• No results found

Editing to a planar graph of given degrees

N/A
N/A
Protected

Academic year: 2021

Share "Editing to a planar graph of given degrees"

Copied!
15
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Journal

of

Computer

and

System

Sciences

www.elsevier.com/locate/jcss

Editing

to

a

planar

graph

of

given

degrees

Konrad

K. Dabrowski

a

,

, Petr

A. Golovach

b

,

Pim van ’t

Hof

c

,

Daniël Paulusma

a

,

Dimitrios

M. Thilikos

d

,

e

,

f

aSchoolofEngineeringandComputingSciences,DurhamUniversity,UnitedKingdom bDepartmentofInformatics,UniversityofBergen,Norway

cSchoolofBuiltEnvironment,RotterdamUniversityofAppliedSciences,Rotterdam,TheNetherlands dComputerTechnologyInstituteandPress“Diophantus”,Patras,Greece

eDepartmentofMathematics,NationalandKapodistrianUniversityofAthens,Athens,Greece fAlGCoproject-team,CNRS,LIRMM,Montpellier,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received21February2016

Receivedinrevisedform 17November2016 Accepted26November2016

Availableonline1December2016 Keywords:

Graphediting Connectedgraph Planargraph Polynomialkernel

Weconsider thefollowinggraphmodificationproblem. Lettheinput consistofagraph

G= (V,E),aweightfunctionw:VE→ N,acostfunctionc:VE→ N0andadegree

functionδ:V→ N0,togetherwiththreeintegerskv,keand C .Thequestioniswhetherwe

candeleteasetofverticesoftotalweightatmost kv andasetofedgesoftotalweight

atmost ke sothat the totalcostofthe deleted elements isatmost C andevery

non-deletedvertex v hasdegreeδ(v)intheresultinggraph G.Wealsoconsiderthevariantin which G mustbeconnected.BothproblemsareknowntobeNP-completeandW[1]-hard whenparameterizedbykv+ke.Weprovethat,whenrestrictedtoplanargraphs,theystay

NP-completebuthavepolynomialkernelswhenparameterizedbykv+ke.

©2016TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCC BYlicense(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Graphmodificationproblemscaptureavarietyoffundamentalgraph-theoreticproblems,andassuchtheyareverywell studied inalgorithmic graphtheory.The aimis tomodify some givengraph G intosome other graph H ,that satisfies a

certainproperty,byapplyingatmostsomegivennumberoperationsfromaset S ofprespecifiedgraphoperations.Well-known graph operations are the edge addition, edge deletion and vertex deletion, denoted by ea

,

ed and vd, respectively. For example,ifS

= {

vd

}

and H mustbeacliqueorindependentset,thenweobtaintwobasicgraphproblems,namely Clique and IndependentSet,respectively.Togiveafewmoreexamples,if H mustbeaforestandeitherS

= {

ed

}

orS

= {

vd

}

,then we obtain theproblems FeedbackEdgeSetand FeedbackVertexSet,respectively. As wediscussin detaillater, it isalso commontoconsidersets S consistingofmorethanonegraphoperation.

An extendedabstractofthispaper appearedinthe proceedingsofCSR2015[10].Thefirstand fourthauthors were supportedbyEPSRCGrant

EP/K025090/1.TheresearchofthesecondauthorreceivedfundingfromtheEuropeanResearchCouncilundertheEuropeanUnion’sSeventhFramework Programme(FP/2007–2013)/ERCGrantAgreementn.267959.Theresearchofthefifthauthorwasco-financedbytheEuropeanUnion(EuropeanSocial FundESF)andGreeknationalfundsthroughtheOperationalProgram“EducationandLifelongLearning”oftheNationalStrategicReferenceFramework (NSRF)–ResearchFundingProgram:ARISTEIAII.

*

Correspondingauthor.

E-mailaddresses:konrad.dabrowski@durham.ac.uk(K.K. Dabrowski),petr.golovach@ii.uib.no(P.A. Golovach),p.van.t.hof@hr.nl(P. van ’tHof), daniel.paulusma@durham.ac.uk(D. Paulusma),sedthilk@thilikos.info(D.M. Thilikos).

http://dx.doi.org/10.1016/j.jcss.2016.11.009

0022-0000/©2016TheAuthors.PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

(2)

A property ishereditary if it isclosed under takinginduced subgraphs. A property isnon-trivial if itis both true for infinitelymanygraphsandfalseforinfinitelymanygraphs.AclassicresultofLewisandYannakakis[24]isthatthevertex deletionproblemis NP-hard foranyproperty thatisboth hereditaryandnon-trivial. Inan earlierpaper,Yannakakis[33]

alsoshowedNP-hardnessresultsfortheedgedeletionproblemforseveralproperties,suchasbeingplanarorouter-planar.

Natanzon, Shamir andSharan [29] and Burzyn, Bonomo and Durán [5] proved that the graph modification problem is

NP-completeforseveraltargethereditarygraphpropertieswhenS

= {

ea

,

ed

}

.

Aswecanseefromtheaboveresults,graphmodificationproblemsareoftenintractableevenforelementarycaseswhen

S

⊆ {

ea

,

ed

}

.Assuch,manypapersinthisarea studythecomplexity ofgraphmodificationproblemswhenparameterized bythetotalnumberofpermittedoperations k.

