• No results found

Stream-scale flow experiment reveals large influence of understory growth on vegetation roughness

N/A
N/A
Protected

Academic year: 2021

Share "Stream-scale flow experiment reveals large influence of understory growth on vegetation roughness"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Advances

in

Water

Resources

journalhomepage:www.elsevier.com/locate/advwatres

Stream-scale

flow

experiment

reveals

large

influence

of

understory

growth

on

vegetation

roughness

Koen

D.

Berends

a,b

,

Un

Ji

c,d

,

W.E.

(Ellis)

Penning

b

,

Jord

J.

Warmink

a,∗

,

Joongu

Kang

c

,

Suzanne

J.M.H.

Hulscher

a

a Department of Marine and Fluvial Systems, Twente Water Centre, University of Twente, P.O. Box 2017, Enschede, 7500 AE, the Netherlands b Deltares, Boussinesqweg 1, Delft, 2629 HV, the Netherlands

c Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology, Goyang 10223, Republic of Korea d Department of Civil and Environmental Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea

a

r

t

i

c

l

e

i

n

f

o

Keywords: Natural vegetation Flow experiment Vegetation roughness Bayesian inference Hydraulic modelling

a

b

s

t

r

a

c

t

Vegetationisakeysourceofflowresistanceinnaturalchannelsandfloodplains.Itisthereforeimportantto ac-curatelymodeltheflowresistancetoinformdecisionmakersandmanagers.However,itischallengingtopredict theresistanceofrealvegetation,becausevegetationmodelsarebasedonrelativelysmall-scalelabexperiments withmostlyartificialvegetation.Experimentaltestsofrealvegetationunderfieldconditionsarescarce.The purposeofthisstudyistomeasuretheflowresistanceofasubmergedwillowpatch,wheresmallherbaceous vegetationwasallowedtogrowinbetweenthewillowstemstosimulatefieldconditions.Detailedflowvelocity measurementswereperformedduringanfullscaleexperimentofflowaroundasubmergedpatchofwillows. Theparametervaluesofthewillowvegetationmodel,aswellasthefrictioncoefficientsofthevegetatedbanks andunvegetatedchannelbed,werecomputedsimultaneouslyusingBayesianinferenceusinga2Dhydrodynamic model.

Resultsshowthatthepresenceofunderstorygrowthgreatlyaffectsflowpatternsandthevalueoftheeffective vegetationdensityparameter.Measuredflowvelocitiesinthepatchwithunderstorygrowthwereverylow,and thepatchhasrelativelyhighdeflection.Afterremovalofthisundergrowth,flowvelocitiesinthepatchincreased anddeflectionofthevegetationcanopydecreased.Weshowthatestimatingvegetationdensityusingan often-usedrigidcylinderestimatorbasedonvegetationsampling,underestimatedtheeffectivevaluebymorethanan orderofmagnitude.Wearguethatproposedextensionstoexistingvegetationmodels,whichcantakeintoaccount understorygrowthandreconfiguration,couldbetestedunderfieldconditionsusingtheapproachfollowedin thispaper.

1. Introduction

Vegetation in rivers and streams is one of the largest sources of flow resistance (Luhar andNepf, 2013) and animportant source of uncertainty in hydrodynamic models used for flood manage-ment (Warmink et al., 2013) and river engineering applications (Berends et al., 2018). The presence of vegetation affects the mor-phologicalevolutionofrivers(vanOorschotetal.,2015),biodiversity (Straatsmaetal.,2017),andwaterquality(Dosskeyetal.,2010). There-fore,agoodrepresentationofvegetationincomputermodelsis impor-tant.

Advancesinremotesensingandclassificationalgorithmsenable de-tailedmapsof thespatialdistribution of vegetation(Geerlinget al., 2009;Forzierietal.,2011;Hodges,2015).Thelocaleffectofvegetation

Correspondingauthor.

E-mailaddress:j.j.warmink@utwente.nl(J.J.Warmink).

onflowiscommonlymodelledthroughafrictionterminthemomentum equation.Thisterm,alsoknownasroughnessorflowresistance,often representsvariouswaysofenergylossesthatarenotexplicitlymodelled. Wecanbroadlydistinguishtwowaystodeterminevegetativefriction infieldsituations.

Thefirstapproachtodeterminevegetativefrictionisbasedon look-uptablesorvegetationmodels.Thetableoftypical(Manning-type) fric-tionvaluesbyChow(1959)arestillusedtocharacterisetheroughness ofstreamsbasedonimagesordescriptionsofthevegetation(e.g.“light brushandtrees,inwinter”).Look-uptablesareaconvenientwayto coupleremote-sensingtohydrodynamicmodelling(e.g.,Forzierietal., 2011).However,despitethewidespreaduseoftheManningcoefficient asalumpedparametertocharacterisedescriberoughness,theimplicit assumptionoftheManningequationforalogarithmicvelocityprofile

https://doi.org/10.1016/j.advwatres.2020.103675

Received4February2020;Receivedinrevisedform15June2020;Accepted2July2020 Availableonline3July2020

(2)

Fig.1. Left:PhotooftheA1experimentalflume(left) withtheadoptedcoordinatesystem.Right:schematic cross-sectionatthelocationofthefirstpatch (cross-sectionD3).

doesnotholdforvegetation(Nadenetal.,2006;Ferguson,2007).For thisreason,various(semi-)empiricalmodelshavebeendevelopedthat computethecontributionforvegetationonflowresistancebasedon veg-etationparameters,suchasstemcountandplantmorphology(Klopstra etal.,1997;Baptistetal.,2007;Huthoff etal.,2007;YangandChoi, 2010; Lietal., 2015). Ithasbeen shown thatsuch modelsperform wellagainstalargebodyofdatacollectedfromlaboratoryexperiments (Vargas-Lunaetal.,2015).

Furtherstudieshavebeencarriedouttobettercapturereal-world vegetation dynamicssuchasreconfiguration(Järvelä,2004;Dijkstra andUittenbogaard,2010;Verschorenetal.,2016)andcontributionof foliage(Baletal.,2011; Västilä andJärvelä,2014).Inpractice, the vegetationparametersnecessarytousetheseformulasshouldbeeither directlymeasured, ortakenfromalook-uptable.Successful applica-tionofthisapproachtofieldconditionsdependsonthevalidityofthe vegetationmodelandtheavailabilityofdataonvegetation.

Thesecondapproachtodeterminevegetativefrictionisthrough in-versemodelling,whichinvolvesfittingthemodel(inpracticeusuallya subsetofmodelparameters)tomeasurements.Itiscalled‘inverse’ mod-elling,becausethequantityofinterestisnotmodeloutput,butmodel input(such asparameters).Inpractice, inversemodellingis usedto findthevaluesforlook-uptables,becausethelumpedroughnesscan bestraightforwardlycomputedbyinvertingtheManningequation, un-dertheassumptionofsteadyuniformflow,alogarithmicflowprofile andaknownenergyslope(Marjoribanksetal.,2014).Inthecaseof non-uniformflow,theinvertedBélangerequationcanbeusedinstead (Erricoetal.,2018).

Roughness values estimated through inverse modelling are often usedasthe‘measured’roughnesstoprovidetheexperimentalbasisfor vegetationmodels.However,estimatingthefrictioninheterogeneous real-worldsituationsbasedontheenergyslope(e.g.,asingle vegeta-tionpatchwhich doesnotcovertheentirechannel), iscomplicated. Estimatingthefrictionofmultiplesources,basedonasingle observa-tion(theenergyslope),mayresultinnon-uniquesolutionstoparameter values(Beven,2006).Thisproblemisanalogoustothatof underdeter-minationin regressionproblems,whichallowsaninfinite numberof acceptablecombinationsofunknownfrictionfactorsiftheparameters exceedtheavailableobservations.Thisseverelylimitsourabilityto es-timatethefrictionvalues,andvalidatevegetationmodels,inreal-world situations.

