• No results found

fMRI pattern classification in antisocial adolescents with psychopathic traits

N/A
N/A
Protected

Academic year: 2021

Share "fMRI pattern classification in antisocial adolescents with psychopathic traits"

Copied!
16
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

fMRI  pattern  classification  in  antisocial  

adolescents  with  psychopathic  traits  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Laura  Rachman  

Master  Brain  and  Cognitive  Sciences,  Cognitive  Neuroscience      

Research  Project  1:  VUmc,  Child  and  Adolescent  Psychiatry   9  February  2012  –  31  July  2012  

 

Supervisor:  Drs.  M.D.  Cohn  

Co-­‐assessor:  Prof.  dr.  K.R.  Ridderinkhof    

   

(2)

                                                                                                 

(3)

Abstract    

Within  juvenile  antisocial  populations,  it  has  been  argued  that  those  youths  with   psychopathic   traits   are   at   higher   risk   to   develop   persistent   antisocial   behavior   during   adulthood   than   antisocial   adolescents   without   psychopathic   traits.   By   means   of   fMRI   pattern   classification,   using   a   Support   Vector   Machine   (SVM)   algorithm,  we  tried  to  distinguish  this  clinically  relevant  subgroup  based  on  their   neural  activation  patterns  during  the  Monetary  Incentive  Delay  (MID)  task.  Based   on   YPI   total   scores   and   scores   for   the   callous-­‐unemotional,   impulsive-­‐ irresponsible  and  grandiose-­‐manipulative  sub-­‐dimensions,  we  trained  classifiers   to  distinguish  high  and  low  scoring  groups  during  four  conditions  of  interest:  (1)   reward   anticipation,   (2)   loss   anticipation,   (3)   reward   outcome,   and   (4)   loss   outcome.   Statistically   significant   classification   accuracies   were   obtained   for   the   CU  dimension  during  loss  anticipation  (70.8%)  and  loss  outcome  (70.8%)  and  for   the   II   dimension   during   reward   outcome   (66.7%).   These   findings   indicate   that   youths   with   high   levels   of   CU   and   II   traits   show   differentiated   neural   activation   patterns  during  the  anticipation  and  processing  of  positive  and  negative  monetary   incentives.   Further   development   of   MRI   pattern   classification   may   aid   psychopathy   diagnosis   in   the   future   by   providing   an   objective   classification   method.  

   

Introduction    

Psychopathy   is   a   personality   disorder   that   is   characterized   by   a   set   of   interpersonal,   affective   and   behavioral   features   (Dolan,   2004;   Hare   &   Neumann,   2005).   Previous   research  has  revealed  three  factors  underlying  the  psychopathy  construct:  an  arrogant   and   deceitful   interpersonal   style,   deficient   affective   experience,   and   an   impulsive   and   irresponsible  behavioral  style  (Cooke  &  Michie,  2001).  While  psychopathic  personality   traits   in   adults   are   partly   captured   by   criteria   for   antisocial   personality   disorder,   antisocial   minors   can   be   diagnosed   with   either   oppositional   defiant   disorder   (ODD),   which  is  characterized  by  a  defiant,  hostile  and  incompliant  attitude  towards  authority   figures,  or  conduct  disorder  (CD),  which  is  characterized  by  norm-­‐violating,  aggressive   and   deceitful   behavior   (DSM-­‐IV;   American   Psychiatric   Association,   1994).   These   two   disorders   together   are   commonly   referred   to   as   disruptive   behavior   disorders   (DBD).   The   presence   of   psychopathic   traits   in   minors   has   been   much   debated,   but   recent   literature  suggests  that  psychopathic  traits  may  be  present  in  childhood  (Frick,  2009).   Although  their  stability  across  a  9  year  period  from  early  adolescence  to  early  adulthood   has  been  shown  to  be  only  moderately  stable  (r=0.31;  Lynam  et  al.,  2009),  psychopathic   traits  do  seem  to  mark  those  youths  at  higher  risk  for  developing  persistent  antisocial   behavior   during   adulthood   (Forsman   et   al.,   2010;   Loeber   et   al.,   2009;   Salekin   &   Frick,   2005).    

(4)

of  antisocial  youths  since  this  dimension  shows  a  relatively  low  amount  of  overlap  with   disruptive   behavior   disorders   as   defined   by   the   DSM-­‐IV   (Frick   et   al.,   2000).   Furthermore,   antisocial   adolescents   with   callous-­‐unemotional   traits   show   more   aggressive  behavior  than  antisocial  adolescents  without  these  traits.  In  addition,  while   youths  without  callous-­‐unemotional  traits  mainly  show  reactive  aggression,  adolescents   with  callous-­‐unemotional  traits  show  both  reactive  and  instrumental  aggression  (Frick   &  Viding,  2009).    

 

One   influential   etiological   theory   posits   that   psychopathic   individuals   are   less   responsive   to   punishment,   but   are   hypersensitive   to   reward   (Lykken,   1995).   Indeed,   various  behavioral  studies  have  demonstrated  reduced  punishment  sensitivity  (e.g.  Blair   et   al.,   2004;   Blair,   Morton,   Leonard,   &   Blair,   2006).   On   the   other   hand,   while   reward   dominance  has  been  found  in  children  with  psychopathic  traits  (e.g.  Barry  et  al.,  2000;   O’Brien   &   Frick,   1996),   it   is   not   clear   whether   this   is   due   to   impairments   in   the   processing  of  punishment  or  to  impaired  reward  processing.  Furthermore,  it  is  possible   that  these  impairments  differ  for  specific  sub-­‐dimensions  of  the  psychopathic  syndrome.   For  example,  the  only  study  specifically  showing  impairment  in  neural  responses  during   reward  anticipation  (Buckholtz  et  al.,  2010)  assessed  the  impulsive-­‐antisocial  dimension   of  psychopathy,  rather  than  the  more  specific  callous-­‐unemotional  dimension  (e.g.  Frick   et  al.,  2005;  Marini  &  Stickle,  2010).  

