• No results found

Study of non-fusion products in the 50Ti+249Cf reaction

N/A
N/A
Protected

Academic year: 2021

Share "Study of non-fusion products in the 50Ti+249Cf reaction"

Copied!
8
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Study of non-fusion products in the 50Ti+249Cf reaction

Di Nitto, A.; Khuyagbaatar, J.; Ackermann, D.; Andersson, L.-L.; Badura, E.; Block, M.; Brand,

H.; Conrad, I.; Cox, D. M.; Düllmann, Ch. E.

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2018.07.058

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Di Nitto, A., Khuyagbaatar, J., Ackermann, D., Andersson, L-L., Badura, E., Block, M., Brand, H., Conrad,

I., Cox, D. M., Düllmann, C. E., Dvorak, J., Eberhardt, K., Ellison, P. A., Esker, N. E., Even, J., Fahlander,

C., Forsberg, U., Gates, J. M., Golubev, P., ... Schädel, M. (2018). Study of non-fusion products in the

50Ti+249Cf reaction. Physics Letters B, 784, 199-205. https://doi.org/10.1016/j.physletb.2018.07.058

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Study

of

non-fusion

products

in

the

50

Ti

+

249

Cf reaction

A. Di Nitto

a

,

b

,

J. Khuyagbaatar

b

,

c

,

,

D. Ackermann

b

,

1

,

L.-L. Andersson

c

,

d

,

E. Badura

b

,

M. Block

a

,

b

,

c

,

H. Brand

b

,

I. Conrad

b

,

D.M. Cox

d

,

Ch.E. Düllmann

a

,

b

,

c

,

J. Dvorak

c

,

K. Eberhardt

a

,

c

,

P.A. Ellison

e

,

f

,

N.E. Esker

e

,

f

,

J. Even

a

,

c

,

2

,

C. Fahlander

g

,

U. Forsberg

g

,

J.M. Gates

e

,

P. Golubev

g

,

O. Gothe

e

,

f

,

K.E. Gregorich

e

,

W. Hartmann

b

,

R.D. Herzberg

d

,

F.P. Heßberger

b

,

c

,

J. Hoffmann

b

,

R. Hollinger

b

,

A. Hübner

b

,

E. Jäger

b

,

B. Kindler

b

,

S. Klein

a

,

I. Kojouharov

b

,

J.V. Kratz

a

,

J. Krier

b

,

N. Kurz

b

,

S. Lahiri

h

,

B. Lommel

b

,

M. Maiti

h

,

3

,

R. Mändl

b

,

E. Merchán

b

,

S. Minami

b

,

A.K. Mistry

d

,

C. Mokry

a

,

c

,

H. Nitsche

e

,

f

,

J.P. Omtvedt

i

,

G.K. Pang

e

,

D. Renisch

a

,

D. Rudolph

g

,

J. Runke

b

,

L.G. Sarmiento

j

,

4

,

M. Schädel

b

,

k

,

H. Schaffner

b

,

B. Schausten

b

,

A. Semchenkov

i

,

J. Steiner

b

,

P. Thörle-Pospiech

a

,

c

,

N. Trautmann

a

,

A. Türler

l

,

m

,

J. Uusitalo

n

,

D. Ward

g

,

M. Wegrzecki

o

,

P. Wieczorek

b

,

N. Wiehl

a

,

A. Yakushev

b

,

V. Yakusheva

c

aJohannesGutenbergUniversityMainz,55099Mainz,Germany

bGSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany cHelmholtzInstituteMainz,55099Mainz,Germany

dUniversityofLiverpool,Liverpool,L697ZE,UK

eLawrenceBerkeleyNationalLaboratory,Berkeley,CA 94720-8169,USA fUniversityofCalifornia,Berkeley,CA 94720-1460,USA

gLundUniversity,22100Lund,Sweden

hSahaInstituteofNuclearPhysics,Kolkata-700064,India iUniversityofOslo,0315Oslo,Norway

jUniversidadNacionaldeColombia,BogotáD.C.111321,Colombia kJapanAtomicEnergyAgency,Tokai,Ibaraki319-1195,Japan lUniversityofBern,3012Bern,Switzerland

mPaulScherrerInstitute,5232Villigen,Switzerland nUniversityofJyväskylä,40014Jyväskylä,Finland oInstituteofElectronTechnology,02-668Warsaw,Poland

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory: Received29March2018

Receivedinrevisedform27July2018 Accepted31July2018

Availableonline2August2018 Editor: V.Metag

Keywords:

Productionofradioactivenuclei

αdecay

Multi-nucleontransferreactions

Theisotopicdistributionofnucleiproducedinthe50Ti +249Cfreactionhasbeenstudiedatthe

gas-filledrecoilseparatorTASCAatGSIDarmstadt,whichseparatesionsaccordingtodifferencesinmagnetic rigidity. The bombardmentwas performedatanenergy aroundthe Bassbarrier and withthe TASCA magneticfieldssetforcollectingfusion-evaporationreactionproducts.Fifty-threeisotopeslocated “north-east”of208Pbwereidentifiedasrecoilingproductsformedinnon-fusionchannelsofthereaction.These

recoilswereimplantedwithenergiesintwodistinctranges;besidesonewithhigherenergy,asignificant low-energycontributionwasidentified.Thelatterobservationwas notexpectedtooccuraccording to kinematicsoftheknowntypesofreactions,namelyquasi-elastic,multi-nucleontransfer,deep-inelastic

*

Correspondingauthorat:GSIHelmholtzzentrumfürSchwerionenforschungGmbH,64291Darmstadt,Germany. E-mailaddress:j.khuyagbaatar@gsi.de(J. Khuyagbaatar).