Incaseswherenon-uniquenessisanissue,probabilisticparameter estimationispreferredtodeterministicoptimisation(Matottetal.,2009; Guillaumeetal.,2019).Formally,thisisachievedthroughBayesian in-ference,whichproducesprobabilitydistributionsofparametervalues giventhe(subjective) likelihood thatthemodel, giventhese values, confirmsexperimentalobservation.AwellknownBayesianinference methodologyisGLUE(generalisedlikelihooduncertaintyestimation), originallydevelopedfornon-uniquenessproblemsinhydrology(Beven andBinley,1992; Fonsecaetal., 2014; Mayotteet al.,2017). How-ever,previousworkhasshownthatestimatingmorethanonefriction sourcebasedonwaterlevelscanresultinunidentifiableparameter dis-tributions,whicharecharacterisedbywideandunconstrainedshapes (Werneretal.,2005).Toincreasetheidentifiabilityofparameter dis-tributionsotherobservationaldatacanbeused,suchasinundation pat-terns(Pappenbergeretal.,2005).Hypothetically,detailedvelocity mea-surementsaroundvegetationpatchescanserveasimilarfunctionto

es-timateflowresistanceusingGLUE.However,theliteratureonflowdata aroundreal-worldvegetationpatchesarescarce(Nadenetal.,2006; Marjoribanks etal.,2017),andcomparisonsbetween laboratoryand fieldin generalarerare(Huthoff etal.,2013; GroomandFriedrich, 2018).

Ouraimistoinvestigatetheflowresistanceofvegetationunder nat-uralconditions.Specifically,weareinterestedintheeffectofsecondary vegetationgrowinginbetweenandunderthebranchesofthedominant vegetationspecies.Suchsecondaryvegetationishardtodetectremotely fromsatelliteordroneimagery,andmaythereforeleadtoan underesti-mationofbiomassinlarge-scalerivermodelsthatrelyonecotopemaps toestimatefloodplainfriction(StraatsmaandHuthoff,2011;Forzieri etal.,2011;Warminketal.,2013;vanOorschotetal.,2015;Berends etal.,2019).Itisexpectedthatunderstorygrowthincreasestheflow resistance,butitisunknownbyhowmuch.Inthisstudy,weperform astream-scaleexperimentwithrealvegetation wheresecondary veg-etationwasallowedtodevelopnaturally.Thisphysicalexperimentis coupledtoadigitaltwinnumericalmodeltocomputefriction parame-tersbyBayesianinference.

2. Methods

2.1. Physicalexperimentsetup

Large-scaleexperimentswereperformedatthesiteoftheKICT-REC (KoreaInstituteofCivilEngineeringandBuildingTechnologyRiver Ex-perimentCenter),whichislocatedinthecityofAndong,SouthKorea. Thisfacilityisdesignedforfullscalephysicalexperimentsandconsists ofthreeseparatechannelsofvariousslopeandsinuosity.Largecapacity pumpscangeneratethemaximumflowrateupto10m3s−1.Thelength

ofeachchannelisapproximately600m.

Theexperimentsforvegetatedflow wereperformedinthe down-streamsectionofthe“A1” channel,whichhasatrapezoidalcross-section withabottomwidthof3m,topwidthof11m,bedslopeof0.001m/m andbank-sideslopeofroughly1:1.5(V:H),asshowninFig.1.The bank-sideslopesofthechannelarevegetatedwithgrassesandsmallannuals nativetotheregion.Thechannelbedconsistsofsandymaterialswitha meanparticlesizeof0.8mm.

Seven alternatingwillow patches,eachwitha lengthof 4mand widthof1.5m,wereplantedinthe52msectionofA1channelwhich was located about 125 m upstream from the downstreamweir and 400mdownstreamfromtheupstreamweir.Thepatcheswereplanted intwoconfigurations:thefourmostupstreampatchesinadense con-figuration of22treesperm2 andthethreedownstreampatchesina

sparseconfigurationof7.3treesperm2.Thewillowsaplingswere

al-lowedtogrowatthesitefor10monthsbeforetheexperimentsstarted inAugust2015.Theaverageheightofrootedwillowswas0.4mwhen theywereplanted,withaninitialtrunkdiameterof1cm.Inaddition, indigenoussmallscaleroughherbaceousvegetationandgrasseswere allowedtogrowonthebank-sideslopesofthechannels.Thebed it-selfwasrelativelyunvegetatedandmobile.Herbaceousvegetationhad alsospontaneouslydevelopedinbetweenthewillowsinthevegetation patches.Althoughtheflumewasmostlydryduringthisinwhichthe vegetationgrew,althoughperiodsofprolongedflowoccurredwhenthe experimentstookplaceinsome(other)partoftheflume.Thisregimeof mostlydryandoccasionalfloodingistypicalformanyKoreanstreams,

(3)

Fig.2. Top:Photographofthe experimen-talsetuptakenfromthetop.Bottom:layout ofexperimentalchannelandlocationofthe D0andD3cross-sections.

whichareephemeralinnature.Aftertheflowexperiment,vegetation samplesweretakentomeasuretheheight,diameterandmorphologyof thewillows.Thebedlevelintheexperimentalareawasmeasuredusing RIEGLLMS-Z390iterrestriallaserscanner.

Theflowmeasurementsweretakenafteruniform,steadyflowwas achieved.Thewaterdepthinthechanneldownstreamwasfixedto ap-proximately1.1m.Detailedthree-dimensionalvelocitymeasurements withanSontek16MHzADV(AcousticDopplerVelocimeter)were per-formedinthemiddleand4mupstreamofthefirstdensepatch(atD3, Fig.2).TheADVdeviceswerepositionedpointingdownwardfroman overhangingbridge.Togetasignalwithinthevegetationpatch,the de-viceswereslightlymovedtotheleftorrightwhenneeded.Duringtrial convergencetestingarequiredmeasurementtimeof100swasfound. Boththedischargeandthedepth-averagedflowvelocityprofileare de-rivedfromtheADVmeasurements.Wegathereddatafromthreecases: (i)flowmeasurementsattheupstreamcross-sectionD0,(ii)flow mea-surementsinthecentreofthefirstwillowpatch,D3,(iii)andfinally flowmeasurementsatD3,butwiththeundergrowthremoved(Fig.2). WewillrefertothesecasesasD0,D3a(willowsandundergrowth)and D3b(onlywillows)respectively.Forcase D0andD3aADV measure-mentswerecarriedout every30cm,foratotalof23 locationsin Y direction.ForD3balowerresolutionwasusedof60cm,foratotalof 12locationsinYdirection.Intheverticaldirection,ameasurementwas carriedoutevery5cm.ForD3aaverticalresolutionof2.5cmwasused inthevegetationpatch.

2.2. Numericalexperimentsetup

Adigitaltwinoftheexperimentalflumewasconstructedwiththe opensourceDelft3D4modellingsystem(Lesseretal.,2004),1 using

atwo-dimensional,regular,numericalcomputationalgridof15 m× 171m.Thesizeofindividualgridcellswas0.5m(inflowdirection)by 0.375mwithbedlevelsdefinedinthecentreofeachcell.Aconstant discharge,determinedfromtheflumeADVmeasurements,wasimposed attheupstreamboundary,whilethedownstreamboundarycondition wasdefinedasaconstantwaterleveltoensureadownstreamwater depthofapproximately1.1m.Themodelwasinitialisedwitha con-stantwaterlevel.Eachsimulationranfor30minofmodeltimewitha timestepof0.3s.Theruntimewaschosensuchthattheentiremodel achievedequilibriumconditionbythelasttimestep.Thescaleofthe

1 ThesourcecodeofDelft3D4,aswellasitsvalidationdocuments,canbe

retrievedfromhttps://oss.deltares.nl.

model,giventherelativelyshortruntime,smallwaterdepths,finegrid andsmalltimestep-requiredchangingsome defaultnumericaland physicalparameters.Weusedasmoothingtimeof2minanda thresh-olddepthforflooding/dryingof 1cm.Thehorizontaleddyviscosity washeldconstantthroughoutthemodelat10−2m2s−1.Tobeableto

capturethesharpvelocitygradientsaroundthepatches,lowviscosity valueswereused(Vionnetetal.,2004;Verschorenetal.,2016).Inthe experimentalarea,thegeometricdatawasbasedonthebedlevel mea-surementsof theexperimental setup.Forregions notcoveredbythe bedlevelmeasurements,asyntheticcross-sectionwasdefinedfromthe designspecificationsofthechannel.

