• No results found

Study of the process e+ e− → π+ π− π0 η in the c.m. energy range 1394–2005 MeV with the CMD-3 detector

N/A
N/A
Protected

Academic year: 2021

Share "Study of the process e+ e− → π+ π− π0 η in the c.m. energy range 1394–2005 MeV with the CMD-3 detector"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Akhmetshin et al., (2017). Study of the process

e

+

e

π

+

π

π

0

η

in the c.m.

energy range 1394–2005 MeV with the CMD-3 detector. Physics Letters B,

773(October), 150-158. https://doi.org/10.1016/j.physletb.2017.08.019

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Science

Faculty Publications

_____________________________________________________________

Study of the process

e

+

e

π

+

π

π

0

η

in the c.m. energy range 1394–2005 MeV

with the CMD-3 detector

R.R. Akhmetshin, A.N. Amirkhanov, A.V. Anisenkov, V.M. Aulchenko, V.Sh.

Banzarov, N.S. Bashtovoy, D.E. Berkaev, A.E. Bondar, A.V. Bragin, S.I. Eidelman,

D.A. Epifanov, L.B. Epshteyn, A.L. Erofeev, G.V. Fedotovich, S.E. Gayazov, A.A.

Grebenuk, S.S. Gribanov, D.N. Grigoriev, F.V. Ignatov, V.L. Ivanov, S.V. Karpov,

V.F. Kazanin, I.A. Koop, A.N. Kirpotin, A.A. Korobov, A.N. Kozyrev, E.A. Kozyrev,

P.P. Krokovny, A.E. Kuzmenko, A.S. Kuzmin, I.B. Logashenko, P.A. Lukin, K.Yu.

Mikhailov, V.S. Okhapkin, A.V. Otboev, Yu.N. Pestov, A.S. Popov, G.P. Razuvaev,

Yu.A. Rogovsky, A.A. Ruban, N.M. Ryskulov, A.E. Ryzhenenkov, A.I. Senchenko,

Yu.M. Shatunov, P.Yu. Shatunov, V.E. Shebalin, D.N. Shemyakin, B.A. Shwartz,

D.B. Shwartz, A.L. Sibidanov, E.P. Solodov, V.M. Titov, A.A. Talyshev, A.I.

Vorobiov, I.M. Zemlyansky, Yu.V. Yudin

October 2017

©2017 The Author(s). Published by Elsevier B.V. This is an open access article

under the CC BY license (

http://creativecommons.org/licenses/by/4.0/

).

This article was originally published at:

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Study

of

the

process

e

+

e

π

+

π

π

0

η

in

the

c.m. energy

range

1394–2005 MeV

with

the

CMD-3

detector

R.R. Akhmetshin

a

,

b

,

A.N. Amirkhanov

a

,

b

,

A.V. Anisenkov

a

,

b

,

V.M. Aulchenko

a

,

b

,

V.Sh. Banzarov

a

,

N.S. Bashtovoy

a

,

D.E. Berkaev

a

,

b

,

A.E. Bondar

a

,

b

,

A.V. Bragin

a

,

S.I. Eidelman

a

,

b

,

D.A. Epifanov

a

,

b

,

L.B. Epshteyn

a

,

b

,

c

,

A.L. Erofeev

a

,

b

,

G.V. Fedotovich

a

,

b

,

S.E. Gayazov

a

,

b

,

A.A. Grebenuk

a

,

b

,

S.S. Gribanov

a

,

b

,

D.N. Grigoriev

a

,

b

,

c

,

F.V. Ignatov

a

,

b

,

V.L. Ivanov

a

,

b

,

S.V. Karpov

a

,

V.F. Kazanin

a

,

b

,

I.A. Koop

a

,

b

,

A.N. Kirpotin

a

,

A.A. Korobov

a

,

b

,

A.N. Kozyrev

a

,

c

,

E.A. Kozyrev

a

,

b

,

P.P. Krokovny

a

,

b

,

A.E. Kuzmenko

a

,

b

,

A.S. Kuzmin

a

,

b

,

I.B. Logashenko

a

,

b

,

P.A. Lukin

a

,

b

,

K.Yu. Mikhailov

a

,

V.S. Okhapkin

a

,

A.V. Otboev

a

,

Yu.N. Pestov

a

,

A.S. Popov

a

,

b

,

G.P. Razuvaev

a

,

b

,

Yu.A. Rogovsky

a

,

A.A. Ruban

a

,

N.M. Ryskulov

a

,

A.E. Ryzhenenkov

a

,

b

,

A.I. Senchenko

a

,

Yu.M. Shatunov

a

,

P.Yu. Shatunov

a

,

V.E. Shebalin

a

,

b

,

D.N. Shemyakin

a

,

b

,

B.A. Shwartz

a

,

b

,

D.B. Shwartz

a

,

b

,

A.L. Sibidanov

a

,

d

,

E.P. Solodov

a

,

b

,

,

V.M. Titov

a

,

A.A. Talyshev

a

,

b

,

A.I. Vorobiov

a

,

I.M. Zemlyansky

a

,

Yu.V. Yudin

a

,

b

aBudkerInstituteofNuclearPhysics,SBRAS,Novosibirsk,630090,Russia bNovosibirskStateUniversity,Novosibirsk,630090,Russia

cNovosibirskStateTechnicalUniversity,Novosibirsk,630092,Russia dUniversityofVictoria,Victoria,BC,V8W3P6,Canada

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received22June2017

Receivedinrevisedform3August2017 Accepted5August2017

Availableonline18August2017 Editor:L.Rolandi

Thecrosssectionoftheprocesse+e

π

+

π

π

0

η

hasbeenmeasuredusingadatasampleof21.8 pb−1 collectedwiththeCMD-3detectorattheVEPP-2000 e+e− collider.2769±95 signaleventshavebeen selectedinthecenter-of-massenergyrange1394–2005 MeV.Theproductiondynamicsisdominatedby the

