• No results found

Improving the sustainability of the farm-scale Anaerobic Digestion (AD) process through modeling

N/A
N/A
Protected

Academic year: 2021

Share "Improving the sustainability of the farm-scale Anaerobic Digestion (AD) process through modeling"

Copied!
57
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Improving the sustainability of the farm-scale

Anaerobic Digestion (AD) process through

modeling

F. Pierie MSc. B Eng. PhD. candidate

R.M.J. Benders PhD.

Prof. W.J.T. van Gemert PhD.

(2)

Outline

1.Introduction

2.Method and model

3.Case study results

4.Conclusions

(3)

Goal: Researching the integration

of biogas production and use in a smart, flexible and decentralized (bio)gas grid. Gas canister market Consumers Waste producers Gas canister truck Gas upgrading Greenhouse

Gas injection point

Farm Biogas production Smart monitoring Solar PV Wind

(4)

Within this presentation sustainability is defined as

“strong sustainability”

(Elkington 1999; Christodoulou 2012).

Definition sustainability

Profit

People

Planet

(5)

Research question / findings

How to improve sustainability of AD

green gas production pathways?

Main findings:

1) Not all local biomass sources can be used

2) There is a gap between energy potential and

energy gained from biomass

3) Use local biomass byproducts for AD process

4) Symbiotic systems can be sustainable and

(6)

The AD green gas

pathway

(7)

In theory

Green gas production Anaerobic Digestion Transport Feedstocks Green gas injection

(8)

In theory

Green gas production Anaerobic Digestion Transport Feedstocks Green gas injection

(9)

In theory

Green gas production Anaerobic Digestion Transport Feedstocks Green gas injection

(10)
(11)
(12)

Theory

and

(13)
(14)

Methodology in model

Measuring the sustainability of biogas

production pathways

• Modular approach

- Material and Energy Flow Analysis

- Attributed Life Cycle Analysis

- Financial analysis NPV

(15)

Method: Modular approach

Example of

Sub-module

BIOMASS Manure Maize TRANSPORT Tractor Truck PRODUCTION Co-digestion UPGRADING Scrubbing Membranes MODULE Sub-module Truck Grass Gasification Alternative Sub-modules Absorption

Main route Alternative route

Source: Pierie et al., 2016

Energy

Biomass

Materials

Emissions

Digestate

Biogas

(16)

Method: Sub-module

NPV (P)EROI Carbon Footprint

Sustainability expressed in

Material Flow Analysis

Direct Material and Energy Flow Analysis

Indirect Material and Energy Flow Analysis

Attributed Life Cycle Analysis (SimaPro / EcoInvent)

Biomass Biogas

Energy use

Energy production

Constructions Source: Pierie et al., 2016

(17)

1) (P)EROI

(Process) Energy Returned on Invested in GJ/GJ

Energy in

biomass

Process

energy

consumed

Process

Useful

energy

produced

Internal

energy use

System boundary

𝑃 𝐸𝑅𝑂𝐼 =

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑔𝑎𝑠 𝑔𝑟𝑖𝑑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

=

𝐺𝐽

𝐺𝐽

(18)

2) GWP(100)

Carbon footprint GWP(100) in kgCO2eq/GJ

CO2 CO2

Fossil emissions

Increase in GWP

BIOMASS

System boundary

Useful energy

produced

𝐺𝑊𝑃(100) =

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑

=

𝑘𝑔𝐶𝑂2𝑒𝑞

𝐺𝐽

(19)

3) EcoPoints

Human health

Resources

Eco-systems

System boundary

Useful energy

produced

Environmental impact overall (ReCiPe) in EcoPoints Pt/GJ

(20)
(21)
(22)
(23)
(24)

Scenario: Biogas pathway

Green gas production AD

Transport Feedstocks

Locations

Within this scenario:

1) Anaerobic Digestion process is used

2) Biogas is upgraded to bio-methane at gas grid quality (green gas)

3) The green gas is injected into the gas grid

(25)

Scenario: Biomass location

Green gas production AD

Transport Feedstocks

(26)

Scenario: Feedstock and transport

Green gas production AD

Transport Feedstocks

Locations

(27)

Results:

Local bio-energy availability

and green gas production

(28)

0%

2%

4%

6%

8%

10%

Theoretical bio-energy

yield

Energy in feedstock

Green gas

Results: Local bio-energy availability

Loca

l demand

(%)

1) Low quality biomass

2) Conversion

losses

1) There is a gap between energy potential and energy gained from biomass

(29)
(30)

Results: Effect of additional manure input

Source: Pierie et al., 2016

1) Not all local biomass sources can be used

(31)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

NP

V (

million

)

Results: Green gas pathway

0 1 2 3 4 5 6 7

(P)E

R

OI

(GJ

/GJ)

0 10 20 30 40 50 60

G

WP (kgC

O2eq

/GJ)

0 1 2 3 4 5 6 7 8

Ec

oP

oin

t

(P

t/GJ)

Efficiency

Emissions

Impact

NPV

2) Use local biomass byproducts for AD process

Reference natural gas

(32)

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0

NP

V (

million

)

Results: Green gas pathway

0 1 2 3 4 5 6 7

(P)E

R

OI

(GJ

/GJ)

0 10 20 30 40 50 60

G

WP (kgC

O2eq

/GJ)

0 1 2 3 4 5 6 7 8

Ec

oP

oin

t

(P

t/GJ)

Efficiency

Emissions

Impact

NPV

However…

(33)

Preliminary results:

Improvement of performance

using symbiotic systems

(34)