Bedfrictionwasdefinedusingfourdistinctroughnessclasses,two forthewillowpatches(denseandsparse),oneforthevegetatedchannel slopesandoneforthemobilesandchannelbed.Eachindividualclassis assigneditsownroughnessformulaandfrictionparameters.Everygrid cellboundarywasassignedoneofthesefourclasses.Allfriction formu-lasareexpressedintermsoftheChézyfrictioncoefficientC[m1∕2s−1].

ForthechannelbedweusetheManningfrictionformula:

𝐶=1∕6𝑛−1𝑏 (1)

withwaterdepthh[m]andManningcoefficientnb[sm−1∕3].The

Keule-ganequation(alsoknownastheColebrook-Whiteequation)wasfound tobebestsuitedtoreproducethedepth-averagedvelocityonthe chan-nelslopes: 𝐶=𝛼1log10 ( 𝛼2𝑘 𝑠 ) (2) with Nikuradse roughness height ks [m] and parameters 𝛼1=

18m1/2s−1,𝛼

2=12.Thevaluesofbothnbandksweredeterminedwith

GLUE.

Therearevariousmodelsavailableforresolvingvegetationfriction. Here,weusedthetwo-layerapproachofBaptistetal.(2007),which performsfavourablyagainstlaboratoryexperiments(Vargas-Lunaetal., 2015),andisgeneralisedasfollows:

𝐶= ( 𝐶−2 𝑏 +2𝜙𝑔 )−1 2 +𝛼𝑔 𝜅 lnℎℎ𝑑 (3)

whereCbistheChézyfrictioncoefficientofthebedwithoutvegetation,

𝜙 [−]thevegetationparameter,g[ms−2]thegravitationalacceleration,𝜅

thevonKarmanconstant,hd[m]thedeflectedvegetationcanopyheight

and𝛼 anindicatorsuchthat𝛼 =0foremergentconditions(h<hd)and 𝛼 =1forsubmergedconditions(h>hd).

Thedimensionlessvegetationterm𝜙 modelsthecontributionof veg-etationtothetotalfrictionofthevegetatedpartofthecross-section.

(4)

Intheoriginalformulationof Baptistetal.(2007),itiscomputedas 𝜙 =𝑐𝐷𝑚𝐷ℎ𝑣,withdragcoefficientcD [−], stemspersquaremeterm

[m−2],stemdiameterD[m]andvegetationheighth

v [m].This‘stick

model’for𝜙 isideallysuitedforvegetationthatmaybeapproximated asrigidcylinders.

Afixedvalueforhdwasused,whichwasestimatedfrom

measure-ments.Furthermore,weassumedthatthefrictioninthepatchwas dom-inatedbythevegetationandthatthebedtermhadaneglibleimpact. ThereforewechoseaconstantvalueofCbat60m1/2s−1,whichledto

negligibleadditiontothetotalroughness.Thevegetationparameter𝜙 wasconsideredunknown,andestimatedwithGLUE.

2.3. GLUEmethod

Thesetofunknownparametersin thenumericalexperimentwas givenby𝜃 ={𝑛𝑏,𝑘𝑠,𝜙},i.e.thefrictioncoefficientsofthechannelbed andslopeandthevegetationparameter.Theproblemconsideredhere washowtochoosethevaluesforparametersinsuchaway,thatthe measuredflow velocitieswerereproduced bytheflowmodel. While anoptimalsetofvaluesmaybefoundusingoneofvarious optimisa-tionstrategiesavailableinliterature,Beven(2006)arguedthat multi-pleparametersetsmaywellbefoundthatallproduceacceptableresults. Thiscreatesuncertaintyregardingtheparametervaluesthusobtained throughinversemodelling.TheaddedbenefitofGLUEaboveregular calibrationproceduresisthatthisuncertaintyisformallytakeninto ac-count.Toachievethis,GLUEusesBayesianinference,inwhich(usually verylimited)priorknowledgeabouttheparametervaluesisupdated giventheprobabilitythatthoseparametervaluesresultedinmodel out-putthatcomparedfavourablywithmeasurements.Thisistechnically achievedthroughBayes’theorem:

𝑝(𝜃|𝑢)∝(𝑢|𝜃,𝜖)𝑝(𝜃) (4)

where𝜖 istheerror betweenmodelledandmeasuredflowvelocities andumeasuredflowvelocities.Thepriordistributionp(𝜃)thatencodes ourpriorassumptionsofprobableparametervaluesforparameterset 𝜃.Theposteriordistributionp(𝜃|u)isourgoal,becauseitexpressesthe probabilityofparametervaluesin𝜃 afterhavingseenthemeasuredflow velocitiesu.Thelikelihood(𝑢|𝜃,𝜖)isafunctionofthemodel(𝜃,𝜖)and observations(u),andrepresentstheprobabilityofugiven𝜃 and𝜖.

Todeterminethefunctionalform ofthelikelihood weneededto assumeastatisticalrelationshipbetweenobservedandmodelledflow velocities.Here,werelatedthemeasuredflowvelocityvectorucat

cross-sectionctothesimulatedflowvelocitŷ𝑢𝑐,𝑦(𝜃)asfollows:

𝑢𝑐,𝑦=̂𝑢𝑐,𝑦(𝜃)+𝜖𝑐 (5)

where𝜖cisanormalandindependentlydistributederrortermwith

vari-ance𝜎2

𝜖,i.e.𝜖𝑐∼(0,𝜎𝜖2).Theassumptionofindependenterrorsand

zerobiasexpressesourassumptionthatthehydraulicmodelshouldbe abletoreproduceobserveflowvelocityprofiles,suchthatany remain-ingdiscrepancyis adequatelydescribed byanormaldistribution.As iscommonlydoneinGLUEapplications,weadoptedauniformprior distributionforeachparameter.Theupperandlowerlimitsofeach dis-tributionweredeterminedbyexploratorycomputationswiththemodel. Forouradoptederrormodel(5),thecorrespondinglikelihoodfunction is: (𝜃,𝑢)=(2𝜋𝜎2𝜖)−1∕2exp ⎛ ⎜ ⎜ ⎝ − ( 𝑢𝑐,𝑦̂𝑢𝑐,𝑦(𝜃))2 2𝜎2 𝜖 ⎞ ⎟ ⎟ ⎠ (6)

Theunknownsintheinverseproblemareboththemodel parame-ters𝜃 andthevarianceoftheresidualerrors𝜎2

𝜖.Toestimate𝜎𝜖2weused

themaximumlikelihoodestimate𝜎2

𝜖,𝑀𝐿𝐸=𝑛−1∑𝑛𝑖=1(𝑢𝑖𝑢𝑀𝐿𝐸𝑖 )2,with

nthenumberofobservationsand𝑢𝑀𝐿𝐸

𝑖 themodelresultsforthebest

performingparameterset(Stedingeretal.,2008).Sincethelikelihood functionreturnstheprobabilityoftheobservedflowvelocitiesgiven themodelresultsevaluatedwithagivenparameterset𝜃,modelresults

thatdeviatesignificantlyfromobservationswillreturnlikelihoods ap-proachingzero.Thelikelihoodfunctionusedherewasformallyderived fromtheadoptedstatisticalmodel(5).WenotethatGLUEallowsfor greatflexibilityinchoosingfromavarietyofinformallikelihood func-tionsaswell,whichneedanadditionalbehaviouralthresholdto differ-entiatebetweenbehaviouralandnon-behaviouralparametersets.Since (6)tendstozeroforveryimprobableparametersets,suchabehavioural thresholdwasnotneededhere.

