the simultaneous adaptive FEM computation for the eigenfunctions in the cluster. Optimal conver-gence rates for adaptive FEMs for eigenvalue problems were established in [15, 26] for simple eigenvalues and in [25] for multiple eigenvalues for conforming finite elements and in [14] for the nonconforming discretisation of the first eigenvalue of the Laplacian. The main difference to the analysis of those results is the additional difficulty that the cluster width should not enter the error estimates as an additive term. Consider an open bounded polyhedral Lipschitz domain ฮฉ โŠ† โ„๐‘‘for ๐‘‘ โ‰ฅ 2 and a simplicial triangulation T

โ„“. Let ๐‘Š be the

in-variant subspace spanned by the eigenfunctions of an eigenvalue cluster and let ๐‘Šโ„“describe the linear hull

of the corresponding nonconformingP1(Tโ„“) eigenfunctions. The adaptive algorithm is driven by the explicit residual-based error estimator contributions of all discrete eigenfunctions in the cluster. The main results of this paper state that the error quantities

sup

๐‘คโˆˆ๐‘Š โ€–๐‘คโ€–=1

inf

๐‘ฃโ„“โˆˆ๐‘Šโ„“|||๐‘ค โˆ’ ๐‘ฃโ„“|||NC

(in the case of the Laplace eigenproblem โˆ’ฮ”๐‘ข = ๐œ†๐‘ข) and sup ๐‘คโˆˆ๐‘Š โ€–๐‘คโ€–=1 inf ๐‘ฃโ„“โˆˆ๐‘Šโ„“(|||๐‘ค โˆ’ ๐‘ฃโ„“||| 2 NC+ โ€–๐‘(๐‘ค) โˆ’ ๐‘(๐‘ฃโ„“)โ€–2) 1/2

(in the case of the Stokes eigenproblem โˆ’ฮ”๐‘ข+(๐ท๐‘)โŠค= ๐œ†๐‘ข; div ๐‘ข = 0) decay as (card(T

โ„“) โˆ’ card(T0))โˆ’๐œŽ, provided

all eigenfunctions belong to the approximation class A๐œŽ(resp. AStokes๐œŽ ). Here, โ€–โ‹…โ€– denotes the ๐ฟ2norm and |||โ‹…|||NC denotes the nonconforming energy norm (i.e., the ๐ฟ2norm of the piecewise derivative). Although one can

(2)

square root of the eigenvalue error, this paper merely studies the approximation of the space ๐‘Š. An important methodological tool is the higher-order ๐ฟ2control for the eigenfunction approximations which is proven by

means of conforming companion operators. Operators of this kind were introduced in [14, 41] in the two-dimensional case and are generalised in this paper to higher space dimensions ๐‘‘ โ‰ฅ 2. The resulting ๐ฟ2error

estimates compare the ๐ฟ2error directly with the energy error and therefore do not employ any a priori results of the eigenfunction approximation.

The proofs for optimal convergence rates of adaptive FEMs were initiated in [22, 46] and extended to nonconforming FEMs for the Poisson equation [3, 42] and the Stokes equations [2, 20, 39]. These approaches were recently unified in the axiomatic approach of [12]. The convergence of adaptive FEMs for eigenvalues was proven in [10, 35, 36]. The optimality results [15, 26, 34] concern simple eigenvalues and conforming FEMs while [14] establishes optimality for the nonconforming discretisation of the first Laplace eigenvalue. The first optimality analysis for an adaptive algorithm for multiple eigenvalues [25] based on conforming FEMs introduced a simultaneous bulk criterion for all discrete eigenfunctions of the multiple eigenvalue. In [33] this marking strategy was proven to lead to optimal convergence rates in the case of eigenvalue clusters. The results of this paper establish a corresponding result for the nonconformingP1FEM and the first optimality result for the Stokes eigenproblem.

The remaining parts of this paper are organised as follows. Section 2 describes an abstract framework for the discretisation of eigenvalue clusters. Section 3 introduces the notation on triangulations and presents the conforming companion operators for the nonconformingP1FEM in any space dimension. Section 4 is devoted to the analysis of the adaptive FEM for the eigenvalues of the Laplacian. Section 5 studies the adaptive FEM approximation of the eigenvalues of the Stokes system.

Throughout the paper standard notation on Lebesgue and Sobolev spaces is employed. The integral mean is denoted byโˆซ. The notation ๐‘Ž โ‰ฒ ๐‘ abbreviates ๐‘Ž โ‰ค ๐ถ๐‘ for a positive generic constant ๐ถ that may depend onโˆ’

the domain ฮฉ and the initial triangulation T0but not on the mesh-size or the eigenvalue cluster of interest.

The notation ๐‘Ž โ‰ˆ ๐‘ stands for ๐‘Ž โ‰ฒ ๐‘ โ‰ฒ ๐‘Ž.

2 Approximation of Eigenvalue Clusters

Let (๐‘‰, ๐‘Ž(โ‹…, โ‹…)) be a separable Hilbert space over โ„ with induced norm โ€–โ‹…โ€–๐‘Žand let ๐‘(โ‹…, โ‹…) be a scalar product on

๐‘‰ with induced norm โ€–โ‹…โ€–๐‘such that the embedding (๐‘‰, โ€–โ‹…โ€–๐‘Ž) ๓ณจ…โ†’ (๐‘‰, โ€–โ‹…โ€–๐‘) is compact. This paper is concerned

with eigenvalue problems of the form: Find eigenpairs (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘‰ with โ€–๐‘ขโ€–๐‘= 1 such that

๐‘Ž(๐‘ข, ๐‘ฃ) = ๐œ†๐‘(๐‘ข, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰. (2.1)

It is well known from the spectral theory of selfadjoint compact operators [23, 40] that the eigenvalue problem (2.1) has countably many eigenvalues, which are real and positive with +โˆž as only possible accumulation point. Suppose that the eigenvalues are enumerated as

0 < ๐œ†1โ‰ค ๐œ†2โ‰ค ๐œ†3โ‰ค โ‹… โ‹… โ‹…

and let (๐‘ข1, ๐‘ข2, ๐‘ข3, . . .) be some ๐‘-orthonormal system of corresponding eigenfunctions. For any ๐‘— โˆˆ โ„•, the

eigenspace corresponding to ๐œ†๐‘—is defined as

๐ธ(๐œ†๐‘—) := {๐‘ข โˆˆ ๐‘‰ | (๐œ†๐‘—, ๐‘ข) satisfies (2.1)} = span{๐‘ข๐‘˜| ๐‘˜ โˆˆ โ„• and ๐œ†๐‘˜= ๐œ†๐‘—}.

In the present case of an eigenvalue problem of (the inverse of) a compact operator, the spaces ๐ธ(๐œ†๐‘—) have

finite dimension. The discretisation of (2.1) is based on a family (over a countable index set ๐ผ) of separable (not necessarily finite-dimensional) Hilbert spaces ๐‘‰โ„“with scalar products ๐‘ŽNC(โ‹…, โ‹…) and ๐‘NC(โ‹…, โ‹…) on ๐‘‰ + ๐‘‰โ„“with

induced norms โ€–โ‹…โ€–๐‘Ž,NCand โ€–โ‹…โ€–๐‘,NCsuch that ๐‘ŽNCand ๐‘NCcoincide with ๐‘Ž and ๐‘ when restricted to ๐‘‰:

(3)

The discrete eigenvalue problem seeks eigenpairs (๐œ†โ„“, ๐‘ขโ„“) โˆˆ โ„ ร— ๐‘‰โ„“with โ€–๐‘ขโ„“โ€–๐‘,NC= 1 such that

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) = ๐œ†โ„“๐‘NC(๐‘ขโ„“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“.

The discrete eigenvalues can be enumerated

0 < ๐œ†โ„“,1โ‰ค ๐œ†โ„“,2โ‰ค ๐œ†โ„“,3โ‰ค โ‹… โ‹… โ‹…

with corresponding ๐‘NC-orthonormal eigenfunctions (๐‘ขโ„“,1, ๐‘ขโ„“,2, ๐‘ขโ„“,3, . . .). For a finite cluster of eigenvalues

๐œ†๐‘›+1, . . . , ๐œ†๐‘›+๐‘of length ๐‘ โˆˆ โ„•, define the index set ๐ฝ := {๐‘› + 1, . . . , ๐‘› + ๐‘} and the spaces

๐‘Š := span{๐‘ข๐‘—| ๐‘— โˆˆ ๐ฝ} and ๐‘Šโ„“:= span{๐‘ขโ„“,๐‘—| ๐‘— โˆˆ ๐ฝ}.

The eigenspaces ๐ธ(๐œ†๐‘—) may differ for different ๐‘— โˆˆ ๐ฝ.

Assume that the cluster is contained in a compact interval [๐ด, ๐ต] in the sense that {๐œ†๐‘—| ๐‘— โˆˆ ๐ฝ} โˆช {๐œ†โ„“,๐‘—| โ„“ โˆˆ ๐ผ, ๐‘— โˆˆ ๐ฝ} โŠ† [๐ด, ๐ต]. This implies sup โ„“โˆˆ๐ผ(๐‘—,๐‘˜)โˆˆ๐ฝmax2max{๐œ† โˆ’1 ๐‘˜ ๐œ†โ„“,๐‘—, ๐œ†โˆ’1โ„“,๐‘—๐œ†๐‘˜} โ‰ค ๐ต/๐ด.

Although in the applications in this paper dim(๐‘‰โ„“) will be finite-dimensional, the analysis in this section

admits the case dim(๐‘‰โ„“) โˆˆ โ„• โˆช {โˆž}. Let ๐ฝ๐ถ := {1, . . . , dim(๐‘‰โ„“)} \ ๐ฝ denote the complement of ๐ฝ. Assume that

the cluster is separated from the remaining part of the spectrum in the sense that there exists a separation bound ๐‘€๐ฝ:= sup โ„“โˆˆ๐ผ sup๐‘—โˆˆ๐ฝ๐ถmax๐‘˜โˆˆ๐ฝ ๐œ†๐‘˜ |๐œ†โ„“,๐‘—โˆ’ ๐œ†๐‘˜| < โˆž. (H1)

Given ๐‘“ โˆˆ ๐‘‰, let ๐‘ข โˆˆ ๐‘‰ denote the unique solution to the linear problem ๐‘Ž(๐‘ข, ๐‘ฃ) = ๐‘(๐‘“, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰. The quasi-Ritz projection ๐‘…โ„“๐‘ข โˆˆ ๐‘‰โ„“is defined as the unique solution to

๐‘ŽNC(๐‘…โ„“๐‘ข, ๐‘ฃโ„“) = ๐‘NC(๐‘“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“.

Let ๐‘ƒโ„“denote the ๐‘NC-orthogonal projection onto ๐‘Šโ„“and define

ฮ›โ„“:= ๐‘ƒโ„“โˆ˜ ๐‘…โ„“.

For any eigenfunction ๐‘ข โˆˆ ๐‘Š, the function ฮ›โ„“๐‘ข โˆˆ ๐‘Šโ„“is regarded as its approximation. This approximation

does not depend on the basis of ๐‘Šโ„“. Notice that ฮ›โ„“๐‘ข is neither computable without knowledge of ๐‘ข nor

nec-essarily an eigenfunction.

The following result is essentially contained in the textbook [48] and in [10] for a conforming finite ele-ment discretisation of the Laplace eigenvalue problem. The proof presented here extends the arguele-ments of [48] to a more abstract situation.

Proposition 2.1. Any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (2.1) with โ€–๐‘ขโ€–๐‘= 1 satisfies

โ€–๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€–๐‘,NCโ‰ค ๐‘€๐ฝโ€–๐‘ข โˆ’ ๐‘…โ„“๐‘ขโ€–๐‘,NC

and

โ€–๐‘ข โˆ’ ๐‘ƒโ„“๐‘ขโ€–๐‘,NCโ‰ค โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€–๐‘,NCโ‰ค (1 + ๐‘€๐ฝ)โ€–๐‘ข โˆ’ ๐‘…โ„“๐‘ขโ€–๐‘,NC.

Proof. Set ๐‘ฃโ„“:= ๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข and recall dim(๐‘‰โ„“) โˆˆ โ„• โˆช {โˆž}. Since the eigenfunctions (๐‘ขโ„“,๐‘—| ๐‘— = 1, . . . , dim(๐‘‰โ„“))

form a ๐‘NC-orthonormal system of ๐‘‰โ„“and ๐‘ฃโ„“is ๐‘NC-orthogonal on ๐‘Šโ„“, there exist coefficients (๐›ผ๐‘— | ๐‘— โˆˆ ๐ฝ๐ถ) such

that ๐‘ฃโ„“= โˆ‘ ๐‘—โˆˆ๐ฝ๐ถ ๐›ผ๐‘—๐‘ขโ„“,๐‘— and โˆ‘ ๐‘—โˆˆ๐ฝ๐ถ ๐›ผ2๐‘— = โ€–๐‘ฃโ„“โ€–2๐‘,NC.

(4)

The definition of ๐‘…โ„“and the symmetry show that

(๐œ†โ„“,๐‘—โˆ’ ๐œ†)๐‘NC(๐‘…โ„“๐‘ข, ๐‘ขโ„“,๐‘—) = ๐œ†๐‘NC(๐‘ข โˆ’ ๐‘…โ„“๐‘ข, ๐‘ขโ„“,๐‘—).

This and the orthogonality of ๐‘ฃโ„“and ฮ›โ„“๐‘ข lead to

โ€–๐‘ฃโ„“โ€–2๐‘,NC= ๐‘NC(๐‘…โ„“๐‘ข, โˆ‘ ๐‘—โˆˆ๐ฝ๐ถ ๐›ผ๐‘—๐‘ขโ„“,๐‘—) = ๐‘NC(๐‘ข โˆ’ ๐‘…โ„“๐‘ข, โˆ‘ ๐‘—โˆˆ๐ฝ๐ถ ๐›ผ๐‘— ๐œ† ๐œ†โ„“,๐‘—โˆ’ ๐œ† ๐‘ขโ„“,๐‘—).