1 Presentaddress:GrandAccélérateurNationald’IonLourds- GANIL,CEA/DSM-CNRS/IN2P3,Bd.HenriBecquerel,BP.55027,14076CaenCedex5,France. 2 Presentaddress:KVI-CART,UniversityofGroningen,9747AAGroningen,TheNetherlands.

3 Presentaddress:DepartmentofPhysics,IndianInstituteofTechnologyRoorkee,Roorkee-247667,India. 4 Presentaddress:LundUniversity,22100Lund,Sweden.

https://doi.org/10.1016/j.physletb.2018.07.058

0370-2693/©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

200 A. Di Nitto et al. / Physics Letters B 784 (2018) 199–205

Quasifission collisions or quasifission.The present observations are discussed withinthe framework of two-body

kinematicspassingthroughtheformationofacompositesystem.

©2018TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

0. Introduction

During the last decades, heavy-ion induced reactions were largely exploited for various applications aiming to explore the entire chart of nuclei [1]. Especially, great success has been achieved in the region of superheavy elements (SHE) by discov-eringelementsupto Z

=

118 (Og)inheavy-ioninducedcomplete fusion reactions with subsequent emission of neutrons (fusion-evaporation)[2].

Complete fusion is the final result of the two colliding nu-clei,whichformacompositesystemaftertheyhaveovercomethe Coulomb repulsion [3]. However, the probability for fusion, lead-ingtofurtherfissionand/orevaporationoflightparticlesfromthe compoundnucleus, maystronglybe reduceddueto thebreaking ofthe compositesystem, oftenreferred alsoas dinuclearsystem, and depends on the properties of the reactants [4–10]. This in-creases the probability of the process complementary to fusion denotedasquasifission(QF)[4].QFbecomespredominantin reac-tionshavingahighCoulombforceattheentrancechannel,which istypicallyquantified asthechargeproduct ofprojectileand tar-getnuclei, ZpZt [11].Accordingly,thefusionprobabilityisstrongly

hinderedandthusreducesfusion-evaporationcrosssectionsof re-actionsforthesynthesisofSHE,wheretheheavyionscollidewith massive target nuclei [5,7,12]. Therefore, an alternative pathway featuring higher productionyields for the synthesis of SHE,thus reducingthesometimesverylongexperimental duration[13] and allowingthesynthesis ofmoreneutron-rich isotopesthanare ac-cessibleviafusionreactions,hasbeensoughtfordecades[14,15].

RecenttheoreticalcalculationssuggesttheproductionofSHEin multi-nucleon transfer reactions [16] often referred also asdeep inelastic transfer or strongly damped collisions [17]. Evidently, a classification ofthesetypes ofreactions, oftenbased on overlap-ping experimental observables [4,18], does not always properly reflecttheevolutionofthenuclearreaction.Similarly,no compre-hensive theoretical description of these reactions still exists due toa lackofexhaustivedata ontheobservablesdespite many ex-perimental efforts[19–22]. Regardless different namings and ab-senceofthe comprehensivetheory,thecommonfeature ofthese reactionsconcernstheir outcomeproducts,whichare well distin-guishablefromtheonesofelastic-typesofscatteringand fusion-evaporationreactions.

Pioneering studies on such types of reaction have been per-formed in the late 1970s by applying chemical separation tech-niques to gain access to relatively long-lived nuclei (T1/2

1 h)

[23,24]. Recently, in 48Ca

+

248Cm reactions [25,26], new

short-lived(T1/2

1 ms) neutron-deficient isotopes ofheavy elements

(216U,219Np,223Am, 229Am and233Bk) havebeen synthesized at thevelocity filterSHIPatGSIDarmstadt.These andother known experimental results [27–29] demonstrate that reactions, whose recoiling products havemaximum yields atgrazingangles (often

>

0◦) and wide angular distributions, can be studied at forward anglesaround0◦.

To further elucidate the origin of nuclear reaction products emitted at near-zero-degree angles, we employed the gas-filled recoil TransActinide Separator and Chemistry Apparatus (TASCA) [30], whichexploits adifferent principle forionseparation com-paredtoSHIP.Thus,thepresentresultsobtainedbyselectingions fromthe50Ti

+

249Cf reaction,basedontheir magnetic rigidities, complementthedatafromSHIPfor48Ca

+

248Cm,whereproducts

were selectedbytheir velocity. Inthisletter,we reportthestudy ontheidentificationofvariousnucleiproducedinthe50Ti

+

249Cf

reaction, andthe observation of two components of their recoil energies. The latter result has been obtained for the first time inreactions withdeformedactinidetargets. Fusionproductsfrom suchreactions arecurrentlytheonlywaytogiveaccesstothe is-landofthestability.

Experimental datawereaccumulatedduring a longrunaimed to synthesizeelement Z

=

120 inthefusion-evaporation reaction [31].Since,thenucleiidentifiedinthisworkdonotbelongto de-caysofeither Z

=

120 nucleiorfusion-fissionproducts(thenuclei with massesaround A

=

150 and around the lineofbeta stabil-ity,[12]),andthusmayoriginateeitherfromQFormulti-nucleon transfer reactions. Therefore, we prefer to refer them as “non-fusion”ratherthan“transfer”or“target-like”products[27,28]. 1. Experimentalsetup

The experimentwas performed atthe gas-filled recoilTASCA [30], GSI Darmstadt.5 ms-long 50Ti12+ beam pulseswith a

rep-etition rate of50 Hz and an energy of 306MeV were provided by theUniversal LinearAccelerator.Fourarc-shaped 249Cf2O3

tar-getswithanaveragethicknessof(565

±

6) μg/cm2wereprepared by electro-depositiononto (2

.