Theposteriorparameterdistributions,wereobtainedthroughMonte Carlo simulation using theSobol’ low discrepancysequence (Sobol’, 1967).Wesampledfromthepriordistributionstocreatealargenumber ofpossibleparametersets.Here,weusedasamplesizeof5000model evaluations,witheachevaluationusingadifferent,randomlysampled setof parametervalues.Thesameensemble wasused forcasesD3a andD3b,usingthevalueforhdderivedfromcaseD3a.Afterwards,the ensemble valuesof𝜙 forD3bwerecorrectedtoaccountfora differ-entheightofthedeflectedvegetationcanopy.Theprobability distribu-tionfortheparametervector𝜃 wasobtainedbyapplicationofBayes’ theorem.Thisproceduregaveustwovaluablesourcesofinformation onuncertaintyrelatedtomodelandobservation.First,theestimateof 𝜎2

𝜖,orthe‘predictiveuncertainty’.Thisistheresidualvariancebetween

modelandmeasurement,whichcannotbeexplainedbychoosing differ-entparametersettings.Thesecondisp(𝜃|u),i.e.theposteriorparameter distributionor‘modeluncertainty’.Thisexpressestheuncertaintyinthe parametervalues,giventhemeasurements.

3. Results

3.1. Flowmeasurements

BasedontheADVmeasurements,theflowfieldscoveringthevertical (Y,Z)planewereconstructed.Tocomputedischargefromvelocity mea-surements,itisusuallynecessarytoassumeavelocityprofile(e.g. log-arithmic,seeBoiten,2000).However,duetotheirregularflowprofiles expectedintheflowthroughvegetationandthedensityofvelocity mea-surements,weinsteadlinearlyinterpolatedpointsinbetweentheADV supportpointstoaregular,cross-sectioncoveringgrid,whileassuming zeroflowvelocityatthebed(Fig.4b,d,f).Thetotaldischargewasthen computedbysummingtheproductofthegridcellarea.Wefound dis-chargesof2.91m3s−1(D0),2.66m3s−1(D3a)and2.54m3s−1(D3b).

Thedifferencesareattributedtouncertaintyinflowvelocity measure-mentsandinterpolationinaccuracies.

Themeasurementsattheunvegetatedcross-section D0showthat thedepth-averagedflowislowontheslopesandincreasestowardthe centreofthechannel,reachingabout0.5ms−1(Fig.4a).Attheright

handsideofthechannel(y=6m)alocalincreaseinflowvelocityis measured.Giventhatthehighvelocitieswereconsistentlymeasuredby differentADVdevices,weassumetheyarenotduetoinstrument prob-lems.Therefore,wedidnotrejectthesemeasurements,butleftittothe numericalmodeltoexplainwhetherthesemeasurementsareexpected. WeusedthedischargeatD3aastheupstreamboundaryconditionin thenumericalmodel.

Twoseriesofmeasurementswerecarriedoutforthecross-sectionin thewillowpatch(D3);oneforthenaturalsituationincludingorganic debrisandundergrowth(D3a)andtheotherforwhichthepatchwas cleaned(D3b).

AnalysisofmeasuredflowvelocitiesforD3arevealedthatoneADV measurementdevicereturnednear-zeroresultsforallflowdepths, sug-gesting malfunction. Measurements from this device (at𝑌 =6.4m), werediscardedfromtheresults.SimilartoD0,aregionofhigherflow velocitieswas observed attherighthandside ofthepatch near the watersurface.Inthepatchitself,boththeflowfield(Fig.4d)andthe depth-averagedresults(Fig.4c)showslowervelocities.However,the flow velocitiesnearthewatersurfacearesimilartotheunvegetated partofthechannel,suggestingsubmergedflow.Thisisclearfromthe verticalvelocityprofileinthepatch(Fig.3),whichshowslowflow

(5)

ve-Fig.3.Verticalflowvelocityprofilewithinthewillowpatchesasfunctionof elevation(z)Thedashedlineat𝑧=−3.4mmarkstheassumeddeflectedcanopy heightforcaseD3a.

Table1

Measuredparametersofwillowsinthedensepatchesoftheexperimentalsetup.

Parameter Average st.dev. n Unit

Measurements

Willow height 1.06 ± 0.10 66 m

Stem height 0.43 ± 0.01 66 m

Undergrowth height 0.29 ± 0.15 41 m

Stem diameter 10 ± 3 66 mm

Stem diameter incl. organic debris 15 ± 8 66 mm

Undergrowth diameter 4 ± 4 41 mm

Branch diameter 3 ± 1 50 mm

Nr. of stems 22 m −2

Nr. of branches per stem 15 −

locities(<0.3ms−1)andlargevariationupto𝑧=−3.4m,abovewhich

thevelocitiesrapidlyincreasetomorethan0.6ms−1andvariationis

significantlyreduced.FromFig.3,weassumedthatthevegetationwas deflectedsuchthatthecanopyheightwas0.8m.

CaseD3b— afterremovalofallorganicdebrisandundergrowth— broadlyshows(Fig.4e,f)similarpatternstotheD3aresults,withsome keydifferencesin theflowthrough thepatch.Intheverticalprofile (Fig.3)velocitiesnearthebed(𝑧<−3.6m)arehighercomparedtoD3a, whichisattributedtoremovalofundergrowth.Forhigherwaterdepths (𝑧>−3.6m)velocitiesshowaninitialdecrease,whilethevariationover thepatchincreases.Thisisattributedtoflowthroughthebranchesand leaves,whichaddcomparativelymoreresistance.IncontrasttoD3a, clearsubmergenceisnotobserved.Thereforeweassumethatinthecase ofD3b,thevegetationwasjust-submerged,meaningthatthedeflected canopyheightwasequaltothewaterdepth.

3.2. Vegetationmeasurements

Aftertheinitialflowexperiment(casesD0andD3a),several sam-plesweretakentodeterminetheheightanddiameterof thewillows (Table1).Thestemsweremeasuredupuntiltheupperknot,fromwhich pointseveralbranchessprouted.Weobservedthatorganicdebriswhich hadattacheditselfaroundthewillowstemsincreasedtheeffective di-ameteroftheplantsby50%onaverage.However,thedistributionwas notuniform— someplantsexperiencedasignificantlylargerincrease indiameterwhileothershadlittleattacheddebris.Thiswasreflected intheincreasedvarianceoftheobservations.Theundergrowthhadan averageheightof29cmandgrewinbetweenthewillowstems(Fig.5) andconsistedofvariouswaysofherbaceousvegetation.

Table2

Priordistributionsofmodelparameters.