The Cauchy inequality, the estimate (H1) and the ๐‘NC-orthogonality of the discrete eigenfunctions therefore

show

โ€–๐‘ฃโ„“โ€–๐‘,NCโ‰ค ๐‘€๐ฝโ€–๐‘ข โˆ’ ๐‘…โ„“๐‘ขโ€–๐‘,NC.

The second claimed chain of inequalities follows from the projection property of ๐‘ƒโ„“and the triangle inequality.

The following algebraic identity applies frequently in the analysis. It states the important property that, al-though ฮ›โ„“๐‘ข is no eigenfunction in general, ฮ›โ„“๐‘ข satisfies an equation that is similar to an eigenfunction

prop-erty.

Lemma 2.2. Any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘‰ of (2.1) satisfies

๐‘ŽNC(ฮ›โ„“๐‘ข, ๐‘ฃโ„“) = ๐œ†๐‘NC(๐‘ƒโ„“๐‘ข, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“.

In other words, ๐‘…โ„“and ๐‘ƒโ„“commute, ๐‘ƒโ„“โˆ˜ ๐‘…โ„“= ๐‘…โ„“โˆ˜ ๐‘ƒโ„“.

Proof. The proof is given in [33, Lemma 2.2] and repeated here for convenient reading. The representation of

ฮ›โ„“๐‘ข in terms of the ๐‘NC-orthonormal basis (๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝreads as

ฮ›โ„“๐‘ข = โˆ‘ ๐‘—โˆˆ๐ฝ

๐›ผ๐‘—๐‘ขโ„“,๐‘— with ๐›ผ๐‘—= ๐‘NC(๐‘…โ„“๐‘ข, ๐‘ขโ„“,๐‘—) for all ๐‘— โˆˆ ๐ฝ.

The symmetry of ๐‘ŽNCand ๐‘NCproves for any ๐‘— โˆˆ ๐ฝ that

๐›ผ๐‘—= ๐‘NC(๐‘…โ„“๐‘ข, ๐‘ขโ„“,๐‘—) = ๐œ† โˆ’1

โ„“,๐‘—๐‘ŽNC(๐‘…โ„“๐‘ข, ๐‘ขโ„“,๐‘—) = ๐œ† โˆ’1

โ„“,๐‘—๐œ†๐‘NC(๐‘ข, ๐‘ขโ„“,๐‘—).

Therefore, the discrete eigenvalue problem reveals ๐‘ŽNC(ฮ›โ„“๐‘ข, ๐‘ฃโ„“) = โˆ‘

๐‘—โˆˆ๐ฝ

๐›ผ๐‘—๐œ†โ„“,๐‘—๐‘NC(๐‘ขโ„“,๐‘—, ๐‘ฃโ„“) = ๐œ† โˆ‘ ๐‘—โˆˆ๐ฝ

๐‘NC(๐‘NC(๐‘ข, ๐‘ขโ„“,๐‘—)๐‘ขโ„“,๐‘—, ๐‘ฃโ„“) = ๐œ†๐‘NC(๐‘ƒโ„“๐‘ข, ๐‘ฃโ„“).

The following result states a comparison of seminorms for the eigenfunctions. The application in the subse-quent sections will be the equivalence of error estimators.

Lemma 2.3. Suppose that

๐œ€ := max

๐‘—โˆˆ๐ฝโ€–๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—โ€–๐‘,NCโ‰ค โˆš1 + 1/(2๐‘) โˆ’ 1 for all โ„“ โˆˆ ๐ผ. (H2)

Then, both (๐‘ƒโ„“๐‘ข๐‘—)๐‘—โˆˆ๐ฝand (ฮ›โ„“๐‘ข๐‘—)๐‘—โˆˆ๐ฝform a basis of ๐‘Šโ„“. For any ๐‘คโ„“โˆˆ ๐‘Šโ„“with โ€–๐‘คโ„“โ€–๐‘,NC= 1, the coefficients of the

representation ๐‘คโ„“= โˆ‘๐‘—โˆˆ๐ฝ๐›ฝ๐‘—๐‘ƒโ„“๐‘ข๐‘—and ๐‘คโ„“= โˆ‘๐‘—โˆˆ๐ฝ๐›พ๐‘—ฮ›โ„“๐‘ข๐‘—are controlled as

max { โˆ‘ ๐‘—โˆˆ๐ฝ |๐›ฝ๐‘—| 2 , โˆ‘ ๐‘—โˆˆ๐ฝ |๐›พ๐‘—| 2 } โ‰ค 2 + 4๐‘ for ๐‘ = card(๐ฝ).

For any โ„“ โˆˆ ๐ผ, any seminorm ๐œŒโ„“on ๐‘‰โ„“satisfies

๐‘โˆ’1โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(๐œ†๐‘—๐‘ƒโ„“๐‘ข๐‘—)2โ‰ค (๐ต/๐ด)2โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(๐œ†โ„“,๐‘—๐‘ขโ„“,๐‘—)2โ‰ค (๐ต/๐ด)4(2๐‘ + 4๐‘2) โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(๐œ†๐‘—๐‘ƒโ„“๐‘ข๐‘—)2 and ๐‘โˆ’1โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(ฮ›โ„“๐‘ข๐‘—)2โ‰ค (๐ต/๐ด)2โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(๐‘ขโ„“,๐‘—)2โ‰ค (๐ต/๐ด)4(2๐‘ + 4๐‘2) โˆ‘ ๐‘—โˆˆ๐ฝ ๐œŒโ„“(ฮ›โ„“๐‘ข๐‘—)2.

(5)

3 The Nonconforming

P

1

Finite Element Space

This section introduces the necessary notation on regular simplicial triangulations and recalls some elemen-tary facts on the nonconformingP1finite element space. It furthermore generalises the companion operators from [14] to higher space dimensions.

3.1 Notation on Regular Triangulations

LetT0be a regular simplicial triangulation of ฮฉ in the sense of [47], i.e., โˆชT0= ฮฉ and any two elements of T0 are either disjoint or share exactly one ๐‘˜-dimensional face for ๐‘˜ โ‰ค ๐‘‘ (e.g., a vertex or an edge). Throughout this paper, any regular triangulation of ฮฉ is assumed to be admissible in the sense that it is regular and a refinement ofT0created by the refinement rules of [47] with proper initialisation of the refinement edges [47]. The set of all admissible refinements is denoted by ๐•‹. Given a triangulation Tโ„“ โˆˆ ๐•‹, the piecewise constant

mesh-size function โ„Žโ„“:= โ„ŽTโ„“is defined by โ„Žโ„“|๐‘‡:= โ„Ž๐‘‡:= meas(๐‘‡)

1/๐‘‘for any simplex ๐‘‡ โˆˆ T โ„“.

The set of (๐‘‘ โˆ’ 1)-dimensional hyper-faces (e.g., edges for ๐‘‘ = 2 or faces for ๐‘‘ = 3) of Tโ„“is denoted byFโ„“

while the interior (๐‘‘ โˆ’ 1)-dimensional hyper-faces are denoted by Fโ„“(ฮฉ). Let every ๐น โˆˆ Fโ„“be equipped with a

fixed normal vector ๐œˆ๐น. Given ๐น โˆˆ Fโ„“(ฮฉ), ๐น = ๐œ•๐‘‡+โˆฉ ๐œ•๐‘‡โˆ’shared by two simplices (๐‘‡+, ๐‘‡โˆ’) โˆˆ T2โ„“, and a piecewise

smooth function ๐‘ฃ, define the jump of ๐‘ฃ across ๐น by

[๐‘ฃ]๐น:= ๐‘ฃ|๐‘‡+โˆ’ ๐‘ฃ|๐‘‡โˆ’.

For hyper-faces ๐น โŠ† ๐œ•ฮฉ on the boundary, [๐‘ฃ]๐น := ๐‘ฃ|๐นdenotes the trace. For a simplex ๐‘‡, the set of (๐‘‘ โˆ’

1)-dimensional hyper-faces belonging to ๐‘‡ is denoted by F(๐‘‡).

The set of piecewise polynomial functions of degree โ‰ค ๐‘˜ with respect to Tโ„“is denoted byP๐‘˜(Tโ„“). The ๐ฟ2

projection ontoP๐‘˜(Tโ„“) is denoted by ฮ ๐‘˜ Tโ„“ โ‰ก ฮ 

๐‘˜

โ„“. The ๐‘˜-th order oscillations of a given function ๐‘“ โˆˆ ๐ฟ2(ฮฉ) is

defined as

osc๐‘˜(๐‘“, Tโ„“) := โ€–โ„Žโ„“(1 โˆ’ ฮ  ๐‘˜ โ„“)๐‘“โ€–๐ฟ2(ฮฉ).

The piecewise action of a differential operator is indicated by the subscript NC, i.e., the piecewise versions of ๐ท and div read as ๐ทNC โ‰ก ๐ทNC(โ„“)and divNC โ‰ก divNC(โ„“)e.g., (๐ทNC๐‘ฃ)|๐‘‡ = ๐ท(๐‘ฃ|๐‘‡) for any ๐‘‡ โˆˆ Tโ„“. The dependence

onTโ„“in the notation is dropped whenever there is no risk of confusion.

3.2 Nonconforming Finite Element Space and Companion Operator

The nonconformingP1finite element space, sometimes referred to as Crouzeixโ€“Raviart finite element space [24], reads as

CR10(Tโ„“) := {๐‘ฃโ„“โˆˆ P1(Tโ„“) | ๐‘ฃโ„“is continuous in the interior hyper-facesโ€™ midpoints and vanishes in the midpoints of hyper-faces on the boundary}.

Let, throughout this subsection, ๐‘‰โ„“:= ๐‘‰(Tโ„“) := CR10(Tโ„“) and ๐‘‰ := ๐ป01(ฮฉ). Given an admissible refinement

Tโ„“+๐‘šโˆˆ ๐•‹(Tโ„“) of Tโ„“, define the operatorI CR

โ„“ : ๐‘‰ + ๐‘‰โ„“+๐‘šโ†’ ๐‘‰โ„“by

โˆซ

๐น

(๐‘ฃ โˆ’ ICRโ„“ ๐‘ฃ) ๐‘‘๐‘  = 0 for all ๐น โˆˆ Fโ„“and all ๐‘ฃ โˆˆ ๐‘‰ + ๐‘‰โ„“+๐‘š.

Note thatICRโ„“ is indeed well-defined for functions in CR1

0(Tโ„“+๐‘š). A (piecewise) integration by parts proves the

projection property ๐ทNCI CR โ„“ = ฮ  0 โ„“๐ท, i.e., โˆซ ๐‘‡ ๐ทNCI CR โ„“ ๐‘ฃ ๐‘‘๐‘ฅ = โˆซ ๐‘‡

(6)

The proof of the approximation and stability property โ€–โ„Žโˆ’1๐‘‡ (๐‘ฃ โˆ’ I CR โ„“ ๐‘ฃ)โ€–๐ฟ2(๐‘‡)+ โ€–๐ทNC(๐‘ฃ โˆ’ ICR โ„“ ๐‘ฃ)โ€–๐ฟ2(๐‘‡)โ‰ฒ โ€–(1 โˆ’ ฮ 0 โ„“)๐ทNC๐‘ฃโ€–๐ฟ2(๐‘‡) (3.2)

for any ๐‘ฃ โˆˆ ๐‘‰ + ๐‘‰โ„“+๐‘šand any ๐‘‡ โˆˆ Tโ„“follows from the discrete Friedrichs inequality [9, Theorem 10.6.12] and

a scaling argument.

The remaining parts of this subsection present conforming companion operators. The idea behind these operators is to design for a nonconforming finite element function ๐‘ฃโ„“some conforming companion ๐ฝ๐‘‘+1๐‘ฃโ„“โˆˆ ๐‘‰

with certain conservation properties. For ๐‘‘ = 2, operators of this kind have been constructed in [14] and independently in [41]. The following result extends [14] to any dimension ๐‘‘ โ‰ฅ 2.

Proposition 3.1(companion operator in any space dimension). Given any ๐‘ฃโ„“ โˆˆ ๐‘‰โ„“there exists some ๐ฝ๐‘‘+1๐‘ฃโ„“ โˆˆ

P๐‘‘+1(Tโ„“) โˆฉ ๐‘‰ such that ๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“is ๐ฟ2orthogonal onto the spaceP0(Tโ„“) of piecewise constants, it enjoys the

integral mean property

ฮ 0โ„“(๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“)) = 0, (3.3)

and it satisfies the approximation and stability property

โ€–โ„Žโˆ’1โ„“ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)+ โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ2(ฮฉ). (3.4)

Proof. The design follows in three steps.

Step 1. The operator ๐ฝ1: ๐‘‰โ„“โ†’ ๐‘ƒ1(Tโ„“) โˆฉ ๐‘‰ acts on any function ๐‘ฃโ„“โˆˆ ๐‘‰โ„“by averaging the function values at

each interior vertex ๐‘ง, i.e.,

๐ฝ1๐‘ฃโ„“(๐‘ง) = card(Tโ„“(๐‘ง))โˆ’1 โˆ‘ ๐‘‡โˆˆTโ„“(๐‘ง)

๐‘ฃโ„“|๐‘‡(๐‘ง) for all ๐‘ง โˆˆ Nโ„“(ฮฉ)

whereTโ„“(๐‘ง) := {๐‘‡ โˆˆ Tโ„“ | ๐‘ง โˆˆ ๐‘‡} is the set of simplices that contain the vertex ๐‘ง. This operator is also known as enriching operator in the context of fast solvers [8]. The proof of the approximation property

โ€–โ„Žโˆ’1โ„“ (๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ2(ฮฉ) (3.5)

is included in [11, Theorem 5.1] for ๐‘‘ = 2. A generalisation to higher dimensions is outlined in the proof of [13, Theorem 4.9]. This and an inverse estimate [9] imply the stability property

โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ

2(ฮฉ). (3.6)

Step 2. Given any hyper-face ๐น = conv{๐‘ง1, . . . , ๐‘ง๐‘‘} with nodal P1conforming basis functions ๐œ‘1, . . . , ๐œ‘๐‘‘ โˆˆ

P1(Tโ„“) โˆฉ ๐‘‰, the quadratic edge-bubble function

โ™ญ๐น:= (2๐‘‘ โˆ’ 1)! (๐‘‘ โˆ’ 1)! ๐‘‘ โˆ ๐‘—=1 ๐œ‘๐‘—

is supported on the patch of ๐น (that is the union of simplices which ๐น belongs to) and satisfiesโˆซโˆ’

๐นโ™ญ๐น๐‘‘๐‘  = 1.

