• No results found

Kardinaalfuncties in de topologie

N/A
N/A
Protected

Academic year: 2021

Share "Kardinaalfuncties in de topologie"

Copied!
34
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Kardinaalfuncties in de topologie

Azer Aras

8 juli 2016

Bachelorscriptie

Begeleiding: prof. dr. Jan van Mill

Korteweg-de Vries Instituut voor Wiskunde

(2)

Samenvatting

Kardinaalfuncties zijn functies die aan topologische ruimten een kardinaalgetal toeken-nen, zoals de dichtheid, het karakter en het Lindel¨ofgetal van een ruimte. Sinds de jaren ’60 vind een systematische bestudering van kardinaalfuncties in de topologie plaats en zijn tal van verbanden tussen de kardinaalfuncties aangetoond. In deze scriptie worden verschillende van deze verbanden bewezen, waaronder drie belangrijke resultaten die een bovengrens geven op de kardinaliteit van Hausdorff-ruimten. Eerst wordt een resultaat van De Groot bewezen dat een bovengrens geeft in termen van de erfelijke cellulariteit van een ruimte. De stelling van Hajnal en Juh´asz geeft vervolgens een bovengrens aan de hand van het karakter en de cellulariteit. Tenslotte wordt een beroemd resultaat van Arhangel’ski˘ı bewezen dat een begrenzing van de kardinaliteit aan de hand van het karakter en het Lindel¨ofgetal geeft, waarmee een open probleem van Aleksandrov en Urysohn wordt opgelost.

Titel: Kardinaalfuncties in de topologie Auteur: Azer Aras, 10399100

Begeleiding: prof. dr. Jan van Mill Einddatum: 8 juli 2016

Korteweg-de Vries Instituut voor Wiskunde Universiteit van Amsterdam

(3)

Inhoudsopgave

Inleiding 4

1 Kardinalen, ordinalen en transfiniete inductie 6 1.1 Kardinaalgetallen . . . 6 1.2 Ordinaalgetallen . . . 8 1.3 Transfiniete inductie . . . 10 2 Kardinaalfuncties in de topologie 11 2.1 Scheidingsaxioma’s . . . 11 2.2 Enkele kardinaalfuncties . . . 12 2.3 Verbanden tussen de kardinaalfuncties . . . 14

3 De Stelling van De Groot 19

4 De Stelling van Hajnal-Juh´asz 23 5 De Stelling van Arhangel’ski˘ı 26

Nawoord 30

Populaire samenvatting 31

Bronverwijzing per stelling 33

(4)

Inleiding

Georg Cantor Eind 19e en begin 20e eeuw onderging de wiskunde grote

ver-anderingen. Dit was voor een belangrijk deel te wijten aan de opkomst van de verzamelingenleer, die ontstond uit het werk van Georg Cantor. De verzamelingenleer heeft de moderne wiskunde gesystematiseerd. Vrijwel ieder wiskundig concept, methode en resultaat kan in termen van de axiomatische verzamelingenleer beschreven worden. De beroemde wiskundige David Hilbert noemde het “die wiskundige discipline, die een voortreffelijke rol in onze wetenschap aanneemt, en zijn geweldige invloed op alle gebieden van de wiskunde uitstraalt”[6].

Aan de basis van de verzamelingenleer staat het begrip kar-dinaliteit. Dit begrip generaliseert het idee van de ‘grootte’ van een verzameling naar oneindige verzamelingen. Cantor introdu-ceerde de bijectie als methode om deze grootte van oneindige

verzamelingen te meten. Om deze oneindigheden te representeren bedacht hij de trans-finiete getallen; de kardinalen en de ordinalen.

E´en van de uitvloeisels van de verzamelingenleer is de algemene topologie. Topologie is de tak van de wiskunde die de eigenschappen van ruimtes bestudeert die behouden blijven onder continue vervormingen. Vandaag de dag is het een rijk vakgebied dat met takken in de analyse, algebra en meetkunde essentieel is voor de rest van de wiskunde. Ook de studie van abstracte topologische ruimten in interactie met verzamelingenleer is een belangrijk deelgebied van de topologie, waarin de afgelopen decennia grote vorde-ringen zijn gemaakt [5]. Veel van deze vordevorde-ringen hebben te maken met het concept kardinaalfuncties.

Kardinaalfuncties zijn functies die aan topologische ruimten kardinaalgetallen toeken-nen. Belangrijke topologische begrippen als aftelbare basis, separabel en compact worden door kardinaalfuncties gegeneraliseerd naar hogere kardinaliteiten [3]. Voorbeelden zijn de dichtheid van een topologische ruimte, gedefinieerd als de minimale kardinaliteit van een dichte deelverzameling, en het gewicht van de ruimte, de minimale kardinaliteit van een basis. Kardinaalfuncties maken het mogelijk om op een systematische en elegante manier uitspraken over ondere andere de kardinaliteit van topologische ruimten te for-muleren, generalizeren en bewijzen. Ook maken ze exacte kwantitatieve vergelijkingen tussen verschillende topologische eigenschappen mogelijk. Hierdoor vervullen de kardi-naalfuncties een belangrijke rol in de verzamelingstheoretische topologie. Hun belang wordt door de topoloog Hodel als volgt omschreven: “experience indicates that the idea of a cardinal function is one of the most useful and important unifying concepts in all

(5)

Johannes de Groot De systematische bestudering van kardinaalfuncties begon in de

jaren ’60 van de vorige eeuw. Amsterdam was ´e´en van de be-langrijkste broedplaatsen van dit vakgebied, met name door de bijdragen van professor Johannes de Groot. In 1965 verscheen zijn artikel Discrete subspaces of Hausdorff spaces waarin hij nieuwe kardinaalfuncties introduceerde en hiermee onder andere een verband vond tussen de kardinaliteit en het aantal discrete deelverzamelingen van een reguliere ruimte.

Het artikel van De Groot werd onder andere met veel interesse gelezen door de Hongaarse wiskundigen Istv´an Juh´asz en Andr´as Hajnal. Zij begonnen een correspondentie met De Groot en wer-den door hem uitgenodigd in Amsterdam. In de daaropvolgende jaren publiceerden zij twee artikelen waarin zij zijn werk aan-zienlijk uitbreidden. Ze bewezen onder andere drie fundamen-tele ongelijkheden die een bovengrens geven op de kardinaliteit van bepaalde topologische ruimten.

Een andere, en wellicht de belangrijkste ongelijkheid in de theorie van kardinaalfunc-ties werd in 1969 bewezen door de Russische wiskundige Alexander Arhangelski˘ı. Zijn stelling geeft een bovengrens op de kardinaliteit van Hausdorff-ruimten in termen van hun karakter en Lindel¨ofgetal. In de daaropvolgende decennia zijn vele variaties en ge-neralisaties van deze stelling verschenen.

Het werk van bovenstaande wiskundigen staat centraal in deze scriptie, maar is slechts een kleine selectie uit het grote vakgebied dat kardinaalfuncties in de topologie inmiddels is. Het boek [2] van Juh´asz is bijvoorbeeld volledig gewijd aan kardinaalfuncties in de topologie, en artikelen in dit vakgebied verschijnen tot op vandaag de dag.

Deze scriptie begint met een overzicht van de belangrijkste eigenschappen van kardinaal-en ordinaalgetallkardinaal-en kardinaal-en ekardinaal-en korte introductie van scheidingsaxioma’s. Vervolgkardinaal-ens wordkardinaal-en de belangrijkste kardinaalfuncties beschreven en worden enkele verbanden tussen deze functies aangetoond, waaronder de stelling van ˘Cech-Pos´pi˘sil. In de daaropvolgende hoofdstukken staan drie grote stellingen centraal die ieder een bovengrens geven op de kardinaliteit van Hausdorff-ruimtes. In hoofdstuk 3 wordt een resultaat van De Groot uit 1965 bewezen. Hoofdstuk 4 behandelt ´e´en van de resultaten van Hajnal en Juh´asz uit 1967. Tot slot wordt in hoofdstuk 5 de beroemde stelling van Arhangel’ski˘ı bewezen. In het nawoord is aandacht voor de nasleep van deze resultaten.

Deze scriptie is tot stand gekomen onder begeleiding van prof. Jan van Mill, hoogleraar topologie aan de Universiteit van Amsterdam. Graag wil ik hem bedanken voor zijn grote betrokkenheid bij dit project, de tijd en moeite die hij erin heeft gestoken, en zijn enthousiasmerende uitleg die me vaak verder heeft geholpen.

(6)

1 Kardinalen, ordinalen en

transfiniete inductie

De stellingen die in deze scriptie worden bestudeerd doen een uitspraak over de kardinali-teit van topologische ruimtes. In de bewijzen van deze stellingen wordt veelvuldig gebruik gemaakt van transfiniete inductie, een vorm van inductie aan de hand van ordinaalgetal-len. In dit hoofdstuk worden daarom de kardinaal- en ordinaalgetallen ge¨ıntroduceerd, gevolgd door enkele belangrijke begrippen als welordeningen en transfiniete inductie. Hierbij wordt de appendix uit [1] gevolgd, aangevuld met enkele resultaten uit [7].

1.1 Kardinaalgetallen

Wat is de grootte, of kardinaliteit, van een verzameling? Voor eindige verzamelingen is deze vraag eenvoudig te beantwoorden door het aantal elementen te tellen. Lange tijd werd gedacht dat deze vraag geen betekenisvol antwoord had voor oneindige verzame-lingen. Eind 19e eeuw ontwikkelde Georg Cantor echter methodes om ook van oneindige verzamelingen de kardinaliteit te vergelijken. Dat deed hij aan de hand van de volgende definitie:

Definitie 1.1. Twee verzamelingen A en B zijn gelijkmachtig als er een bijectie f : A → B bestaat.

Omdat de identiteitsafbeelding een bijectie is, iedere bijectie een bijectieve inverse heeft en de samenstelling van twee bijecties bijectief is, is gelijkmachtigheid een equi-valentierelatie op de klasse van alle verzamelingen. De equivalentieklasse van een ver-zameling A heet de kardinaliteit of het kardinaalgetal van A en wordt genoteerd als |A|.

Definitie 1.2.

(a) 0 is het kardinaalgetal van ∅.

(b) Voor alle n ∈ N is n het kardinaalgetal van {0, 1, ..., n − 1}. (c) ℵ0 is het kardinaalgetal van N.

(d) c is het kardinaalgetal van R.

(7)

machts-Definitie 1.3. Zij {κi}i∈I een verzameling kardinaalgetallen en zij {Ai}i∈I een collectie

verzamelingen zodanig dat |Ai| = κi. Dan is

(a) P i∈Iκi = | S i∈I{i} × Ai| (b) Q i∈Iκi = | Q i∈IAi|

Voor verzamelingen A en B is AB de verzameling van alle functies van B naar A.

Definitie 1.4. Zij κ en λ kardinaalgetallen en A en B verzamelingen zodanig dat |A| = κ en |B| = λ. Dan is κλ = |AB|.

Voor kardinaalgetallen gelden veel van de rekenregels die ook voor de natuurlijke getallen gelden.

Stelling 1.5. Zij κ, λ en µ kardinaalgetallen. Dan geldt: (a) κ + λ = λ + κ (b) (κ + λ) + µ = κ + (λ + µ) = κ + λ + µ (c) κ · λ = λ · κ (d) (κ · λ) · µ = κ · (λ · µ) = κ · λ · µ (e) κλ+µ= κλ+ κµ (f ) (κλ)µ = κλ·µ

We beschouwen nu een manier om de klasse van kardinaalgetallen te ordenen. We beginnen met de definitie van een ordening.