ω

(782)

η

and φ(1020)

η

intermediatestatesinthe lowerenergy range,and bythea0(980)

ρ

(770) intermediatestateathigherenergies.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Theproductiondynamicsofthe

π

+

π

π

0

η

finalstateine+e− annihilation has been never studied before. Only the e+e

ω

(

782

)

η

cross section was measured by the BaBar Collabora-tion [1] with a relatively low statistical accuracy using

η

π

+

π

π

0 decay,andby theSNDCollaboration[2](with

η

γ γ

decay). The e+e

π

+

π

π

0

η

cross section contributes a not negligible value (upto 15%of thetotal hadroniccross section in

*

Correspondingauthorat:BudkerInstituteofNuclearPhysics,SBRAS, Novosi-birsk,630090,Russia.

E-mailaddress:solodov@inp.nsk.su(E.P. Solodov).

some energy range)to the calculationsofthe hadronic contribu-tiontothemuonanomalousmagneticmoment[3],andadetailed study of the production dynamics can further improve the ac-curacy of these calculationsas well as our understanding of the spectroscopyoflightmesons.

In thispaperwereport theanalysisofthe datasample based on21

.

8 pb−1oftheintegratedluminosity collectedattheCMD-3 detector in the 1394–2005 MeV center-of-mass energy (Ec.m.) range.Weidentifythe

π

+

π

π

0

η

candidateeventsusing

η

γ γ

decay, andobservenocandidateeventsbelow Ec.m.

=

1400 MeV. Thesedatahavebeencollectedinthreeenergyscansat40c.m. en-ergy points,performedattheVEPP-2000collider[4]in2011and 2012.

http://dx.doi.org/10.1016/j.physletb.2017.08.019

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

Thegeneral-purposedetectorCMD-3hasbeendescribedin de-tail elsewhere [5]. Its tracking system consists of a cylindrical drift chamber (DC) [6] and double-layer multiwire proportional Z-chamber, both also used for a trigger, and both inside a thin (0.2 X0)superconductingsolenoidwithafieldof1.3 T.Thetracking systemallowstodetectchargedtrackswithaminimumpolar an-gleabout0.5radiansrelativetothebeamaxis(about90%of4

π

). Thebarrelliquid-xenon(LXe)calorimeterwitha 5.4 X0 thickness hasfine electrode structure, providing a 1–2 mm spatial resolu-tionforphotons[7],andsharesthecryostatvacuumvolumewith thesuperconductingsolenoid. ThebarrelCsI-crystalcalorimeteris placedoutsidethe LXe calorimeter,andincreasesthe total thick-nessto 13.5 X0.TheendcapBGO calorimeterwithathicknessof 13.4 X0 isplacedinsidethesolenoid[8].Ourcombined calorime-terallows to detect photons with a minimum polarangle down to0.25radians relative tothe beamaxis(about 98%of 4

π

). The luminosityismeasuredusingeventsofBhabhascatteringatlarge angleswithabout1%accuracy[9].

Thebeamenergyhasbeenmonitoredbymeasuringthecurrent inthedipolemagnetsofthemainring,andatafewenergypoints by usingthe Back-Scattering-Laser-Light system [10]. Using mea-suredaveragemomentumofBhabhaevents,andaverage momen-tumofproton–antiprotonpairsfromtheprocesse+e

pp

¯

[11], wedetermineEc.m. ateachenergypointwithabout1 MeV accu-racy.

Tounderstandthedetectorresponse toprocessesunder study and to obtain a detection efficiency, we have developed Monte Carlo(MC)simulation ofourdetectorbased onthe GEANT4 [12]

package,inwhichallsimulatedeventspassthewhole reconstruc-tionandselectionprocedure.TheMCsimulationusesprimary gen-eratorswithmatrix elementsforthe studiedprocesses,including softphotonradiationbyinitialelectronorpositron,calculated ac-cordingtoRef.[13].Forthebackgroundstudywe havedeveloped a special MC generator to simulate generically e+e

hadrons,

whichincludesthemajority(

>

30)ofexclusivechannelsweighted withtheir known cross sections, and perform analysisof events basedonit.

2. Selectionofe+e

π

+

π

π

0

η

events

Candidates for the process under study are required to have two good tracks of charged particles with opposite charges,and

fourormoreclustersinthecalorimeters,notrelatedtothetracks, assumedtobephotons.We requireionization lossesofatrackin theDCtobeconsistentwiththepionhypothesis,atrack momen-tumlargerthan40 MeV

/

c,aminimumdistancefromatracktothe beamaxisinthetransverseplane lessthan 0.25 cm,anda mini-mumdistancefromatracktothecenteroftheinteractionregion along the beamaxisZ lessthan 12 cm.The photon candidate is requiredto haveenergydeposition in thecalorimetersexceeding 25 MeV.

Reconstructed momenta and angles of the detected charged tracks as well as energyand angles of four photonsare subject to thekinematic fitforthe e+e

π

+

π

π

0

γ γ

hypothesis, as-sumingthatthetotalenergyisequaltoEc.m.andtotalmomentum isequaltozero.First,welookforonephotonpairwiththe invari-ant mass closest to the

π

0 mass inside the

±

55 MeV

/

c2 (about

±

3

.

5 standarddeviations)window,andweusethe

π

0 massasan additional fifth constraint in the fit (5Cfit) for thisphoton pair. No additional constraints are applied to the second photon pair. The covariancematricesforchargedtracks andphotonsareused inthe fitandprovidea

χ

2 value foreach event.A large fraction of theevent candidates hasmore than fourphotons: we test all possiblecombinations,andtwophotonpairswiththesmallest

χ

2 valueareretainedforfurtheranalysis.Asaresultofthefit,we ob-tain improvedvaluesofthemomenta,energiesandanglesforall particles.