Cai[6]provedthatthegraphmodificationproblemisFPTwhenparameterizedby k,if S

= {

ea

,

ed

,

vd

}

andthedesired property isthat ofbelonging toanyfixed graph classcharacterized by a finiteset offorbiddeninduced subgraphs. Khot andRaman[21] determinedallnon-trivialhereditarypropertiesforwhichthevertexdeletionproblemisFPTonn-vertex

graphswithparametern

k and proved thattheproblemis W

[

1

]

-hardwithrespectto thisparameter forallother such properties.

Fromtheaforementionedresultsweseethatthegraphmodificationproblemhasbeenthoroughlystudiedforhereditary properties.Severalothernaturaltypesofpropertieshavealsobeenconsidered.Forinstance,Dabrowskietal.[9]combined anumberofpreviousresults[4,7,8]withnewresultstogiveacompleteclassificationofthe(parameterized)complexityof theproblemofmodifying aninputgraphintoaconnectedgraphwhereeachvertexhassomeprescribeddegreeparityfor everysetS

⊆ {

ea

,

ed

,

vd

}

.

1.1. Ourfocus

In this paper we consider the case when the vertices of the resulting graph must satisfy some prespecified degree constraints (note that such properties are non-hereditary, so the resultof Lewis and Yannakakis does not apply to this case).Thisisa naturaldirectiontoconsidergiventhe classicalstructuralresults[25,32] onso-called f -factorsingraphs, whicharespanningsubgraphsinwhicheachvertex u musthavedegree f

(

u

)

forsomespecifiedfunction f (theseresults immediately imply that an f -factor in a graph can be found in polynomial time if one exists, while finding connected

f -factors,e.g.Hamiltoncycles,isNP-complete).

Beforepresentingourresults,webrieflydiscusstheknownresultsandthegeneralframeworktheyfallunder.

Generalframework. MoserandThilikosin[28] andMathiesonandSzeider[27] initiatedaninvestigationintothe param-eterizedcomplexityofgraphmodificationproblemswithrespecttodegreeconstraints.Thisleadstothefollowinggeneral problem.

DegreeConstraintEditing(S)

Instance: Agraph G,integersd,k andafunction

δ

:

V

(

G

)

→ {

1

,

. . . ,

d

}

.

Question: Can G bemodified intoagraph G suchthatdG

(

v

)

= δ(

v

)

foreach v

V

(

G

)

usingatmost k operations

fromtheset S?

MathiesonandSzeider[27] classifiedtheparameterizedcomplexityofthisproblemfor S

⊆ {

ea

,

ed

,

vd

}

.Inparticularthey showedthefollowing results.If S

⊆ {

ea

,

ed

}

thenthe problemispolynomial-timesolvable. Ifvd

S thenthe problemis NP-complete,W

[

1

]

-hardwithparameter k andFPTwithparameter d

+

k.Moreover,theyprovedthatthelatterresultholds evenforamoregeneralversion,inwhichtheverticesandedgeshavecostsandthedesireddegreeforeachvertexshould be insome givensubset of

{

1

,

. . . ,

d

}

. If

{

v

}

S

⊆ {

ed

,

vd

}

, they proved thatthe problemhasa polynomial kernelwhen parameterizedby d

+

k evenifverticesandedges havecosts. Recently,Mathieson[26] consideredgrapheditingproblems foranumberofalternativeformsofdegreeconstraints.Golovach[19]consideredthecasesS

= {

ea

,

vd

}

andS

= {

ea

,

ed

,

vd

}

andproved(amongstotherresults)thatforthesecasestheproblemhasnopolynomialkernelwhenparameterizedbyd

+

k

unless NP

coNP

/

poly. Froese,Nichterlein andNiedermeier [14] gave morekernelization resultsfor DegreeConstraint Editing(S).

Golovach[18] introduced avariantof DegreeConstraintEditing(S) withthe extracondition that theresulting graph must be connected. He proved that, for S

= {

ea

}

,this variantis NP-complete, FPTwhen parameterized by k, and hasa polynomialkernelwhenparameterizedby d

+

k. Theconnectedvariantisreadilyseen tobeW

[

1

]

-hard whenvd

S bya straightforward modificationofthe proof ofthe W

[

1

]

-hardness resultfor DegreeConstraintEditing(S),when vd

S,as givenbyMathiesonandSzeider[27].

Ourresults. InthelightoftheaboveNP-completenessandW

[

1

]

-hardness resultswhen vd

S itisnaturaltorestrictthe inputgraph G toaspecialgraphclass.Hence,inspiredbytheaboveresults,weconsiderthesetS

= {

ed

,

vd

}

andstudyboth variantsoftheseproblems(whereweinsistthattheresultinggraph Gisconnectedandwherewedonot)forplanar input

graphs.Theproblemvariantnotdemandingconnectivityisdefinedasfollows.(Infacttheproblemswe studyareslightly moregeneral.)

(3)

PlanarDegreeConstraintDeletion

Instance: AplanargraphG

= (

V

,

E

)

,integerskv,keandafunction

δ

:

V

→ N

0.

Question: Can G bemodified into a graph G such that dG

(

v

)

= δ(

v

)

for each v

V

(

G

)

usingat most kv vertex

deletionsandatmost ke edgedeletions?

We note that PlanarDegreeConstraintDeletion is NP-complete even if

δ

3 and that its connected variant is

NP-complete evenif

δ

2. Theseobservations followdirectlyfrom therespective facts that both testingwhethera pla-nargraphofmaximumdegreeatmost 7 hasanon-trivialcubicsubgraphisNP-complete[31]andtestingwhetheracubic planargraphhasaHamiltoniancycleisNP-complete[15].