 

While  most  clinical  neuroimaging  studies  until  now  have  relied  on  conventional  single-­‐ voxel  fMRI  analysis  methods,  it  is  only  recent  that  multi-­‐voxel  pattern  analysis  (MVPA)   or   pattern   classification   methods   have   been   used   to   classify   patient   groups   more   reliably.   This   approach   differs   from   conventional   analysis   methods   because   it   takes   patterns  of  neural  activation  into  account  rather  than  averaged  activation  in  a  region  of   interest,   leading   to   increased   sensitivity   to   detect   structural   or   functional   differences.   Moreover,   pattern   classifiers   can   make   inferences   on   an   individual   level,   whereas   activation-­‐based  analyses  can  only  be  used  to  compare  group  averages  (Modinos  et  al.,   2012).    

 

The  potential  value  of  MRI  pattern  classification  methods  has  not  only  become  evident   in   classification   of   patients   with   depression   (Fu   et   al.,   2008;   Mourão-­‐Miranda   et   al.,   2011)   and   autism   (Coutanche   et   al.,   2011;   Ecker   et   al.,   2010),   but   also,   recently,   in   classification   of   patients   with   psychopathy   (Sato   et   al.,   2011).   Current   classification   methods   of   psychopathy   rely   on   structured   interviews   or   self-­‐report   measures.   While   these  methods  may  be  problematic  given  the  deceitful  and  manipulative  characteristics   that   are   part   of   the   construct   of   psychopathy,   a   drawback   of   the   widely   used   Psychopathy   Checklist   is   the   fact   that   it   is   time-­‐extensive   and   that   diagnosis   requires   additional   assessment   of   an   individual’s   file   information.   Moreover,   Skeem   and   Cauffman   (2003)   have   shown   that   two   assessment   tools   for   psychopathic   traits   in   youths,   the   Psychopathy   Checklist   (PCL):   Youth   Version   and   the   self-­‐reported   Youth   Psychopathic  traits  Inventory  (YPI),  only  partially  overlap  in  their  conceptualization  of  

(5)

the  construct  of  psychopathy  in  minors  and  question  the  validity  of  these  instruments  in   the  diagnosis  of  juvenile  psychopaths.  A  more  objective  method  to  classify  psychopathic   traits  would  therefore  be  a  welcome  addition  to  the  current  classification  methods.  This   study   aims   to   investigate   the   potential   usefulness   of   neurobiological   markers   for   the   classification  of  psychopathic  traits.  Nevertheless,  it  should  be  noted  that  the  attempt  to   use   neurobiological   markers   for   classification,   in   order   to   enhance   its   objectivity,   necessarily  relies  on  other  assessment  tools  that  form  a  frame  of  reference.  While  the   PCL   is   regarded   as   the   ‘gold   standard’   for   psychopathy,   Skeem   and   Cauffman   (2003)   have  provided  evidence  that  the  YPI  shows  better  divergent  validity,  warranting  its  use   in  the  current  study.  

   

Given   the   heterogeneous   nature   of   the   juvenile   antisocial   population   and   the   clinical   relevance   of   psychopathic   traits   within   this   group   (Frick   &   White,   2008),   the   current   study  aimed  to  identify  a  subgroup  with  high  levels  of  psychopathic  traits  on  the  basis  of   reward  and  punishment  sensitivity  using  MRI  pattern  classification  methods.  Whereas   Sato   et   al.   (2011)   focused   on   structural   differences,   this   study   investigated   whether   functional   differences   during   a   reward-­‐punishment   task   can   be   used   to   classify   individuals  with  high  and  low  levels  of  psychopathic  traits  in  a  juvenile  population.    

Following   indications   that   callous-­‐unemotional   traits   characterize   a   clinically   relevant   group  of  youths  with  disruptive  behavior  disorders  (Frick,  2009),  we  recruited  a  sample   of   adolescents   previously   diagnosed   with   childhood-­‐onset   DBD   to   participate   in   this   study.   This   sample   was   derived   from   a   larger   cohort   of   adolescents   that   were   first   arrested   by   the   police   before   the   age   of   12,   yielding   a   group   of   youths   at   high   risk   to   persist  in  their  antisocial  behavior.  Within  the  group  of  adolescents  that  were  diagnosed   with   early-­‐onset   DBD   we   hypothesized   that   those   scoring   high   on   psychopathic   traits   would  show  different  neural  activation  patterns  than  those  scoring  low  on  psychopathic   traits  during  a  monetary  reward-­‐punishment  task.  These  differences  were  expected  to   allow   a   pattern   classifier   to   discriminate   between   the   two   groups.   Furthermore,   we   hypothesized  that  these  differences  occur  during  reward  anticipation,  as  well  as  during   punishment  anticipation.  Additionally,  we  performed  this  classification  analysis  for  each   of  the  three  YPI  sub-­‐dimensions  separately.  Therefore,  we  tested  two  rather  exploratory   hypotheses.   First,   we   tested   the   hypothesis   that   a   pattern   classifier   for   the   reward   anticipation  data  can  yield  high  accuracy  for  the  impulsive-­‐irresponsible  sub-­‐dimension,   since  failure  to  inhibit  impulses  could  drive  excessive  reward-­‐seeking  behavior.  Second,   we   hypothesized   that   classification   of   data   from   the   punishment   trials   can   yield   high   accuracies   on   the   callous-­‐unemotional   sub-­‐dimension,   since   a   lack   of   emotion   might   drive  the  insensitivity  for  punishment  (Blair  et  al.,  2004).  