Fig. 1(a) shows the obtained

χ

2 distributions for the exper-imental (dots) and simulated e+e

π

+

π

π

0

η

(histogram) events,when the invariant mass ofthe second photon pair is in the

±

50 MeV

/

c2windowaroundthe

η

mass.A verticallineshows theappliedselection.

Each event is also subject to the 4C fit under a e+e

π

+

π

γ γ

hypothesis: all photon pairs are tested to get the best

χ

2 value, and a requirement

χ

2

π+πγ γ

>

40 suppresses the

background from the processes e+e

π

+

π

π

0 and e+e

π

+

π

η

byafactorof10–20toanegligiblelevelwitha1.5%loss ofthesignal events.Tostudytheremaining backgroundwe ana-lyze events fromthegeneric e+e

hadrons MCgeneratorwith theexcludedsignalprocess.

Fig. 1(b) presents the invariant mass distributions for the second photon pair before (dashed histogram) and after (solid histogram) the 5C kinematic fit for events in the Ec.m.

=

1600–1800 MeV energy rangeand applied

χ

2 selection. A signal

Fig. 1. (a)The5C-fitχ2distributionforeventswithtwotracks,π0,andtwophotonsforthee+eπ+ππ0γ γhypothesisfordata(dots)andcorrespondingsimulation (histograms).(b) Theexperimentaltwo-photoninvariantmassdistributionsbefore(dashedhistogram)andafter(solidhistogram)akinematicfit.A shadedhistogramisfor thegenerice+e−→hadrons MCsimulationwithexcludedsignalprocess.

(4)

Fig. 2. Two-photoninvariantmassdistributionsandfitfunctionstodeterminethenumberofπ+ππ0ηeventsatE

c.m.=1680 MeV (a)andEc.m.=1600 MeV (b).Dashed

curvesshowthebackgroundcontribution.Histogramsarefortheexpectedsignaleventsfromsimulation.

Fig. 3. Thebackground-subtractedπ+ππ0invariantmassdistributionforeventsintheE

c.m.=1400–1550 MeV (a),1600–1800 MeV (b),1800–2000 MeV (c)energyranges.

Thelinesshowresultsofthefitswiththeω(782)andφ(1020)signals(solid),andthebackgroundcontribution(dashed).HistogramsshowexpectedMC-simulatedsignals fromtheω(782andφ(1020intermediatestates.

fromthe

η

γ γ

decayisclearlyseen,andanimprovementinthe resolutionisobtained.Theshadedhistogramshowsabackground fromotherprocesses, dominatedbythe e+e

π

+

π

π

0

π

0 re-action with wrong-assigned photons. No peaking background is observed.

The

η

peak in the invariant mass distribution of the sec-ond photon pair is used to obtain the inclusive number of the

π

+

π

π

0

η

events.WefitthedistributionsofFig. 1(b)ateach en-ergy witha sumoffunctions toseparate signal and background. Theshapeofthe

η

signalistakenfromtheMCsimulation(shown byshaded histograms),while asecond-order polynomialfunction isusedforthebackground.Twoexamplesofthefitareshownin

Fig. 2atEc.m.

=

1680 MeV (a)andEc.m.

=

1600 MeV (b). The to-talnumberofeventsevaluatedbythisprocedureis2769

±

95.We donot observe anysignal eventsfor Ec.m. below 1400 MeV, and presentourdatastartingfromEc.m.

=

1394 MeV.

The observed

π

+

π

π

0

η

events contain several intermediate states.Ourdatasampleistoosmallforstandardamplitude analy-sis.Instead,wefirstextractacontributionofthenarrow interme-diateresonances,

ω

(

782

)

and

φ (

1020

)

,andtheninvestigateother

contributions, assuming low interference with the narrow states above.

3. Thee+e

ω

(

782

)

η

,e+e

→ φ(

1020

)

η

intermediatestates

To study intermediate states we select signal candidates by requiring

|

mγ γ

|

<

65 MeV

/

c2, see Fig. 1(b), and subtract the sideband background using events with 65

<

|

mγ γ

|

<

130 MeV

/

c2 for any experimental distribution. Fig. 3 shows the background-subtracted

π

+

π

π

0 invariant mass distributions for the selected

π

+

π

π

0

η

candidates combined in three energy ranges: Ec.m.

=

1400–1550 MeV (a), Ec.m.

=

1600–1800 MeV (b), and Ec.m.

=

1800–2000 MeV (c).A signal from the

ω

(

782

)

dom-inates atlow energies, signalsfromthe

ω

(

782

)

and

φ (

1020

)

are well seen in the second range, and they are relatively small at higherenergies,whereotherintermediatestatesdominate.To de-termine the number of

ω

and

φ

events, we fit distributions at each energy with a sum of the signal and combinatorial back-ground functions. For the signal peaks we use double-Gaussian functionswithallparameters, exceptthenumberofevents,fixed fromtheMC-simulation.A smoothfunctionisusedtodescribethe

(5)

Fig. 4. Thebackground-subtractedπ+η,πη,π0ηinvariant massdistributionsfor eventsinthe 1800–2000 MeV(a)and1600–1800 MeV(b)E

c.m. rangefromtheη

peakofFig. 1(b).HistogramscumulativelyshowtheMC-simulatedcontributionsfromtheρ(1450,1700 (shaded),ω(782(crosshatched),φ(1020(hatched),and

a0(980)ρ(770)(open)intermediatestates.Linesshowafitwiththea0(980)signalandbackgroundcontribution(dashed).