2

±

0

.

2) μm-thickTi foils [32]. The targetsweremountedonawheel,whichrotatessynchronouslyto the beampulsestructure[33].The beamenergyinthe centerof the target was estimated as 288 MeV [34] at which the largest fusion-evaporation crosssectionforsynthesisof Z

=

120 element isexpected[31].

Inthisexperiment,TASCAwasfilledwith0.8mbarheliumand its magneticsettings wereadjusted tocollect ionswithmagnetic rigidity, B

ρ

=

2

.

14 Tm in thecenterof thefocal plane [31]. This valuecorrespondstotheexpectedB

ρ

ofevaporationresidueswith

Z

=

120 andmassnumberA

295 [35].

Nucleiemergingfromthetargetfirsttraversedamultiwire pro-portionalcounter (MWPC) andwere subsequentlyimplantedinto two Double Sided siliconStrip Detectors (DSSD’s). Each300 μm-thick DSSDhaving anarea of 72

×

48 mm2 resultedinto totalof

144vertical(X-axis)and48horizontal(Y-axis)strips. Thus, prod-ucts withmagnetic rigiditiesin therange ofB

ρ

=

1

.

97–2

.

31 Tm werecollectedintheDSSD.Twosingle-sidedsiliconstripdetectors were mounted behind the DSSD, withthe samedimensions, and wereusedtoregisterpunching-throughchargedparticles.A Com-bined ANalog andDIgital (CANDI)acquisition system[36,37] was usedtoprocessthesignalsfromalldetectors.Signalsfromthe144 vertical stripswere connectedto theanalog branch,where every signalwasduplicatedandprocessedintwodynamicalrangesupto 20MeV and200MeV.Signalsfromthe48horizontalstripswere connectedtothedigitalbranchofCANDIwheretheirpulseshapes were storedin50 μs-longtraces.Thedynamicalrangeofthe dig-ital branch, used to read out the horizontal strips, was limited to 35MeV in orderto optimizethe

α

-particleenergyresolution. The energy resolution (FWHM) of individual Y-strips was about 40 keVfor8–9 MeV

α

particlesregisteredassingleeventsinthe traces, andabout110keVformultiple8–9MeV

α

-particleevents storedinasingle tracewithtimedifferencesontheorderof1 μs. Fora detaileddescription ofTASCAandits detectionsystemssee [28,30,36,37].

(4)

Fig. 1. (Coloronline.) (a)Energy spectraofbeam-offα-likeeventsdetectedwithin anenergyrangeof6–9MeVwithoutfurtherconditions.Thespectrumwithinan energyrangeof8–18MeVisshownasinset.(b)αparticlescorrelatedtotheirRI signalswithin0.5s.First(c)andsecond(d)αparticlesfromRI-α(≤100 s)-α(≤10 s) correlations.

2. Experimentalresults

AnenergyspectrummeasuredwiththeDSSDduring beam-off periods at an accumulated beam dose of about 4

.

5

×

1018 part

is shown in Fig. 1(a). Energies were extracted from the traces collected withthe digitalbranches(48 Y-strips), by adopting the single-signalamplitudeestimationprocedure.Severalpeaks, origi-natingfrom

α

decays,areevidentontherelativelyenhanced back-ground, whose originis dueto the summing of the 48different Y-stripsdataandthepresenceofvariouspile-upevents.Thelatter correspondtothedetectionofsubsequent

α

particleswithinshort times(



μs),whoseenergiesaresummedupandbecomemore ev-identinthehigherenergyrange,E

=

8–18 MeV (shownasinsetin Fig.1(a)). Correspondingtracesof thesemulti-signalevents were storedandenergiesextractedwithmulti-signalamplitude estima-tionprocedure.Therefore,each

α

-likeevent,i.e.,occurringduring beam-offwithE

<

18 MeV,wasconsideredasoriginatingfromthe decayof an implantednucleus. We note that in thisexperiment thousandsoffission-likeevents(DSSD signalswith E

>

100 MeV andin anti-coincidence with MWPC) were detected. However, it wasnotpossibletoidentifytheirisotopicorigin.Identificationsof

α

linesandpile-upswereachievedinthespatial ( X and Y axes) andtimecorrelationanalyses,betweenimplantationsignalsand/or

α

-likeevents,andusingliteraturedata[38].

Accordingtoknownpropertiesofnon-fusionreactions[26,28], theenergiesofrecoilimplantations(RI)wereselectedtobewithin therangeERI

=

30–110 MeV.The RI-likeeventswere requiredto

occurincoincidencewithMWPCsignalsandduringbeam-on pe-riods.

ThefirststepwastheidentificationofimplantednucleiinRI-

α

correlations with a search time up to

0.5 s due to the count-ingrateforRI-likeevents.Anenergyspectrumofsuch correlated

α

particles, with E

=

6–9 MeV is shownin Fig. 1(b).Comparing ourexperimentally determinedhalf-livesand

α

energieswith lit-erature data, 215Ra, 214,214mFr, 213Rn, 212,212mAt, and211Po were

identified.

Furthermore, RI-

α

α

, RI-

α

(7–18 MeV)-

α

, RI-

α

-

α

(7–18 MeV), RI(pile-up)-

α

(anoteonthiscorrelationwillbegivenbelow),

α

α

and

α

α

α

correlationanalyseswereperformedtoidentifythe re-mainingpeaksandthepile-ups(cf.Figs.1(a)and(b)).Correlation search times betweenthe members have been varied depending onthecorrelation types.In

α

α

α

correlations, forinstance, iso-topeswithT1/2 intheorderofminuteswere possibletobe

iden-tified.InFigs.1(c)and1(d),energyspectraofthefirstandsecond

α

membersof RI-

α

α

correlationsare shownas exampleof the abovementionedanalyses. Theidentificationprocedure was com-pleted withthe analysisof tracesstored inthe digital branch of CANDItoresolvethepile-upevents[36,37].Asaresultofthispart of theanalysis, 37isotopes were identified asbeingdirectly im-plantedand11asdaughterorgranddaughterofRI’s.