     

(6)

Methods    

Participants  

 

Participants  were  recruited  from  a  cohort  of  364  individuals  who  had  been  arrested  by   the  police  before  the  age  of  12  (van  Domburg  et  al.,  2009).  For  this  follow-­‐up  study,  55   adolescents   that   were   diagnosed   with   childhood   onset   ODD   or   CD   with   the   NIMH   Diagnostic  Interview  Schedule  for  Children  Version  IV  (NIMH  DISC-­‐IV)  (Schaffer  et  al.,   2000)  were  included  for  further  analysis  (mean  age  ±  SD  =  18.3  ±  1.2;  range  =  15-­‐20).   Exclusion  criteria  were  standard  criteria  for  MRI  research,  such  as  the  presence  of  metal   objects  in  the  body  (e.g.  a  cardiac  pacemaker)  or  pregnancy.  A  standard  MRI  checklist   from   the   Academic   Medical   Center   (AMC)   in   Amsterdam   was   used   for   this   purpose.   Participants  gave  written  informed  consent  to  participate  in  the  study  on  a  first  occasion   where   researchers   visited   the   participants’   homes   to   explain   the   study   and   to   obtain   self-­‐report  data  from  questionnaires.  Data  collection  for  this  study’s  purpose  took  place   with  the  approval  from  the  VU  University  Medical  Ethics  Committee.    

 

Psychopathic  traits  were  assessed  by  means  of  the  Youth  Psychopathic  Traits  Inventory   (YPI)   (Andershed   et   al.,   2002).   This   inventory   uses   a   4-­‐point   response   scale   and   addresses   ten   subscales,   each   with   five   items.   The   YPI   yields   a   total   score   for   each   participant   as   well   as   scores   for   each   of   the   three   sub-­‐dimensions:   ‘Grandiose-­‐ Manipulative’  (GM),  ‘Callous-­‐Unemotional’  (CU),  ‘Impulsive-­‐Irresponsible’  (II)  (see  Table   1  for  this  study’s  internal  consistencies).      

 

By  lack  of  a  standardized  cutoff  score  to  define  people  with  high  levels  of  psychopathic   traits  based  on  the  YPI  scores,  we  formed  two  groups  based  on  the  distribution  of  this   study’s  YPI  scores.  People  scoring  above  the  75th  percentile  were  assigned  to  the  “high  

scores”   group   and   those   scoring   below   the   25th   percentile   were   assigned   to   the   “low  

scores”  group  (Table  1).  The  derived  cutoff  scores  for  high  levels  of  psychopathic  traits   were  comparable  to  the  mean  scores  of  a  sample  of  115  conduct  disordered  adolescents   in  secure  care  establishments  or  Young  Offenders  Institutions  (Dolan  &  Rennie,  2007)   (Table  2).    

   

Table  1  Cutoff  scores  and  internal  consistencies  for  YPI  total  scores  and  scores  on  each  sub-­‐dimension  

    Low  scores   n     High  scores   n     Cronbach’s  

Alpha   Total   GM   CU   II     <  83   <  24   <  27   <  29   13   12   14   13     >116   >40   >34   >41   13   12   14   13     .934   .891   .887   .812    

(7)

Table  2  YPI  scores  of  a  sample  of  conduct  disordered  adolescents  as  measured  by  Dolan  and  Rennie  (2007)     Mean   S.D.   YPI  total   Grandiose-­‐Manipulative   Callous-­‐Unemotional   Impulsive-­‐Irresponsible   120.4   40.8   34.1   45.4   20.8   11.1   6.5   7.7       Reward-­‐punishment  task    

The   Monetary   Incentive   Delay   (MID)   task   was   used   to   assess   reward   and   punishment   sensitivity  (Knutson  et  al.,  2001).  During  72  trials  subjects  were  presented  with  one  out   of   three   possible   cues   (circle,   square   or   triangle),   indicating   whether   they   could   win   money,   loose   money   or   neither   win   nor   loose   money.   The   cue   was   presented   for   2   seconds  after  which  subjects  had  to  fixate  on  a  cross-­‐hair  (delay,  2000-­‐2500  ms).  After   this  variable  interval  subjects  had  to  respond  to  the  appearance  of  a  white  target  square   by  pressing  a  button.  In  a  reward  trial,  pressing  in  time  would  lead  to  a  monetary  gain  of   €0.50.  In  a  punishment  trial,  pressing  in  time  would  lead  to  avoid  a  monetary  loss.  And   in   a   neutral   trial   the   total   earnings   would   remain   the   same,   whether   the   participant   pressed  the  button  in  time  or  too  late.  The  target  was  presented  for  a  variable  amount  of   time   (target,   50-­‐750   ms),   which   was   continuously   adapted   to   the   participant’s   performance   with   increments   of   50   ms,   such   that   the   hit   rate   for   each   trial   type   was   approximately   66%.   Upon   disappearance   of   the   target,   feedback   (1650   ms)   was   presented  to  inform  whether  or  not  the  participant  had  succeeded  on  that  trial  and  to   show  the  cumulative  earnings  at  that  point.    

 

fMRI  measurements  

 

All  images  were  acquired  using  a  Philips  3T  Intera  magnetic  resonance  scanner  at  the   Academic   Medical   Center   in   Amsterdam.   400   T2*-­‐weighted   echo-­‐planar   images   (EPI)   were  acquired  during  the  reward-­‐punishment  task  using  a  8-­‐channel  SENSE  head-­‐coil.   Each  volume  consisted  of  38  slices  and  was  obtained  with  a  TR  of  2.3  s,  TE  of  30  ms,  and   a  220  x  220  x  114  mm  FOV.  Slices  were  acquired  in  ascending  order,  oriented  parallel  to   the   AC-­‐PC   plane,   with   a   thickness   of   3   mm   and   2.29   x   2.29   in-­‐plane   resolution.   T1-­‐ weighted   anatomical   scans   consisting   of   180   slices   were   acquired   within   the   same   session  (TR  =  9.0  ms,  TE  =  3.5  ms,  slice  thickness  =  1  mm;  FOV  =  256  x  256  x  180  mm;   voxel  size  =  1  x  1  x  1  mm).  