For any function ๐‘ฃโ„“โˆˆ ๐‘‰โ„“the operator ๐ฝ๐‘‘: ๐‘‰โ„“โ†’ P๐‘‘(Tโ„“) โˆฉ ๐‘‰ acts as

๐ฝ๐‘‘๐‘ฃโ„“:= ๐ฝ1๐‘ฃโ„“+ โˆ‘ ๐นโˆˆFโ„“(ฮฉ)

(โˆ’โˆซ

๐น

(๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“) ๐‘‘๐‘ )โ™ญ๐น.

An immediate consequence of this choice reads as โˆ’ โˆซ ๐น ๐ฝ๐‘‘๐‘ฃโ„“๐‘‘๐‘  = โˆ’โˆซ ๐น ๐‘ฃโ„“๐‘‘๐‘  for all ๐น โˆˆ Fโ„“.

An integration by parts shows the integral mean property of the gradients ฮ 0

โ„“๐ท๐ฝ๐‘‘= ๐ทNC, i.e., โˆซ ๐‘‡ ๐ท๐ฝ๐‘‘๐‘ฃโ„“๐‘‘๐‘ฅ = โˆซ ๐‘‡ ๐ทNC๐‘ฃโ„“๐‘‘๐‘ฅ for all ๐‘‡ โˆˆ Tโ„“.

(7)

Let ๐‘‡ โˆˆ Tโ„“with ๐น โˆˆ F(๐‘‡). The scaling โ€–โ™ญ๐นโ€–๐ฟ2(ฮฉ)โ‰ฒ โ„Ž๐‘‘/2

๐‘‡ and the Hรถlder and trace inequalities [30] show

โ„Ž๐‘‡โˆ’1๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๐นโˆˆF(๐‘‡)โˆ‘ (โˆ’โˆซ ๐น (๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“) ๐‘‘๐‘ )โ™ญ๐น๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ๓ต„ฉ ๓ต„ฉ๐ฟ2(๐‘‡)โ‰ฒ โ„Ž (๐‘‘โˆ’2)/2 ๐‘‡ โˆ‘ ๐นโˆˆF(๐‘‡) ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ๓ต„จ ๓ต„จโˆ’โˆซ ๐น (๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“) ๐‘‘๐‘ ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๓ต„จ โ‰ฒ โ„Žโˆ’1/2๐‘‡ โˆ‘ ๐นโˆˆF(๐‘‡) โ€–๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“โ€–๐ฟ2(๐น) โ‰ฒ โ„Žโˆ’1๐‘‡ โ€–๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“โ€–๐ฟ2(๐‘‡)+ โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ1๐‘ฃโ„“)โ€–๐ฟ2(๐‘‡).

This, the triangle inequality and the properties (3.5)โ€“(3.6) yield โ€–โ„Žโˆ’1โ„“ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ

2(ฮฉ). (3.7)

The stability property of ๐ฝ๐‘‘follows with an inverse estimate [9]

โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ โ€–โ„Žโˆ’1

โ„“ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ2(ฮฉ).

Step 3. On any simplex ๐‘‡ = conv{๐‘ง1, . . . , ๐‘ง๐‘‘+1} with nodal basis functions ๐œ‘1, . . . , ๐œ‘๐‘‘+1, the volume bubble

function is defined by โ™ญ๐‘‡:= (2๐‘‘ + 1)! ๐‘‘! ๐‘‘+1 โˆ ๐‘—=1 ๐œ‘๐‘—โˆˆ ๐ป 1 0(int(๐‘‡)) and satisfiesโˆซโˆ’ ๐‘‡โ™ญ๐‘‡๐‘‘๐‘ฅ = 1. Define ๐ฝ๐‘‘+1๐‘ฃโ„“:= ๐ฝ๐‘‘๐‘ฃโ„“+ โˆ‘ ๐‘‡โˆˆTโ„“ (โˆ’โˆซ ๐‘‡ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“) ๐‘‘๐‘ฅ)โ™ญ๐‘‡.

The difference ๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“is ๐ฟ2-orthogonal to all piecewise constant functions. Since โ™ญ๐‘‡vanishes on all ๐น โˆˆ Fโ„“,

๐ฝ๐‘‘+1enjoys the integral mean property ฮ 0โ„“๐ท๐ฝ๐‘‘+1= ๐ทNC. The Hรถlder inequality and (3.7) imply

๓ต„จ๓ต„จ๓ต„จ ๓ต„จ๓ต„จ๓ต„จ ๓ต„จโˆซโˆ’ ๐‘‡ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“) ๐‘‘๐‘ฅ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๓ต„จ๓ต„จ ๓ต„จโ‰ฒ โ„Ž โˆ’๐‘‘/2 ๐‘‡ โ€–๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘๐‘ฃโ„“โ€–๐ฟ2(๐‘‡)โ‰ฒ โ„Žโˆ’(๐‘‘โˆ’2)/2 ๐‘‡ min๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ2(ฮฉ). The scaling โ€–๐ทโ™ญ๐‘‡โ€–๐ฟ2(ฮฉ)โ‰ˆ โ„Ž(๐‘‘โˆ’2)/2

๐‘‡ and the triangle inequality prove the stability property

โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ

2(ฮฉ).

A piecewise Poincarรฉ inequality proves the approximation property โ€–โ„Žโˆ’1โ„“ (๐‘ฃโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ฃโ„“)โ€–๐ฟ2(ฮฉ)โ‰ฒ min

๐‘ฃโˆˆ๐‘‰โ€–๐ทNC(๐‘ฃโ„“โˆ’ ๐‘ฃ)โ€–๐ฟ2(ฮฉ).

4 Eigenvalues of the Laplacian

This section studies the adaptive nonconforming FEM approximation of the Laplace eigenproblem. Section 4.1 presents ๐ฟ2and best-approximation estimates for the linear Poisson problem. Section 4.2 introduces the

dis-cretisation of the eigenvalue problem. A โ€˜theoreticalโ€™ (i.e., non-computable) error estimator and its discrete reliability are analysed in Section 4.3. Sections 4.4 and 4.5 present the practical AFEM and prove contraction and optimal convergence rates.

4.1 Nonconforming FEM for the Poisson Model Problem

This subsection revisits the nonconformingP1discretisation of the linear Poisson equation. Let ๐‘‰ := ๐ป1 0(ฮฉ)

be equipped with the scalar products

(8)

and induced norms |||๐‘ฃ||| := ๐‘Ž(๐‘ฃ, ๐‘ฃ)1/2and โ€–๐‘ฃโ€– := ๐‘(๐‘ฃ, ๐‘ฃ)1/2. Given ๐‘“ โˆˆ ๐ฟ2(ฮฉ), the weak formulation of the Poisson problem โˆ’ฮ”๐‘ข = ๐‘“ under homogeneous Dirichlet boundary conditions reads as

๐‘Ž(๐‘ข, ๐‘ฃ) = ๐‘(๐‘“, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰. (4.1)

The nonconforming finite element discretisation is based on the space ๐‘‰โ„“:= CR10(Tโ„“) and the scalar product

๐‘ŽNC(๐‘ฃโ„“, ๐‘คโ„“) := (๐ทNC๐‘ฃโ„“, ๐ทNC๐‘คโ„“)๐ฟ2(ฮฉ) for all (๐‘ฃโ„“, ๐‘คโ„“) โˆˆ ๐‘‰โ„“2

with norm |||โ‹…|||NC := ๐‘ŽNC(โ‹…, โ‹…) and seeks ๐‘ขโ„“โ‰ก ๐‘…โ„“๐‘ข โˆˆ ๐‘‰โ„“such that

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) = ๐‘(๐‘“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“. (4.2)

A posteriori and a priori error estimates as well as best-approximation properties for this problem are well-studied in the literature [6, 21, 28, 37]. Error estimates in the ๐ฟ2 norm require a modification of the usual

duality argument for conforming finite element methods. The following proposition establishes an ๐ฟ2error estimate. The main ingredient is the use of the companion operator ๐ฝ๐‘‘+1. For ๐‘‘ = 2, this result was first

ob-tained in [14] and [18]. A similar approach has independently been developed in [41] for ๐‘‘ = 2. The result presented here compares the ๐ฟ2error directly with the energy error and therefore uses no a priori results of

the eigenfunction approximation. This is important as the ๐ฟ2control will usually lead to higher-order terms which can be absorbed for โ€–โ„Ž0โ€–โˆžโ‰ช 1.

Let 0 < ๐‘  โ‰ค 1 indicate the elliptic regularity index of the Poisson problem โˆ’ฮ”๐‘ข = ๐‘“ with homogeneous Dirichlet boundary conditions in the sense that โ€–๐‘ขโ€–๐ป1+๐‘ (ฮฉ)โ‰ค ๐ถ(๐‘ )โ€–๐‘“โ€–๐ฟ2(ฮฉ).

Proposition 4.1(๐ฟ2error estimate for the linear problem). The exact solution ๐‘ข to (4.1) and the discrete

solu-tion ๐‘ขโ„“to (4.2) satisfy

โ€–๐‘ข โˆ’ ๐‘ขโ„“โ€– โ‰ฒ โ€–โ„Ž0โ€– ๐‘ 

โˆž|||๐‘ข โˆ’ ๐‘ขโ„“|||NC.

Proof. Let ๐‘’ := ๐‘ข โˆ’ ๐‘ขโ„“and let ๐‘ง โˆˆ ๐‘‰ denote the solution of

๐‘Ž(๐‘ง, ๐‘ฃ) = ๐‘(๐‘’, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰.

Recall the companion operator ๐ฝ๐‘‘+1from Proposition 3.1. Since ฮ 0โ„“(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“) = 0, it holds that

โ€–๐‘’โ€–2= ๐‘(๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, ๐‘’) + ๐‘(๐‘’, ๐‘ข โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“)

= ๐‘(๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, (1 โˆ’ ฮ 0โ„“)๐‘’) + ๐‘Ž(๐‘ง, ๐‘ข โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“).

Piecewise Poincarรฉ inequalities and (3.4) lead to ๐‘(๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, (1 โˆ’ ฮ  0 โ„“)๐‘’) โ‰ฒ โ€–โ„Ž0โ€– 2 โˆž|||๐‘’||| 2 NC.

Since ๐‘’ is perpendicular to the conforming finite element functions in P1(T)โˆฉ๐‘‰ and since ฮ 0โ„“๐ทNC(๐‘ขโ„“โˆ’๐ฝ๐‘‘+1๐‘ขโ„“) =

0, the Scottโ€“Zhang quasi-interpolation ๐‘ง๐ถโˆˆ P1(T) โˆฉ ๐‘‰ of ๐‘ง [45] satisfies

๐‘Ž(๐‘ง, ๐‘ข โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“) = ๐‘ŽNC(๐‘’, ๐‘ง) + ๐‘ŽNC(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“, ๐‘ง)

= ๐‘ŽNC(๐‘’, ๐‘ง โˆ’ ๐‘ง๐ถ) + ๐‘ŽNC(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“, ๐‘ง โˆ’ ๐‘ง๐ถ).

The Cauchy inequality and (3.4) imply

๐‘ŽNC(๐‘’, ๐‘ง โˆ’ ๐‘ง๐ถ) + ๐‘ŽNC(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“, ๐‘ง โˆ’ ๐‘ง๐ถ) โ‰ฒ |||๐‘’|||NC|||๐‘ง โˆ’ ๐‘ง๐ถ|||NC.

Standard a priori error estimates [9] and the elliptic regularity imply |||๐‘ง โˆ’ ๐‘ง๐ถ||| โ‰ฒ โ€–โ„Ž0โ€–๐‘ โˆžโ€–๐‘งโ€–๐ป1+๐‘ (ฮฉ)โ‰ฒ โ€–โ„Ž0โ€–๐‘ 

โˆžโ€–๐‘’โ€–.

The combination of the above estimates proves

(9)

The next result states a best-approximation property in any space dimension. It generalises some recent re-sults of the medius analysis [7, 21, 37] to arbitrary space dimensions. The result is stated with a refined oscil-lation term osc1(๐‘“, Tโ„“). This will be important for the analysis of eigenvalue problems.

Proposition 4.2(best-approximation property). The solution ๐‘ข โˆˆ ๐‘‰ to (4.1) with right-hand side ๐‘“ โˆˆ ๐ฟ2(ฮฉ) and

the discrete solution ๐‘ขโ„“โˆˆ ๐‘‰โ„“to (4.2) satisfy

|||๐‘ข โˆ’ ๐‘ขโ„“|||NC โ‰ฒ โ€–(1 โˆ’ ฮ  0

โ„“)๐ท๐‘ขโ€– + osc1(๐‘“, Tโ„“).

Proof. The projection property (3.1) of the nonconforming interpolation operatorICRโ„“ and the Pythagoras theorem show that

|||๐‘ข โˆ’ ๐‘ขโ„“|||2NC= |||๐‘ขโ„“โˆ’ I CR โ„“ ๐‘ข||| 2 NC+ |||๐‘ข โˆ’ I CR โ„“ ๐‘ข||| 2 NC.

Since |||๐‘ข โˆ’ ICRโ„“ ๐‘ข|||NC = โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€–, it remains to estimate the first term on the right-hand side. Set ๐œ‘โ„“ :=

๐‘ขโ„“โˆ’ I CR

โ„“ ๐‘ข. The properties of the companion operator from Proposition 3.1 show that

|||๐‘ขโ„“โˆ’ I CR โ„“ ๐‘ข|||

2

NC= ๐‘ŽNC(๐‘ขโ„“โˆ’ ๐‘ข, ๐œ‘โ„“) = ๐‘(๐‘“, ๐œ‘โ„“โˆ’ ๐ฝ๐‘‘+1๐œ‘โ„“) + ((1 โˆ’ ฮ 0โ„“)๐ท๐‘ข, ๐ทNC(๐ฝ๐‘‘+1โˆ’ 1)๐œ‘โ„“)๐ฟ2(ฮฉ).