Definitie 1.6. Zij A een verzameling en a, b, c ∈ A. Een ordening op A is een binaire relatie ≤ waarvoor geldt:

(a) ≤ is reflexief: a ≤ a.

(b) ≤ is transitief: Als a ≤ b en b ≤ c, dan a ≤ c.

(c) ≤ is antisymmetrisch: Als a ≤ b en b ≤ a, dan a = b.

Als voor alle a, b ∈ A geldt dat a ≤ b of b ≤ a, dan is ≤ een totale ordening of lineaire ordening. Als bovendien geldt dat iedere niet-lege deelverzameling B ⊆ A een element x bevat zodat x ≤ b voor alle b ∈ B, dan is ≤ een welordening. (A, ≤) is dan een welgeordende verzameling.

De volgende relatie is een ordening op de klasse van kardinaalgetallen.

Definitie 1.7. Zij κ en λ kardinaalgetallen met κ = |A| en λ = |B|. Dan is κ ≤ λ dan en slechts dan als er een injectie f : A → B bestaat. Als κ ≤ λ en κ 6= λ, dan κ < λ.

(8)

Reflexiviteit en transitiviteit van deze relatie zijn eenvoudig na te gaan. Het feit dat de relatie ook antisymmetrisch is staat bekend als de Stelling van Cantor-Bernstein. Stelling 1.8 (Cantor-Bernstein). Laat κ en λ kardinaalgetallen zijn. Als κ ≤ λ en λ ≤ κ, dan κ = λ.

De volgende stelling laat zien dat ≤ een totale ordening is.

Stelling 1.9. Laat κ en λ kardinaalgetallen zijn. Dan κ ≤ λ of λ ≤ κ. Er geldt zelfs dat ≤ een welordening op de klasse van kardinaalgetallen is. Stelling 1.10. De kardinaalgetallen worden welgeordend door ≤.

Een eigenschap waar in deze scriptie veelvuldig gebruik van wordt gemaakt is de volgende.

Stelling 1.11. Zij κ en λ kardinaalgetallen met κ ≤ λ en λ oneindig. Dan geldt: κ + λ = κ · λ = λ.

Voor ieder kardinaalgetal κ bestaat een kardinaalgetal dat strikt groter is dan κ. Dit volgt uit de Stelling van Cantor.

Stelling 1.12 (Cantor). Zij κ een kardinaalgetal. Dan κ < 2κ.

Gevolg. Zij K een verzameling kardinaalgetallen. Dan is er een kardinaalgetal λ zoda-nig dat κ < λ voor elke κ ∈ K.

Voor ieder kardinaalgetal κ is de klasse {λ : κ < λ} dus niet-leeg. Omdat de kardinaal-getallen welgeordend worden door ≤ is er dus in het bijzonder een kleinste kardinaalgetal dat groter is dan κ. Dit kardinaalgetal heet de opvolger van κ en wordt genoteerd als κ+. In het bijzonder is er een kleinste overaftelbaar kardinaalgetal ℵ+0. Deze wordt genoteerd als ℵ1. De opvolger van ℵ1 is ℵ2, etcetera.

Uit de Stelling van Cantor volgt direct dat κ+ ≤ 2κ. In het bijzonder geldt dus:

ℵ1 ≤ 2ℵ0. Dit laatste kardinaalgetal is de kardinaliteit van R, zoals de volgende stelling

laat zien.

Stelling 1.13. Voor de kardinaliteit van R geldt: c = 2ℵ0.

1.2 Ordinaalgetallen

Het concept kardinaalgetal kan worden verfijnd door lineaire ordeningen op verzamelin-gen te beschouwen. Beschouw de volverzamelin-gende equivalentierelatie op de klasse van lineair geordende verzamelingen.

(9)

(a) Een afbeelding f : X → Y heet ordebewarend als voor alle x1, x2 ∈ X met x1 < x2

geldt dat f (x1) < f (x2).

(b) (X, ≤) en (Y, ≤) heten orde-isomorf als er een ordebewarende bijectie f : X → Y bestaat.

Orde-isomorfie is een equivalentierelatie op de klasse van lineair geordende verzame-lingen. De equivalentieklasse van (X, ≤) wordt genoteerd als [X, ≤]. Als (X, ≤) een welordening is, heet dit het ordinaalgetal van (X, ≤).

Definitie 1.15.

(a) 0 is het ordinaalgetal van ∅.

(b) Voor alle n ∈ N is n het ordinaalgetal van {0, 1, ..., n − 1}. (c) Het ordinaalgetal van N is ω0 of ω.

Net als bij de kardinaalgetallen kan op de klasse van ordinaalgetallen een ordening worden gedefinieerd. Hiertoe wordt eerst het begrip beginstuk ge¨ıntroduceerd.

Definitie 1.16. Zij (X, ≤) een geordende verzameling. Een deelverzameling A van X heet een beginstuk van (X, ≤) als voor alle a ∈ A en alle x ∈ X met x ≤ a geldt dat x ∈ A.

Definitie 1.17. Laat α en β ordinaalgetallen zijn, zeg α = [X, ≤] en β = [Y, ≤]. Dan is α ≤ β dan en slechts dan als er een ordebewarende f : X → Y bestaat zodanig dat f [X] een beginstuk is van (Y, ≤).

Ook de ordinaalgetallen worden totaal geordend en zelfs welgeordend door de ≤-relatie, zoals uit de volgende stellingen blijkt.

Stelling 1.18. Laat α en β kardinaalgetallen zijn. Dan α ≤ β of β ≤ α. Stelling 1.19. De ordinaalgetallen worden welgeordend door ≤.

Als α een ordinaalgetal is, dan wordt de voorgangersverzameling van α gedefinieerd door W (α) = {β : β < α}. De volgende stelling zegt dat W (α) een representant van α is.

Stelling 1.20. [W (α), ≤] = α.

Omdat iedere oneindige verzameling op verschillende manieren welgeordend kan wor-den, zijn er vele ordinaalgetallen met dezelfde kardinaliteit. Bijvoorbeeld |ω| = |ω + 1| = |ω + 2| = ...|ω + ω| = ℵ0. Het kleinste ordinaalgetal van een bepaalde kardinaliteit

wordt een begingetal genoemd. De begingetallen kunnen beschouwd worden als repre-sentanten van de kardinaalgetallen. In deze benadering zijn de kardinaalgetallen dus een deelklasse van de ordinaalgetallen. Voor ieder ordinaalgetal α wordt het begingetal van kardinaliteit ℵα genoteerd als ωα.

(10)

Tot slot richten we ons op een stelling die een uitspraak doet over het limiet van een rij ordinaalgetallen. Dit resultaat draait om het begrip regulier kardinaalgetal en is zeer nuttig bij het bewijzen van de hoofdstellingen van deze scriptie.

De volgende definitie maakt gebruik van het begrip limietordinaal. Een ordinaalgetal α is een opvolgerordinaal als er een ordinaalgetal β bestaat zodat α = β + 1. Een limiet-ordinaal is een limiet-ordinaalgetal dat geen opvolgerlimiet-ordinaal is. Een oneindig kardinaalgetal ℵα heet een opvolgerkardinaal als α een opvolgerordinaal is en een limietkardinaal als α

een limietordinaal is.

Definitie 1.21. Een oneindig kardinaalgetal κ heet singulier als er een stijgende trans-finiete rij (αν : ν < θ) van ordinalen αν < κ bestaat, waarvan de lengte θ een

limietor-dinaal kleiner dan κ is, en κ = limν→θαν. Een oneindig kardinaalgetal dat niet singulier

is heet regulier.

Stelling 1.22. Iedere opvolgerkardinaal ℵα+1 is regulier.

1.3 Transfiniete inductie

Iedere wiskundestudent is al vroeg bekend met het principe van volledige inductie. Dit principe wordt gebruikt om te bewijzen dat een uitspraak geldt voor alle natuurlijke getallen. Het principe bestaat uit twee stappen. Met de basisstap wordt bewezen dat de stelling geldt voor ´e´en geval, meestal n = 0 of n = 1. Met de inductiestap wordt vervolgens bewezen dat de stelling geldt voor n + 1 als deze geldt voor n.

Deze methode van bewijzen is mogelijk omdat ieder natuurlijk getal n een voorganger n − 1 heeft. Voor een algemene welgeordende verzameling, waarvan we de elementen in-dexeren met ordinaalgetallen, is deze methode niet toereikend. Niet ieder ordinaalgetal heeft immers een directe voorganger, zoals we in de vorige paragraaf hebben gezien. Toch kan het inductieprincipe uitgebreid worden, waarmee het mogelijk wordt om uitspraken te bewijzen voor iedere welgeordende verzameling. Er is dan sprake van transfiniete in-ductie. De hoofdstellingen van deze scriptie zullen aan de hand van dit principe bewezen worden.

Stelling 1.23 (Transfiniete inductie). Zij P(x) een eigenschap en neem aan dat voor alle ordinalen α geldt:

Als P(β) voor alle β < α, dan P(α) Dan P(α) voor alle ordinaalgetallen α.

Bewijs. Stel dat er een ordinaalgetal γ bestaat dat niet de eigenschap P heeft. Noem de verzameling van alle ordinaalgetallen β ≤ γ die niet eigenschap P hebben S. Omdat de ordinaalgetallen welgeordend zijn heeft S een kleinste element α. Voor alle β < α geldt dus P (β). Volgens de aanname van de stelling geldt dan P (α), maar dan α /∈ S. Tegenspraak.

(11)

2 Kardinaalfuncties in de topologie

Veel belangrijke topologische eigenschappen worden beschreven in termen van aftelbare of eindige verzamelingen. Zo is een ruimte compact als iedere open overdekking een eindige deeloverdekking heeft en separabel als hij een aftelbare dichte deelverzameling bevat. Ook CI- en CII-ruimten worden gedefinieerd in termen van aftelbaarheid.

Dergelijke eigenschappen kunnen gegeneraliseerd worden naar hogere kardinaliteiten aan de hand van kardinaalfuncties. In dit hoofdstuk worden de belangrijkte kardinaal-functies gedefinieerd en enkele verbanden tussen hen aangetoond. Veel stellingen met betrekking tot de kardinaalfuncties gelden echter alleen voor ruimtes die aan bepaalde scheidingsaxioma’s voldoen. We beginnen daarom met een introductie van deze axi-oma’s.

2.1 Scheidingsaxioma’s

Over een ruimte met de indiscrete topologie valt in topologische zin niet veel interessants te zeggen. Deze ruimte heeft immers maar twee open verzamelingen, waardoor slechts weinig eigenschappen van de ruimte in termen van de topologie te beschrijven zijn. Om een ruimte topologisch interessant te maken is het daarom nodig dat een ruimte voldoende open verzamelingen bevat, in ieder geval voldoende om in bepaalde mate de elementen van de onderliggende verzameling te kunnen onderscheiden. De mate waarin dit mogelijk is wordt beschreven door zogenaamde scheidingsaxioma’s.

Scheidingsaxioma’s worden genoteerd als Ti, met i een index. De letter T in deze

terminologie is afkomstig van de Duitse benaming van een scheidingsaxioma, Trennungs-axiom.