Fig. 5. Thebackground-subtractedπ+π0,ππ0,π+πinvariantmassdistributionsforeventsinthe1800–2000 MeV(a)and1600–1800 MeV(b)Ec

.m. rangesfromthe

ηpeakofFig. 1(b).HistogramscumulativelyshowtheMC-simulatedcontributionsfromtheρ(1450,1700 (shaded),ω(782(crosshatched),φ(1020(hatched),and

a0(980)ρ(770)(open)finalstates.Thedashedhistogramin(b)correspondstothecasewhenthephasespace3π ηsimulationisusedinsteadoftheρ(1450,1700final state.

combinatorialbackgroundfromotherfinalstates(seeSec.4). His-tograms in Fig. 3 show the expectedMC-simulated signalsfrom the

ω

(

782

)

η

and

φ (

1020

)

η

intermediate states. In total, for all energy points we obtain 824

±

41 and 214

±

46 events for the

ω

(

782

)

η

and

φ (

1020

)

η

intermediate states,respectively. By vari-ation of the polynomial order ofthe background function or re-movingsidebandbackgroundsubtraction,weestimateasystematic uncertaintyonthenumberofsignaleventsatabout5%.

4. Thee+e

a0

(

980

)

ρ

(

770

)

intermediatestate

Thecombinatorial backgroundforthe

ω

(

782

)

η

and

φ (

1020

)

η

final states is relatively large andother intermediate resonances arethusexpected:mostprobablearea0

(

980

)

ρ

(

770

)

and

ρ

(

1450

,

1700

)

π

which have

π

+

π

π

0

η

at the end of the decay chains. The a0

(

980

)

is relatively narrow and should be seen in the

ηπ

invariant mass. Fig. 4 shows the background-subtracted

π

+

η

,

π

η

,

π

0

η

invariant mass distribution (three entries per event) for the events in the Ec.m.

=

1800–2000 MeV (a) and Ec.m.

=

1600–1800 MeV (b)ranges.A clearsignalassociatedwitha0

(

980

)

is seen in both energy ranges: while events in Fig. 4(b) are below the nominal a0

(

980

)

ρ

(

770

)

threshold, a0

(

980

)

is still visible due to the large width of the

ρ

(

770

)

. Histograms cu-mulatively show MC-simulated contributions from the expected

ρ

(

1450

,

1700

)

π

(shaded,seediscussioninSec.5),

ω

(

782

)

η

(cross hatched),

φ (

1020

)

η

(hatched), and a0

(

980

)

ρ

(

770

)

(open) inter-mediate states. Lines show a fit with the a0

(

980

)

signal and the contribution of the combinatorial background (dashed). We tunebackground-descriptionfunctionwiththesimulation,andthe “Fermi”stepforthethresholdbehaviorconvolvedwiththe third-orderpolynomialfunctiongivesthebestresult.

Wealsoobservea clearsignal fromthe

ρ

(

770

)

inthe

π

+

π

−,

π

π

0,

π

+

π

0correspondingmasscombinations,showninFig. 5(a) for the Ec.m.

=

1800–2000 MeV range, where the a0

(

980

)

ρ

(

770

)

final state dominates. We fit the distributions of Fig. 4 at each energy with a sum of functions describing signal, combinato-rial and other backgrounds, shown by the lines in Fig. 4. The

a0

(

980

)

signalisfittedwithaBreit-Wignerfunctionusing55 MeV width[16]convolvedwiththedetectorresolution(

50 MeV).We obtain 1072

±

116 events corresponding to the process e+e

(6)

Fig. 6. (a)Thenumberofe+e−→π+ππ0ηeventswithanexcludedcontributionfromtheω(782)η,φ(1020)η,anda

0(980)ρ(770)intermediatestates.Blackandblue colorsareforthe2011and2012data,respectively.(b)Thebackground-subtractedπ+−0η(threeentriesperevent)invariantmassdistributionwithexcluded ω(782

andφ(1020intermediatestates.Short-dashed,solid,andlong-dashedhistogramsshowsasimulatedsignalfromasumofthea0(980)ρ(770)andρ(1450,1700 inter-mediatestatesincaseofconstructive,no-interference,anddestructiveinterferenceoftheiramplitudes,respectively.Theshadedhistogramshowsthecontributionofthe

ρ(1450,1700intermediatestateonly.(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

a0

(

980

)

ρ

(

770

)

. We vary the shape of the function used for the combinatorial background subtraction and estimate a systematic uncertaintyonthenumberofsignaleventsasabout15%.

5. Thee+e

π

+

π

π

0

η

(

no

ω

,

φ,

a

0

)

intermediatestate

IntheEc.m.

=

1900–2000 MeV energyrangethenumberofthe

π

+

π

π

0

η

eventsdeterminedfromthe

η

peakinSec.2isalmost completelydominatedbythea0

(

980

)

ρ

(

770

)

channel.Theobtained numberof

π

+

π

π

0

η

eventsin the Ec

.m.

=

1600–1800 MeV en-ergyrange exceededthat expectedfromthesumof thee+e

ω

(

782

)

η

(33%),

φ (

1020

)

η

(7%), and a0

(

980

)

ρ

(

770

)

(29%) reac-tions.

At each Ec.m. energy we subtract events obtained for the

ω

,

φ,

a0 signalsfromthetotalnumberofeventsobtainedfromthe

η

signalofFig. 1(b),andshow thedifferencevsEc.m. inFig. 6(a). A resonantstructureisobservedaroundEc.m.

=

1700 MeV.The dif-ference(about31%)canbe,forexample,explainedbythepresence ofthee+e

ω

(

1650

)

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

reaction. Inthiscasean additionalsignal fromthe

ρ

(

770

)

shouldbe seen intwo-pionmasses.FortheEc.m.