The approximation and stability properties (3.4) show that this is bounded by (โ€–โ„Žโ„“๐‘“โ€– + โ€–(1 โˆ’ ฮ 

0

โ„“)๐ท๐‘ขโ€–)|||๐œ‘โ„“|||NC.

The efficiency โ€–โ„Žโ„“๐‘“โ€– โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€– + osc1(๐‘“, Tโ„“) in the spirit of [49] follows from arguments similar to those

of [33, Proposition 3.1]. This concludes the proof.

4.2 Discretisation of the Laplace Eigenvalue Problem

The Laplace eigenvalue problem seeks eigenpairs (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘‰ with โ€–๐‘ขโ€– = 1 such that

๐‘Ž(๐‘ข, ๐‘ฃ) = ๐œ†๐‘(๐‘ข, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰. (4.3)

The finite element discretisation based on a regular triangulationTโ„“seeks discrete eigenpairs (๐œ†โ„“, ๐‘ขโ„“) โˆˆ โ„ร—๐‘‰โ„“ with โ€–๐‘ขโ„“โ€– = 1 and

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) = ๐œ†โ„“๐‘(๐‘ขโ„“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“. (4.4)

Adopt the notation of Section 2 with exact and discrete eigenvalues

0 < ๐œ†1โ‰ค ๐œ†2โ‰ค โ‹… โ‹… โ‹… and 0 < ๐œ†โ„“,1โ‰ค โ‹… โ‹… โ‹… โ‰ค ๐œ†โ„“,dim(๐‘‰โ„“)

and their corresponding ๐‘-orthonormal systems of eigenfunctions

(๐‘ข1, ๐‘ข2, ๐‘ข3, . . .) and (๐‘ขโ„“,1, ๐‘ขโ„“,2, . . . , ๐‘ขโ„“,dim(๐‘‰โ„“)).

Recall the definitions of Section 2: The set ๐ฝ = {๐‘› + 1, . . . , ๐‘› + ๐‘} describes the eigenvalue cluster of interest and ๐‘Š := span{๐‘ข๐‘— | ๐‘— โˆˆ ๐ฝ} and ๐‘Šโ„“ := span{๐‘ขโ„“,๐‘— | ๐‘— โˆˆ ๐ฝ} are the exact and discrete invariant subspaces (not

necessarily eigenspaces) related to the cluster. In the present situation, the quasi-Ritz projection ๐‘…โ„“maps the

solution ๐‘ข โˆˆ ๐‘‰ of the linear problem (4.1) to the solution ๐‘…โ„“๐‘ข of the discrete linear problem (4.2). With the ๐ฟ2

projection ๐‘ƒTโ„“ := ๐‘ƒโ„“onto ๐‘Šโ„“let ฮ›Tโ„“ := ฮ›โ„“:= ๐‘ƒโ„“โˆ˜ ๐‘…โ„“.

The remaining parts of this subsection prove an ๐ฟ2error estimate as well as a best-approximation result. Proposition 4.3(๐ฟ2error control). Provided โ€–โ„Ž

0โ€–โˆž โ‰ช 1, any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š with โ€–๐‘ขโ€– = 1 satisfies

โ€–๐‘ข โˆ’ ๐‘ƒโ„“๐‘ขโ€– โ‰ค โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€– โ‰ฒ (1 + ๐‘€๐ฝ)โ€–๐‘ข โˆ’ ๐‘…โ„“๐‘ขโ€– โ‰ค ๐ถ๐ฟ2(1 + ๐‘€๐ฝ)โ€–โ„Ž0โ€–๐‘ 

โˆž|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC

(10)

Proof. Note that ๐‘…โ„“๐‘ข solves (4.2) with right-hand side ๐‘“ := ๐œ†๐‘ข. The combination of Proposition 2.1 with

Propo-sition 4.1 and PropoPropo-sition 4.2 yields

โ€–๐‘ข โˆ’ ๐‘ƒโ„“๐‘ขโ€– โ‰ค โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€– โ‰ฒ (1 + ๐‘€๐ฝ)โ€–โ„Ž0โ€–โˆž๐‘  (|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC+ osc1(๐œ†๐‘ข, Tโ„“)).

Provided โ€–โ„Ž0โ€–โˆž โ‰ช 1, the oscillation term can be absorbed.

Proposition 4.4(best-approximation property). Provided โ€–โ„Ž0โ€–โˆž โ‰ช 1, any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (4.3)

with โ€–๐‘ขโ€– = 1 satisfies

|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€–.

Proof. The triangle inequality proves for the quasi-Ritz projection ๐‘…โ„“๐‘ข that

|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NCโ‰ค |||๐‘ข โˆ’ ๐‘…โ„“๐‘ข|||NC+ |||๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC.

Set ๐œ‘โ„“:= ๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข. The definition of ๐‘…โ„“and the discrete problem (cf. Lemma 2.2) prove that

|||๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC = ๐‘ŽNC(๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข, ๐œ‘โ„“) = ๐œ†๐‘(๐‘ข โˆ’ ๐‘ƒโ„“๐‘ข, ๐œ‘โ„“).

Hence, the Cauchy and discrete Friedrichs inequalities [9, Theorem 10.6.12] and the ๐ฟ2control from

Proposi-tion 4.3 prove that

|||๐‘…โ„“๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NCโ‰ฒ ๐œ†(1 + ๐‘€๐ฝ)โ€–โ„Ž0โ€– ๐‘ 

โˆž|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC.

The combination of the foregoing estimates with Proposition 4.2 results in |||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC โ‰ฒ โ€–(1 โˆ’ ฮ 

0

โ„“)๐ท๐‘ขโ€– + ๐œ†(1 + ๐‘€๐ฝ)โ€–โ„Ž0โ€– ๐‘ 

โˆž|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC+ osc1(๐œ†๐‘ข, Tโ„“).

If โ€–โ„Ž0โ€–โˆž โ‰ช 1 is sufficiently small, the higher-order terms on the right-hand side can be absorbed.

4.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend on the choice of the discrete eigenfunctions. This idea was first presented in [25]. Given an eigenpair (๐œ†, ๐‘ข), the error estimator includes the elementwise residuals in terms of ๐‘ƒโ„“๐‘ข and ฮ›โ„“๐‘ข. More precisely, define, for any ๐‘‡ โˆˆ Tโ„“,

๐œ‡โ„“2(๐‘‡, ๐œ†, ๐‘ข) := โ„Ž 2 ๐‘‡โ€–๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐ฟ2(๐‘‡)+ โˆ‘ ๐นโˆˆF(๐‘‡) โ„Žโˆ’1๐‘‡โ€–[ฮ›โ„“๐‘ข]๐นโ€– 2 ๐ฟ2(๐น)

and, for any subsetK โŠ† Tโ„“,

๐œ‡2โ„“(K, ๐œ†๐‘—, ๐‘ข๐‘—) := โˆ‘ ๐‘‡โˆˆK ๐œ‡2โ„“(๐‘‡, ๐œ†๐‘—, ๐‘ข๐‘—) and ๐œ‡ 2 โ„“(K) := โˆ‘ ๐‘—โˆˆ๐ฝ ๐œ‡โ„“2(K, ๐œ†๐‘—, ๐‘ข๐‘—).

The following shorthand notation for higher-order terms will be frequently used in the remaining parts of this section. For (โ„“, ๐‘š) โˆˆ โ„•20define (with the constant ๐ถ๐ฟ2from Proposition 4.3)

๐‘Ÿโ„“,๐‘š := โ€–โ„Ž0โ€–๐‘ โˆž๐œ†(1 + ๐‘€๐ฝ)๐ถ๐ฟ2โˆš|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2+ |||๐‘ข โˆ’ ฮ›โ„“+๐‘š๐‘ข|||2. (4.5)

The theoretical error estimator satisfies the following discrete reliability.

Proposition 4.5(discrete reliability). There exists a constant ๐ถdrelโ‰ˆ 1 solely dependent on T0with โ€–โ„Ž0โ€–โˆž โ‰ช 1

such that any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (4.3) with โ€–๐‘ขโ€– = 1 satisfies

2|||ฮ›โ„“+๐‘š๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2โ‰ค ๐ถ2drel(๐œ‡ 2

โ„“(Tโ„“\ Tโ„“+๐‘š, ๐œ†, ๐‘ข) + ๐‘Ÿ2โ„“,๐‘š).

Proof. Let ๐‘ฃโ„“+๐‘šdenote the best-approximation (with respect to the norm |||โ‹…|||NC) of ฮ›โ„“๐‘ข in ๐‘‰โ„“+๐‘š. The

Pythago-ras theorem reads as

|||(ฮ›โ„“+๐‘šโˆ’ ฮ›โ„“)๐‘ข||| 2 NC= |||ฮ›โ„“+๐‘š๐‘ข โˆ’ ๐‘ฃโ„“+๐‘š||| 2 NC+๐‘ค min โ„“+๐‘šโˆˆ๐‘‰โ„“+๐‘š |||๐‘คโ„“+๐‘šโˆ’ ฮ›โ„“๐‘ข||| 2 NC.

(11)

The second term has been estimated in [13, Theorem 3.1] by means of the jumps of ฮ›โ„“๐‘ข. For the analysis of

the first term, let ๐œ‘โ„“+๐‘š:= ฮ›โ„“+๐‘š๐‘ข โˆ’ ๐‘ฃโ„“+๐‘š. The projection property (3.1) of the nonconforming interpolation and

the discrete eigenvalue problems (cf. Lemma 2.2) reveal that |||ฮ›โ„“+๐‘š๐‘ข โˆ’ ๐‘ฃโ„“+๐‘š||| 2 NC= ๐‘ŽNC((ฮ›โ„“+๐‘šโˆ’ ฮ›โ„“)๐‘ข, ๐œ‘โ„“+๐‘š) = ๐œ†๐‘((๐‘ƒโ„“+๐‘šโˆ’ ๐‘ƒโ„“)๐‘ข, ๐œ‘โ„“+๐‘š) + ๐œ†๐‘(๐‘ƒโ„“๐‘ข, (1 โˆ’ I CR โ„“ )๐œ‘โ„“+๐‘š).

The ๐ฟ2error estimate from Proposition 4.3 and the approximation and stability property (3.2) conclude the

proof.

The reliability of the error estimator is an immediate consequence.

Proposition 4.6(reliability and efficiency). Provided โ€–โ„Ž0โ€–โˆž โ‰ช 1, any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (4.3) with โ€–๐‘ขโ€– = 1 satisfies |||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC โ‰ค ๐ถ 2 drel๐œ‡ 2 โ„“(Tโ„“, ๐œ†, ๐‘ข). (4.6)

For some constant ๐ถeff โ‰ˆ 1, it holds that

๐œ‡โ„“(Tโ„“, ๐œ†, ๐‘ข) 2

โ‰ค ๐ถ2eff|||๐‘ข โˆ’ ฮ›โ„“๐‘ข||| 2

NC. (4.7)

Proof. The reliability

2|||๐‘ข โˆ’ ฮ›โ„“๐‘ข||| 2 NCโ‰ค ๐ถ 2 drel(๐œ‡ 2 โ„“(Tโ„“, ๐œ†, ๐‘ข) + โ€–โ„Ž0โ€– 2๐‘  โˆž๐œ† 2 (1 + ๐‘€๐ฝ) 2 |||๐‘ข โˆ’ ฮ›โ„“๐‘ข||| 2 NC)

follows from the discrete reliability on a sequence of meshesTโ„“+๐‘šwith โ€–โ„Žโ„“+๐‘šโ€–โˆž โ†’ 0 and the a priori con-vergence result of Proposition 4.4. Provided the initial mesh is sufficiently fine, the higher-order terms on the right-hand side can be absorbed. The efficiency

2๐œ‡2โ„“(Tโ„“, ๐œ†, ๐‘ข) โ‰ค ๐ถ 2

eff(1 + ๐œ†โ€–โ„Ž0โ€– 1+๐‘ 

โˆž (1 + ๐‘€๐ฝ)๐ถ๐ฟ2)2|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC

follows from the triangle inequality and the ๐ฟ2error control from Proposition 4.3 combined with the standard arguments of [49]. The assumption โ€–โ„Ž0โ€–โˆž โ‰ช 1 implies

๐œ‡2โ„“(Tโ„“, ๐œ†, ๐‘ข) โ‰ค ๐ถ2eff|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC.

4.4 Adaptive Algorithm and Contraction Property

This subsection presents the adaptive algorithm and proves the contraction property.

For any simplex ๐‘‡ โˆˆ Tโ„“, the explicit residual-based error estimator consists of the sum of the residuals of

the computed discrete eigenfunctions (๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝ,

๐œ‚2โ„“(๐‘‡) := โˆ‘ ๐‘—โˆˆ๐ฝ

(โ„Ž2๐‘‡โ€–๐œ†โ„“,๐‘—๐‘ขโ„“,๐‘—โ€–2๐ฟ2(๐‘‡)+ โˆ‘

๐นโˆˆF(๐‘‡)

โ„Žโˆ’1๐‘‡ โ€–[๐‘ขโ„“,๐‘—]๐นโ€–2๐ฟ2(๐น)).

Let, for any subsetK โŠ† T,

๐œ‚2โ„“(K) := โˆ‘ ๐‘‡โˆˆK

๐œ‚2โ„“(๐‘‡).

For simple eigenvalues this type of error estimator was introduced in [29]. The adaptive algorithm is driven by this computable error estimator and runs the following loop.

Algorithm 4.7(nonconforming AFEM for the Laplace eigenproblem). Input: Initial triangulationT0, bulk parameter 0 < ๐œƒ โ‰ค 1.

for โ„“ = 0, 1, 2, . . .

Solve. Compute discrete eigenpairs (๐œ†โ„“,๐‘—, ๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝof (4.4) with respect toTโ„“.