IncontrasttotheaforementionedW

[

1

]

-hardnessresultsforgeneralgraphs,ourtwomainresultsarethattheweighted versionof PlanarDegreeConstraintDeletionanditsconnectedvariantbothhavepolynomialkernelswhenparameterized by kv

+

ke (see Section2.2fortheexact definitionoftheseweightedversions). Notethatby settingkv

=

0 orke

=

0 we

obtainthesameresultsfor DegreeConstrainedEditing(S) when S

= {

ed

}

andS

= {

vd

}

,respectively(thoughthe S

= {

ed

}

caseisnotsurprising,sincethisproblemissolvableinpolynomialtimeongeneralgraphs[27]).

In order to obtain our results we first show that both problemsare polynomial-timesolvable forany graph class of bounded treewidth.We thenuse avariantof theprotrusiondecomposition/replacement techniquesintroduced by Bodlaen-der et al.[3].Thesetechniqueswere successfullyusedforvariousproblemsonsparsegraphs[13,16,17,22].Westressthat our problems do not fit into the meta-algorithmic framework of Bodlaender et al. [3]on kernelization. Our kernels re-quireprotrusionreplacementmachinerythatisdifferentfromthegeneralone in[3].Hence ourapproachis,unavoidably, problem-specific.

2. Preliminaries

Inthissectionwestateterminologyandnotationusedthroughoutthepaper.

2.1. Basicterminologyandnotation

Allgraphsinthispaperarefinite,undirectedandwithoutloopsormultipleedges.Thevertexsetofagraph G isdenoted by V

(

G

)

andtheedgesetisdenotedby E

(

G

)

.ForasetX

V

(

G

)

,welet G

[

X

]

denotethesubgraphof G inducedby X .We let G

X

=

G

[

V

(

G

)

\

X

]

; notethat weallowthecasewhere X



V

(

G

)

.If X

= {

x

}

,wemaywrite G

x instead.Foraset

L

E

(

G

)

,weletG

L bethegraphobtainedfrom G bydeletingalledgesof L.IfL

= {

e

}

thenwemaywriteG

e instead.

For v

V

(

G

)

,let EG

(

v

)

= {

e

E

(

G

)

|

e is incident to v

}

.For X

V

(

G

)

,let EG

(

X

)

=



vXEG

(

v

)

.Fore

E

(

G

)

withe

=

uv,

let V

(

e

)

= {

u

,

v

}

.ForasetL

E

(

G

)

let V

(

L

)

=



eLV

(

e

)

.

Let G be a graph.For a vertex v, we let NG

(

v

)

denote its (open)neighbourhood, that is,the set of vertices adjacent

to v. The degree ofa vertex v is denotedby dG

(

v

)

= |

NG

(

v

)

|

.Fora set X

V

(

G

)

,we write NG

(

X

)

= (



vXNG

(

v

))

\

X .

The closedneighbourhood NG

[

v

]

=

NG

(

v

)

∪ {

v

}

, andfora non-negative integer r, NrG

[

v

]

is the set ofvertices atdistance

at most r from v;note that N0

G

[

v

]

= {

v

}

andthat N1G

[

v

]

=

NG

[

v

]

.Let X

V

(

G

)

,andlet r be a positive integer. We let

Nr G

[

X

]

=



vXNrG

[

v

]

.The set X isan r-dominating set of G if V

(

G

)

NrG

[

X

]

.We let

G

(

X

)

=

X

NG

(

V

(

G

)

\

X

)

be the

boundary of X in G,i.e.thesetofverticesin X thathaveneighbours G outsideof X .

A treedecomposition ofa graph G isapair

(X ,

T

)

where T is atreeand

X = {

Xi

|

i

V

(

T

)

}

isacollectionofsubsets

(calledbags)of V

(

G

)

suchthat

(i)



iV(T)Xi

=

V

(

G

)

,

(ii) foreachedgexy

E

(

G

)

,thereisani

V

(

T

)

suchthatx

,

y

Xi,and

(iii) foreachx

V

(

G

)

,theset

{

i

|

x

Xi

}

inducesaconnectedsubtreeof T .

Thewidth ofatreedecomposition

(

{

Xi

|

i

V

(

T

)

},

T

)

ismaxiV(T)

{|

Xi

|

1

}

.Thetreewidth ofagraph G (denoted tw

(

G

)

)is

the minimumwidthoverall treedecompositionsof G.Atreedecomposition

(X ,

T

)

ofagraph G is nice,if T isarooted binarytreesuchthatthenodesof T areoffourtypes:

(i) aleafnode i isaleafof T with Xi

= ∅

;

(ii) anintroducenode i hasonechild iwith Xi

=

Xi

∪ {

v

}

forsomevertexv

V

(

G

)

;

(iii) aforgetnode i hasonechild iwith Xi

=

Xi

\ {

v

}

forsomevertexv

VG;and

(iv) ajoinnode i hastwochildren iand i with Xi

=

Xi

=

Xi,

and, moreover,theroot r isaforgetnodewith Xr

= ∅

.Kloks[23]provedthateverytreedecompositionofagraphcanbe

convertedinlineartimetoanicetreedecompositionofthesamewidthsuchthatthesizeoftheobtainedtreeislinearin thesizeoftheoriginaltree.

(4)

Lemma1.Let V1 and V2bethebipartitionclassesofaplanarbipartitegraph G suchthatdG

(

v

)

3 forevery v

V2and V2is

non-empty.Then

|

V2

|

2

|

V1

|

4.