     

(8)

Preprocessing  

 

Functional  MRI  data  were  preprocessed  using  SPM8  (Wellcome  Department  of  Cognitive   Neurology,   London,   UK).   Images   were   realigned   and   slice-­‐time   corrected   before   being   co-­‐registered   with   the   T1   image.   Furthermore,   images   were   normalized   to   Montreal   Neurological   Institute   (MNI)   space,   resampled   onto   a   3x3x3   mm3   grid   and   smoothed  

with  an  8  mm  isotropic  full-­‐width  half-­‐maximum  (FWHM)  Gaussian  kernel.  A  high-­‐pass   filter  was  then  applied  to  each  voxel  of  the  fMRI  time-­‐series  to  remove  low-­‐frequency   noise  (cutoff  of  128  s).  For  each  of  the  CU  and  II  groups,  one  subject  had  to  be  discarded   because  of  MRI  artifacts,  leaving  each  CU  group  with  13  subjects  and  each  II  group  with   12  subjects.  

 

The   preprocessed   time-­‐series   data   for   each   individual   were   further   analyzed   by   contrasting  four  orthogonal  regressors  of  interest:  (1)  anticipation  of  a  reward  during   cue  presentation  vs  anticipation  of  a  neutral  outcome,  (2)  anticipation  of  a  monetary  loss   during  cue  presentation  vs  anticipation  of  a  neutral  outcome,  (3)  reward  hit  vs  neutral   hit   outcomes,   and   (4)   outcomes   on   loss   trials   vs   outcomes   on   neutral   trials.   These   individual  contrast  images  were  subsequently  used  as  input  for  the  pattern  classification   analysis.    

   

Support  Vector  Machine  

 

Pattern   classification   is   a   statistical   analysis   technique   that   takes   into   account   the   differences   in   activity   patterns   of   fMRI   data.   In   comparison   with   more   conventional   analysis   methods   that   focus   on   average   activations   within   a   region   of   interest   (ROI),   pattern   classification   methods   have   the   potential   to   detect   more   fine-­‐grained   spatial   information  (Mur  et  al.,  2009)  and  to  make  inferences  on  an  individual  level  (Modinos  et   al.,  2012).    

 

The   Support   Vector   Machine   (SVM)   algorithm   has   been   shown   to   be   applicable   to   pattern   recognition   (Boser   et   al.,   1992).   This   algorithm   tries   to   find   an   optimal   linear   decision   boundary   to   separate   the   individuals   of   two   groups.   The   decision   boundary,   further   referred   to   as   a   “hyperplane”,   is   composed   based   on   the   voxel   values   that   are   considered   as   points   in   a   high   dimensional   space   where   the   number   of   dimensions   is   equal  to  the  number  of  voxels.  The  optimal  separating  hyperplane  is  computed  such  that   the   margin   between   the   hyperplane   and   the   nearest   voxel   values   of   each   group   is   maximized.  This  function  can  then  later  be  used  to  classify  new  subjects  based  on  which   side  of  the  hyperplane  the  voxel  values  of  this  new  subject  are  located.    

 

The   Pattern   Recognition   for   Neuroimaging   Toolbox   (PRoNTo;  

http://www.mlnl.cs.ucl.ac.uk/pronto/)   was   used   for   pattern   classification   analyses.   PRoNTo  was  running  in  Matlab  7.12  (The  Mathworks,  Inc)  in  Mac  OS  X.  The  multivariate   patterns  of  all  voxel  values  for  each  of  the  four  individual  contrast  images  were  used  as  

(9)

input   to   train   four   different   classifiers.   The   classifiers   were   then   tested   by   means   of   a   leave-­‐one-­‐out  cross-­‐validation  method.  For  this  method,  one  subject  of  each  group  was   left  out,  leaving  the  rest  as  input  to  train  the  classifier.  When  a  classifier  was  computed,   the  excluded  subject  pair  was  then  used  to  test  if  the  classifier  could  correctly  classify   these   new   and   unknown   subjects.   This   process   was   repeated   until   every   subject   had   served  as  test  data  once.  The  performance  of  the  classifier  was  defined  by  averaging  the   classification   performance   of   each   iteration,   which   would   yield   an   overall   accuracy   as   well  as  the  sensitivity  and  the  specificity  of  the  classifier.  

   

Results    

YPI  total  scores  and  Grandiose-­‐Manipulative  sub-­‐dimension  

 

Analyses   of   the   YPI   total   and   the   GM   groups   did   not   reveal   statistically   significant   classifications  for  the  anticipation  and  outcome  of  a  monetary  gain  or  a  monetary  loss.     Those   with   high   levels   of   psychopathic   traits   overall   or   GM   traits   did   thus   not   show   significantly   different   activation   patterns   than   those   with   low   levels   of   overall   psychopathic  traits  or  GM  traits  during  these  anticipation  and  outcome  periods.  

 

Callous-­‐Unemotional  sub-­‐dimension  

 

Classifiers   using   the   loss   anticipation   vs   neutral   anticipation   and   feedback   of   loss   vs   neutral   feedback   contrast   images   were   successful   in   distinguishing   subjects   with   low   levels  of  CU  traits  from  subjects  with  high  levels  of  CU  traits.  For  the  anticipation  of  loss,   the  classifier  reached  an  overall  accuracy  of  70.8%.  The  rate  of  correct  classification  of   low   CU   subjects   is   represented   by   the   sensitivity,   which   was   75%.   The   specificity,   reflecting   the   rate   of   high   CU   subjects,   was   66.7%.   Fig.   1   presents   projections   of   each   subject  onto  the  weight  vector  and  the  corresponding  ROC  curve.  Furthermore,  to  test   the   statistical   significance   of   the   classifier,   we   performed   a   random   permutation   test.   This  method  randomly  assigned  all  participants  to  the  high  or  low  scoring  groups  1000   times  to  examine  whether  the  obtained  accuracies  were  due  to  chance  or  whether  the   classifier   results   were   reliable.   This   resulted   in   a   significant   classification   outcome   in   relation  to  chance  level  (p  =  0.02).  For  the  feedback  of  monetary  loss,  the  SVM  analysis   revealed   accurate   classification   of   the   two   groups   as   well   (overall   accuracy   70.8%,   sensitivity  58.3%,  specificity  83.3%,  p  =  0.02).  