(12)

Mark. Choose a minimal subsetMโ„“โŠ† Tโ„“such that ๐œƒ๐œ‚2โ„“(Tโ„“) โ‰ค ๐œ‚โ„“2(Mโ„“). Refine. GenerateTโ„“+1:= refine(Tโ„“, Mโ„“) with the refinement rules of [47].

end for

Output: Triangulations (Tโ„“)โ„“and discrete solutions ((๐œ†โ„“,๐‘—, ๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝ)โ„“.

The first important observation is that, by Lemma 2.3, the non-computable error estimator ๐œ‡โ„“(Mโ„“) satisfies

the bulk criterion

ฬƒ

๐œƒ๐œ‡โ„“(Tโ„“) โ‰ค ๐œ‡โ„“(Mโ„“)

for the modified bulk parameter

ฬƒ

๐œƒ := ((๐ต/๐ด)4(2๐‘2+ 4๐‘3))โˆ’1๐œƒ < 1. (4.8) The following proposition states the error estimator reduction property.

Proposition 4.8(error estimator reduction for ๐œ‡โ„“). Provided the assumptions (H1) and (H2) (see Lemma 2.3)

hold, there exist constants 0 < ๐œŒ1< 1 and 0 < ๐พ < โˆž such that Tโ„“and its one-level refinementTโ„“+1generated

by Algorithm 4.7 and any eigenfunction ๐‘ข โˆˆ ๐‘Š with โ€–๐‘ขโ€– = 1 and eigenvalue ๐œ† satisfy (with ๐‘Ÿโ„“,1from (4.5))

๐œ‡2โ„“+1(Tโ„“+1, ๐œ†, ๐‘ข) โ‰ค ๐œŒ1๐œ‡2โ„“(Tโ„“, ๐œ†, ๐‘ข) + ๐พ(|||ฮ›โ„“+1๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC+ โ€–โ„Ž0โ€–2โˆž๐‘Ÿ 2 โ„“,1).

Proof. The standard techniques of [22, 46] and the bulk criterion (4.8) lead to a constant ฬƒ๐พ such that

๐œ‡โ„“+12 (Tโ„“+1, ๐œ†, ๐‘ข) โ‰ค ๐œŒ1๐œ‡2โ„“(Tโ„“, ๐œ†, ๐‘ข) + ฬƒ๐พ(|||ฮ›โ„“+1๐‘ข โˆ’ ฮ›โ„“๐‘ข|||2NC+ โ€–โ„Žโ„“+1๐œ†(๐‘ƒโ„“+1โˆ’ ๐‘ƒโ„“)๐‘ขโ€–2).

The triangle inequality for the term โ€–โ„Žโ„“+1๐œ†(๐‘ƒโ„“+1โˆ’ ๐‘ƒโ„“)๐‘ขโ€– and the ๐ฟ2error control from Proposition 4.3 prove the

result.

The next technical result is needed for the reduction of the volume contribution of the error estimator. In-equalities of this type were previously utilised in [42] for ๐‘‘ = 2 for the linear Poisson problem and in [13] for boundary value problems for ๐‘‘ โ‰ฅ 2.

Lemma 4.9(control of the volume contribution). Provided โ€–โ„Ž0โ€–โˆž โ‰ช 1, any triangulation Tโ„“ โˆˆ ๐•‹ and any

ad-missible refinementTโ„“+๐‘šofTโ„“satisfy for any 0 < ๐›ฟ < โˆž and any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (4.3) with โ€–๐‘ขโ€– = 1 that โ€–โ„Žโ„“+๐‘š๐œ†๐‘ƒโ„“+๐‘š๐‘ขโ€– 2 ๐ฟ2(ฮฉ)+ (1 + ๐›ฟโˆ’1)(1 โˆ’ 2โˆ’2/๐‘‘)โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(โˆช(T โ„“\Tโ„“+๐‘š))โ‰ค 2(1 + ๐›ฟ)โ€–โ„Ž0โ€– 2 โˆž๐‘Ÿ 2 โ„“,๐‘š+ (1 + ๐›ฟ โˆ’1 )โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐ฟ2(ฮฉ).

Proof. The triangle and Young inequalities prove for any 0 < ๐›ฟ < โˆž that

โ€–โ„Žโ„“+๐‘š๐œ†๐‘ƒโ„“+๐‘š๐‘ขโ€–2๐ฟ2(ฮฉ)โ‰ค (1 + ๐›ฟ)โ€–โ„Žโ„“+๐‘š๐œ†(๐‘ƒโ„“+๐‘š๐‘ข โˆ’ ๐‘ƒโ„“๐‘ข)โ€–2๐ฟ2(ฮฉ)+ (1 + ๐›ฟโˆ’1)โ€–โ„Žโ„“+๐‘š๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(ฮฉ). The relation โ„Ž๐‘‘โ„“+๐‘šโ‰ค โ„Ž ๐‘‘ โ„“/2 on Tโ„“\ Tโ„“+๐‘šproves โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐ฟ2(โˆช(T โ„“\Tโ„“+๐‘š))โ‰ค (1 โˆ’ 2 โˆ’2/๐‘‘ )โˆ’1(โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐ฟ2(ฮฉ)โˆ’ โ€–โ„Žโ„“+๐‘š๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(ฮฉ)).

The preceding two displayed formulas together with Proposition 4.3 prove the result.

In the case of nonconforming discretisations of eigenvalue problems, the Galerkin orthogonality is violated at two points. First, the nonlinearity leads to a perturbation of the right-hand side. Furthermore, the non-conforming finite element functions are not admissible test functions in the continuous problem and, thus, additional techniques enter the analysis. The notion of โ€œquasi-orthogonalityโ€ traces back to [17].

Proposition 4.10(quasi-orthogonality). Under the hypothesis โ€–โ„Ž0โ€–โˆž โ‰ช 1 there exists a constant ๐ถqosuch that

any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ ร— ๐‘Š of (4.3) with โ€–๐‘ขโ€– = 1, any Tโ„“โˆˆ ๐•‹, and any admissible refinement Tโ„“+๐‘šofTโ„“satisfy

|2๐‘ŽNC(๐‘ข โˆ’ ฮ›โ„“+๐‘š๐‘ข, ฮ›โ„“+๐‘š๐‘ข โˆ’ ฮ›โ„“๐‘ข)| โ‰ค ๐ถqo(โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–๐ฟ2(โˆชT

(13)

Proof. Some algebraic manipulations with the projection property (3.1) of the nonconforming interpolation

and the discrete eigenvalue problems (cf. Lemma 2.2) reveal ๐‘ŽNC((1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข, (ฮ›โ„“+๐‘šโˆ’ ฮ›โ„“)๐‘ข) = ๐‘ŽNC(ฮ›โ„“+๐‘š๐‘ข, I CR โ„“+๐‘š(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) โˆ’ ๐‘ŽNC(ฮ›โ„“๐‘ข, I CR โ„“ (1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) = ๐œ†๐‘(๐‘ƒโ„“+๐‘š๐‘ข, I CR โ„“+๐‘š(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) โˆ’ ๐œ†๐‘(๐‘ƒโ„“๐‘ข, I CR โ„“ (1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) = ๐œ†๐‘(๐‘ƒโ„“๐‘ข, (I CR โ„“+๐‘šโˆ’ I CR โ„“ )(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) + ๐œ†๐‘((๐‘ƒโ„“+๐‘šโˆ’ ๐‘ƒโ„“)๐‘ข, I CR โ„“+๐‘š(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข).

SinceICRโ„“+๐‘š๐‘ฃ|๐‘‡ = ICRโ„“ ๐‘ฃ|๐‘‡for all ๐‘‡ โˆˆ Tโ„“โˆฉ Tโ„“+๐‘š, the first term of the right-hand side can be controlled with (3.2) as ๐œ†๐‘(๐‘ƒโ„“๐‘ข, (I CR โ„“+๐‘šโˆ’ I CR โ„“ )(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) โ‰ฒ โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–๐ฟ2(โˆชT โ„“\Tโ„“+๐‘š)โ€–๐ทNC(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ขโ€–๐ฟ2(โˆชTโ„“\Tโ„“+๐‘š).

For the second term, the discrete Friedrichs inequality [9, Theorem 10.6.12] and the stability ofICRโ„“ reveal ๐œ†๐‘((๐‘ƒโ„“+๐‘šโˆ’ ๐‘ƒโ„“)๐‘ข, I

CR

โ„“+๐‘š(1 โˆ’ ฮ›โ„“+๐‘š)๐‘ข) โ‰ฒ ๐œ†โ€–(๐‘ƒโ„“+๐‘šโˆ’ ๐‘ƒโ„“)๐‘ขโ€–|||๐‘ข โˆ’ ฮ›โ„“+๐‘š๐‘ข|||NC.

The triangle inequality and Proposition 4.3 control the term ๐œ†โ€–(๐‘ƒโ„“+๐‘šโˆ’ ๐‘ƒโ„“)๐‘ขโ€– by ๐‘Ÿโ„“,๐‘šfrom (4.5). This concludes

the proof.

The following contraction property implies the convergence of the adaptive algorithm.

Proposition 4.11(contraction property). Under the condition โ€–โ„Ž0โ€–โˆž โ‰ช 1, there exist 0 < ๐œŒ2 < 1 and 0 < ๐›ฝ, ๐›พ < โˆž such that, for any eigenpair (๐œ†, ๐‘ข) โˆˆ โ„ร—๐‘Š with โ€–๐‘ขโ€– = 1, the term ๐œ‰2โ„“:= ๐œ‡2โ„“(Tโ„“, ๐œ†, ๐‘ข)+๐›ฝ|||๐‘ขโˆ’ฮ›โ„“๐‘ข|||2NC+๐›พโ€–โ„Žโ„“๐‘ƒโ„“๐‘ขโ€–2

satisfies

๐œ‰2โ„“+1โ‰ค ๐œŒ2๐œ‰ 2

โ„“ for all โ„“ โˆˆ โ„•0.

Proof. Throughout the proof, the following shorthand notation applies:

๐‘’โ„“:= |||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC, ๐‘’โ„“+1:= |||๐‘ข โˆ’ ฮ›โ„“+1๐‘ข|||NC, ๐œ‡ 2 โ„“ := ๐œ‡ 2 โ„“(Tโ„“, ๐œ†, ๐‘ข), ๐œ‡ 2 โ„“+1:= ๐œ‡ 2 โ„“+1(Tโ„“+1, ๐œ†, ๐‘ข).

The error estimator reduction from Proposition 4.8 and elementary algebraic manipulations plus the quasi-orthogonality (Proposition 4.10) lead to

๐œ‡2โ„“+1+ ๐พ๐‘’ 2 โ„“+1โ‰ค ๐œŒ1๐œ‡ 2 โ„“+ ๐พ(๐‘’ 2 โ„“+ 2๐‘Ž(๐‘ข โˆ’ ฮ›โ„“+1๐‘ข, (ฮ›โ„“โˆ’ ฮ›โ„“+1)๐‘ข) + โ€–โ„Ž0โ€– 2 โˆž๐‘Ÿ 2 โ„“,1) โ‰ค ๐œŒ1๐œ‡ 2 โ„“+ ๐พ(๐‘’ 2 โ„“+ ๐ถqo(โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–๐ฟ2(โˆชT โ„“\Tโ„“+1)+ ๐‘Ÿโ„“,1)๐‘’โ„“+1+ โ€–โ„Ž0โ€– 2 โˆž๐‘Ÿ 2 โ„“,1).

This and the Young inequality for any 0 < ๐œ€ < 1 lead to ๐œ‡2โ„“+1+ ๐พ(1 โˆ’ ๐ถqo๐œ€/2)๐‘’2โ„“+1โ‰ค ๐œŒ1๐œ‡โ„“2+ ๐พ(๐‘’ 2 โ„“+ ๐ถqo/๐œ€(โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(โˆชT โ„“\Tโ„“+๐‘š)+ ๐‘Ÿ 2 โ„“,1) + โ€–โ„Ž0โ€–2โˆž๐‘Ÿ 2 โ„“,1).

The reliability (4.6) proves for any 0 < ๐œ < โˆž that this is bounded by (๐œŒ1+ ๐พ๐œ๐ถ 2 drel)๐œ‡ 2 โ„“+ ๐พ((1 โˆ’ ๐œ)๐‘’ 2 โ„“+ ๐ถqo/๐œ€(โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐ฟ2(โˆชT โ„“\Tโ„“+๐‘š)+ ๐‘Ÿ 2 โ„“,1) + โ€–โ„Ž0โ€– 2 โˆž๐‘Ÿ 2 โ„“,1).

Lemma 4.9 states for any 0 < ๐›ฟ < โˆž and ๐‘๐‘‘:= (1 โˆ’ 2โˆ’2/๐‘‘) that

โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(โˆช(T โ„“\Tโ„“+1))โ‰ค 2๐›ฟโ€–โ„Ž0โ€–2โˆž๐‘Ÿ2โ„“,1 ๐‘๐‘‘ + โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ๐‘๐‘‘ โˆ’ โ€–โ„Žโ„“+1๐œ†๐‘ƒโ„“+1๐‘ขโ€– 2 (1 + ๐›ฟโˆ’1)๐‘ ๐‘‘ . Altogether, ๐œ‡2โ„“+1+ ๐พ((1 โˆ’ ๐ถqo๐œ€/2)๐‘’2โ„“+1+ ๐ถqoโ€–โ„Žโ„“+1๐œ†๐‘ƒโ„“+1๐‘ขโ€–2 ๐œ€(1 + ๐›ฟโˆ’1)๐‘ ๐‘‘ ) โ‰ค (๐œŒ1+ ๐พ๐œ๐ถ2drel)๐œ‡ 2 โ„“+ ๐พ((1 โˆ’ ๐œ)๐‘’ 2 โ„“+ (๐œ€ โˆ’1 ๐ถqo(1 + 2๐›ฟโ€–โ„Ž0โ€–2โˆž/๐‘๐‘‘) + โ€–โ„Ž0โ€–2โˆž)๐‘Ÿ 2 โ„“,1+ ๐ถqoโ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2 ๐œ€๐‘๐‘‘ ).