Parameter Distribution Lower bound Upper bound n b Uniform 0.01 sm −1∕3 0.15 sm −1∕3

k s Uniform 0.1 m 5 m

𝜙 Log-uniform 10 −2 m −1 10 2 m −1

Itshouldbeexpectedthatboththeundergrowthandthediameter increaseduetoorganicdebrisincreasetheeffectivefrictionofthe veg-etationpatch.Theexpectedvegetationparameter𝜙 isestimatedbased ontheBaptistvegetationmodel(𝜙 =𝐶𝑑𝑚𝐷ℎ𝑑)andthevegetation

mea-surementsfromTable1.Tocompute𝜙,weassumedthebranchheight tobeequaltothewillowheightminustheaveragestemheight. Further-more,weassumedrigidbendingatthebed(followingVerschorenetal., 2016),suchthatthedeflected stemandbranchheightscan be com-putedfromthedeflectedwillowheight(seeSection3.1)usingstandard trigonometry.Weassumedacasedragcoefficientof𝐶𝑑=1,whichisa

commonassumptionforsubmergedflow(Wunderetal.,2011).Here, wedidnotaccountfortheeffectoffoliage.Theestimatedvegetation pa-rameterforcaseD3a,i.e.includingdebris,undergrowthandadeflected willowheightof0.8m,isapproximately𝜙𝐷3𝑎=1.33±1.044.Thelarge standarddeviationintheexpectedparameterismainlyduetothe vari-anceinthediameteroftheherbaceousvegetationintheundergrowth. ForcaseD3b,i.e.nodebris,noundergrowthandadeflectedheightequal tothewillowheight,is𝜙𝐷3𝑏=0.76±0.20.

3.3. GLUEresults

AnimportantstepwithinGLUEistodeterminetherangesofthe uni-formpriordistributions.Theserangesshouldbegenerous,sinceitis im-portantthatthesepriordistributionscovertherangewherethe(apriori unknown)posteriordistributionswillbe.Assumingatrapezoidal chan-nel,thelumpedManningcoefficientforthegivendischargeandwater depthisapproximately0.11sm−1∕3.Basedonthisrelativelyhighfriction

factorandexploratorycomputationswiththehydrodynamicmodel,we chosesuitablylargerangesforthepriordistributionsandalog-uniform distributionfor𝜙 (Table2).

Forallthreeparameters(nb,ks,𝜙)wethencomputedthejoint poste-riordistributionsusingGLUE.Theposteriordistributionsgivethe like-lihoodthatacertainparametervalueleadstogoodmodelresults.The widthofthosedistributionsisameasureoftheparameteruncertainty regardingthepossible‘true’valueoftheparametersgiventhemodel andthemeasurements.Themarginalposteriordistributionsofall pa-rametervaluesareshowninFig.6.

Thedistributionof𝜙 forD0isverywideanddoesnotshowaclear peak(Fig.6a).Thisindicatesthatthe𝜙 isaninsensitiveparameterfor cross-sectionD0.Therefore,𝜙 cannotbeidentifiedfromflow measure-mentsatthatcross-section.Thiswasnotunexpected,asD0islocated 4mupstreamfromthefirstpatchandisthereforenotdirectlyinfluenced bythepatch.

TheothertwodistributionsinFig.6ashowthevaluesfor𝜙 thatlead togoodmodelresultsforD3aandD3b.D3a,whichhadsignificant un-dergrowthanddebris,showssignificantlylargerinferredvaluesfor𝜙 comparedtoD3b.Themedianvalueof101.6(~ 39.8)isanorderof

magnitudehigherthanwouldbeexpectedbasedplantonparameters usingtheBaptistmodel.Forthecleanedwillows,caseD3b,thevalues aremuchlower, withamedianvalueof 𝜙 =1.56. Thisismore than twiceashighaswasexpectedbasedontheplantparameters.The un-certaintyoftheestimatedparametervaluesfor𝜙 issignificant,ascan beobservedbythewidthoftheposteriordistributionsinFig.6aandthe standarddeviationinTable3.ForcaseD3aespecially,thevaluesfor𝜙 varybetween20and100,withsomeofthebestsimulationsfoundnear theupperboundary.Itisimportanttonotethatatsuchhighvalues,the sensitivityof𝜙 totheroughnesscoefficientCisverymuchreduceddue

(6)

Fig.4. ThedepthaveragedflowvelocitiesattheADVlocations(a,candd)andtheinterpolatedflowfields(b,d,andf)fortheunvegetatedcase(D0),vegetated casewithundergrowth(D3a)andcleanedvegetationcase(D3b).

(7)

Fig.6. Theposteriorprobabilitydistributions;theseshowthedistributionof likelyparametervaluesaftermodelresultswereweighedagainstmeasurements.

Table3

Thenumberofobservationsnusedforparameterestimation,themedian andstandarddeviationofthemodelparametersin𝜃 andthemaximum likelihoodestimationof𝜎𝜖. D0 D3a D3b unit n b 0.062 ± 0.007 0.098 ± 0.008 0.104 ± 0.010 sm −1∕3 k s 0.99 ± 0.28 2.70 ± 0.332 4.0 ± 0.44 m 𝜙 – 10 1.6±0.2 10 0.19±0.12 𝜎𝜖,MLE 0.039 0.024 0.030 m ms −1 n 23 21 12 −

totheinversesquarerootin(3),whichmaypartlyexplainwhysuch highuncertaintyisfoundforthiscase.Therefore,valueshigherthan theupperboundaryarenotexpectedtomeaningfullyimproveresults.

EstimationofManningcoefficientofthechannelbednb and

Niku-radseroughnessheightoftheslopesksresultedinwell-definedposterior

distributionsforallcases(Fig.6b,c),withstandarddeviationsaround 0.01sm−1∕3(Table3).

Interestingly,thedistributionsarenotthesameforthethreecases. Tomeasuretheroughnessofvegetationfromwaterslopemeasurements, theroughnessofthebediscommonlyassumedtobeindependentfrom theroughness ofthevegetation (e.g.,Verschoren etal., 2016). How-ever,theresultsshowninFig.6suggestthattheparametervaluesfor bothnbandksareaffectedbythevegetationpatch.Forbothnbandks,

thepresenceofapatch(D3a,D3b)resultsinhigherparametervalues. Therefore,theassumptionofindependencebetweentheparameterof thevegetationpatch(𝜙)andthoseofthechannelbedandslope(nband ks)wouldnothavebeenvalidinourcase.

Modelledflow velocities,given theposteriorprobability distribu-tionsoftheparameters,arecompared withthedepth-averagedADV

measurements(Fig.7).Thedepicteduncertaintybandsshowtherange ofthemodeluncertainty.Variationwithinthemodeluncertaintycanbe explainedfromuncertaintyintheparametervalues.Measurementsthat falloutsideofthesebandsareexplainedthroughtheresidualerrorterm 𝜖 inEq.(5).FromFig.7aweobservethattheregionofhigherflow ve-locityincross-sectionD0cannotbeexplainedbythenumericalmodel. Thisindicatesthatthismustbecaused,eitherbyanunmodelledprocess orfeature,orbymeasurementerror.However,ingeneralthevelocity profilesforallcasesarewellexplainedbythenumericalmodel,which isreflectedinthesmallstandarddeviationoftheresidualerror(𝜎𝜖,MLE)

forallthreecases(Table3).

Finally,theuncertaintybandsforcasesD0andD3aare compara-tivelysmallcomparedtotheothercases,bothinFigs.6and7.Thisis duetoahigherdensityofADVmeasurements.Ingeneral,alarger num-berofmeasurementshelpstodecreasemodeluncertaintyandincrease theidentifiabilityoftheindividualparameters.

4. Discussion

4.1. Identifiabilityoffrictionparameters

In this case study we identified three unknown friction parame-ters,relatedtothechannelbed,vegetatedchannelslopesandthe wil-lowpatch.Usingonlywaterlevelmeasurements,itisnotpossibleto uniquelydeterminethevaluesoftheseparameters.Ourfindingsshow thatdetailedmeasurementsofthetransversedepth-averagedvelocity profile,incombinationwithaprobabilisticinversemodellingapproach (here,GLUE),allowsustoestimatetheparametervaluesandquantify theuncertaintyofthoseestimations.Theinversemodellingapproach resultsintwodifferenttypesofuncertainty.Thefirstismodel uncer-tainty,whichistheuncertaintyof̂𝑢𝑐,𝑦(𝜃)in(5).Thisuncertaintycanbe decreasedbyincreasingthenumberofobservations(i.e.ninTable3), oralternativelyifahigheruncertaintyisacceptablethenumberof ob-servationsmaybedecreased.Ingeneral,“dataprovidesinformationand moredataprovidesmoreinformation” (Stedingeretal.,2008).The sec-ondtypeofuncertaintyispredictiveuncertainty,givenby𝜖cin(5).This

uncertaintycannotbedecreasedwithoutchangingmodels,onlymore preciselyestimated.