=

1600–1800 MeV energyrange we show thebackground-subtracted

π

+

π

0

,

π

π

0

,

π

+

π

invari-ant mass distribution (three entries per event) in Fig. 5(b). His-togramscumulatively show the MC-simulated contributions from the

ρ

(

1450

,

1700

)

π

(shaded),

ω

(

782

)

η

(cross hatched),

φ (

1020

)

η

(hatched),anda0

(

980

)

ρ

(

770

)

(open)final states.The dashed his-togram in Fig. 5(b) presents simulation when the phase-space modelisusedinsteadof

ρ

(

1450

,

1700

)

π

,indicatingsomedata ex-cessaround the

ρ

(

770

)

mass.Our data donot contradictto the presenceofthee+e

ω

(

1650

)

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

reaction, but an additional

ρ

(

770

)

contribution cannot be quan-titatively extracted from the mass distributions with reasonable accuracy.Notethatthe

ρ

(

770

)

signalfromthea0

(

980

)

ρ

(

770

)

in-termediate state is also diluted below 1750 GeV due to limited phasespace.

Moreover, the expected

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

decay chain anda0

(

980

)

ρ

(

770

)

both contain a relatively broad

ρ

(

770

)

resonance, and can interfere at the amplitude level. To exam-ine an interference effect we sum two equal amplitudes of the aboveintermediatestatesattheprimarygeneratorlevel,and per-formsimulationwithpositiveandnegativerelativesigns.Fig. 6(b)

showsthebackground-subtractedexperimental

π

+−0

η

(three en-tries per event) invariant massdistribution (points) with the ex-cluded contributionfrom the

ω

(

782

)

η

and

φ (

1020

)

η

intermedi-ate states (using MC-simulation). Short-dashed, solid, and long-dashed histograms show a simulatedsignal fromthe sumof the

a0

(

980

)

ρ

(

770

)

and

ρ

(

1450

,

1700

)

π

intermediatestatesincaseof constructive, no-interference, and destructive interference of the amplitudes, respectively. The shaded histogram shows a contri-bution of the

ρ

(

1450

,

1700

)

π

intermediate state only. When we fit the a0

(

980

)

signal peak as described above, the number of eventschangesby

±

50% fromthevaluewithnointerference. Be-cause of that, we should add at least a 50% model-dependent systematic error to the number of a0

(

980

)

ρ

(

770

)

(and hence to

ρ

(

1450

,

1700

)

π

) events in the Ec.m.

=

1650–1750 MeV energy range,whereoverlapisthelargest.

6. Detectionefficiency

As demonstrated above,the

π

+

π

π

0

η

final state isproduced viaseveralintermediateresonantstates:weobservethe

ω

(

782

)

η

,

φ (

1020

)

η

, a0

(

980

)

ρ

(

770

)

, and, possibly,

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

intermediate states.Our detector doesnot have 100% acceptance, and due to different angular distributions of final particles, we observe variations in the detection efficiency for different intermediate states. Fig. 7(a) shows the MC-simulated

e+e

π

+

π

π

0

η

detection efficiency (

) for different produc-tion modes determined as a ratio of events that passed recon-struction andselection criteriato the total number of simulated events.

As shown in Sec. 3, the

π

+

π

π

0

η

final state below E c.m.

=

1600 MeV is dominatedbythe process e+e

ω

(

782

)

η

,an ad-mixture ofthe

φ (

1020

)

η

,a0

(

980

)

ρ

(

770

)

, and

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

intermediatestatesarisesintheEc.m.

=

1600–1800 MeV range, and the a0

(

980

)

ρ

(

770

)

state dominates above Ec.m.

=

1800 MeV.

Toestimatethedetectionefficiencyforchargedandneutral par-ticles,weuseaprocedurewithselectingacleansample ofevents with one missingparticle, predict momentumand angles ofthis particleusingkinematics,andcheck howoftenthisparticleis de-tected withour detector.By applyingthisprocedure to dataand MC simulationwe can obtaina correction forthecalculated effi-ciency. Forthispurposewe usethee+e

π

+

π

π

0

π

0 process

(7)

Fig. 7. (a)MC-calculatedefficiencyfordifferentintermediatestates:ω(782(circles),φ(1020(squares),a0(980)ρ(770)(trianglesup),ρ(1450,1700(opencircles),phase space(trianglesdown);theshadedareashowsanaverageefficiencywithestimatedsystematicerrors.(b)Radiativecorrections(1+ δR)forthee+e−→π+ππ0ηcross

section.

Fig. 8. Thee+e−→π+ππ0ηcrosssectionobtainedwiththeCMD-3detector.Blackandbluecolorsareforthe2011and2012data,respectively.(Forinterpretationofthe referencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

whichhasamuchhighercrosssectioninthestudiedenergyrange andlowbackground.

The correction tothe MC-calculated efficiency of

1

.

5

±

1

.

0% forachargedand

1

±

1% for aneutralpionhasbeen obtained. Assuming similar efficiency for

η

γ γ

decay, we estimate the data-MC difference in the detection efficiency as a sum of cor-rections for two charged pions and two

π

0’s:

corr

=

0

.

95. The uncertaintyofthisnumber,3%,obtainedasaquadraticsumof2% fromchargedand2%fromneutralpions,istakenasasystematic uncertainty.

OurdetectionefficiencyisobtainedfromMCsimulationwhich includes a radiative photon from initial particles according to Ref.[13],takingintoaccounttheenergydependenceofeach chan-nel.