Veel resultaten in de topologie gelden alleen in ruimtes die aan bepaalde scheidings-axioma’s voldoen. Dit geldt ook voor belangrijke stellingen in het vakgebied van kardi-naalfuncties. In deze paragraaf worden daarom enkele van deze axioma’s gedefinieerd. Het zwakste scheidingsaxioma is de T0-eigenschap.

Definitie 2.1. Een topologische ruimte X heet een T0-ruimte als voor alle x, y ∈ X

met x 6= y er een open verzameling U is die maar ´e´en van de twee punten x en y bevat. Een ruimte die niet T0 is, is bijvoorbeeld een ruimte X met meer dan ´e´en punt en de

indiscrete topologie. Voor ieder paar x, y ∈ X is dan X de enige open verzameling die x bevat, maar deze bevat ook y. De volgende eis is equivalent aan het T0-axioma.

Stelling 2.2. X is T0 dan en slechts dan als voor alle x, y ∈ X met x 6= y geldt dat

(12)

Een sterker scheidingsaxioma ontstaat door te eisen dat beide punten x en y een omgeving hebben die het andere punt niet bevat.

Definitie 2.3. Een topologische ruimte X heet een T1-ruimte als voor elk tweetal

ver-schillende punten x, y ∈ X een omgeving U van x bestaat met y /∈ U .

Een alternatieve karakterisering van T1-ruimtes wordt gegeven door de volgende stelling.

Stelling 2.4. X is een T1-ruimte dan en slechts dan als {x} gesloten is voor elke x ∈ X.

Een belangrijke klasse van topologische ruimtes zijn de zogenaamde Hausdorff-ruimtes. Ook de belangrijkste stellingen van deze scriptie doen alleen een uitspraak over ruimtes die aan het Hausdorff-axioma voldoen.

Definitie 2.5. Een topologische ruimte X heet een T2-ruimte of Hausdorff-ruimte als

voor elk tweetal punten x, y ∈ X omgevingen U van x en V van y bestaan zodat U ∩ V = ∅.

Stelling 2.6. Elke Hausdorff-ruimte is T1.

E´en van de nuttige eigenschappen van Hausdorff-ruimtes is dat convergente rijtjes in deze ruimtes een uniek limiet hebben. Dit hoeft in algemene T1-ruimtes niet het geval

te zijn.

Tot slot bekijken we reguliere ruimtes, waarin punten niet alleen van elkaar kunnen worden gescheiden, maar ook van gesloten verzamelingen.

Definitie 2.7. Een topologische ruimte X heet een T3-ruimte of een reguliere ruimte

als X een T1-ruimte is en er voor elke gesloten deelverzameling F van X en elke x /∈ F

open verzamelingen U en V bestaan zodanig dat x ∈ U , F ⊆ V en U ∩ V = ∅. De volgende stelling geeft een equivalente definitie van reguliere ruimtes.

Stelling 2.8. X is een T3-ruimte dan en slechts dan als voor elke x ∈ X en elke

omgeving U van x een open omgeving V van x bestaat zodanig dat x ∈ V ⊂ V ⊂ U . Er zijn nog meer scheidingsaxioma’s, zoals T4 en T5 en ook T212 en T312. Deze spelen

echter geen rol in deze scriptie en worden hier daarom niet behandeld.

2.2 Enkele kardinaalfuncties

We richten ons nu op de functies die in deze scriptie centraal staan, de kardinaalfuncties. We beginnen met de definitie en bekijken vervolgens enkele belangrijke voorbeelden. Definitie 2.9. Een kardinaalfunctie is een functie die aan iedere topologische ruimte X een kardinaalgetal f (X) toewijst, zodanig dat f (X) = f (Y ) als X en Y homeomorf zijn.

(13)

Een voorbeeld van een kardinaalfunctie is de kardinaliteit van de topologie van een ruimte X:

o(X) = |T (X)|

Het gewicht w(X) van een ruimte X is gedefinieerd als: w(X) = min{|B| : B is een basis van X}

Het bestaan van dit minimum wordt gegarandeerd door het feit dat de kardinaalgetallen welgeordend worden door de ≤-relatie. Als w(X) = ℵ0, dan heet X een CII-ruimte.

Deze terminologie is afkomstig van de Engelse benaming voor een dergelijke ruimte, second countable space.

De dichtheid d(X) van een ruimte X is gedefinieerd als: d(X) = min{|D| : D ⊆ X en D = X} Een ruimte X met d(X) = ℵ0 heet een separabele ruimte.

Een cellulaire familie in X is een collectie C ⊆ T (X) \ {∅} waarvan de elementen paarsgewijs disjunct zijn. De bijbehorende kardinaalfunctie is de cellulariteit c(X) van X. Deze is gedefinieerd als:

c(X) = sup{|C| : C ⊂ T (X) \ {∅} is cellulair in X}

Een ruimte waarvoor geldt dat c(X) = ℵ0 heet een ccc-ruimte. De afkorting ‘ccc’ staat

hier voor countable chain condition.

Een gerelateerde kardinaalfunctie is de erfelijke cellulariteit van X. Deze is gedefini-eerd als

hc(X) = sup{c(A) : A ⊆ X}

Deze kardinaalfunctie wordt ook wel de spread van X genoemd en genoteerd als s(X). Een equivalente definitie is de volgende:

hc(X) = sup{|A| : A ⊂ X is een discrete deelruimte}

Dat wil zeggen, hc(X) is het supremum van de kardinaliteit van de deelverzamelingen van X die als deelruimtetopologie de discrete topologie hebben.

Een Hausdorff-ruimte waarvan iedere open overdekking een eindige deeloverdekking heeft wordt een compacte ruimte genoemd. Een generalisatie van dit begrip naar onein-dige kardinaliteiten is het Lindel¨ofgetal L(X) van X. Dit is gedefinieerd als:

L(X) = min{κ : ∀ open overdekking U van X ∃V ⊆ U zodat V X overdekt en |V| ≤ κ} Als L(X) = ℵ0, dan heet X een Lindel¨ofruimte.

De bovenstaande kardinaalfuncties zijn allemaal globaal gedefinieerd, in de zin dat hun definities gebaseerd zijn op topologische eigenschappen die over de ruimte als geheel gaan. Er bestaan ook kardinaalfuncties die gebaseerd zijn op lokale topologische eigenschappen.

(14)

Definitie 2.10. Zij X een topologische ruimte zijn en x ∈ X. Een lokale basis in x is een collectie Bx van open omgevingen van x met de eigenschap dat voor elke omgeving

U van x er een B ∈ Bx is met B ⊆ U .

De minimale kardinaliteit van een lokale basis in een punt x heet het karakter van X in x:

χ(X, x) = min{|Bx| : Bx is een lokale basis in x}

Hieruit volgt het karakter van de ruimte:

χ(X) = sup{χ(X, x) : x ∈ X} Als χ(X) = ℵ0, dan heet X een CI-ruimte, of first countable.

Definitie 2.11. Zij X een topologische ruimte zijn en x ∈ X. Een pseudo-basis in x is een collectie Bx van open omgevingen van x zodanig datT Bx = {x}.

De minimale kardinaliteit van een pseudo-basis in een punt heet het pseudo-karakter van X in x:

ψ(X, x) = min{|Bx| : Bx is een pseudo-basis in x}

Hieruit volgt het pseudo-karakter van de ruimte:

ψ(X) = sup{ψ(X, x) : x ∈ X}

Als aanvulling op de definities van bovenstaande kardinaalfuncties is het belangrijk om op te merken dat er in de literatuur over kardinaalfuncties vanuit wordt gegaan dat deze alleen oneindige waarden kunnen aannemen. Bij ieder van de bovenstaande definities wordt daarom ℵ0 opgeteld, zodat de waarde van iedere kardinaalfunctie ≥ ℵ0

is.

2.3 Verbanden tussen de kardinaalfuncties

Tussen de kardinaalfuncties uit de vorige paragraaf bestaan tal van verbanden. De rest van deze scriptie staat in het teken van stellingen die dergelijke verbanden geven. In de komende hoofdstukken worden resultaten bewezen die een bovengrens geven op de kardinaliteit van Hausdorff-ruimtes. In deze paragraaf bekijken we alvast enkele eenvoudigere relaties tussen de kardinaalfuncties. We beginnen met enkele ongelijkheden die voor iedere topologische ruimte gelden.

Stelling 2.12. Zij X een topologische ruimte. Dan geldt: (a) c(X) ≤ d(X) ≤ w(X) ≤ o(X) ≤ 2|X|.

(b) χ(X) ≤ w(X) ≤ χ(X) · |X|.

(15)

Bewijs.

(a) T (X) ⊆ P(X), dus o(X) ≤ |P(X)| = 2|X|.

Ieder basiselement in een topologische ruimte is open, dus w(X) ≤ o(X).

Zij B een basis voor X van minimale kardinaliteit. Kies uit iedere B ∈ B een willekeurig punt. Noem de verzameling van deze punten D. Er geldt nu dat |D| ≤ w(X). Omdat iedere open verzameling een vereniging van basiselementen is, doorsnijdt D iedere niet-lege open verzameling in X, dus D is dicht. Dus d(X) ≤ w(X).

Zij D ⊆ X een dichte verzameling van minimale kardinaliteit en zij C een cellulaire familie in X. Omdat alle C ∈ C paarsgewijs disjunct en open zijn wordt iedere C ∈ C doorsneden door een element van D dat geen andere C ∈ C doorsnijdt. D heeft dus minstens |C| elementen, dus c(X) ≤ d(X).

(b) Zij B een basis in X van minimale kardinaliteit en zij x ∈ X. Dan is {B ∈ B : x ∈ B} een lokale basis in x. Dus χ(X) ≤ w(X). Zij {Bx : x ∈ X} een collectie

lokale bases, dan is S

x∈XBx een globale basis voor X, dus w(X) ≤ |

S

x∈XBx| ≤

χ(X) · |X|.

(c) X is dicht in zichzelf, dus d(X) ≤ |X|. Zij U een open overdekking van X. Iedere U ∈ U is een vereniging van basiselementen, dus L(X) ≤ w(X). Kies nu voor iedere x ∈ X precies ´e´en element van U dat x bevat. De zo ontstane collectie is een open deeloverdekking van kardinaliteit |X|. Dus L(X) ≤ |X|.

Als aan bepaalde scheidingsaxioma’s is voldaan gelden ook de volgende ongelijkheden. Stelling 2.13. Zij X een T0-ruimte. Dan geldt:

|X| ≤ 2w(X) en |X| ≤ o(X)

Bewijs. Zij B een basis voor X en definieer φ : X → P(B) door φ(x) = {B ∈ B : x ∈ B}. Als x 6= y, dan bestaat er een open verzameling, en dus een basiselement, dat slechts ´e´en van de twee punten bevat, omdat X T0 is. Dan is dus φ(x) 6= φ(y). Dan is φ injectief,

dus |X| ≤ 2w(X).

Definieer nu φ : X → T (X) door φ(X) = X \ {x}. Uit stelling 2.2 volgt dat φ injectief is, dus |X| ≤ o(X).