Inliteratureitisoftenassumedthatthetotalroughnessisconstituted ofalinearsumofindependentconstituentterms(e.g.bedroughnessand vegetation roughness).Thetotalroughnesscanbe estimatedwithout detailedflowmeasurements.Therefore,ifthebedroughnessisknown (e.g.fromrepeatingtheexperimentwithoutvegetation)thevegetation roughnesscanbedetermined.However,ourresultsshowthatthe as-sumptionofindependencebetweenthetermswouldnothavebeenvalid forourstudycase.Forbothvegetatedcases,theestimatedfrictionofthe bedandtheslopewashighercomparedtotheunvegetatedcase.A po-tentialexplanationforthiscouldbethatturbulentandshearstresses notsufficientlymodelledbytheparameterisationofeddyviscosityare compensatedbyahigherbedroughness.

Theestimatedparametervalues for𝜙 werefoundtobegenerally higherthanwasestimatedbasedonthe“rigidcylinder” estimator.This isespeciallytrueforcaseD3a,wherethepresenceofundergrowth con-tributestotheoverallfailureoftheestimator.Inthecleanedcase,D3b, thevaluesarewithinthesameorderofmagnitude,althoughstillafactor twohighercomparedtotherigidcylinderestimation.Apartial expla-nationcouldbefoundinthepresenceoffoliage,whichinotherstudies isreportedtoaccountfor60%oftotaldrag(Baletal.,2011),aswellas unmodelledstressesinthehorizontalexhangelayerbetweenvegetated andunvegetatedflow(Truongetal.,2019).

4.2. Uncertaintyofvegetationmodelparametersunderfieldconditions In this study we used the well-known two-layer model of Baptistetal.(2007)forsubmergedflow.Whilethismodelconsistently

(8)

Fig. 7. The modelled velocities (colored bands) and depth-averaged ADV measure-ments(markers)forthethreecases.The col-ored uncertaintybandsconveythe resultof themodeluncertainty,whilethedashedlines showthetotalpredictiveuncertainty.

comparesfavourablytoexperimentaldata,applicationtofield condi-tionsismetwithseveralchallenges.Animportantlimitationofthe Bap-tistmodelisthatreconfigurationisnotexplicitlytakenintoaccount. Reconfigurationcanbetakenintoaccountinthetwo-layerapproachby modellingtwodifferenteffects.Thefirsteffectisstreamliningofstems andfoliagetodecreasethetotaldragofthevegetation.This directly effects thevegetation parameter 𝜙. The modelproposed byJärvelä (2004)canbeusedtoaccountforthis.Inthismodel,thevegetation parameterisdefinedby𝜙 =𝐶𝐷,𝜒𝐿(𝑢𝑢𝜒𝑣)

𝜒,whereL[m]istheleafarea

index,uv[ms−1]theflowvelocity,u

𝜒[ms−1]aconstantand𝜒,CD,𝜒[−]

arespecies-specificparameters.ThevalueoftheVogelexponent𝜒 is negative,andthusdecreases𝜙 withincreasingvelocity.

Thesecondeffectofreconfigurationisdeflectionofthestems,which effectivelydecreasestheheightofthevegetationcanopyheighthd.This

directlymodifiesthesecondtermintheBaptistmodelwhichaccounts forsubmergedflowand,dependingonthechosenmodel,𝜙.For sub-mergedflow,theestimationof vegetation frictionissensitivetothe decrease ofthevegetation canopy.This isespecially soforlow sub-mergenceratios(<0.75)andhighvaluesof𝜙 (>0.2),forwhichthe contributionofvegetationfriction((𝜙

2𝑔)−1∕2)andcontributionofthe

ve-locityprofileabovethevegetation(

𝑔

𝜅 ln(ℎℎ𝑑))tothetotalfrictionare ofthesameorderofmagnitude.Undertheseconditions,assumingrigid vegetationmayleadtolargeerrorsintheestimationofvegetative fric-tion.

Theprimaryeffectofundergrowthisanincreasedblockageratio, whichcanbemodelledbyahighervaluefor𝜙.Theinherentweakness oftherigidcylinderestimatorsfor𝜙 (usedbyKlopstraetal.,1997; Bap-tistetal.,2007;Huthoff etal.,2007;YangandChoi,2010)isthat inclu-sionof undergrowthis contrived,whileneglectingundergrowthmay leadtosignificantunderestimationoftheeffectiveroughness.Frontal blockageareaestimatorsfor𝜙 (e.g.Västilä andJärvelä,2017)donot sufferfromthislimitation,asundergrowthwouldbeonepartofthe to-talblockagearea.ComparingthetwovegetatedcasesD3aandD3b,we observedlowerflowvelocitiesandgreaterdeflectionofthestems.This maybeseenasasecondaryeffectofundergrowth,i.e.anincreasein

to-taldragofthepatchandthereforegreaterreductionincanopyheight. Thissuggeststhatmodellingthistypeofreconfigurationdoesnotonly dependon plant-specificparameters, buton theconfigurationof the entirepatch,includingsecondaryvegetation.Relativelysimple predic-tivemodelsbasedonsingle-plantbehaviour,orevenlumpedmodels withavelocitydependent relationshipwithplant-specificparameters (Verschorenetal.,2016),arethereforelikelytoincludeuncertainty re-gardingnon-plantspecificdrivers.

FutureeffortmaybedirectedtotestanextendedBaptist(orsimilar two-layer)modelwhichwouldincludetheeffectsofstreamliningand deflection undernaturalconditions. Ideally,these flumetests should coveraseriesofdifferentdischargestotestundervaryingwaterdepths andflowvelocities.Topromoteidentifiability,thenumberof param-etersoftheextendedmodelshouldbelimited.Anotherargumentfor vegetative frictionmodelswitharelativelysmallnumberof parame-ters,apartfromtheissueofidentifiability,isfoundintheusually data-limitedproblemsin practice.Vegetationmodelswithfewparameters forwhichtheuncertaintycanbequantifiedareperhapsbettersuited forlargerscalefieldapplicationsthancomplexmodelswhichrequire intimateknowledgeofvegetationconfiguration.

5. Conclusions

Theobjectiveofthisstudywastoinvestigateflowresistanceunder naturalvegetatedconditions,inwhichsecondaryvegetationgrows un-derandbetweenthedominantspecies.Resultsshowthatthepresence ofundergrowthsharplyincreasesthevegetationparameter𝜙,aswellas increasethedeflectionofthewillows.Overall,thevegetationparameter valuewasfoundtobehigherthanexpectedbasedonaprioriestimations ofarigidcylinderestimator.Thisisattributedtoaspectsofreal vege-tationthatdeviatefromtherigid-stickbasedapproach,namelyfoliage, undergrowthandreconfiguration.

Thispapershowsthatvelocitymeasurementsinnaturalchannelscan beusedeffectivelytoestimatetheparametervaluesofmultiplesources ofuncertaintyundernaturalconditionsusingprobabilisticinverse mod-elling.Resultsshowwell-definedposteriorparameterdistributionsand

(9)

modelresultscomparefavourablytomeasurements.Theparameter val-uesfoundinthenon-vegetatedcross-sectionwerefoundtodifferfrom thevegetatedcross-section,whichsuggeststhatforthegivenmodel, thepresenceofavegetationpatchrequireshigherfrictionvaluesinthe surroundingnon-vegetatedpartaswell.Anexplanationforthishasnot yetbeenfound.