7.Thecrosssectioncalculation

Using events of the process e+e

π

+

π

π

0

η

or events of theintermediatestatesdiscussedabove,wecalculatethecross sec-tionsateachenergyas

σ

(

π

+

π

π

0

η

)

=

N

L

·

· (

1

+ δ

R

)

·

corr

,

(1)

where N isthenumberofselectedevents,L istheintegrated lu-minosity,

is the detection efficiency shown in Fig. 7(a) for all studiedchannels, and

(

1

+ δ

R

)

isaradiative correction.SinceMC

simulation does not perfectly describe the experimental resolu-tions,weapplyasmallcorrection,

corr,determinedfromthedata asdiscussedintheSec.6.

Tocalculatetheinclusivecrosssectionfortheprocesse+e

π

+

π

π

0

η

,we useeventsobtainedfromthe

η

peak ofFig. 1(b), andweightefficiencies calculatedfordifferentmodes, takinginto account the relative contribution of each channel. For this com-bined efficiency we introduce a systematic uncertainty of about 10%,shownasashadedareainFig. 7(a).Theenergydependenceof the

(

1

R

)

valuesisshownforthisprocessinFig. 7(b):thevalues

areobtainedaccordingtoRef.[13],takingintoaccounttheenergy dependenceoftheobservedcrosssection(byiteration),presented inFig. 8 andlistedinTable 2.Itis thefirstmeasurement ofthis crosssection.

UsingEq.(1)we calculatethecrosssectionsforthe processes

e+e

ω

(

782

)

η

ande+e

→ φ(

1020

)

η

.Radiativecorrectionsfor the

ω

(

782

)

η

and

φ (

1020

)

η

finalstatesarecalculatedaccordingto Ref.[13].Efficienciesforthesetwoprocessesaredeterminedfrom the simulation (see discussion in Sec. 6) and shownin Fig. 7(a).

Fig. 9showstheobtainedcrosssectionsfortheprocessese+e

(8)

pre-Fig. 9. Thee+e−→ω(782(a)ande+e→ φ(1020)η(b)crosssectionsobtainedattheCMD-3detectorintheπ+ππ0ηmode(circles).Blackandbluecolorsarefor the2011and2012data,respectively.AlsoshownarecorrespondingmeasurementsbyBaBar(opencircles),SND(opensquares),andCMD-3intheK+Kηmode(open triangles).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

Fig. 10. (a) The e+e−→a0(980)ρ(770) cross sections obtained at the CMD-3 detector in the π+ππ0η mode. (b) The cross section for the process e+e−→

π+ππ0η

(noω,φ,a0),obtainedattheCMD-3detector.

vious measurements by BaBar [1], SND [2], and CMD-3 [14] for the

φ (

1020

)

η

in the K+K

η

mode. The branching fractions of the

ω

(

782

)

π

+

π

π

0 and

φ (

1020

)

π

+

π

π

0 decays [16] are taken into account. Our data forthe e+e

ω

(

782

)

η

cross section, listed in Table 2, are in good agreement with the SND experiment, and confirm a discrepancywiththe BaBar data.The numberofthe

ω

(

782

)

η

eventsintheenergyrangebelowEc.m.

=

1600 MeV isequivalent to thenumberof

π

+

π

π

0

η

events dis-cussed in Sec. 2. The cross section for the

φ (

1020

)

η

mode is compatiblewiththepreviousmeasurements, buthasmuchlower statistical precision because of a small

φ

π

+

π

π

0 branching fraction.

Fig. 10(a)showsthe e+e

a0

(

980

)

ρ

(

770

)

crosssection cal-culatedaccordingtoEq.(1)withefficienciesfromFig. 7(b) (trian-glesup).Itisthefirstmeasurementofthiscrosssection,listedin

Table 2.

UsingtheefficiencyshowninFig. 7(a)(opencircles)andthe ra-diativecorrectionsimilartothoseshowninFig. 7(b),wecalculate a cross section for the process e+e

π

+

π

π

0

η

(

no

ω

,

φ,

a

0

)

, presentedinFig. 10(b)andlistedinTable 2.Thecrosssectionhas resonant behavior with a mass around Ec.m.

=

1700 MeV, but is

consistent withzerobelow 1600 MeVandabove 1800 MeV. The

e+e

ω

(

1650

)

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

π

+

π

π

0

η

reactionchaincanberesponsibleforthiscrosssection.

8. Systematicerrorsandcorrections

Allcrosssectionsabovehavea1%systematicuncertaintyfrom theluminosity measurement[9],3%frominefficiency forcharged and neutral pions (see Sec. 6), and 1% from uncertainty on the radiative correction.Using twoindependent triggersbased onDC orcalorimeterinformation,thetriggerefficiencyisestimatedtobe closetounitywitha1%systematicuncertainty.

The uncertainties above shouldbe combinedwitha 5% (15%) uncertainty from variation of the signal and background shapes in the fitting procedure to extract

ω

(

782

)

η

(

φ (

1020

)

η

,

a0

(

980

)

ρ

(

770

)

) signals. We sum these errors in quadrature, and the 6.5% (16%) value is an overall systematic error forthe mea-suredexclusivecrosssections.

For the inclusive process e+e

π

+

π

π

0

η

we add a 10% (11% total) systematicuncertainty dueto variation of efficiencies ofcontributingchannels.

(9)

Fig. 11. Thee+e−→ω(782crosssectionsobtainedwiththeCMD-3detectorintheπ+ππ0ηmode.LinesshowFit 1(dashedline)andFit 2(solidline)describedinthe text.