Stelling 2.14 (Pos´pi˘sil). Zij X een Hausdorff-ruimte. Dan geldt: |X| ≤ 22d(X) en w(X) ≤ o(X) ≤ 222d(X)

Bewijs. Zij S een dichte deelverzameling van X met |S| ≤ d(X). Definieer φ : X → P(P(S)) door φ(x) = {A ⊆ S : x ∈ A}. Omdat X Hausdorff is, hebben alle x, y ∈ X disjuncte open omgevingen. In het bijzonder bestaat er een omgeving U van x zodanig dat y /∈ U . Omdat S iedere open verzameling snijdt bestaat er dus een A ⊆ S zodanig dat x ∈ A, y /∈ A. Daaruit volgt dat φ injectief is, dus |X| ≤ 22d(X)

. Het tweede deel van deze stelling volgt nu uit deel a) van stelling 2.12.

(16)

De bovenstaande stelling geeft een bovengrens op w(X) voor Hausdorff-ruimtes. Juh´asz en Kunen hebben een expliciete Hausdorff-ruimte geconstrueerd met gewicht 222d(X), dus

een betere afschatting is niet mogelijk. Voor reguliere ruimtes bestaat wel een sterkere afschatting. Deze wordt gegeven door de volgende stelling van De Groot. Hierin wordt gebruik gemaakt van het begrip regulier open.

Definitie 2.15. Een open deelverzameling A van een topologische ruimte heet regulier open als Int A = A.

Stelling 2.16 (De Groot). Zij X een reguliere ruimte. Dan geldt: w(X) ≤ 2d(X)

Bewijs. Noteer de verzameling van regulier open deelverzamelingen van X als RO(X). We bewijzen eerst dat RO(X) een basis in X is. Zij x ∈ X en O een open omgeving van x. Omdat X regulier is bestaat er een open U zodanig dat x ∈ U ⊂ U ⊂ O. Dus x ∈ Int U ⊂ O. Nu beweren we dat Int U regulier open is. Int U is een open verzameling die in Int U bevat zit. Dus Int U ⊂ Int Int U . Andersom is U een gesloten verzameling die Int U bevat, dus Int U ⊂ U . Dus Int Int U ⊂ Int U . Hieruit volgt dat Int U regulier open is.

Zij nu S een dichte deelverzameling van X met |S| ≤ d(X). Zij R een regulier open deelverzameling van X en zij A = R ∩ S. Omdat R open en S dicht is geldt A = R ∩ S = R. Dus Int A = Int R = R. Dus RO(X) ⊂ {IntA : A ⊂ S}. Omdat |{IntA : A ⊂ S}| ≤ 2d(X) en RO(X) een basis is volgt dat w(X) ≤ 2d(X).

De volgende stelling van Pos´pi˘sil uit 1937 geeft een bovengrens op de kardinaliteit van Hausdorff-ruimtes in termen van de dichtheid. Dit is een erg nuttig resultaat, dat ge-bruikt zal worden bij het bewijzen van de stellingen van Hajnal-Juh´asz en Arhangel’ski˘ı. Stelling 2.17 (Pos´pi˘sil). Voor iedere Hausdorff-ruimte X geldt: |X| ≤ [d(X)]χ(X).

Bewijs. Zij A een dichte deelverzameling in X, zodanig dat |A| = d(X) en zij {B(x) : x ∈ X} een verzameling lokale bases. Definieer als A0 de collectie van alle deelverzamelingen

van A met kardinaliteit ≤ χ(X). Dan geldt: |A0| ≤ |A|χ(X) = [d(X)]χ(X).

A is dicht in X, dus we kunnen voor iedere U ∈ B(x) een punt a(x, U ) ∈ U ∩ A kiezen. Definieer

A(x) = {a(x, U ) : U ∈ B(x)} ∈ A0

Definieer vervolgens voor iedere x ∈ X de verzameling

A0(x) = {U ∩ A(x) : U ∈ B(x)} ⊂ A0

Voor iedere U, V ∈ B(x) geldt U ∩ A(x) 6= ∅ en V ∩ A(x) 6= ∅, dus V ∩ U ∩ A(x) 6= ∅. Dus x ∈ U ∩ A(x) ⊂ U .

(17)

A0(y) als x 6= y. A0(x) ⊂ A0 en |A0(x)| = |B(x)| ≤ χ(X). Dus het aantal verzamelingen

A0(x) is ≤ |A0|χ(X). Maar er bestaat een A0(x) voor iedere x ∈ X, dus

|X| ≤ |A0|χ(X) ≤ [[d(X)]χ(X)]χ(X) = [d(X)]χ(X)

Ten slotte bekijken we de Stelling van ˘Cech-Pos´pi˘sil. In tegenstelling tot de andere stellingen in deze scriptie geeft deze geen bovengrens, maar een ondergrens op de kardi-naliteit van een topologische ruimte.

Stelling 2.18 ( ˘Cech-Pos´pi˘sil). Zij X een compacte ruimte zodanig dat χ(X, x) ≥ m ≥ ℵ0 voor alle x ∈ X. Dan is |X| ≥ 2m.

Bewijs. Zij τ het begingetal van kardinaliteit m. Definieer voor iedere α ≤ τ de verza-meling D(α) als de verzaverza-meling van alle rijtjes van lengte α met als elementen 0 en 1. Definieer voor iedere f ∈ D(α) en β < α het element fβ ∈ D(β) door fβ(γ) = f (γ) voor

γ < β. Definieer verder voor iedere f ∈ D(α) met α < τ het element fi ∈ D(α + 1) door fi(β) = f (β) voor β < α en fi(α) = i met i = 0, 1.

Definieer nu met transfiniete inductie voor iedere α < τ en iedere f ∈ D(α) een open verzameling Vα(f ) ⊆ X zodanig dat:

Vα+1(fi) ⊂ Vα(f ) voor i = 0, 1 en f ∈ D(α) (2.1)

Vα+1(f0) ∩ Vα+1(f1) = ∅ voor f ∈ D(α) (2.2)

\

β≤α

Vβ(fβ) 6= ∅ voor f ∈ D(α) (2.3)

Neem eerst aan dat τ = ω. Zij V0(f ) = X voor f ∈ D(0) = {∅}. Zij 0 < α < ω en zij

Vβ(f ) gedefinieerd zodat voor iedere β < α en f ∈ D(β) aan bovenstaande eisen is

vol-daan. Zij α = γ + 1 en f ∈ D(γ). Volgens (2.3) is Vγ(f ) =

T

β≤γVβ(fβ) 6= ∅. Daarnaast

kan Vγ(f ) niet uit slechts ´e´en punt bestaan. Stel namelijk dat Vγ(f ) = Tβ≤γVβ(fβ) =

{x}, dan zou {Vβ(fβ)}β≤γ een pseudobasis voor x zijn. Omdat het pseudokarakter in

een compacte ruimte gelijk is aan het karakter, heeft x een eindig karakter, en dit is in strijd met de aanname. Dus Vγ(f ) bevat meer dan ´e´en punt. Kies nu twee willekeurige

punten x, y ∈ Vγ(f ) . Vγ(f ) \ {x} is een open omgeving van y, dus er bestaat een open

omgeving Vα(f0) van y zodanig dat Vα(f0) ⊂ Vγ(f ) \ {x}. Dit volgt uit het feit dat X

compact, en dus regulier, is.

Nu is Vγ(f ) \ Vα(f0) een open omgeving van x, dus bestaat er een open omgeving Vα(f1)

van x, zodanig dat Vα(f1) ⊂ Vγ(f ) \ Vα(f0). Hiermee is voldaan aan (2.1) en (2.2).

Daarnaast isT

β≤αVβ(f i

β) = Vα(fi) niet leeg voor i = 0, 1, omdat het open omgevingen

van y respectievelijk x zijn. Dus is ook voldaan aan (2.3). Bekijk nu voor iedere f ∈ D(ω) de doorsnede T

α<ωVα(fα). Vanwege (2.3) is iedere

eindige doorsnede van elementen uit {Vα(fα)}α<ω niet leeg, dus is de volledige

(18)

inT

α<ωVα(fα) toewijzen.

Neem nu aan dat τ > ω. Volgens het bovenstaande isT

α<ωVα(fα) niet leeg. Daarnaast

kan deze verzameling niet uit ´e´en punt bestaan. Dan zou {Vα(fα) : α < ω} namelijk een

pseudobasis voor dat punt zijn, dus heeft dat punt een aftelbaar pseudokarakter. Omdat X compact is heeft dat punt dan een aftelbaar karakter, maar χ(X, x) ≥ |τ | > |ω| voor alle x ∈ X. We kunnen dus twee punten x en y in T

α<ωVα(fα) kiezen. Daarnaast is T α<ωVα(fα) gesloten, want T α<ωVα(fα) = T α<ωVα(fα), vanwege eigen-schap (2.1). Dus T

α<ωVα(fα) is, net als X, een compacte ruimte met karakter ≥ m

in ieder punt. De inductieprocedure voor τ = ω kan dus binnen T

α<ωVα(fα) herhaald

worden tot de volgende limietstap ω + ω. Als τ > ω + ω volgt nu op dezelfde wijze dat T

α<ω+ωVα(fα) een compacte verzameling is meer dan ´e´en element en karakter ≥ m. Zet

op deze manier de inductie voort voor alle α < τ en wijs aan iedere f ∈ D(τ ) een punt inT

α<τVα(fα) toe.

Zij nu f, g ∈ D(τ ) en f 6= g. Zij verder x het punt dat is toegewezen aan f , en y het punt dat is toegewezen aan g. Dan bestaat er een kleinste α < τ waarop f en g verschillen. Zij α = γ + 1. Dan is x ∈ Vα(fγ0) en y ∈ Vα(gγ1). Vanwege (2.2) zijn deze

verzamelingen disjunct, dus x 6= y. |D(τ )| = 2|τ |, dus |X| ≥ 2m.

De stelling van ˘Cech-Pos´pi˘sil is een resultaat uit 1938. Drie decennia later volgden belangrijke doorbraken in de theorie van kardinaalfuncties, toen enkele stellingen werden bewezen die een bovengrens geven op de kardinaliteit van Hausdorff-ruimtes. Deze stellingen zijn het onderwerp van de komende hoofdstukken.

(19)

3 De Stelling van De Groot

Johannes de Groot In 1942 verscheen het proefschrift Topologische Studi¨en

waarmee Johannes de Groot zijn doctorstitel verwierf. Na enkele jaren als docent in Coevorden en Den Haag te heb-ben gewerkt, werd hij in 1948 hoogleraar aan de Technische Hogeschool in Delft en in 1952 aan de Universiteit van Am-sterdam, waar hij tot aan zijn dood in 1972 zou werken [8]. De Groot domineerde na de Tweede Wereldoorlog ruim twee decennia de Nederlandse topologie. Zijn werk focuste zich op de verzamelingstheoretische topologie en groepen-theorie. Hij vestigde belangrijke resultaten in zijn onderzoek naar onder andere compactificatie, equivalentie van Abelse groepen, en rigide groepen (groepen met alleen triviale au-tomorfismen) [10].

In 1965 verscheen het artikel Discrete subspaces of Haus-dorff spaces. In dit artikel introduceerde De Groot enkele nieuwe en belangrijke kardinaalfuncties zoals spread en

be-wees enkele nieuwe resultaten. Zo toonde hij aan dat iedere Hausdorff-ruimte waarvan iedere deelruimte Lindel¨of is, kardinaliteit ≤ 2ω heeft [3].

De Groot’s artikel was zeer invloedrijk en vormde het begin van de systematische bestudering van kardinaalfuncties in de topologie. Met dit artikel stond De Groot dus aan de basis van dit vakgebied.