Futurechallengesforpracticalapplicationofvegetationmodelsin large scale,2D applicationsmayrequire relativelysimplemodelsin whichthepresenceofundergrowthandtheeffectsofreconfiguration aretakenintoaccount.Inversemodellingoffullscaleexperimentshas beenshowntobeanappropriatetoolforprovidingtheexperimental basisforfieldvalidationofthesemodels.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

CRediTauthorshipcontributionstatement

KoenD.Berends:Conceptualization,Methodology,Software, Val-idation,Formalanalysis,Writing-originaldraft,Visualization.UnJi: Conceptualization,Methodology,Investigation,Resources,Data cura-tion,Writing -originaldraft,Writing-review& editing,Project ad-ministration,Funding acquisition. W.E.(Ellis)Penning: Conceptual-ization,Resources,Writing-review&editing,Supervision,Project ad-ministration, Funding acquisition. JordJ. Warmink: Conceptualiza-tion,Methodology,Writing-originaldraft,Writing-review&editing, Supervision. JoonguKang: Validation, Investigation, Datacuration, Writing -review & editing, Supervision. SuzanneJ.M.H.Hulscher: Writing-review&editing,Supervision,Projectadministration,Project administration.

Acknowledgements

This research is part of theRiverCare research programme, sup-ported by the Dutch Technology Foundation TTW (project-number 13520),whichispartoftheNetherlandsOrganisationforScientic Re-search(NWO),andwhichispartlyfundedbytheMinistryofEconomic AffairsundergrantnumberP12-14(PerspectiveProgramme).This re-searchwasalsosupportedbytheInternationalMatchingJointResearch ProjectofKICT.WeareverygratefultoWijnandIJzermansandthe mea-surementgroupofKICT-RECandNNT(Nature&Technology)ofKorea fortheirhelpduringtheexperimentin2015.Weacknowledgethepeer reviewoftwoanonymousreviewers,whosevaluablecommentshelped improvethestyleandclarityofthispaper.

References

Bal, K.D., Bouma, T.J., Buis, K., Struyf, E., Jonas, S., Backx, H., Meire, P., 2011. Trade-off between drag reduction and light interception of macrophytes: compar- ing five aquatic plants with contrasting morphology. Funct. Ecol. 25, 1197–1205. https://doi.org/10.1111/j.1365-2435.2011.01909.x .

Baptist, M.J., Babovic, V., Uthurburu, J.R., Keijzer, M., Uittenbogaard, R.E., Mynett, A., Verwey, A., 2007. On inducing equations for vegetation resistance. J. Hydraul. Res. 45, 435–450. https://doi.org/10.1080/00221686.2007.9521778 .

Berends, K.D., Straatsma, M.W., Warmink, J.J., Hulscher, S.J.M.H., 2019. Uncer- tainty quantification of flood mitigation predictions and implications for interven- tions. Nat. Hazards Earth Syst. Sci. 19, 1737–1753. https://doi.org/10.5194/nhess- 19-1737-2019 .

Berends, K.D., Warmink, J.J., Hulscher, S.J.M.H., 2018. Efficient uncertainty quantifica- tion for impact analysis of human interventions in rivers. Environ. Model. Softw. 107, 50–58. https://doi.org/10.1016/j.envsoft.2018.05.021 .

Beven, K., 2006. A manifesto for the equifinality thesis. J. Hydrol. 320, 18–36. https://doi.org/10.1016/j.jhydrol.2005.07.007 .

Beven, K., Binley, A., 1992. The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298. https://doi.org/10.1002/ hyp.3360060305 .

Boiten, W., 2000. Hydrometry: IHE Delft Lecture Note Series. Taylor & Francis. https://www.amazon.com/Hydrometry-IHE-Delft-Lecture-Note/dp/9054104236? SubscriptionId = AKIAIOBINVZYXZQZ2U3A&tag = chimbori05-20&linkCode = xm2&camp = 2025&creative = 165953&creativeASIN = 9054104236 Chow, V.T. , 1959. Open-Channel Hydraulics. McGraw-Hill, New York .

Dijkstra, J.T., Uittenbogaard, R.E., 2010. Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resour. Res. 46. https://doi.org/10.1029/ 2010wr009246 .

Dosskey, M.G., Vidon, P., Gurwick, N.P., Allan, C.J., Duval, T.P., Lowrance, R., 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams1. JAWRA J. Am. Water Resour. Assoc. 46, 261–277. https://doi.org/10.1111/j.1752-1688.2010.00419.x .

Errico, A., Pasquino, V., Maxwald, M., Chirico, G.B., Solari, L., Preti, F., 2018. The effect of flexible vegetation on flow in drainage channels: estima- tion of roughness coefficients at the real scale. Ecol. Eng. 120, 411–421. https://doi.org/10.1016/j.ecoleng.2018.06.018 .

Ferguson, R., 2007. Flow resistance equations for gravel- and boulder-bed streams. Water Resour. Res. 43. https://doi.org/10.1029/2006wr005422 .

Fonseca, A., Ames, D.P., Yang, P., Botelho, C., Boaventura, R., Vilar, V., 2014. Watershed model parameter estimation and uncertainty in data-limited environments. Environ. Model. Softw. 51, 84–93. https://doi.org/10.1016/j.envsoft.2013.09.023 . Forzieri, G., Degetto, M., Righetti, M., Castelli, F., Preti, F., 2011. Satellite multispec-

tral data for improved floodplain roughness modelling. J. Hydrol. 407, 41–57. https://doi.org/10.1016/j.jhydrol.2011.07.009 .

Geerling, G.W., Vreeken-Buijs, M.J., Jesse, P., Ragas, A.M.J., Smits, A.J.M., 2009. Mapping river floodplain ecotopes by segmentation of spectral (CASI) and structural (LiDAR) remote sensing data. River Res. Appl. 25, 795–813. https://doi.org/10.1002/rra.1181 .

Groom, J., Friedrich, H., 2018. Bridging the lab-field interface in fluvial morphology at patch-scale: using close-range photogrammetry to assess surface replication and vege- tation influence. River Res. Appl. 34, 1328–1337. https://doi.org/10.1002/rra.3370 . Guillaume, J.H.A., Jakeman, J.D., Marsili-Libelli, S., Asher, M., Brunner, P., Croke, B., Hill, M.C., Jakeman, A.J., Keesman, K.J., Razavi, S., Stigter, J.D., 2019. Introduc- tory overview of identifiability analysis: aguide to evaluating whether you have the right type of data for your modeling purpose. Environ. Model. Softw. 119, 418–432. https://doi.org/10.1016/j.envsoft.2019.07.007 .

Hodges, B.R., 2015. Representing hydrodynamically important blocking features in coastal or riverine lidar topography. Nat. Hazards Earth Syst. Sci. 15, 1011–1023. https://doi.org/10.5194/nhess-15-1011-2015 .

Huthoff, F., Augustijn, D.C.M., Hulscher, S.J.M.H., 2007. Analytical solution of the depth- averaged flow veocity in case of submerged rigid cylindrical vegetation. Water Resour. Res. 43. https://doi.org/10.1029/2006WR005625 .

Huthoff, F., Straatsma, M.W., Augustijn, D.C.M., Hulscher, S.J.M.H., 2013. Evalua- tion of a simple hydraulic resistance model using flow measurements collected in vegetated waterways. Open J. Mod. Hydrol. 03, 28–37. https://doi.org/10.4236/ ojmh.2013.31005 .

Järvelä, J., 2004. Determination of flow resistance caused by non-submerged woody vegetation. Int. J. River Basin Manag. 2, 61–70. https://doi.org/10.1080/ 15715124.2004.9635222 .