Proof. Let G besuchagraph.Let C

(

G

)

and F

(

G

)

bethesetofcomponentsandfacesin G,respectively.Since G isbipartite, theborderofeveryinternalfaceof G mustcontainatleastfouredges.Thisalsoappliestotheinfiniteouterface,since G containsavertexofdegreeatleast 2 (edgescontainedintheborderofafacethatarenotpartofacyclearecountedtwice). Every edge is partof atmost two faces. It followsthat 4

|

F

(

G

)

|

2

|

E

(

G

)

|

. Euler’sFormula forplanar graphs states that

|

V

(

G

)

|

−|

E

(

G

)

|

+|

F

(

G

)

|

−|

C

(

G

)

|

=

1.Combiningthiswiththeaboveinequality,wefindthat

|

E

(

G

)

|

2

|

V

(

G

)

|

2

|

C

(

G

)

|

2

2

|

V

(

G

)

|

4.

Now3

|

V2

|



vV2dG

(

v

)

,sinceeveryvertexin V2 hasdegreeatleast 3.Weknowthat



vV2dG

(

v

)

= |

E

(

G

)

|

since G isbipartite.Combiningtheseobservationswiththeinequalityfoundaboveimpliesthat3

|

V2

|

2

(

|

V1

|

+ |

V2

|)

4.Therefore

|

V2

|

2

|

V1

|

4.

2

2.2. Fullproblemdescription

As mentionedin Section 1the problemswe solveare moregeneral than PlanarDegreeConstraintDeletionandits connectedvariant.The generalizationswe studyare analogousto thoseused forother editingproblems inthe literature (seee.g.[27]).Theunconnectedvariantthatwesolveisdefinedasfollows:

DeletiontoaPlanarGraphofGivenDegrees(DPGGD)

Instance: AplanargraphG

= (

V

,

E

)

,integerskv,ke,C andfunctions

δ

:

V

→ N

0, w

:

V

E

→ N

,c

:

V

E

→ N

0.

Question: Can G bemodifiedintoagraph GbydeletingasetU

V withw

(

U

)

kvandasetD

E withw

(

D

)

ke

suchthatc

(

U

D

)

C anddG

(

v

)

= δ(

v

)

forv

V

(

G

)

?

Inthisproblem, w istheweight and c isthecost function.Thequestioniswhetheritispossibletodeleteverticesandedges oftotalweightatmost kv and ke,respectively,sothatthetotalcostofthedeletedelementsisatmost C andtheobtained

graphsatisfiesthedegreerestrictionsprescribedbythegivenfunction

δ

.Notethatifwedeleteavertex,theedgesincident to that vertexcan no longerbe present, so they are automatically deleted; theseedges do not contribute to theweight orcost ofthesolution.Weincludecosts to makeourresultsasgeneralaspossible.Inparticularnote that theinteger C isneithera constantnor aparameter,butpartofthe input.Addingcosts inthiswaydoesnotfundamentally complicate ourproof.Asthegoalistominimizethetotalcosts,thecostsforedgesandverticesarecombined.Besidescosts,wealso includeweights,mainlyfortechnicalreasons.

WecallthevariantofDPGGD,inwhichthedesiredgraph G mustbe connected,the DeletiontoaConnectedPlanar

GraphofGivenDegreesproblem(DCPGGD).

2.3. Protrusiondecompositions

For a graph G anda positive integer r, a set X

V

(

G

)

is an r-protrusion of G if

|∂

G

(

X

)

|

r and tw(G

[

X

])

r. For

positiveintegers s and s,an

(

s

,

s

)

-protrusiondecompositionofagraph G (seealsoFig. 1) isa partition



= {

R0

,

. . . ,

Rp

}

of V

(

G

)

suchthat

(i) max

{

p

,

|

R0

|}

s,

(ii) foreachi

∈ {

1

,

. . . ,

p

}

,R+i

=

NG

[

Ri

]

isans-protrusionof G,and

(iii) foreachi

∈ {

1

,

. . . ,

p

}

,NG

(

Ri

)

R0

∩ ∂

G

[

R+i

]

.

The sets R+1

,

. . . ,

R+p are called the protrusions of



. Originally, condition (iii) only demanded that NG

(

Ri

)

R0 holds

foreach i

∈ {

1

,

. . . ,

p

}

.However, we can move every vertex in NG

(

Ri

)

\ ∂

G

[

R+i

]

to Ri without affectingany ofthe other

properties.Henceweassumewithoutlossofgeneralitythatsuchverticesdonotexistandmayindeedstatecondition(iii) asabove(whichisconvenientforourpurposes).Notethatifavertexv

Ri+hasaneighbouroutsideof R+i thenv

NG

(

Ri

)

bythedefinitionof R+i.Itfollowsthateveryvertexof

G

[

R+i

]

alsoliesinNG

(

Ri

)

andthereforeNG

(

Ri

)

= ∂

G

[

R+i

]

.

Thefollowingstatementisimplicitin[3](seeLemmas 6.1and 6.2).

Lemma2([3]).Let r and k bepositiveintegersandlet G beaplanargraphthathasanr-dominatingsetofsizeatmost k.Then G has an

(

O

(

kr

),

O

(

r

))

-protrusiondecomposition,whichcanbeconstructedinpolynomialtime.