In dit hoofdstuk wordt ´e´en van De Groot’s belangrijkste resultaten bewezen, namelijk dat iedere reguliere ruimte kardinaliteit ≤ 22hc(X)

heeft. Dit geldt zelfs voor iedere Hausdorff-ruimte, zoals Hajnal en Juh´asz in 1967 aantoonden. We zullen echter niet de oorspronkelijke methode van De Groot volgen. In plaats daarvan zal de sterkere stelling van Hajnal en Juh´asz bewezen worden aan de hand van twee deelresultaten. Deze deelresultaten maken gebruik van de volgende stelling van ˇSapirovski˘ı.

Lemma 3.1 (ˇSapirovski˘ı). Zij X een topologische ruimte en V een open overdekking. Zij hc(X) ≤ κ. Dan bestaat er een A ⊆ X met |A| ≤ κ en een deelcollectie W ⊆ V met |W| ≤ κ zodanig dat X = A ∪S W.

Bewijs. Stel dat de stelling niet waar is. We defini¨eren een rij {xα : α < κ+} ⊆ X en

een rij {Vα : α < κ+} ⊆ V zodanig dat x0 ∈ V0 en xα ∈ Vα\

 S

β<αVβ ∪ {xβ : β < α}

 voor 0 < α < κ+.

Kies x0 ∈ X willekeurig en kies V0 ∈ V zodanig dat x0 ∈ V0. Deze bestaat omdat V een

(20)

Neem nu aan dat xαen Vα die voldoen aan de eis gedefinieerd zijn voor alle α < α0 < κ+.

Omdat α0 < κ+ geldt dat |{xα : α < α0}| = |{Vα : α < α0}| ≤ κ. Uit de aanname dat

de stelling onwaar is volgt nu dat X \ S

α<α0Vα ∪ {xα : α < α0} 6= ∅, dus kunnen

we een xα0 en een Vα0 kiezen zodanig dat xα0 ∈ Vα0 \

 S

α<α0Vα ∪ {xα : α < α0}.

Bekijk nu Wα0 = Vα0\ {xα : α < α0}. Dit is een open verzameling min een gesloten

ver-zameling, dus open. Er geldt duidelijk dat xα0 ∈ Wα0 Voor alle α < α0 geldt daarnaast

duidelijk dat xα ∈ W/ α0. Voor γ > α0 geldt dat xγ ∈ Vγ\

 S

α<γVα ∪ {xα : α < γ},

dus xγ ∈ V/ α0, dus xγ ∈ W/ α0. Wα0 is dus een open omgeving van xα0 die geen enkele xα

bevat voor α 6= α0. Dus {xα : α < κ+} is een discrete verzameling.

Daarnaast is |{xα : α < κ+}| = κ+, omdat deze verzameling ge¨ındexeerd wordt door de

voorgangersverzameling van κ+. Dus X heeft een discrete deelverzameling met

kardina-liteit κ+, maar dit is in tegenspraak met hc(X) = κ.

De volgende stelling geeft een bovengrens op de kardinaliteit van T1-ruimtes in termen

van de erfelijke cellulariteit en het pseudokarakter. Dit resultaat is voor het eerst bewezen door Hajnal en Juh´asz. Hun oorspronkelijke bewijs maakt gebruik van de Partitiestelling van Erd˝os-Rado [3]. Dit is echter niet de methode die we hier zullen volgen. In plaats daarvan gebruiken we een methode die begin jaren ’70 door ˇSapirovski˘ı en Pol werd ontwikkeld en de standaardmethode is geworden om dergelijke ongelijkheden te bewijzen. Stelling 3.2 (Hajnal-Juh´asz). Voor iedere T1-ruimte X geldt: |X| ≤ 2hc(X)·ψ(X).

Bewijs. Zij X een T1-ruimte en zij m = hc(X) · ψ(X). Kies voor iedere x ∈ X een

collectie U (x) van open verzamelingen zodanig dat T U (x) = {x} en |U (x)| ≤ m. Zij τ het kleinste ordinaalgetal met kardinaliteit m+. We defini¨eren nu met transfiniete inductie een rij A0, A1, ..., Aα,..., α < τ van deelverzamelingen van X zodanig dat:

|Aα| ≤ 2m, Aβ ⊂ Aα voor β < α (3.1)

Voor iedere deelfamilie {Us : s ∈ S} van

[

{U (x) : x ∈ [

β<α

Aβ} met |S| ≤ m

en iedere familie {Bt: t ∈ T } van deelverzamelingen van

[

β<α

Aβ met |T | ≤ m

en |Bt| ≤ m voor alle t ∈ T geldt:

Als X \h [ s∈S Us∪ [ t∈T Bt i 6= ∅, dan Aα\ h [ s∈S Us∪ [ t∈T Bt i 6= ∅ (3.2) Definieer als basisstap A0 = {x} met x ∈ X willekeurig. Uiteraard geldt |A0| ≤ 2m.

Neem nu aan dat de verzamelingen Aα die voldoen aan (3.1) en (3.2) gedefinieerd zijn

voor alle α < α0. Zij

B =[{U (x) : x ∈ [

α<α0

(21)

en definieer: B1 = {{Us : s ∈ S} ⊆ B : |S| ≤ m} B2 = {{Bt: t ∈ T } : Bt⊆ [ α<α0 Aα, |Bt| ≤ m, |T | ≤ m} B = {{Us: s ∈ S}, {Bt: t ∈ T }  ∈ B1× B2 : X \ h [ s∈S Us∪ [ t∈T Bt i 6= ∅} Er geldt: |Aα| ≤ 2m voor α < α0 en |α0| < |τ | = m+. Dus |

S

α<α0Aα| ≤ 2

m. Daarnaast

is |U (x)| ≤ 2m, dus |B| ≤ 2m. B

1 = [B]≤m, dus |B1| ≤ (2m)m = 2m. Verder geldt

|B2| ≤ m · m = m. Dus |B| ≤ 2m· m = 2m.

Kies nu voor ieder element van B een punt in X \hS

s∈SUs ∪

S

t∈T Bt

i

. Noem de verzameling van deze punten D. Definieer nu:

Aα0 = D ∪ [ α<α0 Aα |S α<α0Aα| ≤ 2 m en |D| = |B| ≤ 2m, dus |A α0| ≤ 2

m. Daarnaast geldt duidelijk dat

Aα ⊂ Aα0 voor alle α < α0. Dus Aα0 voldoet aan (3.1).

Voor iedere element uit B bevat D een element uit X \hS

s∈SUs∪ S t∈T Bt i en D ⊂ Aα0, dus Aα0 \ h S s∈SUs∪ S t∈T Bt i

6= ∅, dus Aα0 voldoet aan (3.2).

Tot slot tonen we aan dat A =S

α<τAα gelijk is aan X. Zij M ⊂ A met |M | ≤ m. We

kunnen M aftellen als {mα : α < m} Voor m0 ∈ M bestaat een ordinaalgetal α0 zodat

a0 ∈ Aα0, voor m1 ∈ M bestaat een ordinaalgetal α1 zodat m1 ∈ Aα1, etc. Deze rij

ordinaalgetallen α0, α1, ... heeft een supremum α. De rij heeft lengte ≤ m. |τ | = m+ is

een opvolgerkardinaal, dus regulier, dus τ kan niet het limiet zijn van een rij van lengte m. Dus voor het supremum α van de rij geldt α < τ . Omdat Aβ ⊂ Aα voor alle β < α

volgt nu dat M ⊂ Aα.

Stel nu dat er een q ∈ X \ A bestaat. De complementen van de elementen van U (q) vormen een collectie gesloten verzamelingen {Ft: t ∈ T } zodanig dat X \ {q} = St∈T Ft

en |T | ≤ m. Definieer nu Gt = Ft∩ A en voor iedere p ∈ Gt, zij Up ∈ U (p) zodanig

dat q /∈ Up. {Up : p ∈ Gt} is een open overdekking van Gt, dus volgens Lemma 3.1

bestaan er Pt, Qt⊆ Gt zodanig dat |Pt| ≤ m, |Qt| ≤ m en Gt ⊆ Pt∪Sp∈QtUp. Definieer

S = S{Qt : t ∈ T }. Dan is |S| ≤ m. Er geldt: A ⊆

 S

s∈SUs ∪  St∈T Pt en

q /∈  S

s∈SUs ∪  St∈T Pt, omdat q /∈ Up voor iedere p ∈ Gt en q /∈ Gt.

Omdat |Pt| ≤ m, |Qt| ≤ m en |T | ≤ m geldt dat |St∈T Pt∪ Qt| ≤ m. Dus bestaat er

een α < τ zodanig datS

t∈T Pt∪ Qt ⊆ Aα. Nu geldt: X \

 S

s∈SUs ∪ St∈TPt 6= ∅,

want deze verzameling bevat q, maar Aα\

 S

s∈SUs ∪  St∈T Pt = ∅, want Aα ⊆ A ⊆

 S

s∈SUs ∪  St∈T Pt. Dit is in tegenspraak met (3.2). Dus X = Sα<τAα, dus

|X| = |[

α<τ

(22)

De bovenstaande stelling geeft een bovengrens van de kardinaliteit in termen van de erfelijke cellulariteit en het pseudokarakter. Om het resultaat van De Groot te vinden is nu een bovengrens nodig voor het pseudokarakter in termen van de erfelijke cellulariteit. Deze wordt gegeven door de volgende stelling.

Stelling 3.3 (ˇSapirovski˘ı). Voor iedere Hausdorff-ruimte X geldt: ψ(X) ≤ 2hc(X).

Bewijs. Zij X een Hausdorff-ruimte, hc(X) = κ en p ∈ X. Zij Vq voor iedere q 6= p een

open omgeving zodanig dat p /∈ Vq.

{Vq : q 6= p} is een open overdekking van X \ {p}, dus bestaan er volgens Lemma 3.1

verzamelingen A, B ⊂ X \ {p} met kardinaliteit ≤ κ, zodanig dat X \ {p} ⊆ A ∪S

q∈BVq.

Definieer nu:

VA= {X \ C : C ⊆ A, p /∈ C}, VB = {X \ Vq : q ∈ B}, V = VA∪ VB

Omdat p /∈ C en p /∈ Vq voor alle q ∈ B geldt dat p ∈ V voor alle V ∈ V. Stel

p 6= x ∈T V. Als x ∈ Sq∈BVq, dan x ∈ Vq ⊆ Vq voor een q ∈ B. Dan is dus x /∈T VB.

Tegenspraak. Dus x ∈ A. Omdat X een Hausdorff-ruimte is bestaan er open E en F zodanig dat p ∈ E, x ∈ F en E ∩ F = ∅. Zij U een open omgeving van x. Dan x ∈ (U ∩ F ) ∩ A. Dan is (U ∩ F ) ∩ A = U ∩ (F ∩ A) 6= ∅. Dus x ∈ F ∩ A ⊂ F ⊂ X \ E. Dus p ∈ X \ F ∩ A, maar x /∈ X \ F ∩ A. Dus x /∈ T VA. Tegenspraak. Dus een

dergelijke x bestaat niet, dusT V = {p}, dus V is een pseudo-basis voor p.

|B| ≤ κ, dus |VB| ≤ κ. |A| ≤ κ en VA is een deelverzameling van de machtsverzameling

van A, dus |VA| ≤ 2κ. Dus |V| ≤ 2κ+ κ = 2κ.

Dus ieder element van X heeft een pseudobasis met kardinaliteit ≤ 2κ, dus ψ(X) ≤

2κ.