Klopstra, D. , Barneveld, H.J. , van Noortwijk, J.M. , van Velzen, E.H. , 1997. Analytical model for hydraulic roughness of submerged vegetation. In: The 27th Congress of the International Association for Hydraulic Research, San Francisco, 1997; Proceedings of Theme A, Managing Water: Coping with Scarcity and Abundance, pp. 775–780 . Lesser, G.R., Roelvink, J.A., van Kester, J.A.T.M., Stelling, G.S., 2004. Development and

validation of a three-dimensional morphological model. Coastal Eng. 51, 883–915. https://doi.org/10.1016/j.coastaleng.2004.07.014 .

Li, S., Shi, H., Xiong, Z., Huai, W., Cheng, N., 2015. New formulation for the effective relative roughness height of open channel flows with submerged vegetation. Adv. Water Resour. 86, 46–57. https://doi.org/10.1016/j.advwatres.2015.09.018 . Luhar, M., Nepf, H.M., 2013. From the blade scale to the reach scale: achar-

acterization of aquatic vegetative drag. Adv. Water Resour. 51, 305–316. https://doi.org/10.1016/j.advwatres.2012.02.002 .

Marjoribanks, T.I., Hardy, R.J., Lane, S.N., 2014. The hydraulic description of vegetated river channels: the weaknesses of existing formulations and emerging alternatives. Wiley Interdiscip. Rev. 1, 549–560. https://doi.org/10.1002/wat2.1044 . Marjoribanks, T.I., Hardy, R.J., Lane, S.N., Tancock, M.J., 2017. Patch-scale representation

of vegetation within hydraulic models. Earth Surface Processes and Landforms 42, 699–710. https://doi.org/10.1002/esp.4015 . ESP-15-0404.R3

Matott, L.S., Babendreier, J.E., Purucker, S.T., 2009. Evaluating uncertainty in inte- grated environmental models: a review of concepts and tools. Water Resour. Res. 45. https://doi.org/10.1029/2008wr007301 .

Mayotte, J.M., Grabs, T., Sutliff-Johansson, S., Bishop, K., 2017. The effects of ionic strength and organic matter on virus inactivation at low temperatures: general likeli- hood uncertainty estimation (GLUE) as an alternative to least-squares parameter op- timization for the fitting of virus inactivation models. Hydrogeol. J. 25, 1063–1076. https://doi.org/10.1007/s10040-017-1559-3 .

Naden, P., Rameshwaran, P., Mountford, O., Robertson, C., 2006. The influence of macro- phyte growth, typical of eutrophic conditions, on river flow velocities and turbulence production. Hydrol. Process. 20, 3915–3938. https://doi.org/10.1002/hyp.6165 . van Oorschot, M., Kleinhans, M., Geerling, G., Middelkoop, H., 2015. Distinct patterns of

interaction between vegetation and morphodynamics. Earth Surf. Process. Landf. 41, 791–808. https://doi.org/10.1002/esp.3864 .

Pappenberger, F., Beven, K., Horritt, M., Blazkova, S., 2005. Uncertainty in the calibration of effective roughness parameters in HEC-RAS using inundation and down- stream level observations. J. Hydrol. 302, 46–69. https://doi.org/10.1016/j.jhydrol. 2004.06.036 .

(10)

Sobol’, I., 1967. On the distribution of points in a cube and the approxi- mate evaluation of integrals. USSR Comput. Math. Math. Phys. 7, 86–112. https://doi.org/10.1016/0041-5553(67)90144-9 .

Stedinger, J.R., Vogel, R.M., Lee, S.U., Batchelder, R., 2008. Appraisal of the gener- alized likelihood uncertainty estimation (GLUE) method. Water Resour. Res. 44. https://doi.org/10.1029/2008wr006822 .

Straatsma, M., Huthoff, F., 2011. Uncertainty in 2D hydrodynamic models from errors in roughness parameterization based on aerial images. Phys. Chem. Earth. 36, 324–334. https://doi.org/10.1016/j.pce.2011.02.009 .

Straatsma, M.W., Bloecker, A.M., Lenders, H.J.R., Leuven, R.S.E.W., Kleinhans, M.G., 2017. Biodiversity recovery following delta-wide measures for flood risk reduction. Sci. Adv. 3, e1602762. https://doi.org/10.1126/sciadv.1602762 .

Truong, S.H., Uijttewaal, W.S.J., Stive, M.J.F., 2019. Exchange processes induced by large horizontal coherent structures in floodplain vegetated channels. Water Resour. Res. 55, 2014–2032. https://doi.org/10.1029/2018wr022954 .

Vargas-Luna, A., Crosato, A., Uijttewaal, W.S.J., 2015. Effects of vegetation on flow and sediment transport: comparative analyses and validation of prediction models. Earth Surf. Process. Landf. 40, 157–176. https://doi.org/10.1002/esp.3633 .

Västilä, K., Järvelä, J., 2014. Modeling the flow resistance of woody vegetation using physically based properties of the foliage and stem. Water Resour. Res. 50, 229–245. https://doi.org/10.1002/2013wr013819 .

Västilä, K., Järvelä, J., 2017. Characterizing natural riparian vegetation for model- ing of flow and suspended sediment transport. J. Soils Sediments 18, 3114–3130. https://doi.org/10.1007/s11368-017-1776-3 .

Verschoren, V., Meire, D., Schoelynck, J., Buis, K., Bal, K.D., Troch, P., Meire, P., Tem- merman, S., 2016. Resistance and reconfiguration of natural flexible submerged vegetation in hydrodynamic river modelling. Environ. Fluid Mech. 16, 245–265. https://doi.org/10.1007/s10652-015-9432-1 .

Vionnet, C.A., Tassi, P.A., Vide, J.P.M., 2004. Estimates of flow resistance and eddy vis- cosity coefficients for 2D modelling on vegetated floodplains. Hydrol. Process. 18, 2907–2926. https://doi.org/10.1002/hyp.5596 .

Warmink, J.J., Straatsma, M.W., Huhoff, F., Booij, M.J., Hulscher, S.J.M.H., 2013. Uncertainty of design water levels due to combined bed form and vegeta- tion roughness in the Dutch river Waal. J. Flood Risk Manag. 6, 302–318. https://doi.org/10.1111/jfr3.12014 .

Werner, M.G.F., Hunter, N.M., Bates, P.D., 2005. Identifiability of distributed flood- plain roughness values in flood extent estimation. J. Hydrol. 314, 139–157. https://doi.org/10.1016/j.jhydrol.2005.03.012 .

Wunder, S., Lehmann, B., Nestmann, F., 2011. Determination of the drag coefficients of emergent and just submerged willows. Int. J. River Basin Manag. 9, 231–236. https://doi.org/10.1080/15715124.2011.637499 .

Yang, W., Choi, S.U., 2010. A two-layer approach for depth-limited open-channel flows with submerged vegetation. J. Hydraul. Res. 48. https://doi.org/10.1080/ 00221686.2010.491649 .

Referenties

GERELATEERDE DOCUMENTEN

For example, if we continue on the path of doing research on the differences among sectors and we indeed find that in some industries small R&amp;D investments can lead

ministers and government advisors bring to the board and how they add value, as senior bureaucrat directors affect investors’ perception because of their social

In Section 5 the results for the regressions run on the relationship between the conditioning variable and the business cycle, as well as those for the

H2: The impact of investor sentiment on future returns of hard to value and difficult to arbitrage stocks is more sensitive in collectivistic countries than individualistic

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

The high animal protein intake could explain why dietary saturated fat intake and cholesterol intake were higher than recommended ranges, as well as why the total and LDL

In coronatijd blijkt veel mogelijk op het gebied van technologie, maar laat je niet leiden door de waan van de dag.. Blijf je altijd afvragen wat het

Following our decomposition of firm-specific and market- wide total shocks in equity risk premium news −Ne, interest rate news −Ny, and cash flow news N CF nom , we can split