(10)

 

 

Figure  1  A.  Projection  of  each  subject  onto  the  calculated  weight  vector,  with  negative  values  (red  circles)   discriminating   for   high   CU   scores,   and   positive   values   (black   crosses)   for   low   CU   scores   during   anticipation  of  monetary  loss  (p  =  0.02).  B.  ROC  curve  of  the  same  classifier  (AUC  =  0.75).  

 

Impulsive-­‐Irresponsible  sub-­‐dimension  

 

Participants   with   high   levels   of   II   traits   only   showed   significantly   different   activation   patterns  from  those  with  low  levels  of  II  traits  during  the  feedback  of  a  monetary  gain.   The   SVM   analysis   using   the   reward   feedback   vs   neutral   feedback   contrast   image   revealed   an   overall   classification   accuracy   of   66.7%   (sensitivity   66.7%,   specificity   66.7%,  p  =  0.05).  

   

Discussion    

This   study   investigated   whether   spatially   distributed   information   in   functional   neuroimaging  data  could  be  used  to  distinguish  antisocial  adolescents  with  high  levels  of   psychopathic   traits   and   those   with   low   levels   of   psychopathic   traits.   In   a   sample   of   adolescents   who   were   arrested   by   the   police   before   the   age   of   12   and   who   were   previously   diagnosed   with   childhood-­‐onset   DBD,   we   found   that   fMRI   pattern   classification  could  discriminate  between  individuals  with  high  and  low  levels  of  callous-­‐ unemotional   and   impulsive-­‐irresponsible   traits   based   on   their   neural   activation   patterns  during  the  Monetary  Incentive  Delay  task.    

 

Previous  studies  have  been  able  to  detect  differences  in  gray  matter  quantification  (Sato   et   al.,   2011)   and   functional   differences   in   reward   processing   (Buckholtz   et   al.,   2010)   between   psychopaths   and   healthy   individuals.   However,   this   study’s   objective   to   investigate  psychopathic  traits  within  a  group  diagnosed  with  early-­‐onset  DBD  asked  for  

 

Projection onto the weight vector False positives

Area Under Curve = 0.75  

(11)

an  approach  that  was  able  to  detect  more  subtle  differences  in  neural  activations.  The   identification  of  youth  with  strong  psychopathic  tendencies  within  a  larger  population  of   adolescents   with   antisocial   behavior   disorders   is   of   great   relevance   since   it   has   been   argued   that   this   subgroup   is   at   higher   risk   to   develop   persistent   antisocial   behavior   during  adulthood  (Forsman  et  al.,  2010;  Loeber  et  al.,  2009;  Salekin  &  Frick,  2005).    

By  means  of  SVM  analyses  we  found  that  people  with  high  levels  of  CU  traits  and  people   with   low   levels   of   CU   traits   showed   differentiated   activation   patterns   during   the   anticipation   and   feedback   of   monetary   loss.   These   two   groups   differed   in   such   a   way   that   a   classifier   could   distinguish   them   and   accurately   predict   to   which   group   a   new   subject  belonged,  in  line  with  our  hypothesis.  Furthermore,  while  we  hypothesized  that   the   II   groups   could   be   discriminated   during   reward   anticipation,   we   found   that   the   feedback   of   monetary   rewards   gave   rise   to   differential   activation   patterns   between   subjects  with  low  levels  of  II  traits  and  those  with  high  levels  of  II  traits.  In  addition,  in   contrast   with   our   hypothesis,   data   from   the   YPI   total   scores   group   did   not   show   sufficient  differentiated  activation  patterns  to  distinguish  the  two  groups  for  any  of  the   four   contrast   images.   According   to   these   data,   high   and   low   scoring   subjects   on   psychopathic   traits   in   general   cannot   be   distinguished   based   on   activation   patterns   during  the  MID  task.    

 

The   classification   results   of   the   current   study   for   the   II   sub-­‐dimension   suggest   that   people   with   high   levels   of   II   traits   can   be   distinguished   during   reward   outcome.   In   contrast,  Buckholtz  and  colleagues  (2010)  found  nucleus  accumbens  hyperactivation  in   people   scoring   high   on   the   impulsive-­‐antisocial   factor   of   psychopathy   during   reward   anticipation,  but  not  during  reward  outcome.  These  two  studies  stress  the  importance  of   two  different  aspects  of  reward  processing  in  people  with  impulsive  personality  traits.   Because   differential   activation   patterns   do   not   necessarily   arise   from   differences   in   overall   activity,   but   can   also   be   due   to   differences   in   functional   connectivity,   the   univariate   approach   of   Buckholtz   et   al.   (2010)   might   not   have   been   able   to   detect   differences  during  the  reward  outcome  phase.  Furthermore,  the  different  findings  might   also  result  from  the  different  types  of  samples  used  in  both  studies.  Whereas  the  current   study   was   focused   on   adolescents,   Buckholtz   and   colleagues   investigated   neural   activations  in  adults.  It  has  been  shown  that  adolescents  react  more  strongly  to  rewards   than  adults  since  reward  systems  such  as  the  nucleus  accumbens  receive  less  inhibition   compared   to   adults,   due   to   the   late   maturation   of   the   prefrontal   cortex   (Casey   et   al.,   2008).   Therefore,   considering   the   different   samples   and   the   focus   on   whole-­‐brain   activation   patterns   in   the   current   study,   while   Buckholtz   and   colleagues   (2010)   only   focused   on   ventral   striatal   activations,   future   studies   are   required   to   provide   more   extensive  insights  into  the  neural  processes  underlying  the  anticipation  and  outcome  of   reward  in  impulsive  and  antisocial  adults  and  adolescents.    