(14)

Define ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ) := ๐ถ2drelโ€–โ„Ž0โ€–2๐‘ โˆž๐œ† 2 (1 + ๐‘€๐ฝ)2๐ถ2๐ฟ2๐พ(๐œ€โˆ’1๐ถqo(1 + 2๐›ฟโ€–โ„Ž0โ€–2โˆž ๐‘๐‘‘ ) + โ€–โ„Ž0โ€–2โˆž).

Recall the definition (4.5) of ๐‘Ÿโ„“,1. The reliability (4.6) implies ๐พ(๐œ€โˆ’1๐ถqo(1 + 2๐›ฟโ€–โ„Ž0โ€–โˆž2 /๐‘๐‘‘) + โ€–โ„Ž0โ€–2โˆž)๐‘Ÿ 2

โ„“,1โ‰ค ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ)(๐œ‡โ„“2+ ๐œ‡ 2 โ„“+1).

This and the fact that โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2โ‰ค ๐œ‡2โ„“together with the foregoing estimates prove

(1 โˆ’ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ))๐œ‡2โ„“+1+ ๐พ((1 โˆ’ ๐ถqo๐œ€/2)๐‘’2โ„“+1+ ๐ถqoโ€–โ„Žโ„“+1๐œ†๐‘ƒโ„“+1๐‘ขโ€–2 ๐œ€(1 + ๐›ฟโˆ’1)๐‘ ๐‘‘ ) โ‰ค (๐œŒ1+ ๐พ๐œ๐ถ2drel+ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ) + ๐พ๐œ€)๐œ‡2โ„“+ ๐พ((1 โˆ’ ๐œ)๐‘’ 2 โ„“+ ( ๐ถqo ๐œ€๐‘๐‘‘ โˆ’ ๐œ€)โ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€–2). Hence, for ๐›ฝ := ๐พ(1 โˆ’ ๐ถqo๐œ€/2) 1 โˆ’ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ) , ๐›พ := ๐พ๐ถqo ๐œ€(1 + ๐›ฟโˆ’1)๐‘ ๐‘‘(1 โˆ’ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ)) , and ๐œŒ2:= max{ ๐œŒ1+ ๐พ๐œ๐ถ2drel+ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ) + ๐พ๐œ€ 1 โˆ’ ๐‘ก(โ„Ž0, ๐œ€, ๐›ฟ) , 1 โˆ’ ๐œ 1 โˆ’ ๐ถqo๐œ€/2 , (1 + ๐›ฟ โˆ’1 )(๐ถqoโˆ’ ๐œ€2๐‘๐‘‘) ๐ถqo }, it follows that ๐œ‡โ„“+1+ ๐›ฝ๐‘’ 2 โ„“+1+ ๐›พโ€–โ„Žโ„“+1๐œ†๐‘ƒโ„“+1๐‘ขโ€– 2 โ‰ค ๐œŒ2(๐œ‡โ„“+ ๐›ฝ๐‘’ 2 โ„“+ ๐›พโ€–โ„Žโ„“๐œ†๐‘ƒโ„“๐‘ขโ€– 2 ).

Choose ๐›ฟ := ๐ถqo/(๐œ€2๐‘๐‘‘) and ๐œ€ < 2๐œ๐ถโˆ’1qo. The choice of sufficiently small ๐œ, ๐œ€ and โ€–โ„Ž0โ€–โˆžyields ๐œŒ2< 1.

4.5 Optimal Convergence Rates

Let, for any ๐‘š โˆˆ โ„•, the set of triangulations in ๐•‹ whose cardinality differs from that of T0by ๐‘š or less be

denoted by

๐•‹(๐‘š) := {T โˆˆ ๐•‹ | card(T) โˆ’ card(T0) โ‰ค ๐‘š}.

Define the seminorm

|๐‘ข|A๐œŽ := sup ๐‘šโˆˆโ„•๐‘š ๐œŽ inf Tโˆˆ๐•‹(๐‘š)โ€–(1 โˆ’ ฮ  0 T)๐ท๐‘ขโ€–

and the approximation class

A๐œŽ:= {๐‘ฃ โˆˆ ๐‘‰ | |๐‘ฃ|A๐œŽ < โˆž}. Define the following alternative set, also referred to as approximation class

ANC,ฮ”๐œŽ := {๐‘ข โˆˆ ๐‘‰ | |๐‘ข|ANC,ฮ” ๐œŽ < โˆž} for |๐‘ข|ANC,ฮ”๐œŽ := sup ๐‘šโˆˆโ„•๐‘š ๐œŽ inf Tโˆˆ๐•‹(๐‘š)|||๐‘ข โˆ’ ฮ›T๐‘ข|||NC

for the eigenfunction approximation ฮ›T๐‘ข with respect to a triangulation T. Proposition 4.4 proves that these

two approximation classes are equivalent in the sense that any eigenfunction ๐‘ข โˆˆ ๐‘Š belongs to A๐œŽif and

only if it belongs to ANC,ฮ”๐œŽ . The following theorem states optimality of Algorithm 4.7. The proof follows in the remaining parts of this section.

Theorem 4.12(optimal convergence rates). Provided the bulk parameter ๐œƒ โ‰ช 1 and the initial mesh-size โ€–โ„Ž0โ€–โˆž โ‰ช 1 are sufficiently small, Algorithm 4.7 computes sequences of triangulations (Tโ„“)โ„“and discrete

eigen-pairs ((๐œ†โ„“,๐‘—, ๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝ)โ„“with optimal rate of convergence in the sense that, for some constant ๐ถopt,

sup โ„“โˆˆโ„• (card(Tโ„“) โˆ’ card(T0)) 2๐œŽ โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NCโ‰ค ๐ถoptโˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—|2ANC,ฮ”๐œŽ .

(15)

Proposition 4.4 implies the following immediate consequence.

Corollary 4.13. Provided the bulk parameter ๐œƒ โ‰ช 1 and the initial mesh-size โ€–โ„Ž0โ€–โˆž โ‰ช 1 are sufficiently small,

Algorithm 4.7 computes triangulations (Tโ„“)โ„“and discrete eigenpairs ((๐œ†โ„“,๐‘—, ๐‘ขโ„“,๐‘—)๐‘—โˆˆ๐ฝ)โ„“with optimal rate of

conver-gence in the sense that

sup โ„“โˆˆโ„•(card(Tโ„“) โˆ’ card(T0)) ๐œŽ sup ๐‘คโˆˆ๐‘Š โ€–๐‘คโ€–=1 inf ๐‘ฃโ„“โˆˆ๐‘Šโ„“|||๐‘ค โˆ’ ๐‘ฃโ„“|||NCโ‰ฒ ( โˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—|2A๐œŽ) 1/2 .

The remaining part of this subsection is devoted to the proof of Theorem 4.12 which follows the methodol-ogy of [22, 46] as in [33]. The optimality proof of this section is concerned with the simultaneous error of all eigenfunction approximations. Consider

ฮž2โ„“:= ๐œ‡ 2 โ„“(Tโ„“) + ๐›ฝ โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NC+ ๐›พ โˆ‘ ๐‘—โˆˆ๐ฝ โ€–โ„Žโ„“๐œ†๐‘—๐‘ƒโ„“๐‘ข๐‘—โ€–2 for all โ„“ โˆˆ โ„•0

for the parameters ๐›ฝ and ๐›พ from Proposition 4.11. The proof excludes the pathological case ฮž0 = 0. Choose

0 < ๐œ โ‰ค โˆ‘๐‘—โˆˆ๐ฝ|๐‘ข๐‘—|2ANC,ฮ”๐œŽ /ฮž

2

0, and set ๐œ€(โ„“) := โˆš๐œ ฮžโ„“. Let ๐‘(โ„“) โˆˆ โ„• be minimal with the property

โˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—|2ANC,ฮ” ๐œŽ โ‰ค ๐œ€(โ„“) 2 ๐‘(โ„“)2๐œŽ.

Let for a fixed โ„“ โˆˆ โ„•, ฬƒTโ„“โˆˆ ๐•‹ denote the optimal triangulation of cardinality

card(ฬƒTโ„“) โ‰ค card(T0) + ๐‘(โ„“)

in the sense that the projection ฬƒฮ› := ฮ›ฬƒT

โ„“with respect to ฬƒTโ„“satisfies

โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฬƒฮ›๐‘ข๐‘—||| 2 NCโ‰ค ๐‘(โ„“) โˆ’2๐œŽ โˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—| 2 ANC,ฮ”๐œŽ โ‰ค ๐œ€(โ„“) 2 (4.9)

and define ฬ‚Tโ„“:= Tโ„“โŠ— ฬƒTโ„“as the overlay [22], that is, the smallest common refinement ofTโ„“and ฬƒTโ„“. The argu-ments of [22, 33] lead to card(Tโ„“\ ฬ‚Tโ„“) โ‰ค ๐‘(โ„“) โ‰ค 2( โˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—|2ANC,ฮ”๐œŽ ) 1/(2๐œŽ) ๐œ€(โ„“)โˆ’1/๐œŽ. Let ฬ‚ฮ› := ฮ›ฬ‚T

โ„“denote the projection with respect to ฬ‚Tโ„“.

Lemma 4.14. Provided โ€–โ„Ž0โ€–โˆžโ‰ช 1, it holds that

โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฬ‚ฮ›๐‘ข๐‘—||| 2 NC โ‰ฒ ๐œ€(โ„“) 2 .

Proof. Recall that by definition of the overlay [22] the triangulations ฬ‚Tโ„“and ฬƒTโ„“are nested. Hence, the best-approximation result of Proposition 4.4 and (4.9) prove

โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฬ‚ฮ›๐‘ข๐‘—|||2NCโ‰ฒ โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฬƒฮ›๐‘ข๐‘—|||2NCโ‰ค ๐œ€(โ„“) 2 . Lemma 4.15(key argument). Provided โ€–โ„Ž0โ€–โˆžโ‰ช 1, there exists ๐ถ2โ‰ˆ 1 such that

๐œ‡โ„“2(Tโ„“) โ‰ค ๐ถ2๐œ‡2โ„“(Tโ„“\ ฬ‚Tโ„“).

Proof. The triangle inequality and the Young inequality imply for any ๐‘— โˆˆ ๐ฝ that

|||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NCโ‰ค 2|||๐‘ข๐‘—โˆ’ ฬ‚ฮ›๐‘ข๐‘—|||2NC+ 2|||ฬ‚ฮ›๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NC.

Hence, the discrete reliability from Proposition 4.5 leads to |||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NCโ‰ค (2 + ๐ถ 2 drel๐œ† 2 ๐‘—โ€–โ„Ž0โ€–2๐‘ โˆž(1 + ๐‘€๐ฝ)2๐ถ๐ฟ22)|||๐‘ข๐‘—โˆ’ ฬ‚ฮ›๐‘ข๐‘—|||2NC + ๐ถ2drel๐œ† 2 ๐‘—โ€–โ„Ž0โ€–2๐‘ โˆž(1 + ๐‘€๐ฝ)2๐ถ2๐ฟ2|||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NC+ ๐ถ2drel๐œ‡โ„“2(Tโ„“\ ฬ‚Tโ„“, ๐œ†๐‘—, ๐‘ข๐‘—).

(16)

The term with |||๐‘ข๐‘—โˆ’ฮ›โ„“๐‘ข๐‘—|||2NCcan be absorbed for sufficiently small โ€–โ„Ž0โ€–โˆžโ‰ช 1. Therefore, Lemma 4.14 implies

for constants ๐ถ3โ‰ˆ 1 โ‰ˆ ๐ถ4and โ€–โ„Ž0โ€–โˆžโ‰ช 1 that

โˆ‘

๐‘—โˆˆ๐ฝ

|||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NC โ‰ค ๐ถ3๐œ€(โ„“)2+ ๐ถ4๐œ‡โ„“2(Tโ„“\ ฬ‚Tโ„“).

Let ๐ถeqdenote the constant of ๐ถ3ฮž2โ„“โ‰ค ๐ถeq๐œ‡2โ„“(Tโ„“) (which exists by reliability). The efficiency (4.7), the definition

of ๐œ€(โ„“) and the preceding estimates prove ๐ถeffโˆ’2๐œ‡ 2 โ„“(Tโ„“) โ‰ค ๐ถ3๐œ€(โ„“) 2 + ๐ถ4๐œ‡ 2 โ„“(Tโ„“\ ฬ‚Tโ„“) โ‰ค ๐œ๐ถeq๐œ‡ 2 โ„“(Tโ„“) + ๐ถ4๐œ‡ 2 โ„“(Tโ„“\ ฬ‚Tโ„“).

For a sufficiently small choice of ๐œ, the constant ๐ถ2:= (๐ถโˆ’2effโˆ’ ๐œ๐ถeq)โˆ’1๐ถ4is positive.

The finish of the optimality proof follows the arguments of [22, 46]. The proof is identical to that of [33, Lemma 7.3] and therefore omitted.

Lemma 4.16(finish of the optimality proof). The choice

0 < ๐œƒ โ‰ค 1/(๐ถ2(๐ต/๐ด)4(2๐‘2+ 4๐‘3))

implies the existence of a constant ๐ถ(๐œŽ) such that

(card(Tโ„“) โˆ’ card(T0)) ๐œŽ ( โˆ‘ ๐‘—โˆˆ๐ฝ |||๐‘ข๐‘—โˆ’ ฮ›โ„“๐‘ข๐‘—|||2NC) 1/2 โ‰ค ๐ถ(๐œŽ)( โˆ‘ ๐‘—โˆˆ๐ฝ |๐‘ข๐‘—|2ANC,ฮ”๐œŽ ) 1/2 .

5 Eigenvalues of the Stokes System

This section studies the adaptive nonconforming FEM approximation of the Stokes eigenproblem. Section 5.1 presents new ๐ฟ2and best-approximation estimates for the linear Stokes equations. Section 5.2 introduces the

discretisation of the eigenvalue problem. A theoretical error estimator and its discrete reliability are analysed in Section 5.3. Sections 5.4 and 5.5 present the practical AFEM and prove contraction and optimal convergence rates. Whenever there is no significant modification compared to the case of the eigenvalues of the Laplacian, the arguments are merely sketched.