2.4. Parameterizedcomplexity

Parameterizedcomplexityisatwodimensionalframeworkforstudyingthecomputationalcomplexityofaproblem.One dimension is theinput size n and the other is aparameter k. A problemis said tobe fixedparametertractable (or FPT)

(5)

Fig. 1. A protrusion decomposition with p=3. Recall that R+i =NG[Ri]and note that the sets∂G(R+i)=NG(Ri)are not necessarily pairwise disjoint.

if itcan be solved intime f

(

k

)

·

nO(1) forsome function f .A kernelization for a parameterizedproblemis apolynomial

algorithmthatmapseachinstance

(

x

,

k

)

withinput x andparameter k toaninstance

(

x

,

k

)

suchthat

(i)

(

x

,

k

)

isayes-instanceifandonlyif

(

x

,

k

)

isayes-instance,and (ii) thesizeof xand kisboundedby f

(

k

)

foracomputablefunction f .

The output

(

x

,

k

)

is calleda kernel. The function f is said to be the size of the kernel. A kernel is polynomial if f is

polynomial. We refer tothe booksofDowney andFellows [11],FlumandGrohe [12],andNiedermeier [30] fordetailed introductionstoparameterizedcomplexity.

3. Thepolynomialkernels

In this section we construct polynomial kernels for DPGGD and DCPGGD. We say that a pair

(

U

,

D

)

with U

V

(

G

)

and D

E

(

G

)

is a solution for an instance

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

of DPGGDif w

(

U

)

kv, w

(

D

)

ke, c

(

U

D

)

C and

G

=

G

U

D satisfiesdG

(

v

)

= δ(

v

)

forall v

V

(

G

)

.If

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

isaninstanceofDCPGGDthen

(

U

,

D

)

isa

solutionifinaddition Gisconnected.NoticethatitcanhappenthatU

=

V

(

G

)

forasolution

(

U

,

D

)

.

In ordertoproveour mainresults,wefirst needtointroduce someadditionalterminologyandprovesome structural results. We say that a solution

(

U

,

D

)

is ofminimumcost if c

( ˆ

U

,

D

ˆ

)

c

(

U

,

D

)

for every solution

( ˆ

U

,

D

ˆ

)

.We say that a solution

(

U

,

D

)

foran instance of DPGGD or DCPGGD is efficient if D has no edges incident tothe vertices of U . Since deleting a vertex automatically removes all incident edges with no weight or cost penalty,we can make the following observation.

Observation1.Anyyes-instanceof DPGGDor DCPGGDhasanefficientsolutionofminimumcost.

Wewillalsomakeuseofthefollowingsimpleobservation.

Observation2.Let

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

beinstanceof DPGGDor DCPGGDthathasanefficientsolution

(

U

,

D

)

.IfdG

(

v

)

= δ(

v

)

for

somev

V

(

G

)

then v isnotincidenttoanedgeof D.

Wesaythataninstance

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

of DPGGD (DCPGGD respectively)isnormalized if

(i) forevery v

V

(

G

)

,

δ(

v

)

dG

(

v

)

≤ δ(

v

)

+

kv

+

ke,and

(ii) everyvertex v inthesetS

= {

u

V

(

G

)

|

dG

(

u

)

= δ(

u

)

}

isadjacenttoavertexinS

=

V

(

G

)

\

S.

Lemma3.Thereisapolynomial-timealgorithmthatforeachinstanceof DPGGDor DCPGGDeithersolvestheproblemorreturnsan equivalentnormalizedinstance.

Proof. Let

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

beaninstanceof DPGGD.Tosimplifynotation,wekeepthesamenotationforthefunctions

δ,

w

,

c ifwedeleteverticesoredgesanddonotmodifythevaluesofthefunctionsfortheremainingelementsifthisdoes notcreateconfusion.

Wesaythatareductionruleissafe ifbyapplyingtheruleweeithersolvetheproblemorobtainanequivalentinstance. Itisstraightforwardtoseethatthefollowingreductionrulesaresafe.

(6)

Yes-instancerule.IfS

=

V

(

G

)

then

(

∅,

∅)

isasolution,returnayes-answerandstop.

Vertexdeletionrule.If G hasavertex v withdG

(

v

)

< δ(

v

)

ordG

(

v

)

> δ(

v

)

+

kv

+

ke,thendelete v andsetkv

=

kv

w

(

v

)

,

C

=

C

c

(

v

)

.Ifkv

<

0 orC

<

0,thenstopandreturnano-answer.

Observe that by the exhaustive application ofthe vertexdeletionrule and applyingthe yes-instancerule whenever

possible,weeithersolvetheproblemorweobtainaninstancewhichsatisfies(i)ofthedefinitionofnormalizedinstances, butwhere S

=

V

(

G

)

.Notice that, inparticular, the yes-instancerule is appliedifthe set ofverticesbecomes empty.To ensure(ii),weapplythefollowingtworules.

Contractionrule.If G hastwoadjacentverticesu

,

v

S

= {

x

V

(

G

)

|

dG

(

x

)

= δ(

x

)

}

suchthatNG

(

v

)

S,thenweconstruct

theinstance

(

G

,

kv

,

ke

,

C

,

δ



,

w

,

c

)

asfollows.

– Contract uv.DenotetheobtainedgraphG

=

G

/

uv andlet z bethevertexobtainedfrom u and v. – Set

δ



(

z

)

=

dG

(

z

)

andset

δ



(

x

)

=

dG

(

x

)

foranyx

S

\ {

u

,

v

}

.Foreachx

S,set

δ



(

x

)

= δ(

x

)

.