(12)

above   chance   level.   On   the   other   hand   the   specificity   was   rather   high,   with   a   large   number   of   high   CU   subjects   correctly   classified.   While   using   different   classification   methods,   this   study’s   classification   accuracies   are   comparable   to   those   reported   by   Murrie  and  Cornell  (2002),  who  used  self-­‐report  measures.  They  found  that  APSD  Staff   Rating   and   the   MACI   Psychopathy   Content   Scale   measures   predicted   85%   of   high-­‐ psychopathy  youths,  as  assessed  by  the  PCL:YV,  with  an  overall  classification  accuracy  of   65%  (Murrie  &  Cornell,  2002).  This  shows  that  the  use  of  neurobiological  markers  has   the   potential   to   reach   classification   accuracies   comparable   to   more   widely   used   self-­‐ report  measures.  Furthermore,  Sato  and  colleagues  (2011)  obtained  high  classification   results  using  gray  matter  quantification  methods,  with  overall  classification  accuracies   of  80%  and  a  specificity  and  sensitivity  of  80%  and  86.7%  respectively.  However,  while   the   accuracies   reported   in   this   study   are   similar   to   those   reported   for   some   psychological  instruments,  the  use  of  the  extreme  scoring  groups  in  this  study  leads  to   high   inaccuracy   rates   such   that   the   current   methodology   is   not   suitable   for   clinical   or   judicial   decision   making.   Future   studies   with   larger   sample   sizes   should   investigate   whether   the   classification   accuracies   obtained   by   this   study   can   be   improved.   In   addition,  classification  of  functional  MRI  data  and  structural  MRI  data,  as  performed  by   Sato   et   al.   (2011),   may   be   combined   in   future   studies   to   investigate   whether   these   methods  could  be  improved  to  support  clinical  diagnoses.  

 

Limitations  

 

The  lack  of  significant  classifiers  for  total  scores  on  the  YPI  could  be  due  to  the  findings   that   differences   in   reward   and   punishment   anticipation   and   processing   are   only   represented   by   the   CU   and   II   sub-­‐dimensions   of   the   YPI,   and   not   by   the   GM   sub-­‐ dimension.  Furthermore,  it  is  important  to  emphasize  the  multidimensional  character  of   psychopathy.   The   diagnosis   of   psychopathy   requires   high   scores   on   each   of   the   dimensions.   The   large   construct   of   psychopathy   can   thus   be   seen   as   an   assembly   of   a   wide  spectrum  of  personality  traits.  The  two  groups  that  were  formed  based  on  total  YPI   scores   might   therefore   be   too   heterogeneous   for   accurate   classification   results.   In   addition,   a   limitation   of   this   study   is   the   small   sample   size   of   the   groups   used   for   classification   analyses.   In   contrast   to   the   PCL,   the   YPI   does   not   have   a   standardized   cutoff   score   to   identify   people   with   high   levels   of   psychopathic   traits.   We   therefore   formed  our  high  and  low  scoring  groups  by  taking  the  extremes  of  the  population,  which   resulted  in  a  large  reduction  in  the  number  of  subjects  used  for  data  analysis.    

 

Unfortunately,   in   a   very   late   stadium   of   this   study   we   recognized   that   three   out   of   fourteen  subjects  were  incorrectly  assigned  to  both  the  high  and  low  CU  groups  due  a   flawed   CU   scoring   algorithm.   As   a   result,   classification   performance   for   the   CU   sub-­‐ dimension   as   well   as   for   the   YPI   total   scores   has   been   affected   by   this   inaccuracy.   Because  of  the  late  stage  of  the  research  in  which  this  fault  was  discovered,  it  was  not   feasible  to  reanalyze  the  data,  but  this  should  be  done  in  a  future  study.    

(13)

Conclusion  

 

The  present  fMRI  study  has  found  differences  in  neural  activation  patterns  in  antisocial   adolescents   with   callous-­‐unemotional   and   impulsive-­‐irresponsible   psychopathic   traits   during  reward  anticipation  and  during  loss  anticipation  and  processing.  Even  with  small   sample  sizes,  classifiers  performed  above  chance  level  in  discriminating  and  classifying   people  with  high  and  low  levels  of  psychopathic  traits  on  the  CU  and  II  sub-­‐dimensions.   The   accuracies   reported   in   study   shows   that   subtle   differences   within   high-­‐risk   populations   can   be   revealed   using   a   multivariate   approach   and   that   these   differences   can  be  used  to  make  inferences  about  the  levels  of  CU  and  II  traits  on  an  individual  level.     However,   as   the   percentage   of   inaccurate   classification   is   still   rather   high,   further   development   of   this   approach   is   warranted   before   this   method   can   be   used   in   psychopathy  diagnosis.                                                                  

(14)

References    

 

American   Psychiatric   Association   (1994).   Diagnostic   and   statistical   manual   of   mental   disorders.  DSM-­‐IV,  4th  Edn.  Washington  DC:  American  Psychiatric  Association.  

 

Andershed,  H.,  Hodgins,  S.,  &  Tengström,  A.  (2002).  Psychopathic  traits  in  non-­‐referred   youths:   Initial   test   of   a   new   assessment   tool.   In   E.   Blaauw   &   L.   Sheridan   (Eds.),  

Psychopaths:   Current   international   perspectives:   131-­‐158.   The   Hague,   the   Netherlands:  

Elsevier.    