In total, 53 isotopes with mass numbers 210

A

226 and atomic numbers 83

Z

90 were identified; 42 of them were directlyimplanted.

Finally,thenumbersofeventscorresponding topeaksat8.70, 8.48, 8.43, 8.09 MeV in the beam-off spectrum were compared withthededucednumbersof215Ra,214mFr,214Fr,213Rnfromthe correlationanalysis(cf.Fig.1(a)and(b))toensurethestatistical agreement. Only 85% of the events were found to be correlated with RI. The remaining 15%, then, were searched in the corre-lations (e.g., RI-

α

) where the ERI range was expanded to lower

energies.

Energy spectraof RIcorrelated with

α

decaysof 213Rn, 215Ra

and223ThareshowninFig.2(a).Twowellseparatedcomponents

are visible for all cases. The RI withenergies

30 MeV account well for those missing 15% mentioned above. The high-energy component(HEC),withERI

>

30 MeV,featuresapeak-like

distribu-tioncenteredataround70 MeV,whilethelow-energycomponent (LEC)hasatail-likeshape.Accordingly,partoftheLECmaybenot detected duetothe thresholdsofthedetectionsystem. Time dis-tributions ofRI-

α

(215Ra)correlationsforHEC andLECeventsare showninFig. 2(b).Both distributions,showingthe samehalf-life of215Ra,indicatetheproperassignmentoflowenergeticrecoils.

TheLECrecoilscouldpossiblybegeneratedbyHECones pass-ing throughthickerlayers (duetoinhomogeneities) ofthetarget, MWPC-windowsordead-layersofthe DSSD.Thespectrum ofthe

249Cf–

α

-particles passingthrough TASCA andtheMWPCas

mea-sured with the DSSD shows a single well-defined peak. There-fore,significantinhomogeneitiesofthetarget,MWPC-windowsor dead-layers oftheDSSD arenegligible. Consequently,we exclude that theLECcanbe artificiallygeneratedby HECpassingthrough thickerlayers.

ThepossibilitythatLECrecoilsoriginatefromthescatteringof HECrecoilsisexcluded.Theamountofsuch scatteredHECrecoils isnegligibletakingintoaccountthenumbersofobservedHECand thecrosssectionsfortheelasticscattering.Therefore,theLECare mostlikely associated withthe reaction itself. This conclusion is supported from the observed energy losses of LEC and HEC re-coilsintheMWPC(



E)showninFig.2(c).Ithasbeenfoundthat the HEC and LEC recoils havelost different amounts of energies inthe MWPC,asshownin thecaseof215Ra.Such behaviorwell agreeswiththesimulatedenergylossesofrecoilswithtwo differ-entkineticenergies showninFig.2(d).Detailsonsimulationsare discussedlater.

(5)

202 A. Di Nitto et al. / Physics Letters B 784 (2018) 199–205

Fig. 2. (Coloronline.) (a)Implantation-energy distributions of215Ra, 213Rn,and 223Thisotopes.(b)Timedistributionsofα(215Ra)eventsinbeam-offperiods corre-latedwithHEC(multipliedbyafactor0.16)andLECrecoils.Thehalf-livesobtained byfitting experimentaldata (circles)with universal radioactive decay functions (lines)areconsistentwiththeliteraturevalue(T1/2=1.67(1)ms[38]).(c)Estimated experimentaland(d)SRIMsimulatedenergylossesintheMWPC(E)andDSSD (ERI)detectorsofRIof215Ra events.(e)Relativeyieldsofsameeventsasfunction ofDSSDX-stripofHECandLECrecoils.

Furthermore,thankstothesmallamplitudeofRIsignalsofthe LEC events,RI and

α

signalsoccurring ina short time (downto a fraction of μs)were recorded withfull shapesin single traces withinthedynamicalrangeoftheuseddigitalelectronicssystem, [39].Therefore,by analyzingtheRI(LEC)traceswithmultiple sig-nalswecouldidentifythedecaysofshort-lived219Th,218Ac,217Ra, 216Frand215Rnnucleiforthefirsttimeinthistypeofexperiment.

Thedistributions ofHECandLECrecoils alongthe X -strips of the DSSDare shownin Fig.2(e). The ratesof both HECandLEC recoilsincreasedonthelow-B

ρ

side.Evidently,suchdistributions pointtowardsapartialcollectionofrecoilswithwidelyspreadand muchloweraverage B

ρ

(

<

1.97 Tm)thanthesetvalue(2.14Tm). TheaverageB

ρ

ofHECandLECrecoilsof215Ra canbeestimatedif

their kineticenergies(EK)andmeancharge statesareknown.We

deducedtheEK fromtheenergymeasured intheDSSDbytaking

intoaccountpulseheightdefects[40] andenergylosses[34].Then, the HEC-peak at 70MeV corresponds to 150MeV, and10 MeV, takenasarepresentativevaluefortheLEC,correspondto45MeV. Considering the EK of 150and 45 MeV forHEC andLEC recoils,

respectively,andthemeanchargestatesaccordingtotheformulas in Ref. [41], we calculated the corresponding B

ρ

=

1

.

76 Tm and 1.67Tm. Forthe simulationsof theFig. 2(d),we used the above valuesforkineticenergies.

Therefore,themainpartofrecoilswithsuchvaluesofB

ρ

will misstheDSSD,whichisinagreementwiththeobservedHECand LECdistributions(seeFig.2(e))andwiththeabovediscussion.