Uit de bovenstaande resultaten volgt nu de stelling van De Groot, verbeterd door Hajnal en Juh´asz.

Stelling 3.4 (Hajnal-Juh´asz, De Groot voor reguliere X). Voor iedere Hausdorff-ruimte X geldt: |X| ≤ 22hc(X).

Bewijs. Uit stelling 3.2 en 3.3 volgt:

|X| ≤ 2hc(X)·ψ(X)≤ 2hc(X)·2hc(X)

(23)

4 De Stelling van Hajnal-Juh´

asz

Het artikel van De Groot uit 1965 werd met veel interesse gelezen. Het trok in het bij-zonder de aandacht van twee Hongaarse wiskundigen, Andr´as Hajnal en Istv´an Juh´asz. Zij begonnen een correspondentie met De Groot en werden door hem uitgenodigd in Amsterdam. In 1967 en 1969 publiceerden zij het tweedelige artikel Discrete subspaces of topological spaces waarin ze het werk van De Groot aanzienlijk uitbreidden. In deze artikelen bewezen zij onder andere drie fundamentele ongelijkheden in de theorie van kardinaalfuncties [3]. Twee van deze ongelijkheden zijn stelling 3.2 en 3.4 uit het vorige hoofdstuk. In dit hoofdstuk zullen we de derde ongelijkheid bewijzen, die een boven-grens op de kardinaliteit van Hausdorff-ruimtes geeft in termen van het karakter en de cellulariteit.

Andr´as Hajnal en Istv´an Juh´asz

In het bewijs van de stelling van Hajnal en Juh´asz wordt gebruik gemaakt van het volgende lemma.

Lemma 4.1. Zij c(X) = κ en zij V een open collectie in X. Dan bestaat er een deelcollectie W van V zodanig dat |W| ≤ κ en S V ⊆ S W

Bewijs. Zij G de collectie van open, niet-lege verzamelingen die een deelverzameling zijn van een V ∈ V. Beschouw de collectie H van cellulaire deelfamilies van G, partieel geordend door inclusie. Zij F nu een totaal geordende deelcollectie van H. Dan is S F een bovengrens op F . Er geldt immers F ⊆S F voor alle F ∈ F , en voor F1, F2 ∈S F

geldt dat er een F ∈ F bestaat zodanig dat F1, F2 ∈ F , waaruit volgt dat F1∩ F2 = ∅.

Volgens het lemma van Zorn bestaat er nu een maximale cellulaire deelfamilie G0 ⊆ G. Omdat G0 cellulair is geldt |G0| ≤ κ en omdat G0 maximaal is geldtS V ⊆S G0. Immers,

stel dat dit niet zo is, dan bestaat er een V ∈ V zodanig dat V \S G0 6= ∅. Maar deze

(24)

Kies nu voor iedere G ∈ G0 een V ∈ V zodanig dat G ⊆ V . Noem de collectie van deze verzamelingen W. Dan geldt |W| = |G0| ≤ κ en S V ⊆ S G0 S W.

Stelling 4.2 (Hajnal-Juh´asz). Voor iedere Hausdorff-ruimte X geldt: |X| ≤ 2c(X)χ(X).

Bewijs. Zij X een Hausdorff-ruimte en zij m = c(X) · χ(X). Kies voor iedere x ∈ X een lokale basis B(x) met |B(x)| ≤ χ(X) ≤ m.

Zij τ het kleinste ordinaalgetal met kardinaliteit m+. We defini¨eren nu met transfiniete inductie een rij A0, A1, ..., Aα,..., α < τ van gesloten deelverzamelingen van X zodanig

dat:

|Aα| ≤ 2m, Aβ ⊂ Aα voor β < α (4.1)

Voor iedere collectie {Us: s ∈ S} van deelfamilies van

[

{B(x) : x ∈ [

β<α

Aβ}

met |S| ≤ m en |Us| ≤ m voor alle s ∈ S geldt:

Als X \[{[Us: s ∈ S} 6= ∅, dan Aα\

[

{[Us: s ∈ S} 6= ∅ (4.2)

Definieer als basisstap A0 = {x} met x ∈ X willekeurig. Uiteraard geldt |A0| ≤ 2m.

Neem nu aan dat de verzamelingen Aα die voldoen aan (4.1) en (4.2) gedefinieerd zijn

voor alle α < α0. Zij

B =[{B(x) : x ∈ [ α<α0 Aα} en B = {{Us⊂ B : s ∈ S} : |S| ≤ m en |Us| ≤ m ∀s ∈ S en X \ [ {[Us : s ∈ S} 6= ∅}

Kies voor iedere collectie {Us ⊂ B : s ∈ S} ∈ B een punt in X \S{S Us : s ∈ S}. Noem

de verzameling van deze punten B. Definieer nu: Aα0 = B ∪

[

α<α0

Er geldt: |B(x)| ≤ m voor alle x en |α| < 2m. Dus |B| ≤ m · 2m = 2m.

Dus |{Us ⊂ B : |Us| ≤ m}| ≤ (2m)m = 2m. Dus ook |{{Us ⊂ B : s ∈ S} : |Us| ≤

men |S| ≤ m}| ≤ (2m)m = 2m. Dus |B| ≤ 2m, en |B| ≤ 2m. B ∪S α<α0Aα is dicht in Aα0. |B| ≤ 2 m en |S α<α0Aα| ≤ m +· 2m = 2m, want α 0 < m+

en |Aα| ≤ 2m voor alle α < α0. Dus |B ∪

S

α<α0Aα| ≤ 2

m, dus d(A

α0) ≤ 2

m. Volgens

stelling 2.17 volgt nu dat |Aα0| ≤ (2

m)m = 2m. Daarnaast geldt duidelijk dat A

α ⊂ Aα0

voor α < α0. Dus Aα0 voldoet aan (4.1).

Voor iedere collectie {Us⊂ B : s ∈ S} ∈ B bevat B een element uit X \S{S Us: s ∈ S}

en B ⊂ Aα0, dus Aα0 \S{S Us: s ∈ S} 6= ∅. Dus Aα0 voldoet aan (4.2).

Tot slot tonen we aan dat A =S

(25)

Ws = {U ∈ B(x) : x ∈ A en U ∩ Vs = ∅}. Vanwege Lemma 4.1 bestaat er een Us ⊆ Ws

zodanig dat |Us| ≤ c(X) ≤ m en S Ws ⊆S Us.

Voor iedere s ∈ S geldt: (S Us) ∩ Vs = ∅ en Vs is open, dus X \ Vs is een gesloten

verzameling die S Us bevat, dus S Us∩ Vs = ∅. Omdat y ∈ Vs voor alle s ∈ S volgt nu

dat y ∈ X \S{S Us : s ∈ S}, dus X \S{S Us : s ∈ S} 6= ∅.

Omdat X een Hausdorff-ruimte is, bestaat er voor iedere x ∈ A een s ∈ S zodat x ∈S Ws. Er geldt dus: A ⊆S{S Ws: s ∈ S} ⊆S{S Us : s ∈ S}.

Definieer nu een verzameling C als volgt: Kies voor iedere s ∈ S en voor iedere U ∈ Us

een a ∈ U ∩ A. Er geldt |C| ≤ m · m = m en C ⊆ A, dus er bestaat een α0 < τ zodat C ⊆ Aα0.

Voor α = α0 + 1 geldt dan dat Us ⊆ S{B(x) : x ∈ Sβ<αAβ} voor iedere s ∈ S. Voor

deze α geldt dus dat X \S{S Us : s ∈ S} 6= ∅, maar Aα ⊆ S{S Us : s ∈ S}, dus

Aα\S{S Us: s ∈ S} = ∅. Dit is in tegenspraak met (4.2), dus A = X.

Dus |X| = |S

α<τAα| ≤ m+· 2m = 2m.

In het bijzonder geldt nu dat iedere Hausdorff-, first countable ccc-ruimte kardinaliteit ≤ 2ℵ0 heeft.

Net als bij stelling 3.2 maakte het oorspronkelijke bewijs van Hajnal en Juh´asz gebruik van de Erd˝os-Rado Partitiestelling. Het bovenstaande bewijs maakt gebruik van de methode van ˇSapirovski˘ı en Pol.

(26)

5 De Stelling van Arhangel’ski˘ı

In de jaren ’20 van de vorige eeuw werd veel invloedrijk werk in de topologie verricht door de Russische wiskundigen Pavel Urysohn en Pavel Aleksandrov. E´en van de on-derwerpen waar zij zich op richtten waren de eigenschappen van compacte topologische ruimten. In 1922 bewezen zij dat iedere compacte, perfect normale Hausdorff-ruimte een kardinaliteit van ten hoogste continu¨um heeft [12]. Uit dit resultaat rees de vraag of ditzelfde geldt voor compacte Hausdorff CI-ruimtes. In een artikel uit 1923 formuleerden

ze daarom het volgende vermoeden:

Vermoeden van Aleksandrov en Urysohn. Iedere compacte Hausdorff CI-ruimte

heeft kardinaliteit ≤ c.

Alexander Arhangel’ski˘ı Dit vermoeden is ruim veertig jaar onopgelost gebleven,

tot-dat in 1969 het artikel On the cardinality of bicompacta satisfying the first axiom of countability van A.V. Arhan-gel’ski˘ı verscheen. In dit artikel bewees de Russische wis-kundige een inmiddels beroemd resultaat, namelijk dat voor iedere Hausdorff-ruimte X geldt dat |X| ≤ 2L(X)·χ(X). Deze

stelling impliceert het vermoeden van Aleksandrov en Ury-sohn.

Arhangel’ski˘ı’s stelling behoort tot de grootste resulta-ten in het vakgebied van de kardinaalfuncties. De topoloog Hodel noemt de stelling in zijn boek over kardinaalfuncties “perhaps the most exciting and dramatic of the difficult ine-qualities” [3] en beschrijft het in een artikel als “the most important inequality in cardinal invariants” [12].

Arhangel’ski˘ı bewees zijn stelling aan de hand van een complex argument waarin het concept vrije rij een

belang-rijke rol speelt. In dit hoofdstuk wordt de stelling van Arhangel’ski˘ı bewezen volgens de methode ge¨ıntroduceerd door ˇSapirovski˘ı en Pol in 1974, die we ook in de vorige hoofdstukken zijn tegengekomen. Eerst wordt de stelling bewezen voor het geval van een compacte ruimte X. Aan de hand van dit bewijs wordt vervolgens de stelling van Arhangel’ski˘ı bewezen.

Stelling 5.1. Voor iedere oneindige, compacte ruimte X geldt: |X| ≤ 2χ(X). Bewijs. Zij X een oneindige, compacte ruimte en zij χ(X) = m ≥ ℵ0.

(27)

Zij τ het kleinste ordinaalgetal met kardinaliteit m+. We defini¨eren nu met transfiniete inductie een rij F0, F1, ..., Fα,..., α < τ van gesloten deelverzamelingen van X zodanig

dat:

|Fα| ≤ 2m, Fβ ⊂ Fα voor β < α (5.1)

voor iedere eindige deelfamilie U van [{B(x) : x ∈ [

β<α

Fβ} geldt:

Als X \[U 6= ∅, dan Fα\

[

U 6= ∅ (5.2) Definieer als basisstap F0 = {x} met x ∈ X willekeurig. Uiteraard geldt |F0| ≤ 2m.