Barry,   C.T.,   Frick,   P.J.,   DeShazo,   T.M.,   McCoy,   M.G.,   Ellis,   M.,   &   Loney,   B.R.   (2000).   The   importance   of   callous-­‐unemotional   traits   for   extending   the   concept   of   psychopathy   to   children.  Journal  of  Abnormal  Psychology,  109:  335-­‐340.  

 

Blair,  K.S.,  Morton,  J.,  Leonard,  A.,  &  Blair,  R.J.R.  (2006).  Impaired  decision-­‐making  on  the   basis   of   both   reward   and   punishment   information   in   individuals   with   psychopathy.  

Personality  and  Individual  Differences,  41:  155-­‐165.  

 

Blair,   R.J.R.,   Mitchel,   D.G.V.,   Leonard,   A.,   Budhani,   S.,   Peschardt,   K.S.,   &   Newman,   C.   (2004).   Passive   avoidance   learning   in   individuals   with   psychopathy:   modulation   by   reward  but  not  by  punishment.  Personality  and  Individual  Differences,  37:  1179-­‐1192.    

Boser,   B.,   Guyon,   I.,   &   Vapnik,   V.   (1992).   A   training   algorithm   for   optimal   margin   classifiers.   Fifth   Annual   Workshop   on   Computational   Learning   Theory.   ACM   Press,   Baltimore:  144-­‐152.  

 

Buckholtz,  J.W.,  Treadway,  M.T.,  Cowan,  R.L.,  Woodward,  N.D.,  Benning,  S.D.,  Li,  R.  et  al.   (2011).   Mesolimbic   dopamine   reward   system   hypersensitivity   in   individuals   with   psychopathic  traits.  Nature  Neuroscience,  13(4):  419-­‐421.  

 

Casey,  B.J.,  Getz,  S.,  &  Galvan,  A.  (2008).  The  adolescent  brain.  Developmental  Review,  28:   62-­‐77.  

 

Cooke,   D.J.   &   Michie,   C.   (2001).   Refining   the   construct   of   psychopathy:   Towards   a   hierarchical  model.  Psychological  Assessment,  13:  171-­‐188.  

 

Coutanche,   M.N.,   Thompson-­‐Schill,   S.L.,   &   Schultz,   R.T.   (2011).   Multi-­‐voxel   pattern   analysis  of  fMRI  data  predicts  clinical  symptom  severity.  Neuroimage,  57:  113-­‐123.    

Dolan,   M.   (2004).   Psychopathic   personality   in   young   people.   Advances   in   Psychiatric  

Treatment,  10:  466-­‐473.  

 

Dolan   M.C.   &   Rennie   C.E.   (2007).   The   relationship   between   psychopathic   traits   measured   by   the   Youth   Psychopathic   trait   Inventory   and   psychopathology   in   a   UK   sample  of  conduct  disordered  boys.  Journal  of  Adolescence,  30:  601-­‐611.  

(15)

Ecker,  C.,  Rocha-­‐Rego,  V.,  Johnston,  P.,  Mourão-­‐Miranda,  J.,  Marquand,  A.,  Daly,  E.M.  et  al.   (2010).  Investigating  the  predictive  value  of  whole-­‐brain  structural  MR  scancs  in  autism:   A  pattern  classification  approach.  Neuroimage,  49:  44-­‐56.  

 

Forsman,  M.,  Lichtenstein,  P.,  Andershed,  H.,  &  Larsson,  H.  (2010).  A  longitudinal  twin   study   of   the   direction   of   effects   between   psychopathic   personality   and   antisocial   behavior.  Journal  of  Child  Psychology  and  Psychiatry,  51(1),  39-­‐47.  

 

Frick,   P.J.   (2009).   Extending   the   construct   of   psychopathy   to   youth:   Implications   for   understanding,   diagnosing,   and   treating   antisocial   children   and   adolescents.   The  

Canadian  Journal  of  Psychiatry,  54:  803-­‐812.  

 

Frick,  P.J.,  Bodin,  S.D.,  &  Barry,  C.T.  (2000).  Psychopathic  traits  and  conduct  problems  in   community   and   clinic-­‐referred   samples   of   children:   Further   development   of   the   Psychopathy  Screening  Device.  Psychological  Assessment,  12:  382-­‐393.  

 

Frick,   P.J.,   Stickle,   T.R.,   Dandreaux,   D.M.,   Farrell,   J.M.,   &   Kimonis,   E.R.   (2005).   Callous-­‐ unemotional   traits   in   predicting   the   severity   and   stability   of   conduct   problems   and   delinquency.  Journal  of  Abnormal  Child  Psychology,  33:  471-­‐487.  

 

Frick,   P.J.   &   Viding,   E.   (2009).   Antisocial   behavior   from   a   developmental   psychopathology  perspective.  Development  and  Psychopathology,  21:  1111-­‐1131.  

 

Frick,  P.J.  &  White,  S.F.  (2008).  Research  Review:  The  importance  of  callous-­‐unemotional   traits   for   developmental   models   of   aggressive   and   antisocial   behavior.   Journal  of  Child  

Psychology  and  Psychiatry,  49:  359-­‐375.  

 

Fu,   C.H.Y.,   Mourão-­‐Miranda,   J.,   Costafreda,   S.G.,   Khanna,   A.,   Marquand,   A.F.,   Williams,   S.C.R.,  &  Brammer,  M.J.  (2008).  Pattern  classification  of  sad  facial  processing:  Toward  the   development   of   neurobiological   markers   in   depression.   Biological   Psychiatry,   63:   656-­‐ 662.  

 

Hare,  R.D.  &  Neumann,  C.S.  (2005).  Structural  models  of  psychopathy.  Current  Psychiatry  

Reports,  7:  57-­‐64.  