Table 1

Summaryofparametersobtainedfromthefitsdescribedinthetext.Thevalueswithouterrorswere fixedinthatfit. Fit 1 2 ωη[2] ωπ+π−[15] PDG[16] BeeBωf·107 0.32±0.06 0.50±0.26 0.16−0+0..0907 1.3±0.4 – eeBωf (eV) 7.1±1.2 5.3±1.6 – 17.5±5.4 – mw(MeV/c2) 1420 1418±30 1420 1382±23 1400–1450 ω(MeV) 220 104±35 220 133±48 180–250 φω(rad.) π π π πBeeBωf·107 4.7±0.3 4.5±0.3 4.4±0.5 4.7±0.4 – eeBωf (eV) 59±3 51±3 – 103.5±8.3 – (MeV/c2) 1679±5 1671±6 1660±10 1667±13 1670±30 ω(MeV) 121±9 113±9 110±20 222±25 315±35 χ2/n.d.f. 23/35 18/33 14.5/9 34.9/48

And finally, for the process e+e

π

+

π

π

0

η

(

no

ω

,

φ,

a 0

)

, assuming e+e

ρ

(

1450

,

1700

)

π

reaction, we estimate the uncertainty on the cross section as about 50% due to possi-ble interference with the process e+e

a0

(

980

)

ρ

(

770

)

in the Ec.m.

=

1650–1750 MeV energyrange,wherethelatterisalso de-terminedwiththesameuncertainty.

9. Fittothee+e

ω

(

782

)

η

reaction

UsingtheproceduresuggestedinRef.[2,15],wefitthee+e

ω

(

782

)

η

crosssectionwiththesumoftwo

ω

-likeinterfering res-onances.Theparametersofthe

ω

(

1420

)

(denotedbelowas

ω

)are notwelldetermined[16],andinourfirstfitwefixthemat aver-agevalues,similarly toRef. [2].A relative phaseis fixed at

π

to describetheasymmetryofthepeakinthemeasuredcrosssection. OurresultsshowninFig. 11byadashedlineandlistedinTable 1

(Fit 1),areconsistentwiththatinRef.[2](alsoshowninTable 1). Theobtainedwidthofthe

ω

(

1650

)

(denotedas

ω

)issignificantly differentfromthevaluesinPDG[16],butclosetothatinRef.[15]

fortheprocesse+e

ω

(

782

)

π

+

π

−(alsoshowninTable 1),and agreeswith

ω

=

114

±

14 MeV,obtainedinRef.[1].Ourdata

al-lowustoperformafitwithfloating

ω

(

1420

)

parameters,andthe fit(Fit 2inTable 1 andthesolid linein Fig. 11) yieldthewidth smallerthan estimated inPDG,but consistent withthe resultof Ref.[15].

In addition to the products of the

ω



,

ω

 branching fractions toe+e− andthestudiedfinal state,

B

ee

B

ωf

,

B

ee

B

ωf inTable 1,

we also calculate the products of electron width and branching

fractiontofinalstate,

ee

B

ωf

,

ee

B

ωf,whichlessdependonthe

uncertaintyontheresonancewidths.

10. Conclusion

We report the first measurement of the e+e

π

+

π

π

0

η

(

η

γ γ

)crosssectionwiththeCMD-3detectorattheVEPP-2000 collider. We also present the cross sections for the intermediate states

ω

(

782

)

η

,

φ (

1020

)

η

,anda0

(

980

)

ρ

(

770

)

.

Theprocess e+e

ω

(

782

)

η

iswell describedby thesumof the

ω

(

1420

)

resonance andthe resonance withm

=

1671

±

4

±

10 MeV

/

c2,

=

113

±

9

±

10 MeV,whichcouldbeassociatedwith the

ω

(

1650

)

,buthasawidthsmallerthansuggestedbyPDG[16]. We observea contribution tothe process e+e

π

+

π

π

0

η

from the process not associated with the

ω

(

782

),

φ (

1020

)

, or

a0

(

980

)

intermediate states,whichcan beexplained bythe reac-tione+e

ω

(

1650

)

ρ

(

1450

,

1700

)

π

ρ

(

770

)

ηπ

.

Acknowledgements

We thankthe VEPP-2000personnel forexcellent machine op-eration. Part of this work related to the photon reconstruction algorithm inthe electromagneticcalorimeteris supported by the Russian Science Foundation (project #14-50-00080). The work is partially supported by the Russian Foundation for Basic Re-search (grants RFBR 14-02-00580-a, RFBR 15-02-05674-a, RFBR 16-02-00160-a).

(10)

Table 2

Numberofsignaleventsandthee+e−→π+ππ0η,ω(782)η, a

0(980)ρ(770),andπ+ππ0η(noω,φ,a0)crosssections vsEc.m.,measuredwiththeCMD-3detector.Onlystatisticalerrorsareshown.