5.1 Nonconforming Discretisation of the Stokes Equations

One important advantage of the nonconformingP1finite element method is that it provides a stable low-order discretisation of the Stokes equations [24]. The strong form of the linear Stokes equations for a given force ๐‘“ seeks the velocity field ๐‘ข and the pressure ๐‘ such that

โˆ’ฮ”๐‘ข + (๐ท๐‘)โŠค= ๐‘“ and div ๐‘ข = 0 in ฮฉ, ๐‘ข|๐œ•ฮฉ= 0.

Conforming finite elements satisfying the constraint div ๐‘ข = 0 pointwise a.e. are rather complicated, see [38, 44]. The nonconformingP1finite element satisfies the favourable local mass-conservation property for the piecewise divergence.

Let ๐‘‰ := [๐ป1

0(ฮฉ)]๐‘‘and ๐‘€ := ๐ฟ20(ฮฉ) := {๐‘ž โˆˆ ๐ฟ2(ฮฉ) | โˆซฮฉ๐‘ž ๐‘‘๐‘ฅ = 0} and define the bilinear form

๐‘Ž(๐‘ฃ, ๐‘ค) := (๐ท๐‘ฃ, ๐ท๐‘ค)๐ฟ2(ฮฉ) for all (๐‘ฃ, ๐‘ค) โˆˆ ๐‘‰2

with induced norm |||โ‹…|||. Furthermore define

๐‘(๐‘ฃ, ๐‘ž) := โˆ’(div ๐‘ฃ, ๐‘ž)๐ฟ2(ฮฉ) for all (๐‘ฃ, ๐‘ž) โˆˆ ๐‘‰ ร— ๐‘€

(17)

Given ๐‘“ โˆˆ [๐ฟ2(ฮฉ)]๐‘‘, the linear Stokes problem seeks (๐‘ข, ๐‘) โˆˆ ๐‘‰ ร— ๐‘€ such that ๐‘Ž(๐‘ข, ๐‘ฃ) + ๐‘(๐‘ฃ, ๐‘) = ๐‘(๐‘“, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰,

๐‘(๐‘ข, ๐‘ž) = 0 for all ๐‘ž โˆˆ ๐‘€. (5.1)

This mixed system can be reformulated as an elliptic problem. Let ๐‘ := {๐‘ฃ โˆˆ ๐‘‰ | div ๐‘ฃ = 0} denote the space of divergence-free vector fields. Problem (5.1) is equivalent to seeking ๐‘ข โˆˆ ๐‘ such that

๐‘Ž(๐‘ข, ๐‘ฃ) = ๐‘(๐‘“, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘ (5.2)

and the pressure variable ๐‘ plays the role of a Lagrange multiplier. The equivalence with (5.1) follows from the Ladyzhenskaya lemma [1, 9] which states that the divergence operator div : ๐‘‰ โ†’ ๐‘€ has a continuous right-inverse. Note that (5.1) carries more information than (5.2) in the sense that the pressure variable ๐‘ extracts information from ๐‘“ โˆˆ [๐ฟ2(ฮฉ)]๐‘‘even if ๐‘“ is zero as an element of the dual space ๐‘โ‹†.

The nonconformingP1finite element discretisation of the linear Stokes equations is based on the non-conforming finite element space ๐‘‰โ„“:= [CR10(Tโ„“)]๐‘‘and ๐‘€โ„“:= P0(Tโ„“) โˆฉ ๐ฟ20(ฮฉ) and the bilinear forms

๐‘ŽNC(๐‘ฃโ„“, ๐‘คโ„“) := (๐ทNC๐‘ฃโ„“, ๐ทNC๐‘คโ„“)๐ฟ2(ฮฉ) for all (๐‘ฃโ„“, ๐‘คโ„“) โˆˆ ๐‘‰2

โ„“

with induced norm |||โ‹…|||NCand

๐‘NC(๐‘ฃโ„“, ๐‘žโ„“) := โˆ’(divNC๐‘ฃโ„“, ๐‘žโ„“)๐ฟ2(ฮฉ) for all (๐‘ฃโ„“, ๐‘žโ„“) โˆˆ ๐‘‰โ„“ร— ๐‘€โ„“.

The nonconforming FEM seeks (๐‘ขโ„“, ๐‘โ„“) โˆˆ ๐‘‰โ„“ร— ๐‘€โ„“such that

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) + ๐‘NC(๐‘ฃโ„“, ๐‘โ„“) = ๐‘(๐‘“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“,

๐‘NC(๐‘ขโ„“, ๐‘žโ„“) = 0 for all ๐‘žโ„“โˆˆ ๐‘€โ„“.

(5.3)

The well-posedness follows from the discrete inf-sup condition [4] 0 < ๐›ฝ โ‰ค inf ๐‘žโ„“โˆˆ๐‘€โ„“\{0} sup ๐‘ฃโ„“โˆˆ๐‘‰โ„“\{0} ๐‘NC(๐‘ฃโ„“, ๐‘žโ„“) |||๐‘ฃโ„“|||NCโ€–๐‘žโ„“โ€– . (5.4)

Obviously, the discrete solution ๐‘ขโ„“of (5.3) is piecewise divergence-free, divNC๐‘ขโ„“ = 0. The equivalent

formu-lation based on the space ๐‘โ„“:= {๐‘ฃโ„“โˆˆ ๐‘‰โ„“| divNC๐‘ฃโ„“= 0} reads as

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) = ๐‘(๐‘“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘โ„“. (5.5)

Note that the nonconforming interpolation operatorICRโ„“ maps the space ๐‘ onto ๐‘โ„“. This follows from the projection property (3.1). It is well-established in the literature [27] and follows from the discrete inf-sup condition (5.4) of the system (5.3) that the error in the pressure variable can be controlled as

โ€–๐‘ โˆ’ ๐‘โ„“โ€– โ‰ฒ โ€–โ„Žโ„“๐‘“โ€– + |||๐‘ข โˆ’ ๐‘ขโ„“|||NC. (5.6)

The main difference with respect to the analysis of the Laplace operator is that the pressure variable enters the analysis even if one considers the elliptic formulations (5.2) and (5.5). One reason is that the companion operator ๐ฝ๐‘‘+1from Proposition 3.1 does not map the space ๐‘โ„“on ๐‘ only. Also the efficiency error estimate of

the volume term โ€–โ„Žโ„“๐‘“โ€– leads to a pressure term on the right-hand side.

The following best-approximation result has been proved in [19] with techniques from the medius anal-ysis [37] for the case ๐‘‘ = 2:

โ€–๐‘ โˆ’ ๐‘โ„“โ€– + |||๐‘ข โˆ’ ๐‘ขโ„“|||NCโ‰ฒ โ€–(1 โˆ’ ฮ  0

โ„“)๐‘โ€– + โ€–(1 โˆ’ ฮ  0

โ„“)๐ท๐‘ขโ€– + osc0(๐‘“, Tโ„“).

The following result gives a generalisation to ๐‘‘ โ‰ฅ 2 space dimensions with a refined oscillation term. Proposition 5.1(best-approximation result). Let ๐‘“ โˆˆ [๐ฟ2(ฮฉ)]๐‘‘. Then, the solution (๐‘ข, ๐‘) โˆˆ ๐‘‰ ร— ๐‘€ of (5.1) and

the discrete solution (๐‘ขโ„“, ๐‘โ„“) โˆˆ ๐‘‰โ„“ร— ๐‘€โ„“of (5.3) satisfy

|||๐‘ข โˆ’ ๐‘ขโ„“|||NC+ โ€–๐‘ โˆ’ ๐‘โ„“โ€– โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ  0

(18)

Proof. The projection property (3.1) of the nonconforming interpolation operatorICRโ„“ and the Pythagoras theorem show that

|||๐‘ข โˆ’ ๐‘ขโ„“|||2NC = |||๐‘ขโ„“โˆ’ I CR โ„“ ๐‘ข||| 2 NC+ |||๐‘ข โˆ’ I CR โ„“ ๐‘ข||| 2 NC.

Since |||๐‘ข โˆ’ ICRโ„“ ๐‘ข|||NC = โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€–, it remains to estimate the first term on the right-hand side. Set ๐œ‘โ„“ :=

๐‘ขโ„“โˆ’ I CR

โ„“ ๐‘ข. The properties of the companion operator from Proposition 3.1 and divNC๐‘ขโ„“ = 0 = divNCI CR โ„“ ๐‘ข show that |||๐‘ขโ„“โˆ’ I CR โ„“ ๐‘ข||| 2 NC= ๐‘ŽNC(๐‘ขโ„“โˆ’ ๐‘ข, ๐œ‘โ„“) = ๐‘(๐‘“, ๐œ‘โ„“โˆ’ ๐ฝ๐‘‘+1๐œ‘โ„“) โˆ’ ๐‘NC(๐œ‘โ„“โˆ’ ๐ฝ๐‘‘+1๐œ‘โ„“, (1 โˆ’ ฮ 0โ„“)๐‘) + ((1 โˆ’ ฮ  0 โ„“)๐ท๐‘ข, ๐ทNC(๐ฝ๐‘‘+1โˆ’ 1)๐œ‘โ„“)๐ฟ2(ฮฉ).

The approximation and stability properties (3.4) show that this is bounded by (โ€–โ„Žโ„“๐‘“โ€– + โ€–(1 โˆ’ ฮ  0 โ„“)๐‘โ€– + |||๐‘ขโ„“โˆ’ I CR โ„“ ๐‘ข|||NC)|||๐œ‘โ„“|||NC. The efficiency โ€–โ„Žโ„“๐‘“โ€– โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ  0

โ„“)๐‘โ€– + osc1(๐‘“, Tโ„“) in the sense of [49] follows from arguments

similar to those of [33, Proposition 3.1]. This and (5.6) conclude the proof. Remark 5.2. One may ask whether possibly an estimate of the type

|||๐‘ข โˆ’ ๐‘ขโ„“|||NCโ‰ฒ โ€–(1 โˆ’ ฮ  0

โ„“)๐ท๐‘ขโ€– + oscillations

may be valid. To see that the estimate is indeed untrue, consider the case of a simply-connected domain ฮฉ for ๐‘‘ = 2 and the constant right-hand side ๐‘“ = (1, 1). Clearly, ๐‘“ is an irrotational vector field which implies that there is a function ๐œ“ โˆˆ ๐ป1(ฮฉ) such that ๐‘“ = ๐ท๐œ“. The integration by parts therefore shows that

๐‘(๐‘“, ๐‘ฃ) = 0 for all ๐‘ฃ โˆˆ ๐‘.

Hence, ๐‘ข = 0 and the right-hand side of the estimate equals zero, while the left-hand side equals |||๐‘ขโ„“|||NC. The

latter, however, is not zero because ๐‘“ does not represent the zero functional in the dual space ๐‘โ‹†โ„“, although

it is zero in ๐‘โ‹†. This is due to the fact that the integration by parts with functions ๐‘ฃ

โ„“โˆˆ ๐‘โ„“leads to additional

jump terms.

The next result is an ๐ฟ2error estimate for arbitrary regularity of the solution. Let 0 < ๐‘  โ‰ค 1 indicate the elliptic regularity of the problem (5.1) in the sense that [31, 43]

โ€–๐‘ขโ€–๐ป1+๐‘ (ฮฉ)+ โ€–๐‘โ€–๐ป๐‘ (ฮฉ)โ‰ค ๐ถ(๐‘ )โ€–๐‘“โ€–๐ฟ2(ฮฉ). (5.7)

Proposition 5.3(๐ฟ2error control for the linear Stokes problem). The exact solution (๐‘ข, ๐‘) โˆˆ ๐‘‰ร—๐‘€ of the linear

problem (5.1) and its nonconforming finite element approximation (๐‘ขโ„“, ๐‘โ„“) โˆˆ ๐‘‰โ„“ร— ๐‘€โ„“from (5.3) satisfy

โ€–๐‘ข โˆ’ ๐‘ขโ„“โ€– โ‰ฒ โ€–โ„Žโ„“โ€– ๐‘ 

โˆž(|||๐‘ข โˆ’ ๐‘ขโ„“|||NC+ โ€–๐‘ โˆ’ ๐‘โ„“โ€– + osc1,1(๐‘“, Tโ„“)).

Proof. Let (๐‘ง, ๐‘ž) โˆˆ ๐‘‰ ร— ๐‘€ denote the solution of problem (5.1) with right-hand side ๐‘’ := ๐‘ข โˆ’ ๐‘ขโ„“and set ๐‘ฃ :=

๐‘ข โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“for the companion operator ๐ฝ๐‘‘+1from Proposition 3.1. Since ฮ 0โ„“(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“) = 0, it holds that

โ€–๐‘’โ€–2= ๐‘(๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, ๐‘’) + ๐‘(๐‘’, ๐‘ฃ) = (๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, (1 โˆ’ ฮ 0โ„“)๐‘’)๐ฟ2(ฮฉ)+ ๐‘Ž(๐‘ง, ๐‘ฃ) + ๐‘(๐‘ฃ, ๐‘ž).

Piecewise Poincarรฉ inequalities and (3.4) lead to

(๐ฝ๐‘‘+1๐‘ขโ„“โˆ’ ๐‘ขโ„“, (1 โˆ’ ฮ 0โ„“)๐‘’)๐ฟ2(ฮฉ)โ‰ฒ โ€–โ„Ž0โ€–2โˆž|||๐‘’|||2NC.