Neem nu aan dat de verzamelingen Fα die voldoen aan (5.1) en (5.2) gedefinieerd zijn

voor alle α < α0. Zij

B =[{B(x) : x ∈ [

α<α0

Fα}

en

B = {U ⊂ B : |U | is eindig en X \[U 6= ∅}

|B(x)| ≤ m voor alle x en |α| < 2m. Dus |B| ≤ m · 2m = 2m. Dus |B| ≤ 2m.

De verzameling van eindige deelverzamelingen van een verzameling A heeft kardinaliteit |A|. Dus |B| ≤ 2m.

Kies nu voor iedere U ∈ B een punt in X \S U . Noem de verzameling van deze punten B. Dan is |B| ≤ 2m. Definieer nu: Fα0 = B ∪ [ α<α0 Fα B ∪S α<α0Fα is dicht in Fα0. |B| ≤ 2 m en |S α<α0Fα| ≤ m +· 2m = 2m, want α 0 < m+

en |Fα| ≤ 2m voor alle α < α0. Dus |B ∪

S

α<α0Fα| ≤ 2

m, dus d(F

α0) ≤ 2

m. Volgens

stelling 2.17 volgt nu dat |Fα0| ≤ (2

m)m = 2m. Daarnaast geldt duidelijk dat F

α ⊂ Fα0

voor α < α0. Dus Fα0 voldoet aan (5.1).

Voor iedere U ∈ B geldt: B bevat een punt uit X \S U en B ⊂ Fα0, dus Fα0\S U 6= ∅.

Dus Fα0 voldoet aan (5.2).

Tot slot tonen we aan dat F = S

α<τFα gelijk is aan X. Zij A ⊂ F met |A| ≤ m.

We kunnen A aftellen als {aα : α < m} Voor a0 ∈ A bestaat een ordinaalgetal α0 zodat

a0 ∈ Fα0, voor a1 ∈ A bestaat een ordinaalgetal α1 zodat a1 ∈ Fα1, etc. Deze rij

ordi-naalgetallen α0, α1, ... heeft een supremum α. De rij heeft lengte ≤ m. |τ | = m+ is een

opvolgerkardinaal, dus regulier, dus τ kan niet het limiet zijn van een rij van lengte m. Dus voor het supremum α van de rij geldt α < τ . Omdat Fβ ⊂ Fα voor alle β < α volgt

nu dat A ⊂ Fα. Iedere Fα is per definitie gesloten, dus volgt dat A ⊂ Fα ⊂ F .

Zij x ∈ F . Omdat χ(X) = m heeft x een lokale basis U0, U1, ... van kardinaliteit m.

Omdat x ∈ F geldt voor iedere Ui dat Ui ∩ F 6= ∅. Kies a0 ∈ U0 ∩ F , a1 ∈ U1 ∩ F ,

etc. Dan is A = {a0, a1, ...} ⊂ F met |A| = m. Dus geldt volgens het bovenstaande dat

(28)

x ∈ A ⊂ F . Dus F = F , dus F is een gesloten deelverzameling van X. In het bijzonder is F compact, want het is een gesloten deelverzameling van een compacte ruimte. Stel nu dat er een punt y ∈ X \ F bestaat. X is compact, dus Hausdorff, dus T1. Dus

{y} is gesloten, dus X \ {y} is een open omgeving van x voor alle x ∈ F . Dus kunnen we voor alle x ∈ F een Ux∈ B(x) kiezen zodanig dat y /∈ Ux. Omdat F compact is bestaat

er een eindige deelfamilie U van {Ux : x ∈ F } zodanig dat F ⊂ S U . U = {Ux : x ∈ A}

met A ⊂ F een eindige verzameling. Dus er bestaat een α0 < τ zodanig dat A ⊂ Fα0,

dus U ⊂ S{B(x) : x ∈ Fα0}. Dus voor α = α0 + 1 geldt U ⊂S{B(x) : x ∈ S

β<αFβ}.

Nu geldt dat X \S U 6= ∅, maar Fα\S U = ∅ en dit is in tegenspraak met (5.2). Dus

F = X. Dus |X| = |S

α<τFα| ≤ m

+· 2m = 2m.

Het bovenstaande bewijs kan worden aangepast om de stelling van Arhangel’ski˘ı te bewijzen.

Stelling 5.2 (Arhangel’ski˘ı). Voor iedere Hausdorff-ruimte X geldt: |X| ≤ 2L(X)χ(X). Bewijs. Het bewijs is analoog aan het bovenstaande bewijs, met de volgende aanpassin-gen:

Definieer m = L(X) · χ(X). Pas eis (5.2) als volgt aan: voor iedere deelfamilie U van [{B(x) : x ∈ [

β<α Fβ} met |U | ≤ L(X) geldt: Als X \[U 6= ∅, dan Fα\ [ U 6= ∅ (5.3) Definieer nu: B = {U ⊂ B : |U | ≤ L(X) en X \[U 6= ∅}

Voor B geldt nog steeds |B| ≤ 2m, en B ⊆ [B]≤L(X). Dus |B| ≤ |B|L(X)≤ (2m)L(X) = 2m.

Dus |B| ≤ 2m. Nu volgt weer dat |F

α0| ≤ (2

m)m = 2m.

We kunnen wederom een verzameling A kiezen met |A| = χ(X) ≤ m, dus volgt weer dat F =S

α<τFα gesloten is, dus L(F ) = L(X).

X is Hausdorff, dus kunnen we weer voor alle x ∈ F een Ux ∈ B(x) kiezen zodanig dat

y /∈ Ux. Er bestaat nu een deelfamilie U van {Ux : x ∈ F } met |U | ≤ L(X) zodanig dat

F ⊂S U . U = {Ux : x ∈ A} met A ⊂ F zodanig dat |A| ≤ L(X) ≤ m. Dus er bestaat

een α0 < τ zodanig dat A ⊂ Fα0, dus U ⊂S{B(x) : x ∈ Fα0}. Dus voor α = α0+ 1 geldt

U ⊂S{B(x) : x ∈ Sβ<αFβ}. We concluderen weer dat F = X, dus |X| ≤ 2m.

Hieruit volgt in het bijzonder het vermoeden van Aleksandrov en Urysohn. Gevolg. Voor iedere compacte Hausdorff CI-ruimte X geldt: |X| ≤ 2ℵ0 = c.

Een logische vervolgvraag is of de stelling van Arhangel’sk˘ıi ook nog geldt als de Hausdorff-eis wordt vervangen door de zwakkere eis dat X een T1-ruimte is. Dit is

echter nog een open probleem. Het vermoeden van Aleksandrov en Urysohn is echter wel bewezen voor T1-ruimtes. Dit resultaat is een gevolg van een stelling uit 1980 van

(29)

Stelling 5.3 (Gryzlov). Zij X een compacte T1-ruimte. Dan geldt: |X| ≤ 2ψ(X).

Omdat ψ(X) ≤ χ(X) voor T1-ruimtes volgt hieruit dat |X| ≤ 2χ(X) = 2ℵ0 als X een

compacte T1-, CI-ruimte is.

Arhangel’ski˘ı’s oorspronkelijke bewijs maakte gebruik van een complex argument aan de hand van het begrip vrije rij. Impliciet in het bewijs zat echter een idee dat door ˇ

Sapirovski˘ı en Pol werd versimpeld en dat bekend is komen te staan als de closure me-thode. Deze methode heeft zich vanwege zijn relatieve simpliciteit en brede toepasbaar-heid ontwikkeld tot de belangrijkste bewijstechniek in de theorie van kardinaalfuncties. Pol bewees in 1974 de stellingen van Arhangel’ski˘ı en Hajnal-Juh´asz aan de hand van deze methode. Enige tijd later liet Hodel zien dat ook de ongelijkheid |X| ≤ 2ψ(X)·hc(X)

uit stelling 3.2 met deze techniek bewezen kon worden [12]. In deze scriptie zijn zowel stelling 5.2 van Arhangel’ski˘ı als de stellingen 3.2 en 4.2 van Hajnal-Juh´asz volgens de closure-methode bewezen.

De stelling van Arhangel’ski˘ı loste dus niet alleen een open probleem op, maar heeft ook een essenti¨ele bijdrage geleverd aan de ontwikkeling van het vakgebied van kardi-naalfuncties doordat het aan basis stond van deze belangrijke bewijstechniek.

(30)

Nawoord

In deze scriptie zijn enkele hoogtepunten uit het vakgebied van kardinaalfuncties in de topologie behandeld. De stelling van ˘Cech-Pos´pi˘sil gaf ons een ondergrens op de kardinaliteit van compacte ruimtes aan de hand van het karakter. De stellingen van De Groot, Hajnal-Juh´asz en Arhangel’ski˘ı gaven vervolgens bovengrenzen op de kardinaliteit van Hausdorff-ruimtes aan de hand van de (erfelijke) celullariteit, het karakter en het Lindel¨ofgetal.

Hoewel het hier om enkele van de belangrijkste stellingen over kardinaalfuncties gaat, vormen ze slechts een kleine selectie van dit inmiddels grote vakgebied. Het boek [3] van Hodel behandelt nog vele andere ongelijkheden tussen kardinaalfuncties, onder an-dere met de cellulariteit en met kardinaalfuncties die in deze scriptie niet aan bod zijn gekomen, zoals de extent en het π-karakter van een ruimte. Daarnaast kijkt Hodel naar begrenzingen van het aantal compacte deelverzamelingen en het aantal continue re¨eelwaardige functies op topologische ruimtes. Ook het boek Cardinal Functions in Topology van Juh´asz ([2]) is volledig gewijd aan kardinaalfuncties en bestudeert onder andere kardinaalfuncties op productruimtes en op ruimtes die de vereniging zijn van een stijgende rij deelverzamelingen.

Een stelling die in het bijzonder een grote nalatenschap heeft gehad is de stelling van Arhangel’ski˘ı. Zoals in het voorgaande hoofdstuk is beschreven heeft het bewijs van deze stelling geleid tot de ontwikkeling van de closure-methode, die is uitgegroeid tot de belangrijkste bewijsmethode in dit vakgebied. Daarnaast heeft deze stelling aanleiding gegeven tot tal van generalisaties en vervolgresultaten. Een overzicht van deze resul-taten wordt gegeven in het artikel Arhangelski˘ı’s Solution to Alexandroff ’s Problem: a Survey van Hodel uit 2006 ([12]). Een voorbeeld van zo’n generalisatie is de ongelijk-heid |X| ≤ 2t(X)·ψ(X)·L(X) voor iedere Hausdorff-ruimte X. Hierin staat t(X) voor de kardinaalfunctie tightness.

Variaties op de stelling van Arhangel’ski˘ı zijn ook onderwerp van hedendaags onder-zoek. In 2016 verschijnt het artikel Cardinality Bounds Involving the Skew-λ Lindel¨of Degree and its Variants van Carlson en Porter. In dit artikel wordt skL(X, λ), het zogenaamde skew-λ-Lindel¨ofgetal, gebruikt om verbeterde bovengrenzen te geven op de kardinaliteit van Hausdorff- en Urysohnruimtes. In het bijzonder wordt een sterkere ver-sie van de zojuist genoemde begrenzing |X| ≤ 2t(X)·ψ(X)·L(X) gegeven. Het Lindel¨ofgetal wordt hierin vervangen door het zwakkere skew-λ-Lindel¨ofgetal.

De Groot, Hajnal, Juh´asz en Arhangel’ski˘ı zorgden eind jaren ’60 voor grote doorbra-ken in de theorie van kardinaalfuncties. Hun werk houdt wiskundigen tot op de dag van vandaag bezig.