The absolute cross sections for the identified nuclei cannot be given due to the unknown efficiencies for their transmission through TASCA and the efficiency for the DSSD coverage (see Fig.2(e)).Tostill arriveataroughvalue,wetakeadetection effi-ciencyforfull-energy

α

particlesintheDSSDas55%,andabeam intensityof3

×

1012part/s.Undertheseassumptions,the

implan-tationratesof213Rn HECand223Th LEC,representativesof

identi-fiednucleiwithhighandlowratesintheDSSD,respectively,were estimatedas8

.

1

×

10−3 and1

.

3

×

10−4 eventspersecond.These valueswouldcorrespondtotheproductofefficiencyandcross sec-tion (

σ ε

,where

ε

isthe overallefficiencysimilar toRef. [26])of 4.4and0.07nb,respectively.Thelattervalueisourlower

σ ε

limit forthenucleiidentifiedinthepresentexperiment.

3. Discussionandsummary

All fifty-three identified isotopes are located “north-east” of

208Pb, on the N vs. Z plane as shown in Fig. 3(a). The

popu-lation of nuclei in this region, far from the target, is similar to known experimental findings for reactions with actinide targets measured over a wide angular range[18]. Onlydata obtainedat SHIP for the 48Ca

+

248Cm reaction [26] can be compared with thepresentresults.Inbothworkstheimplantednucleihavebeen identified via their characteristicradioactive decay properties. At SHIP,theseparationofheavyionswithparticularmassandcharge state isperformedaccordingtoionvelocity.Incontrast,the sepa-ration inTASCA isbased ontheaverage magneticrigidity, where noparticularlyselectedmass,velocityandchargestateofionscan be isolated. Moreover, the gas-filled separators often have short lengths(forexample3.5mofTASCAand12mofSHIP)compared to thoseoperatinginthe vacuummode thuspotentially result to thehighertransmissionandtheshortflightpathfortheproducts, seeRef. [42].Studiesatbothtypesofseparators,potentially com-pleted by radiochemical studies [20], appear best suited to shed further lightonthe reactionmechanismleadingto theformation oftheseproducts.

In Fig. 3(a) the isotopic distribution of the 48Ca

+

248Cm re-action products is showntogether withthe presentresults.Both distributions overlapwidely,despitesome deviations,such as rel-atively narrow distribution of isotopes along the N and Z axes in thepresentdata.A comparisonofdirectly implantednucleiis showninFig.3(b).Inthe presentdatathe gapbetweenN

=

127 and130,aregioncontainingpredominatelyveryshort-livednuclei (mostlydecayingduringtheflightthroughTASCA),issignificantly reducedcompared tothe 48Ca

+

248Cm data,likely thanksto the

implementation ofa multi-pixelizedDSSD andCANDI,aswell as totheshorterflighttime,aboutafactor3,betweenthetargetand theimplantation detectoratTASCAcomparedto SHIP.Itisworth notingthat nucleiaround/abovethe 249Cf-targetwere not identi-fiedduetothelimitedsensitivityofthecorrelationtechniqueused here.

(6)

Fig. 3. (Coloronline.) Cutoutofthechartofnucleiintherelevantregion[38].(a) Theisotopesidentifiedbytheirαdecayandgeneticcorrelationsin50Ti+249Cf re-actions(bluecircles)arecomparedwiththoseidentifiedin64Ni+207Pb [43] and 48Ca+248Cm [26] reactionsmarkedingreenandorange,respectively.(b)Isotopes directlyimplantedintothefocalplanedetector.Thefilled(empty)bluecircles cor-respondto 50Ti+249Cf reaction productsidentifiedincorrelation analyseswith (without)RI-likeevents.Theorangeframesrelateto48Ca+248Cm reactionproducts observedincorrelationwithRI-likeevents[26,25].

The isotopic distribution ofthe 50Ti

+

249Cf reaction products

canbeaffectedifthetargetcomprisedaPbcontamination,which canalsoproducesimilarproducts in50Ti

+

Pb reactions.However, thiscontributionislikelynegligibletakingintoaccounttheupper limitofleadimpurity(

<<

1%)andtheexpectedN– Z distributions ofreactions withPb, cf.thedataforthe64Ni

+

207Pb reaction

in-cludedinFig.3(a)[27].

Onecanalsocomparethe

σ ε

valuesofdirectlyimplanted nu-cleiinthe50Ti

+

249Cf and48Ca

+

248Cm reactions[26].For quanti-tativeaspectsofthisdiscussionitisimportanttobearinmindthat theTASCAsettingswere settomaximize theefficiencyforfusion products,whereasSHIPwas operatedatsettingsbettersuitedfor non-fusionproducts.InFig.4the

σ ε

valuesforTh,AcandRa iso-topesareshownasfunctionofN.Ingeneral,asimilarbehavior of thepresentdatatothoseofthe48Ca

+

248Cm reaction[26] canbe noticedmostpronouncedforThisotopesdespitethedifferencesin termsofreactionsandseparationtechniques.Nevertheless, devia-tionsintheabsolutevaluesexistandcan beattributedtofactors including the different overall efficiencies of the two separators andreactions. For instance about4 times lower values, on aver-ageforTh isotopes,obtainedatTASCAmaybe duetothepartial collectionbytheDSSDofrecoilsreachingthefocalplaneofTASCA (seeFig.2(e))and/ortothedifferencesinthepopulationofthem through nucleon exchange process. By assuming that the

σ ε

for

Fig. 4. (Coloronline.) Productofcrosssectionandefficiency,σ ε,fordirectly im-plantedTh,AcandRaisotopes.The50Ti+249Cf reactionvalues(solidsymbols)are comparedwiththe48Ca+248Cm reactionones(opensymbols)[26].The225Uσ ε (opendiamond)from[26] wasalsoincludedinthelowerpanelasrepresentativeof productswithZ>90.Thedashedlinesshowthe1nblevelandthedottedlinethe

σ εlowerlimitforthenon-fusionproductsidentificationinthepresentexperiment.