Ec.m., MeV N(π+ππ0η) σ(π+ππ0η), nb σ(ωη), nb σ(a0ρ), nb σ(noω, φ,a0), nb 2005 10±7 0.27±0.25 0.09±0.10 0.10±0.41 0.13±0.39 1989 41±12 0.81±0.30 0.00±0.16 0.70±0.37 0.45±0.53 1978 25±8 0.68±0.28 0.12±0.13 0.55±0.38 0.00±0.39 1967 44±11 0.76±0.23 0.13±0.08 0.30±0.29 0.67±0.47 1953 22±9 0.68±0.33 0.08±0.12 0.40±0.83 0.61±0.79 1945 63±12 1.00±0.24 0.07±0.07 0.82±0.37 0.56±0.72 1927 42±10 1.06±0.30 0.00±0.09 1.73±0.60 −0.35±0.54 1926 44±10 0.80±0.22 0.00±0.07 1.01±0.36 0.07±0.46 1903 79±13 1.44±0.28 0.06±0.05 0.75±0.39 0.93±0.72 1901 40±10 1.19±0.34 0.10±0.09 0.72±0.46 0.25±0.52 1893 45±11 1.26±0.34 0.12±0.11 1.77±0.59 −0.36±0.61 1874 108±14 1.77±0.26 0.00±0.07 2.17±0.46 −0.01±0.73 1871 60±12 1.31±0.28 0.00±0.09 1.28±0.53 0.17±0.48 1849 39±9 1.29±0.32 0.05±0.09 1.51±0.55 −0.05±0.53 1840 102±15 1.85±0.30 0.09±0.07 2.04±0.55 −0.05±0.64 1826 39±12 1.15±0.37 0.24±0.12 1.08±0.57 −0.28±0.6 1798 103±15 1.67±0.25 0.38±0.10 1.61±0.44 −0.19±0.99 1793 60±12 2.13±0.43 0.45±0.15 1.16±0.68 0.33±0.69 1774 74±13 2.08±0.36 0.50±0.15 1.60±0.68 −0.05±0.62 1758 139±17 2.28±0.27 0.48±0.11 2.15±0.52 −0.07±0.94 1742 96±14 2.82±0.39 0.87±0.16 0.57±0.80 1.43±0.71 1723 152±16 4.61±0.45 1.02±0.22 1.93±0.92 1.73±0.74 1716 203±20 3.40±0.30 1.09±0.16 1.02±0.58 2.81±1.18 1693 204±17 6.24±0.47 2.10±0.33 1.08±0.90 2.84±0.83 1674 273±21 5.05±0.34 2.18±0.25 2.38±0.96 1.91±1.12 1669 189±17 5.27±0.41 2.22±0.27 0.55±1.08 2.42±0.73 1643 156±16 5.30±0.47 2.05±0.30 1.00±1.19 2.66±0.82 1623 82±13 2.62±0.33 1.82±0.26 1.19±1.16 0.11±0.73 1595 75±14 1.34±0.20 1.07±0.16 0.54±0.55 −0.01±0.70 1594 52±10 1.84±0.29 0.83±0.24 1.41±1.09 −0.12±0.66 1572 30±10 0.87±0.24 0.95±0.18 – 0.00±0.24 1543 22±8 0.63±0.19 0.69±0.16 – 0.02±0.21 1522 10±7 0.29±0.17 0.44±0.15 – −0.28±0.20 1515 15±9 0.45±0.22 0.56±0.18 – −0.05±0.25 1494 19±9 0.54±0.21 0.59±0.17 – 0.02±0.22 1471 21±9 0.63±0.24 0.54±0.19 – 0.18±0.25 1443 10±6 0.36±0.18 0.71±0.21 – −0.23±0.28 1435 12±8 0.18±0.11 0.46±0.12 – −0.38±0.31 1423 21±7 0.61±0.17 0.28±0.15 – 0.37±0.19 1394 0±9 0.00±0.23 0.27±0.16 – −0.23±0.21 References

[1]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.D73(2006)052003.

[2]M.N.Achasov,etal.,SNDCollaboration,Phys.Rev.D94(2016)092002.

[3]M.Davier,A.Hoecker,B.Malaescu,Z.Zhang,Eur.Phys.J.C71(2011)1515; K.Hagiwara,etal.,J.Phys.G38(2011)085003.

[4]V.V.Danilov,etal.,in:ProceedingsEPAC96,Barcelona,1996,p. 1593; I.A.Koop,Nucl.Phys.B(Proc.Suppl.)181–182(2008)371.

[5]B.I.Khazin,Nucl.Phys.B(Proc.Suppl.)181–182(2008)376.

[6]F.Grancagnolo,etal.,Nucl.Instrum.MethodsA623(2010)114.

[7]A.V.Anisyonkov,etal.,Nucl.Instrum.MethodsA598(2009)266.

[8]D.Epifanov,CMD-3Collaboration,J.Phys.Conf.Ser.293(2011)012009.

[9]R.R.Akhmetshin,etal.,Nucl.Phys.B(Proc.Suppl.)225–227(2012)69.

[10]V.Abakumova,etal.,Phys.Rev.Lett.110(2013)140402.

[11]R.R.Akhmetshin,etal.,CMD-2Collaboration,Phys.Lett.B759(2016)634.

[12]S. Agostinelli, et al., GEANT4 Collaboration, Nucl. Instrum. MethodsA 506 (2003)250.

[13]E.A.Kuraev,V.S.Fadin,Sov.J.Nucl.Phys.41(1985)466; S.Actis,etal.,Eur.Phys.J.C66(2010)585.

[14]V.L.Ivanov,etal.,CMD-2Collaboration,Phys.At.Nucl.79(2016)251.

[15]B.Aubert,etal.,BaBarCollaboration,Phys.Rev.D76(2007)092005.

Referenties

GERELATEERDE DOCUMENTEN

We begin with a comparison of the oxygen abundance as a function of luminosity for Leoncino and typical, low-mass, star-forming galaxies in the nearby universe, shown in the left

In addition to the addiction Stroop and visual probe task, other indirect assessment tasks have been developed to index AB towards substance-relevant cues, for example the

With regard to quantity difference, 75% of the respondents said that there was a quantity difference per enset processed depending on the type of processing

Tulp en lelie zorgen voor veel werk bij Maarten de Kock, onderzoeker plantenvirologie en diagnostiek van PPO.. Bij tulp gaat het om vra- gen over de beheersing van virus- sen

(2, 3) Our research group previously presented the association of a single nucleotide polymorphism (SNP) rs4730775 at the WNT2 locus on chromosome 7, by comparing allele

Comparison of ectoparasite prevalence, abundance and community composition between F1 hybrids and the two parental species in the laboratory showed no infection differences,

Optical coherence tomography segmentation results of retinal layers are influenced by artificial noise - most layer thicknesses decrease with increasing neutral density

Female patients were found to have a significantly higher incidence of respiratory symptoms as RFE (230/1000 patient years) compared with male patients (186/1000 patient years)..