The definition of ๐‘ฃ and div ๐‘ข = 0 = divNC๐‘ขโ„“prove

๐‘Ž(๐‘ง, ๐‘ฃ) + ๐‘(๐‘ฃ, ๐‘ž) = ๐‘ŽNC(๐‘’, ๐‘ง) + ๐‘ŽNC((1 โˆ’ ๐ฝ๐‘‘+1)๐‘ขโ„“, ๐‘ง) + ๐‘NC(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“, ๐‘ž). (5.8)

The projection property (3.1) ofICRโ„“ and the continuous and discrete problems (5.1) and (5.3) followed by the approximation and stability properties (3.2) ofICRโ„“ show for the first term on the right-hand side of (5.8) that

๐‘ŽNC(๐‘’, ๐‘ง) = ๐‘Ž(๐‘ข, ๐‘ง) โˆ’ ๐‘ŽNC(๐‘ขโ„“, I CR โ„“ ๐‘ง) = (๐‘“, ๐‘ง โˆ’ I CR โ„“ ๐‘ง)๐ฟ2(ฮฉ)โ‰ฒ โ€–โ„Žโ„“๐‘“โ€–โ€–(1 โˆ’ ฮ 0 โ„“)๐ท๐‘ง)โ€–.

(19)

Recall that divNCI CR

โ„“ ๐‘ง = div ๐‘ง = 0. The projection property (3.3) and the stability (3.4) of ๐ฝ๐‘‘+1show for the

second term on the right-hand side of (5.8) that

๐‘ŽNC((1 โˆ’ ๐ฝ๐‘‘+1)๐‘ขโ„“, ๐‘ง) = (๐ทNC(1 โˆ’ ๐ฝ๐‘‘+1)๐‘ขโ„“, (1 โˆ’ ฮ 0โ„“)๐ท๐‘ง)๐ฟ2(ฮฉ)โ‰ค |||๐‘ข โˆ’ ๐‘ขโ„“|||NCโ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘งโ€–.

Since ฮ 0โ„“div(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“) = 0, the third contribution of (5.8) satisfies

๐‘NC((๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“), ๐‘ž) = ๐‘NC(๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“, (1 โˆ’ ฮ  0

โ„“)๐‘ž) โ‰ค |||๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“|||NCโ€–(1 โˆ’ ฮ  0 โ„“)๐‘žโ€–.

The best-approximation property (3.4) of ๐ฝ๐‘‘+1proves that |||๐‘ขโ„“โˆ’ ๐ฝ๐‘‘+1๐‘ขโ„“|||NCโ‰ฒ |||๐‘’|||NC. Altogether,

โ€–๐‘’โ€–2โ‰ฒ โ€–โ„Ž0โ€–2โˆž|||๐‘’||| 2

NC+ โ€–โ„Žโ„“๐‘“โ€–โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ง)โ€– + |||๐‘’|||NC(โ€–(1 โˆ’ ฮ 0โ„“)๐‘žโ€– + โ€–(1 โˆ’ ฮ  0 โ„“)๐ท๐‘งโ€–).

Standard a priori estimates [9] and the elliptic regularity (5.7) imply โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ง)โ€– + โ€–(1 โˆ’ ฮ 

0

โ„“)๐‘žโ€– โ‰ฒ โ€–โ„Ž0โ€– ๐‘  โˆžโ€–๐‘’โ€–.

The combination of the above estimates proves

โ€–๐‘’โ€– โ‰ฒ โ€–โ„Ž0โ€–๐‘ โˆž(|||๐‘’|||NC+ โ€–โ„Žโ„“๐‘“โ€–).

An efficiency estimate similar to that of [33, Proposition 3.1] proves โ€–โ„Žโ„“๐‘“โ€– โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ 

0

โ„“)๐‘โ€– + osc1,1(๐‘“, Tโ„“).

This concludes the proof.

Remark 5.4. The right-hand side in Proposition 5.3 is also an upper bound for ๐‘โˆ’๐‘โ„“in the ๐ปโˆ’1norm. Although

the proof is not difficult, it is not given here because the ๐ปโˆ’1error control is not required in the analysis of this paper.

5.2 Discretisation of the Stokes Eigenvalue Problem

The Stokes eigenvalue problem seeks (๐œ†, ๐‘ข, ๐‘) โˆˆ โ„ ร— ๐‘‰ ร— ๐‘€ with โ€–๐‘ขโ€– = 1 such that ๐‘Ž(๐‘ข, ๐‘ฃ) + ๐‘(๐‘ฃ, ๐‘) = ๐œ† ๐‘(๐‘ข, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘‰,

๐‘(๐‘ข, ๐‘ž) = 0 for all ๐‘ž โˆˆ ๐‘€. (5.9)

Although (๐œ†, ๐‘ข, ๐‘) is rather a triple than a pair, it is referred to as eigenpair and identified with the pair (๐œ†, (๐‘ข, ๐‘)). As in the foregoing section, an equivalent formulation reads as

๐‘Ž(๐‘ข, ๐‘ฃ) = ๐œ† ๐‘(๐‘ข, ๐‘ฃ) for all ๐‘ฃ โˆˆ ๐‘. The nonconforming FEM seeks (๐‘ขโ„“, ๐‘โ„“) โˆˆ ๐‘‰โ„“ร— ๐‘€โ„“with โ€–๐‘ขโ„“โ€– = 1 such that

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) + ๐‘NC(๐‘ฃโ„“, ๐‘โ„“) = ๐œ†โ„“๐‘(๐‘ขโ„“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“,

๐‘NC(๐‘ขโ„“, ๐‘žโ„“) = 0 for all ๐‘žโ„“โˆˆ ๐‘€โ„“.

(5.10)

An equivalent formulation reads as

๐‘ŽNC(๐‘ขโ„“, ๐‘ฃโ„“) = ๐œ†โ„“๐‘(๐‘ขโ„“, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘โ„“. (5.11)

The elliptic formulation on the spaces ๐‘ and ๐‘โ„“shows that this problem fits in the framework of Section 2

(where ๐‘ from Section 2 is replaced by ๐‘) with exact and discrete eigenvalues 0 < ๐œ†1โ‰ค ๐œ†2โ‰ค โ‹… โ‹… โ‹… and 0 < ๐œ†โ„“,1โ‰ค โ‹… โ‹… โ‹… โ‰ค ๐œ†โ„“,dim(๐‘โ„“)

(20)

and their corresponding ๐‘-orthonormal systems of eigenfunctions

(๐‘ข1, ๐‘ข2, ๐‘ข3, . . .) โˆˆ ๐‘โ„• and (๐‘ขโ„“,1, ๐‘ขโ„“,2, . . . , ๐‘ขโ„“,dim(๐‘โ„“)) โˆˆ ๐‘

dim(๐‘โ„“)

โ„“ .

The corresponding pressures are denoted by ๐‘1, ๐‘2, . . . and ๐‘โ„“,1, . . . , ๐‘โ„“,dim(๐‘โ„“), respectively. Recall the

defini-tions of Section 2: The set ๐ฝ = {๐‘› + 1, . . . , ๐‘› + ๐‘} describes the eigenvalue cluster of interest and ๐‘Š := span{๐‘ข๐‘— |

๐‘— โˆˆ ๐ฝ} โŠ† ๐‘ and ๐‘Šโ„“ := span{๐‘ขโ„“,๐‘— | ๐‘— โˆˆ ๐ฝ} โŠ† ๐‘โ„“are the exact and discrete invariant subspaces (not

nec-essarily eigenspaces) related to the cluster. In the present situation, the quasi-Ritz projection ๐‘…โ„“maps the

solution ๐‘ข โˆˆ ๐‘ of the linear problem (5.2) to the solution ๐‘…โ„“๐‘ข โˆˆ ๐‘โ„“of the discrete linear problem (5.5) with

discrete pressure ๐‘(๐‘…โ„“๐‘ข) โˆˆ ๐‘€โ„“from (5.3). The ๐ฟ2projection onto ๐‘Šโ„“is denoted by ๐‘ƒTโ„“ := ๐‘ƒโ„“. Furthermore

ฮ›Tโ„“ := ฮ›โ„“ := ๐‘ƒโ„“โˆ˜ ๐‘…โ„“. In view of Lemma 2.2, the discrete pressure ๐‘(ฮ›โ„“๐‘ข) โˆˆ ๐‘€โ„“corresponding to ฮ›โ„“๐‘ข is

defined via

๐‘ŽNC(ฮ›โ„“๐‘ข, ๐‘ฃโ„“) + ๐‘NC(๐‘ฃโ„“, ๐‘(ฮ›โ„“๐‘ข)) = ๐œ†๐‘(๐‘ƒโ„“๐‘ข, ๐‘ฃโ„“) for all ๐‘ฃโ„“โˆˆ ๐‘‰โ„“. (5.12)

It is not difficult to see that ๐‘(ฮ›โ„“๐‘ข) is well-defined: Lemma 2.2 shows that ฮ›โ„“๐‘ข solves the discrete source

problem (5.5) with right-hand side ๐‘“ = ๐‘ƒโ„“๐‘ข. Hence, ๐‘(ฮ›โ„“๐‘ข) is the discrete pressure (or Lagrange multiplier) of

(5.3).

The following result gives an ๐ฟ2error estimate for the eigenfunctions. Proposition 5.5(๐ฟ2error estimate). Provided โ€–โ„Ž

0โ€–โˆž โ‰ช 1, there exists a constant ๐ถ๐ฟ2such that any eigenpair

(๐œ†, ๐‘ข, ๐‘) โˆˆ โ„ ร— ๐‘Š ร— ๐‘€ of (5.9) with โ€–๐‘ขโ€– = 1 satisfies โ€–๐‘ข โˆ’ ๐‘ƒโ„“๐‘ขโ€– โ‰ค โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€– โ‰ค ๐ถ๐ฟ2(1 + ๐‘€๐ฝ)โ€–โ„Ž0โ€–๐‘  โˆž(โ€–(1 โˆ’ ฮ  0 โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ  0 โ„“)๐‘โ€–).

Proof. Proposition 2.1 and the ๐ฟ2error estimate from Proposition 5.3 result in the following inequality for the

solution (๐‘…โ„“๐‘ข, ๐‘(๐‘…โ„“๐‘ข)) of (5.3) to the right-hand side ๐‘“ := ๐œ†๐‘ข,

โ€–๐‘ข โˆ’ ๐‘ƒโ„“๐‘ขโ€– โ‰ค โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€– โ‰ฒ (1 + ๐‘€๐ฝ)โ€–โ„Žโ„“โ€–๐‘ โˆž(|||๐‘ข โˆ’ ๐‘…โ„“๐‘ข|||NC+ โ€–๐‘ โˆ’ ๐‘(๐‘…โ„“๐‘ข)โ€– + osc1,1(๐œ†๐‘ข, Tโ„“)).

The best-approximation result for the linear Stokes problem (Proposition 5.1) therefore yields โ€–๐‘ข โˆ’ ฮ›โ„“๐‘ขโ€– โ‰ฒ (1 + ๐‘€๐ฝ)โ€–โ„Žโ„“โ€– ๐‘  โˆž(โ€–(1 โˆ’ ฮ  0 โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ  0 โ„“)๐‘โ€– + osc1(๐œ†๐‘ข, Tโ„“)).

If the initial mesh-size is sufficiently small, the discrete Friedrichs inequality [9, Theorem 10.6.12] allows to absorb the oscillation terms on the right-hand side.

The ๐ฟ2error control and the best-approximation of the quasi-Ritz projection from Proposition 5.1 result in the

following best-approximation property for the eigenfunction approximation.

Proposition 5.6(best-approximation property). Provided the initial mesh-size is sufficiently fine โ€–โ„Ž0โ€–โˆž โ‰ช 1,

any eigenpair (๐œ†, ๐‘ข, ๐‘) โˆˆ โ„ ร— ๐‘Š ร— ๐‘€ of (5.10) with โ€–๐‘ขโ€– = 1 satisfies

|||๐‘ข โˆ’ ฮ›โ„“๐‘ข|||NC+ โ€–๐‘ โˆ’ ๐‘(ฮ›โ„“๐‘ข)โ€– โ‰ฒ โ€–(1 โˆ’ ฮ 0โ„“)๐ท๐‘ขโ€– + โ€–(1 โˆ’ ฮ  0 โ„“)๐‘โ€–.

Proof. The ๐ฟ2control of Proposition 5.5 and the best-approximation result for the linear case of Proposition 5.1 enable the arguments from the proof of Proposition 4.4. The details are omitted for brevity.

5.3 Theoretical Error Estimator and Discrete Reliability

The analysis relies on a theoretical, non-computable error estimator that does not depend on the choice of the discrete eigenfunctions. Given an eigenpair (๐œ†, ๐‘ข), the theoretical error estimator includes the elementwise residuals in terms of ๐‘ƒโ„“๐‘ข and ฮ›โ„“๐‘ข. More precisely, define, for any ๐‘‡ โˆˆ Tโ„“,

๐œ‡โ„“2(๐‘‡, ๐œ†, ๐‘ข) := โ„Ž 2

๐‘‡โ€–๐œ†๐‘ƒโ„“๐‘ขโ€–2๐ฟ2(๐‘‡)+ โˆ‘

๐นโˆˆF(๐‘‡)

Referenties

GERELATEERDE DOCUMENTEN

Op basis van de analyse naar de werkelijke stik- stofbehoefte wordt nu door LTO in samenwer- king met de KAVB een hogere gebruiksnorm voor Zantedeschia bepleit.. Aanpassing van

Deze soort is nog niet beschreven en behoort tot het ge- nus Diacrolinia, waarvan al enkele soorten uit het jonge- re Mioceen van de Aquitaine bekend zijn: D. Uit Meilhan zijn van

Instead, he argues for a relationship between Godโ€™s knowledge of himself (archetypal knowledge, the objective principle) and regenerate human intelligence (ectypal knowledge,

Figuur 2.4: Gewasstand lelie op 10 augustus 2005 op met Rhizoctonia besmette grond, onbehandeld (boven), met Verticillium biguttatum (midden) en met Amistar 6 l/ha (onder)..

M&amp;L wordt uitgegeven door de dienst Monumenten- en Landschapszorg (Administratie voor Ruimtelijke Ordening en Leefmilieu) van het Ministerie van de Vlaamse Gemeen- schap..

Voor archeologische vindplaatsen die bedreigd worden door de geplande ruimtelijke ontwikkeling en die niet in situ bewaard kunnen blijven:?. Wat is de

Het kan echter niet uitgesloten worden dat er zich toch archeologische sporen uit de metaaltijden en/of de vroege middeleeuwen binnen het onderzoeksgebied zouden bevinden, ondanks