– Setw

(

z

)

=

w

(

u

)

+

w

(

v

)

andc

(

z

)

=

c

(

u

)

+

c

(

v

)

.Forx

V

(

G

)

\ {

u

,

v

}

,setw

(

x

)

=

w

(

x

)

andc

(

x

)

=

c

(

x

)

.

– Foreachxz

E

(

G

)

,set w

(

xz

)

=

ke

+

1 andc

(

xz

)

=

0.Forallotheredges xy

E

(

G

)

,set w

(

xy

)

=

w

(

xy

)

andc

(

xy

)

=

c

(

xy

)

.

Let

(

U

,

D

)

bean efficientsolutionfor

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

.ByObservation 2, D has noedges incidentto u or v. Also

either u

,

v

U or u

,

v

/

U , because u and v areadjacentanddG

(

u

)

= δ(

u

)

anddG

(

v

)

= δ(

v

)

.LetU

= (

U

\ {

u

,

v

})

∪ {

z

}

ifu

,

v

U andU

=

U otherwise.We havethat

(

U

,

D

)

isa solutionfor

(

G

,

kv

,

ke

,

C

,

δ



,

w

,

c

)

.If

(

U

,

D

)

is an efficient

solutionfor

(

G

,

kv

,

ke

,

C

,

δ



,

w

,

c

)

,then Dhasnoedgesincidentto z byObservation 2.Ifz

U,letU

= (

U

\ {

z

})

∪ {

u

,

v

}

andU

=

Uotherwise.Weobtainthat

(

U

,

D

)

isasolutionfortheoriginalinstance.

Weexhaustivelyapplytheaboverule.Assumethatitcannotbeappliedfor

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

.Thenwehavethatthis

instancesatisfies (i)andthefollowingholds:foranyv

S

=

V

(

G

)

,either v isadjacenttoavertexin S or v isanisolated vertex.Itremainstodealwithisolatedvertices.

Isolatesremovalrule.If G hasanisolatedvertex v,thendelete v.

Toseethataboveruleissafe,noticethat,becausetheconsideredinstancesatisfies(i),itfollowsthat

δ(

v

)

dG

(

v

)

=

0,so

v

S.Clearly,bytheexhaustiveapplicationofthe isolatesremovalrule,weeithersolvetheproblemorobtainaninstance thatsatisfies(i)and(ii).

Nowconsideraninstance

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

of DCPGGD.

Wereplacethe yes-instancerule bythefollowingvariant.

Yes-instancerule(connected).IfS

=

V

(

G

)

and G isconnected,then

(

∅,

∅)

isasolution,returnayes-answerandstop. Itisstraightforwardtoverifythatthe vertexdeletionrule andthe contractionrule aresafeforthisproblem.Byapplying theserulesandbytheapplicationoftheconnectedvariantofthe yes-instancerule wheneverpossible,weeithersolvethe problemorobtain anequivalent instancethatsatisfies (i)andhasthepropertythat forany v

S,either v isadjacentto a vertexin S or v isan isolated vertex.Suppose that

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

satisfiestheseproperties.Observethat if H is

a componentof G, thenfor anysolution

(

U

,

D

)

, either V

(

H

)

U or V

(

G

)

\

V

(

H

)

U . Therefore,itis safetoapply the followingvariantofthe isolatesremovalrule.

Isolatesremovalrule(connected).If G has anisolated vertex v, thenif w

(

V

(

G

)

\ {

v

})

kv andc

(

V

(

G

)

\ {

v

})

C ,then

(

V

(

G

)

\ {

v

},

∅)

isasolution,returnayes-answerandstop.Otherwise,if w

(

V

(

G

)

\ {

v

})

>

kv orc

(

V

(

G

)

\ {

v

})

>

C ,delete v

andsetkv

=

kv

w

(

v

)

andC

=

C

c

(

v

)

;ifkv

<

0 orC

<

0,thenstopandreturnano-answer.

Itis easyto seethat iftheinput graphwas planarthen thegraphformed afterapplyingtherules abovewill alsobe

planar.

2

Lemma4.If

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

isanormalizedyes-instanceof DPGGD(DCPGGDrespectively)then G hasa2-dominatingsetof

sizeatmostkv

+

2ke.

Proof. We prove the lemma for DPGGD; the proof for DCPGGD is the same. Let

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

be a normalized

yes-instanceoftheproblem.Let

(

U

,

D

)

beasolutionandW

=

U

V

(

D

)

.Clearly,

|

W

|

kv

+

2ke,becausetheweightsare

(7)

Let S

= {

v

V

(

G

)

|

dG

(

v

)

= δ(

v

)

}

andS

=

V

(

G

)

\

S.Foranyvertexv

S,eitherv

U or v isadjacenttoavertexof U

or v isincidenttoanedgeof D.Hence,S

NG

[

W

]

.Letv

S.Becausetheconsideredinstanceisnormalized, v isadjacent

toavertexu

S.Itimplies,that S

N2G

[

W

]

.

2

ThefollowingisadirectconsequenceofLemmas 2 and 4.

Lemma5.Thereisafixedconstant

α

suchthat,if

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

isanormalizedyes-instanceof DPGGD(DCPGGD

respec-tively),then G hasan

(

α

(

kv

+

2ke

),

α

)

-protrusiondecomposition.Moreover,ifthereissuchadecomposition,onecanbeconstructed

inpolynomialtime.