Scenario: System optimization

Internal fuel Liquid fertilizer Solid fertilizer 1 6 6 4 5 2 Improved insulation Leakage repair Internal electricity Internal heat Additional biogas Manure bypass Heat exchanger Heat pump

Green fertilizer production Green fuel production

Green gas production AD

Transport Feedstocks

Locations

(35)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

NP

V (

million

)

Results: System optimization

0 5 10 15 20 25

(P)E

R

OI

(GJ

/GJ)

-50 -40 -30 -20 -10 0 10 20 30 40

G

WP (kgC

O2eq

/GJ)

-8 -6 -4 -2 0 2 4 6

Ec

oP

oin

t

(P

t/GJ)

Efficiency

Emissions

Impact

NPV

(36)

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

NP

V (

million

)

Results: System optimization

0 5 10 15 20 25

(P)E

R

OI

(GJ

/GJ)

-50 -40 -30 -20 -10 0 10 20 30 40

G

WP (kgC

O2eq

/GJ)

-8 -6 -4 -2 0 2 4 6

Ec

oP

oin

t

(P

t/GJ)

Efficiency

Emissions

Impact

NPV

However…

(37)

Conclusions

From a “strong sustainability” perspective:

• The goal of AD should not be limited to

producing maximum green gas output

• Symbiotic systems can improve the overall

sustainability of the AD process

• Locally available biomass is a scarce resource

which should be used wisely

(38)

Discussions

• AD process complex to model

• Range sensitive values are large within

literature

• There are still emissions from biogas chain,

only less due to replacement scenarios

(39)

QUESTIONS?

Hanze University of Applied Sciences

Research Centre Energy

Frank Pierie

PhD. Researcher

(40)
(41)

1) (P)EROI

(Process) Energy Returned on Invested in GJ/GJ

Energy in

biomass

Process

energy

consumed

Process

Useful

energy

produced

Internal

energy use

System boundary

𝑃 𝐸𝑅𝑂𝐼 =

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑 𝑖𝑛 𝑔𝑎𝑠 𝑔𝑟𝑖𝑑

𝑃𝑟𝑜𝑐𝑒𝑠𝑠 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑠𝑢𝑚𝑒𝑑

=

𝐺𝐽

𝐺𝐽

(42)

2) GWP(100)

Carbon footprint GWP(100) in kgCO2eq/GJ

CO2 CO2

Fossil emissions

Increase in GWP

BIOMASS

System boundary

Useful energy

produced

𝐺𝑊𝑃(100) =

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛

𝐸𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑗𝑒𝑐𝑡𝑒𝑑

=

𝑘𝑔𝐶𝑂2𝑒𝑞

𝐺𝐽

(43)

3) EcoPoints

Human health

Resources

Eco-systems

System boundary

Useful energy

produced

Environmental impact overall (ReCiPe) in EcoPoints Pt/GJ

(44)

4) Net Present Value

Inflation

Cost of capital (R)

Time (25 years)

System boundary

CAPEX (C

0

)

Analysis of profitability scenario in Net Present Value (NPV) in (€)

𝑁𝑃𝑉 =

𝑇

𝑡=1

1+𝑅

𝐶

− 𝐶

0

= €

OPEX

TAX

(NL)

(45)
(46)

Sensitivity

analysis

(47)

(P)EROI

0 2 4 6 8 10 12 (P)EROI (GJ/GJ)

(48)

GWP100

0 10 20 30 40 50 60 70 80 90 100 GWP(100) (kgCO2eq)

(49)

EcoPoints

0 2 4 6 8 10 12 14 16 18 20 EcoPoints (ReCiPe 2012 Pt.)

(50)

Main scenarios

Green gas production AD Transport Feedstocks Locations Internal heat Internal electricity

(51)

Use of local biomass waste flows

Green gas production AD

Transport Feedstocks

Locations

(52)
(53)
(54)
(55)
(56)

System optimization

Green gas production AD

Transport Feedstocks

Locations

(57)

Combination of technologies

Internal heat Internal electricity Internal fuel Liquid fertilizer Solid fertilizer Feedstocks Manures 3 1 6 6 4 Feedstock / Digestate Green gas Biogas Electricity Heat Legend Location of farms 5 2

Referenties

GERELATEERDE DOCUMENTEN

Of patients in the Metropole district 96% had not received a dose of measles vaccine or had unknown vaccination status, and the case-fatality ratio in under-5s was 6.9/1

Hiermee word die aantrekkingskrag wat bestudering van dié genre in die algemeen, maar ook die interpretasie van spesifieke outobiografiese tekste, inhou moontlik goed verduidelik:

The Netherlands Bouwcentrum lnstitute for Housing Studies (IHS) has set up regional training courses in Tanzania, Sri Lanka and Indonesia. These proved to be

In dit hoofdstuk worden actoren beschreven die zijn betrokken bij de ontwikkeling en uitvoering van beleid gericht op de beheersing van risico's die een bedreiging vormen voor

De universiteiten zijn van belang omdat deze de technologie van de toekomst ontwikkelen welke door de onderzoeksinstituten toepasbaar gemaakt moet worden.. De bedrijven

- De 3D slibconcentraties worden geaggregeerd naar de dimensies van het primaire productiemodel. Dit omvat een horizontale aggregatie van 2x2 segmenten in ondiepe gebieden

Geregistreerde verdachten betreffen personen die wegens betrokkenheid bij een misdrijf met de politie in aanraking zijn gekomen (cijfers vanaf 2005 beschikbaar); aangehouden

Building informa- tive data packages to answer these questions requires the following: (I) an improved understanding of the hetero- geneity of clinical cancers and of the