(31)

Populaire samenvatting

Hoeveel gehele getallen zijn er? Dit lijkt misschien een vreemde vraag; het zijn er immers oneindig veel. Toch bestaat er een zinnig antwoord op deze vraag.

De Duitse wiskundige Georg Cantor ontwikkelde eind 19e eeuw een methode om de

‘grootte’ van oneindige grote verzamelingen te meten en te vergelijken. Deze ‘grootte’ heet de kardinaliteit van een verzameling en wordt weergegeven met een kardinaalgetal :

0, 1, 2, 3, ..., ℵ0, ℵ1, ℵ2, ..., ℵω, ℵω+1, ℵω+2, ...

Een verzameling met ´e´en element heeft kardinaliteit 1, een verzameling met twee ele-menten heeft kardinaliteit 2, etcetera. Wat is dan de kardinaliteit van {0, 1, 2, 3, ...}, de verzameling van positieve gehele getallen? Cantor noemde deze kardinaliteit ℵ0 (aleph

nul). ℵ0 is dus een getal dat oneindigheid aangeeft. Het is de grootte van de verzameling

van positieve gehele getallen.

Georg Cantor Zoals je in het bovenstaande rijtje kunt zien is dit echter niet

het grootste kardinaalgetal. E´en van de beroemdste ontdek-kingen in de wiskunde is het bewijs van Cantor dat sommige verzamelingen een grotere kardinaliteit hebben dan de verzame-ling van gehele getallen, ondanks het feit dat deze verzameverzame-ling al oneindig groot is. Een voorbeeld van een verzameling met een grotere kardinaliteit dan ℵ0 is de verzameling van re¨ele getallen.

Dat zijn alle getallen op de getallenlijn, inclusief alle breuken en irrationale getallen als√2 en π.

Na ℵ0 komt dus ℵ1. Dit is een getal dat een

‘gro-tere oneindigheid’ aangeeft dan ℵ0. Cantor ontdekte ook

dat je altijd door kunt gaan met het maken van n´og gro-tere verzamelingen. Na ℵ1 komt dus nog ℵ2, ℵ3,

etce-tera.

Deze ontdekkingen zijn onderdeel van de verzamelingenleer, een vakgebied dat eind 19e eeuw is ontstaan en een belangrijke rol in de wiskunde speelt. Een ander belangrijk

wiskundig vakgebied is de topologie. Dat is de tak van wiskunde die zich bezighoudt met de eigenschappen van ruimtes die behouden blijven als je de ruimte op een continue manier vervormt. Vergelijk bijvoorbeeld een koffiemok en een donut. Beiden hebben slechts ´e´en gat. Een koffiemok kan dus omgevormd worden tot een donut, zonder dat je hiervoor hoeft te scheuren of nieuwe gaten hoeft te maken. Een koffiemok en een donut hebben daarom precies dezelfde topologische eigenschappen.

De topologie houdt zich niet zozeer bezig met de metrische eigenschappen van een ruimte, zoals lengtes en oppervlaktes, maar met eigenschappen die de structuur van een

(32)

ruimte beschrijven, bijvoorbeeld: kunnen alle punten in de ruimte verbonden worden door een lijn, uit hoeveel losse stukken bestaat de ruimte en wat gebeurt er met de ruimte als ik er ´e´en punt uithaal?

Sommige topologische eigenschappen hebben te maken met kardinaalgetallen. De twee beschreven vakgebieden komen dan samen, in de verzamelingstheoretische topo-logie. Voorbeelden van dit soort eigenschappen zijn de dichtheid, het karakter en het Lindel¨ofgetal van een ruimte. Deze topologische eigenschappen worden allemaal beschre-ven door een kardinaalgetal en en worden daarom kardinaalfuncties genoemd.

Een interessante vraag die we ons nu kunnen stellen is: Wat zeggen de topologische eigenschappen van een ruimte over de kardinaliteit van een ruimte? Als we bijvoorbeeld weten wat het karakter en het Lindel¨ofgetal van een ruimte is, weten we dan ook iets over hoe groot die ruimte is?

Johannes de Groot Dit is een belangrijke vraag in het vakgebied van

kar-dinaalfuncties in de topologie. In de ontstaansgeschiedenis van dit vakgebied speelt de Universiteit van Amsterdam een belangrijke rol. E´en van de eerste artikelen over kardinaal-functies werd in 1965 geschreven door Johannes de Groot, een topoloog die in die tijd hoogleraar aan de UvA was. Hij introduceerde in zijn artikel nieuwe kardinaalfuncties en be-wees verbanden ertussen. E´en van de kardinaalfuncties die hij introduceerde is de erfelijke cellulariteit van een ruimte. Deze wordt genoteerd als hc(X). De Groot bewees dat de kardinaliteit van bepaalde topologische ruimtes nooit groter kan zijn dan 22hc(X).

Het artikel van De Groot inspireerde twee Hongaarse wis-kundigen, Hajnal en Juh´asz om zich in kardinaalfuncties te verdiepen. Eind jaren ’60 publiceerden zij twee artikelen

waarin ze voortbouwden op het werk van De Groot. Ze bewezen onder andere drie stellingen die een bovengrens geven op de kardinaliteit van topologische ruimtes, aan de hand van topologische eigenschappen zoals het karakter en de cellulariteit van die ruimtes.

Een vraag die op dat moment al ruim 40 jaar onbeantwoord was, was een vermoeden van Aleksandrov en Urysohn. Deze Russische wiskundigen publiceerden in 1923 hun ver-moeden dat bepaalde topologische ruimtes, zogenaamde compacte Hausdorff CI-ruimtes,

nooit een grotere kardinaliteit konden hebben dan de verzameling van re¨ele getallen. Dit vermoeden werd uiteindelijk in 1969 bewezen door Alexander Arhangel’skii, een promo-vendus van Aleksandrov. Zijn stelling zegt dat de kardinaliteit van bepaalde topologische ruimtes nooit groter kan zijn dan 2L(X)·χ(X). L(X) en χ(X) zijn hierbij

kardinaalfunc-ties, namelijk het Lindel¨ofgetal en het karakter van een ruimte X. Deze stelling wordt beschouwd als ´e´en van de belangrijkste stellingen in het vakgebied van kardinaalfuncties. In de decennia na deze resultaten hebben kardinaalfuncties zich ontwikkeld tot een groot vakgebied binnen de topologie, waar hele boeken over geschreven zijn en waar tot

(33)

Bronverwijzing per stelling

Hier volgt een lijst van de stellingen die in deze scriptie aan de hand van een bron bewe-zen zijn, met een verwijzing naar de bron waar het bewijs op gebaseerd is. Veel van de stellingen uit deze scriptie zijn in het boek General Topology van Engelking ([4]) gegeven als opgave, met een hint voor het bewijs. In dat geval is het bewijs in deze scriptie een uitwerking van de opgave aan de hand van die hint.

Stelling 1.23: Dit bewijs volgt stelling 4.1 uit hoofdstuk 6 van [7]. Stelling 2.13: Dit bewijs volgt stelling 3.1 b) uit [3].

Stelling 2.14: Dit bewijs volgt stelling 3.2 uit [3]. Stelling 2.16: Dit bewijs volgt stelling 3.3 uit [3]. Stelling 2.17: Dit bewijs volgt stelling 1.5.3 uit [4].

Stelling 2.18: Dit bewijs volgt gedeeltelijk de hint van opgave 3.12.11 a) uit [4]. Lemma 3.1: Dit bewijs volgt propositie 4.8 uit [3].

Stelling 3.2: Dit bewijs volgt de hint van opgave 3.12.10 c) uit [4]. Stelling 3.3: Dit bewijs volgt propositie 4.11 uit [3].

Lemma 4.1: Dit bewijs volgt propositie 3.4 uit [3].

Stelling 4.2: Dit bewijs volgt de hint van opgave 3.12.10 b) uit [4]. Stelling 5.1: Dit bewijs volgt stelling 3.1.29 uit [4].

(34)

Bibliografie

[1] A.J.M. van Engelen en K.P. Hart, Topologie, Syllabus, 2002.

[2] I. Juh´asz, Cardinal Functions in Topology - Ten Years Later, Mathematical Centre Tracts, 1980.

[3] R. Hodel, Cardinal Functions I uit Handbook of Set-Theoretic Topology van K. Kunen en J.E. Vaughan, Elsevier Science Publishers, 1984.

[4] R. Engelking, General Topology, Heldermann Verlag, 1989.

[5] M.E. Rudin, Cardinal Functions in Topology uit Lectures on Set Theoretic Topology, American Mathematical Society, 1975.

[6] J. Ferreir´os, The Early Development of Set Theory, The Stanford Encyclopedia of Philosophy.

[7] K. Hrbacek en T. Jech, Introduction to Set Theory, Marcel Dekker, Inc., 1999. [8] H. Freudenthal, Levensbericht J. de Groot, Jaarboek, 1972, Amsterdam, pp.

119-121.

[9] T. Koetsier en J. van Mill, General Topology, in particular Dimension Theory, in The Netherlands: The Decisive Influence of Brouwer’s Intuitionism, uit: Hand-book of the History of General Topology van C.E. Aull en R. Lowen, Springer Sci-ence+Business Media, 1997.

[10] P.C. Baayen, De Groot, Johannes, Complete Dictionary of Scientific Biography, 2008, http://www.encyclopedia.com/doc/1G2-2830905080.html

[11] J.J. O’Connor en E.F. Robertson, Johannes de Groot, http://www-groups.dcs.st-and.ac.uk/history/Biographies/De Groot.html.

[12] R.E. Hodel, Arhangelski˘ı’s Solution to Alexandroff ’s Problem: a Survey, Topology Appl., 2006.

[13] N.A. Carlson en J.R. Porter, Cardinality Bounds Involving the Skew-λ Lindel¨of Degree and its Variants, Topology and its Applications, 2016.

Referenties

GERELATEERDE DOCUMENTEN

Misschien is het niet eens zo slecht dat deze crisis onze muren en torens van zelfvoldaanheid en zekerheid sloopt om voldoende bouwplek te krijgen voor een

De liberale jongeren, die zich gedurende het afgelopen weekeinde te Dalfsen hebben beziggehouden met een aantal actuele politieke problemen, hebben hun bijeenkomst

Wanneer een overschrijding op een bestaand budget geen gevolgen heeft voor de begroting van het volgende jaar, wordt deze overschrijding door de gemeente gezien als incidenteel.

De lasten die betrekking hebben op het gemeentehuis worden met ingang van de jaarrekening 2017 verdeeld naar dit programma en het nieuwe overzicht van deze rekening (waarin baten

De gemeente heeft in het jaar 2011 geen betalingen of toezeggingen gedaan die in het kader van de WOPT gemeld moeten worden..

Voor de regionaal ingekochte jeugdhulp door de GR Jeugdhulp Rijnmond (GRJR) geldt dat eventuele extra corona-uitgaven vooralsnog vanuit het risicobudget binnen de GRJR worden

Voor deelgebied III zijn zuilen 0,35 1 2300 toepasbaar bij aanpassing van de langeduurfactor naar 0,72 in overleg met de werkgroep Kennis.. Bij het ontwerpen van bekledingen in

Daarmee is ook de Kerk weer open, voor wie er even stil wil zijn en een kaarsje aansteken, of de kathedraal van licht graag (weer) van binnen willen zien.. Wie wil weten wanneer