The next lemma statesthat, for both DPGGD and DCPGGD,an optimal solution can be found inpolynomial time on

graphsofboundedtreewidth.Theproofisbasedonthestandardtechniquesfordynamicprogrammingovertree decompo-sitions.

Lemma6. DPGGD(DCPGGD respectively)canbe solved,andan efficientsolution

(

U

,

D

)

ofminimumcostcanbeobtained in

(

kv

+

ke

)

O(q)

·

poly

(

n

)

time(in

(

q

(

kv

+

ke

))

O(q)

·

poly

(

n

)

timerespectively)forinstances

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

where G isann-vertex

graphoftreewidthatmost q and

δ(

v

)

dG

(

v

)

≤ δ(

v

)

+

kv

+

keforv

V

(

G

)

.

Proof. Weuseamoreorlessstandardapproachforconstructionofdynamicprogrammingalgorithmsforgraphsofbounded treewidth.

First,weconsider DPGGD. Let

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

beaninstanceoftheproblemwheretw(G

)

q and

δ(

v

)

dG

(

v

)

δ(

v

)

+

kv

+

ke forall v

V

(

G

)

.Wefirstofall assumethata nicetreedecomposition

(X ,

T

)

of G withwidtht

=

O

(

q

)

is

given. Tosimplifylaterarguments,wemayassumet

2.Forthis,wemayusethealgorithmof[2]toobtaina decomposi-tionwhosewidthisatmostfivetimestheoptimalin2O(q)

·

n stepsandthenconvertittoanicetreedecompositionusing

theaforementionedresultsofKloks[23].

Let r denotetherootof T .Foranynode i

V

(

T

)

,let Ti denotethesubtreeof T inducedby i anditsdescendantsand

let Gi

=

G

[



jV(Ti)Xj

]

.Weapplyadynamicprogrammingalgorithmover

(X ,

T

)

.

First,wedescribethetablesthatareconstructedforthenodesof T .Leti

V

(

T

)

.Wedefinetableiasapartialfunction

whoseinputsarequintuples

(

X

,

Y

,

γ

,

hv

,

he

)

where

– X

Xi,

– Y

E

(

G

[

Xi

])

,

γ

:

Xi

\

X

→ {

0

,

. . . ,

kv

+

ke

}

,

– hv

kv and

– he

ke.

Thevalueoftablei isaminimumcostpair

(

U

,

D

)

2V(Gi)

×

2E(Gi)withthefollowingproperties:

(i) foranyv

U andanye

D,v and e arenotincident, (ii) w

(

U

)

hv andw

(

D

)

he,

(iii) U

Xi

=

X andD

E

(

G

[

Xi

])

=

Y ,

(iv) foreveryv

Xi

\

X ,thenumberofneighboursof v in GithatbelonginU

\

XiplusthenumberofedgesofD

\

E

(

G

[

Xi

])

thatareincidentto v isexactly

γ

(

v

)

,

(v) foreach v

V

(

Gi

)

\

Xi,dGi

(

v

)

= δ(

v

)

whereGi

=

Gi

U

D,

and,ifnosuchpair

(

U

,

D

)

exists,thentablei

(

X

,

Y

,

d

,

hv

,

he

)

isvoid.

Recall that Xr

= ∅

. Observethat

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

is a yes-instanceifand onlyif tabler

(

∅,

∅,

∅,

kv

,

ke

)

is non-void

(where

: ∅

→ {

0

,

. . . ,

kv

+

ke

}

).Moreover,insuchacase,thevalueoftabler

(

∅,

∅,

∅,

kv

,

ke

)

isaminimum-costsolutionfor

thisinstance.

Nowweexplainhowweconstructtableiforeachi

V

(

T

)

.If i isaleaf node,tablei isconstructedinastraightforward

waybecause Xi

= ∅

.Indeed,for0

hv

kv and0

he

ke we settablei

(

∅,

∅,

∅,

hv

,

he

)

= (∅,

∅)

andhavetablei voidin

allothercases.Hence,itremainstogivetheconstructionforintroduce,forget,andjoin nodes.Leti

V

(

T

)

beanodeofone ofthesetypes.Assumeinductivelythatthefunctiontablei foreverychild iof i hasalreadybeenconstructed.

In whatfollowswe write tablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

to referto thefollowingprocedure: Iftablei

(

X

,

Y

,

γ

,

hv

,

he

)

is undefined, set it to be equal to

(

U

,

D

)

. If tablei

(

X

,

Y

,

γ

,

hv

,

he

)

= ( ˆ

U

,

D

ˆ

)

and c

( ˆ

U

∪ ˆ

D

)

>

c

(

U

D

)

, change tablei

(

X

,

Y

,

γ

,

hv

,

he

)

tobeequalto

(

U

,

D

)

.Otherwise,donotchangetablei

(

X

,

Y

,

γ

,

hv

,

he

)

.

Constructionforanintroducenode. Let i be thechild of i and Xi

=

Xi

∪ {

v

}

.Notice that NGi

(

v

)

Xi.We start with

tablei empty.Then, foreach pair hv

,

he where hv

kv andhe

ke and each pair

((

X

,

Y

,

γ



,

hv

,

he

),

(

U

,

D

))

tablei

(8)

– LetX

X

∪ {

v

}

,Y

Y,

γ

γ

,U

U

∪ {

v

}

,and D

D. Ifhv

hv

+

w

(

v

)

,thentablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

.

– LetX

X,U

U,

γ

γ



∪ {(

v

,

0

)

}

.