 

Knutson,  B.,  Fong,  G.W.,  Adams,  C.M.,  Varner,  J.L.,  &  Hommer,  D.  (2001).  Dissociation  of   reward   anticipation   and   outcome   with   event-­‐related   fMRI.   Neuroreport,  12(17):  3683-­‐ 3687.  

 

Loeber,   R.,   Burke,   J.,   &   Pardini,   D.A.   (2009).   Perspectives   on   oppositional   defiant   disorder,   conduct   disorder,   and   psychopathic   features.   Journal  of  Child  Psychology  and  

Psychiatry,  50:  133-­‐142.  

 

Lykken,   D.T.   (1995).   The   antisocial   personalities.   Hillsdale,   NJ:   Lawrence   Erlbaum   Associates.  

 

(16)

Marini,   V.A.   &   Stickle,   T.R.   (2010).   Evidence   for   deficits   in   reward   responsivity   in   antisocial  youth  with  callous-­‐unemotional  traits.  Personality  Disorders:  Theory,  Research,  

and  Treatment,  1:  218-­‐229.  

 

Modinos,   G.,   Pettersson-­‐Yeo,   W.,   Allen,   P.,   McGuire,   P.K.,   Aleman,   A.,   &   Mechelli,   A.   (2012).   Multivariate   pattern   classification   reveals   differential   brain   activation   during   emotional   processing   in   individuals   with   psychosis   proneness.   Neuroimage,  59:   3033-­‐ 3041.  

 

Mourão-­‐Miranda,   J.,   Hardoon,   D.R.,   Hahn,   T.,   Marquand,   A.F.,   Williams,   S.C.R.,   Shawe-­‐ Taylor,  J.,  &  Brammer,  M.  (2011).  Patient  classification  as  an  outlier  detection  problem:   An  application  of  the  one-­‐class  support  vector  machine.  Neuroimage,  58:  793-­‐804.  

 

Mur,  M.,  Bandettini,  P.A.,  &  Kriegeskorte,  N.  (2009).  Revealing  representational  content   with   pattern-­‐information   fMRI   –   an   introductory   guide.   Social   Cognitive   and   Affective  

Neuroscience,  4:  101-­‐109.  

 

Murrie,  D.C.  &  Cornell,  D.G.  (2002).  Psychopathy  screening  of  incarcerated  juveniles:  A   comparison  of  measures.  Psychological  Assessment,  14:  390-­‐396.  

 

O’Brien,  B.S.  &  Frick,  P.J.  (1996).  Reward  dominance:  Associations  with  anxiety,  conduct   problems,   and   psychopathy   in   children.   Journal  of  Abnormal  Child  Psychology,  24:   223-­‐ 240.  

 

Salekin,  R.T.,  &  Frick,  P.J.  (2005).  Psychopathy  in  children  and  adolescents:  The  need  for   a  developmental  perspective.  Journal  of  Abnormal  Child  Psychology,  33:  403-­‐409.  

 

Sato,  J.R.,  de  Oliveira-­‐Souza,  R.,  Thomaz,  C.E.,  Basílio,  R.,  Bramati,  I.E.,  Amaro  Jr.,  E.  et  al.   (2011).   Identification   of   psychopathic   individuals   using   pattern   classification   of   MRI   images.  Social  Neuroscience,  iFirst:  1-­‐13.  

 

Shaffer,   D.,   Fisher,   P.,   Lucas,   C.P.,   Dulcan,   M.K.,   &   Schwab-­‐Stone,   M.E.   (2000).   NIMH   Diagnostic   Interview   Schedule   for   Children   Version   IV   (NIMH   DISC-­‐IV):   Description,   differences  from  previous  versions,  and  reliability  of  some  common  diagnoses.  Journal  of  

the  American  Academy  of  Child  and  Adolescent  Psychiatry,  39(1),  28-­‐38.  

 

Skeem,   J.L.   &   Cauffman,   E.   (2003).   Views   of   the   downward   extension:   Comparing   the   Youth   Version   of   the   Psychopathy   Checklist   with   the   Youth   Psychopathic   traits   Inventory.  Behavioral  Sciences  and  the  Law,  21:  737-­‐770.  

 

Van   Domburgh,   L.,   Vermeiren,   R.,   Blokland,   A.A.J.,   &   Doreleijers,   T.A.H.   (2009).   Delinquent  development  in  Dutch  childhood  arrestees:  Developmental  trajectories,  risk   factors   and   co-­‐morbidity   with   adverse   outcomes   during   adolescence.   Journal   of  

Abnormal  Child  Psychology,  37:  93-­‐105.  

   

Referenties

GERELATEERDE DOCUMENTEN

&lt;http://www.mr-online.nl/snelrecht/bestuursrecht/25405-misbruik-van-procesrecht&gt;, 19 december 2014. Parlementaire geschiedenis van de Awb, ‘PG Awb digitaal’,

This dissertation has studied the relationship between traits of psychopathy and the behavior of entrepreneurs using existent literature to analyze case studies using secondary

• For classifiers based on RBF networks the degree of novelty of an input pattern can accu- rately be determined by an Gaussian mixture density model integrated in the network. This

After accounting for psychological distress (which was strongly associated with the DERS factor), greater levels of psychopathy were also predicted by greater difficulties in

In the present study, child molesters, (non-sex) violent offenders and community participants were compared on self-report measures of personality functioning in the self-

More specifically, when con- trolling for the shared variance among psychopathy facets, it was expected that the association between psychopathy and deviant sexual interests would

Fear extinction, persistence of disruptive behavior and psychopathic traits: an fMRI study in adolescents with a history of childhood arrests. Uncertainty computations in the

Pat- tern lengths had an effect when participants were classified into five classes: the system that used sequences of two or more gestures to predict empathy outperformed the