Uisotopesis onaveragereducedby afactor4compared toSHIP ones[26],similarly totheThcase,one canexpect todetect225U atTASCAwitha

σ ε

of0.03nb.Thisvalueisbelowthe experimen-talsensitivityfornon-fusionproductsinthiswork,thusthislatter can be the reason for the non-observation of 225U. Instead, the non-observation of other Uisotopes cannot be explained by the lower cross section limit argument, having been measured with crosssectionssignificantlyhigherthan225UatSHIP.However,we avoidtoprovideaninterpretationonthe

σ ε

ofheavierUisotopes, notincludedinFig.4,becausethey wereextractedinananalysis thatdidnotincludeRI-likeevents.

Thenucleiobservedinthe50Ti

+

249Cf and48Ca

+

248Cm reac-tions originate fromaprocess wherea largenumberofnucleons flowsinthedirectionoftheprojectilenucleuswithcrosssections significantly higher than the fusion-evaporation ones. Significant massexchangefromtargettoprojectileoftenindicatesnuclear re-actions occurringon reaction timescales that are longenough to allowtheformationofadinuclearsystem,butshortenoughforit tobreakbeforecompletemassequilibrationisachieved,i.e., favor-ingQFand/ormulti-nucleontransfer,whichareknowntoproduce theobservednuclei.

The abovearguments aresupported by theknown features of fusion systematics. According to this, a strong hindrance for fu-sioninthe 50Ti

+

249Cf fusionisexpected[12].Thisfollowsfrom the criteriaof the charge numbers ofprojectile and target prod-ucts, where the present reaction has ZpZt

=

2156, which is far

abovethelower limit(

1600),beyondwhichthefastQFprocess isknowntosetin,accordingtoRef. [11].

ItiswellknownthattheheavyfragmentsfromQFofheavy-ion induced reactions with actinide targets reveal mass distributions withmaximaaround A

=

215–220 [12,5,7,8],duetotheinfluence of thedoubly magic 208Pb.Thus, nuclei observed inthis work – andalsoin48Ca

+

248Cm –couldoriginatefromQF.

Theobservedtwo componentsinimplantation energiesof nu-clei fromthe50Ti

+

249Cf reaction,thus,could be explainedwith

dynamical propertiesoftheQFprocess. SinceQFtypically occurs during the rotation of the dinuclear system, the heavy fragment withmass A emittedwithavelocityvcmatdifferentanglesinthe

centerofmassframe

θ

cm canbedetectedinthelaboratoryframe

within wide angular and velocity ranges. According to Ref. [27], thetwo energycomponents ofheavy fragmentscanbe explained by emission of them at

θ

cm

=

0◦ and 180◦, i.e. along the beam

axis,withvelocitiesofvHEC

=

vcm

+

vCNandvLEC

=

vcm

vCN,

re-spectively, wherevCN isthevelocity ofthe compoundnucleusin

(7)

204 A. Di Nitto et al. / Physics Letters B 784 (2018) 199–205

Table 1

Experimentalandcalculatedkineticenergies,EK,(inMeV)andemissiondirections (forward(→)orbackward(←)inthelaboratoryframe)ofheavyfragments(RI) fromthethreereactions.Twocasesoftheiremissionsinthecenterofmassframe (θcm=0◦andθcm=180◦ correspondingtoHECandLEC,respectively)aregiven forthreereactions,whosebeamenergies(ElabinMeV)areindicated.Theisotope 215Ra wasconsideredinthefirstreaction,215Ra and223Th forthesecond,and226Ac forthethird.Allexperimentaldataweremeasuredintheforwarddirectioninthe laboratorysystem.

Reaction Elab RI

HEC (θcm=0◦) LEC (θcm=180◦)

EK(Dir.) EK(Dir.)

Exp. Calc. Exp. Calc.

64Ni207Pb 360 215Ra 194a() 193 () 10a() 8.5 ()

50Ti+249Cf 288

 215Ra 150 () 182 () 45*() 2.9 ()

223Th 142 () 176 () 44*() 1.7 ()

48Ca+248Cm 256 226Ac 110b() 151 () 1.2 ()

a Deduced frommeasuredvelocitiesinRef. [27]. b Deduced frommeasuredvelocitiesinRef. [26]. * Representative valuefortheLEC.

emittedat

θ

cm

=

180◦ wouldnotbedetected atbackwardangles,

butinsteadinforwarddirectioninthelaboratoryframeasinthe caseof

θ

cm

=

0◦.Insuch cases,heavy fragmentswithtwo

differ-ent velocities will be observed at forward angles, similar to the presentfindingsshowinga HECanda LEC.Onlyonesuch exper-imental case is known forthe 64Ni

+

207Pb reaction[27], where

twovelocitycomponentsfornon-fusionproducts(showninFig.3) have been measured. Measured velocities for both components havebeencalculatedwithintheabovementionedapproach,where vcm was deduced fromthe TKE accordingto theViola

systemat-icsfor QFwith an asymmetric mass split [44]. A fairagreement betweenthe estimatedand experimental velocities was reached, supportingthe suggestedscenariofortheexplanationofthe HEC andLEC[27].Therefore,within thisapproach,aninterpretationof thepresentdatacan be given.Moreover, we calculatedthe ener-giesoftheLECandHECoftheseidentifiedproducts,namely215Ra

and223Th.Togain insighton thisapproach wehavegivenin Ta-ble1thevelocitiesoftheLECandHEC,expressedintermsofEK,

andemissiondirectionsinthelaboratoryframeresultingfrom cal-culationstogetherwiththeexperimentallydeducedones.

The results for 215Ra fromthe 64Ni

+

207Pb reaction are also

showninTable1,wherebothHECandLEChavebeendetectedin theforwarddirection.

Atfirst,wecalculatetheenergiesfor215Ra forwhichbothHEC

andLEChavebeenobservedinthe64Ni

+

207Pb and50Ti

+

249Cf re-actions.InthecaseoftheLEC,thecalculatedvcmwaslargerthan

the vCN (cf. Table 1) for the 50Ti

+

249Cf reaction, which means

that 215Ra isemitted in backward directions,i.e.no detection of theLECin forwarddirectionis expected.Similarly, thecalculated LECvelocity of theheavier isotope 223Th alsoprevents thisfrom entering intothe TASCA acceptance angle.At thesame time, ex-perimentalEK ofHECare overestimatedinboth cases,215Ra and 223Th. Therefore, the present results have poor numerical

agree-ments withthe calculationsin both theHEC andthe LEC. These deviations could be due to non-directly measured experimental energies of 215Ra and 223Th, forwhich only rough estimates for bothHECandLECaregiven.However,thevelocityofHECof226Ac

fromthe48Ca

+

248Cm reactionhavedirectlybeenmeasuredatthe velocityfilterSHIP,thus,one cancompareitwiththecalculation. Despitethe measurement technique forthe HEC-energy, 226Ac is

stilloverestimatedby asimilaramount(

25–35%) asinthecase of the presentdata, cf.Table 1. Accordingly, deviations could be associated withthe overestimationof the QF TKE and/or dueto thekinetic-energydissipation inthe heavyfragment. Observation oftheLECof226Ac in48Ca

+

248Cm reactionsisnotpredictedby

thecalculations,asonecouldexpect.Wenotethatduetothelack ofexperimentaldata,thiscannotpresentlybeconfirmed.

It could be inferred that a quantitative description of the ki-netic energies of non-fusion products from the 50Ti

+

249Cf and

48Ca

+

248Cm reactionscannotbegivenwithinthecurrent

knowl-edgeontheTKEoftheQF.However,aqualitative explanationvia the QFscenarioisstill possible.This,though,wouldsubstantially profit from further dedicated experiments on the kinematics of non-fusionproductsfrom50Ti

+

249Cf and/orsimilarreactions.

Finally, inthis letterwe demonstratedthat theforward-angle gas-filled separator can be used forthe studyof the non-fusion reaction mechanisms and, consequently, TASCA can be suitable for the synthesis of the exotic nuclei originating in other reac-tion channelsthanfusion-evaporation. TheobservationsatTASCA reportedhereprovideastimulusforfutureexplorationswith op-timizedoperation ofgas-filledseparatorsfortheisolation of non-fusionproductstotapthefullpotentialofthismethodforthe in-vestigationofnucleiwithlow-productionyield.Fifty-threeisotopes ofelementsfromBitoTh,identifiedwithhelpoftheadvanced de-tection system, showsthe sudden disappearanceofthe detection yield oftheelements Z

>

90 inthenon-fusion reactionchannels that issomehowdifferentfromtheresultsobtainedatthe veloc-ityfilterSHIP.Presently,wecannotdrawafinalconclusiononthe reasonfordeviationsintheisotopicaldistributions,because differ-ent experimentaltechniques,detectionsetupsandreactionswere adopted inthetwo experiments.Thereforeto disentanglethe in-fluence of the differentaspects responsible of such deviations, it appears ideal to investigate the same target/projectile combina-tion at differenttypes ofseparators, like SHIPand TASCA, under identical reaction conditions. Nevertheless, we note that produc-tion yields of U isotopes suddenly decreases compared to those of Thonesaccordingto thefusion-evaporation reaction data.For instance, in the 48Ca

+

176Yb reaction Th isotopes are produced withcrosssectionvaluesintheorderof100 μb[45],whereasthe cross sectionsofUisotopes inthe 50Ti

+

176Yb reactionare only

fewnb[37].Furthermoretodefinethelimitsoftheisotopical dis-tributions, one should consider the measurements of

β

-decaying and/or long-livednuclei for which differentdetection techniques arerequiredcomparedtothosepresentlyemployed.Recently,such asetupwhichincludesthecombinationofthechemicalseparation andhighefficient measurements ofALpha, BEtaandGAmma de-cays ALBEGAisunderfinalconstruction [46].The mostintriguing result of the present work is the observation of recoils emitted at forward angle with energy distribution showing two compo-nents which seem to be associated with reaction mechanism of the particular non-fusion channel. By considering the significant nucleon flow populating the nuclei located “north-east” of 208Pb

andthe observationoftwo energycomponents, thepossible ori-gin oftheidentifiedisotopeswas suggestedtobequasifissionfor whichforward-angledatascarcelyexist.Theresultsofthepresent work motivate further studies on nuclear reactions aimed at ex-amining the presence of a low-energy componentand providing wide-rangeisotopicdistributions thatcouldshedlightonthe un-derstandingofthedifferentreactionmechanisms.

Acknowledgements

We are grateful to GSI’s ion-sourceand UNILAC staff. Twoof us(A. DiNittoandJ. Khuyagbaatar)thankDr.S. Heinzforfruitful discussions. Thisworkwas inpartfinanciallysupported byBMBF contract-No. 06MZ7164,theSwedishResearchCouncil under con-tractsVR2008-4240andVR2011-5253.Oneofus(D. Ackermann) is supported by the European Commission in the framework of CEA-EUROTALENT2014-2018(noPCOFUND–GA–2013- 600382). WethanktheLBNLNuclearScienceDivision’sR.F.FairchildII,N.E. Reeves, J.A. Van Wart andthe Radiation Protection Group of the

(8)

Environmental Health andSafety Division for their support with thepreparationandexecutionofthe249CfshipmenttoGermany. References

[1]B.B.Back,etal.,Rev.Mod.Phys.86(2014)317.

[2]Yu.Ts.Oganessian,V.K.Utyonkov,Rep.Prog.Phys.78(2015)036301.

[3]R.Bass,NuclearReactionswithHeavyIons,Springer-Verlag,Berlin,1980.

[4]J.Töke,etal.,Nucl.Phys.A440(1985)327.

[5]E.M.Kozulin,etal.,Phys.Lett.B686(2010)227.

[6]M.G.Itkis,etal.,Phys.Rev.C83(2011)064613.

[7]K.Nishio,etal.,Phys.Rev.C86(2012)034608.

[8]D.J.Hinde,etal.,EPJWebConf.131(2016)04004.

[9]J.Khuyagbaatar,etal.,Phys.Rev.C91(2015)054608.

[10]J.Khuyagbaatar,etal.,Phys.Rev.C97(2018)064618.

[11]W.J.Swiatecki,Phys.Scr.24(1981)113.

[12]M.G.Itkis,etal.,Nucl.Phys.A944(2015)204.

[13]Yu.Ts.Oganessian,J.Phys.G34(2008)R165.

[14]J.V.Kratz,etal.,Phys.Rev.C33(1986)504.

[15]Yu.Ts. Oganessian, A. Sobiczewski, G.M. Ter-Akopian, Phys. Scr. 92 (2017) 023003.

[16]V.I.Zagrebaev,W.Greiner,Phys.Rev.C83(2011)044618.

[17]V.V.Volkov,Phys.Rep.44(1978)93.

[18]H.Gäggeler,etal.,Phys.Rev.C33(1986)1983.

[19]L.Corradi,G.Pollarolo,S.Szilner,J.Phys.G36(2009)113101.

[20]J.V.Kratz,W.Loveland,K.J.Moody,Nucl.Phys.A944(2015)117.

[21]M.Schädel,EPJWebConf.131(2016)04001.

[22]M.Götz,etal.,Nucl.Phys.A961(2017)1.

[23]M.Schädel,etal.,Phys.Rev.Lett.41(1978)469.

[24]M.Schädel,etal.,Phys.Rev.Lett.48(1982)852.

[25]H.M.Devaraja,etal.,Phys.Lett.B748(2015)199.

[26]S.Heinz,etal.,Eur.Phys.J.A52(2016)278.

[27]S.Heinz,etal.,Eur.Phys.J.A51(2015)140.

[28]J.Gates,etal.,Phys.Rev.C83(2011)054618.

[29]J.Konki,etal.,Phys.Lett.B764(2017)265.

[30]A.Semchenkov,etal.,Nucl.Instrum.MethodsB266(2008)4153.

[31] Ch.E.Düllmann,etal.,tobepublished.

[32]J.Runke,etal.,J.Radioanal.Nucl.Chem.299(2014)1081.

[33]E.Jäger,etal.,J.Radioanal.Nucl.Chem.299(2014)1073.

[34]J.F. Ziegler,M.Ziegler, J.Biersack, in:19th InternationalConference on Ion BeamAnalysis,Nucl.Instrum.MethodsB268(2010)1818.

[35]J.Khuyagbaatar,etal.,Phys.Rev.A88(2013)042703.

[36]J.Khuyagbaatar,etal.,Phys.Rev.Lett.112(2014)172501.

[37]J.Khuyagbaatar,etal.,Phys.Rev.Lett.115(2015)242502.

[38]G.Audi,etal.,Chin.Phys.C41(2017)030001.

[39]J.Khuyagbaatar,etal.,EPJWebConf.131(2016)03003.

[40]B.Wilkins,etal.,Nucl.Instrum.Methods92(1971)381.

[41]K.E.Gregorich,etal.,Phys.Rev.C72(2005)014605.

[42]M.Leino,Nucl.Instrum.MethodsB126(1997)320.

[43]V.F.Comas,etal.,Eur.Phys.J.A112(2013)49.

[44]M.Wilpert,etal.,Phys.Rev.C51(1995)680.

[45]C.C.Sahm,etal.,Nucl.Phys.A441(1985)316.

Referenties

GERELATEERDE DOCUMENTEN

The prior international experience from a CEO could be useful in the decision making of an overseas M&amp;A since the upper echelons theory suggest that CEOs make

Van Ommen, C., &amp; Van Deventer, V. Negotiating Neuroscience: LeDoux’s “Dramatic Ensemble”. Theory and Psychology. Are there Neural Correlates of Depression? In Choudhury,

Our current knowledge concerning the involvement of the different SNARE proteins and interacting proteins in regulated secretion in neurons derives mainly from studies on

Most similarities between the RiHG and the three foreign tools can be found in the first and second moment of decision about the perpetrator and the violent incident

Replacing missing values with the median of each feature as explained in Section 2 results in a highest average test AUC of 0.7371 for the second Neural Network model fitted

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

This article seeks to examine that issue from the perspective of the free movement of workers, with the first section setting out the rights that migrant workers and their family

Daarmee neemt de agrarische handel circa twee derde van het totale Nederlandse handelsoverschot voor zijn rekening.. Het saldo op de agrarische handelsbalans werd geheel