For every L

⊆ {

vu

|

vu

E

(

G

),

u

Xi

\

X

}

, let Y

Y

L, D

D

L, and if he

he

+

w

(

L

)

, then tablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

.

Constructionforaforgetnode. Let i be the child of i and Xi

=

Xi

\ {

v

}

. We start with tablei empty. For each pair

((

X

,

Y

,

γ



,

hv

,

he

),

(

U

,

D

))

tablei,wedothefollowing.

– If v

X then let X

X

\ {

v

}

, Y

Y,anddefine

γ

by replacingin

γ

 each pair

(

u

,

γ



(

u

))

where uv

E

(

G

)

and

u

Xi

\

X bythepair

(

u

,

γ



(

u

)

+

1

)

.

IfmaxuXi\X

γ

(

u

)

kv

+

ke,thentablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

.

– Ifv

/

X,thenlet X

X,L

← {

vu

E

(

G

)

|

u

Xi

}

Y,Y

Y

\

L,anddefine

γ

byreplacingin

γ

=

γ



\ {(

v

,

γ



(

v

))

}

eachpair

(

u

,

γ



(

u

))

whereuv

L bythepair

(

u

,

γ



(

u

)

+

1

)

.

If

δ(

v

)

=

dG

(

v

)

− |

L

|

γ



(

v

)

andmaxuXi\X

γ

(

u

)

kv

+

ke,thentablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

.

Constructionforajoinnode. Let iand ibethechildrenof i.Westartwithtableiempty.Foreachpair

((

X

,

Y

,

γ



,

hv

,

he

),

(

U

,

D

))

tablei andeachpair

((

X

,

Y

,

γ



,

hv

,

he

),

(

U

,

D

))

tablei wedothefollowing.

– Let

γ

γ



+

γ

,U

U

UandD

D

D.

IfmaxuXi\X

γ

(

u

)

kv

+

ke,thenforanytwointegershv,he suchthathv

+

hv

w

(

X

)

hv

kv andhe

+

he

w

(

Y

)

he

ke,tablei

(

X

,

Y

,

γ

,

hv

,

he

)

 (

U

,

D

)

.

Usingstandardarguments,itisstraightforwardtoverifythecorrectnessofthealgorithm.Toevaluatetherunningtime, recallthattablei receivesa quintuple

(

X

,

Y

,

γ

,

hv

,

he

)

asinput.There areatmost 2t+1 possiblechoicesfor X ,23(t+1)−6

=

23t−3 choicesof Y (becauseoftheplanarityof G),

(

k

v

+

ke

+

1

)

t+1 choicesof

γ

,kv

+

1 possiblevaluesof hv andke

+

1

possiblevaluesfor he.Wethereforehavethateach tablei has

(

kv

+

ke

)

O(t) entries.Thisimpliesthat therunningtime of

thedynamicprogrammingalgorithmis

(

kv

+

ke

)

O(t)

·

n.

Nowweconsider DCPGGD.Thedifferenceisthatwehavetokeeptrackofcomponentsofapartialsolutionasisstandard fordynamicprogrammingalgorithmsforgraphsofboundedtreewidthwithaconnectivityconditionsuchas,e.g.the Steiner Treeproblem. Let

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

bean instanceof DCPGGD wheretw(G

)

t and

δ(

v

)

dG

(

v

)

≤ δ(

v

)

+

kv

+

ke for

v

V

(

G

)

.Without lossof generalitywe assume that a nicetreedecomposition

(

X ,

T

)

of G withtreewidth atmost t is givenandapplyadynamicprogrammingalgorithmover

(X ,

T

)

.Leti

V

(

T

)

.

Wedefinetableci asapartialfunctionwhoseinputsarequintuples

(P,

Y

,

γ

,

hv

,

he

)

where

P = {

P0

,

. . . ,

Ps

}

isapartitionof Xi,

– Y

E

(

G

[

Xi

])

,

γ

:

Xi

\

X

→ {

0

,

. . . ,

kv

+

ke

}

,

– hv

kv and

– he

ke.

Thevalueoftableci isaminimumcostpair

(

U

,

D

)

2V(Gi)

×

2E(Gi)withthefollowingproperties: (i) foranyv

U andanye

D, v and e arenotincident,

(ii) w

(

U

)

hv andw

(

D

)

he,

(iii) U

Xi

=

P0 andD

E

(

G

[

Xi

])

=

Y ,

(iv) foreveryv

Xi

\

X ,thenumberofneighboursof v in GithatbelonginU

\

Xi,plusthenumberofedgesofD

\

E

(

G

[

Xi

])

thatareincidentto v isexactly

γ

(

v

)

,

(v) foreachv

V

(

Gi

)

\

Xi,dGi

(

v

)

= δ(

v

)

whereGi

=

Gi

U

D,

(vi) ifs

=

0,thenGi

=

Gi

U

D isconnectedandifs

1,then Gihas s componentsH1

,

. . . ,

HssuchthatV

(

Hi

)

Xh

=

Pi

forh

∈ {

1

,

. . . ,

s

}

,

and,ifnosuchpair

(

U

,

D

)

exists,thentableic

(P,

Y

,

d

,

hv

,

he

)

isvoid.

Asinthenon-connectedcase,

(

G

,

kv

,

ke

,

C

,

δ,

w

,

c

)

isayes-instanceifandonlyiftablecr

(

∅,

∅,

∅,

kv

,

ke

)

isnon-voidand

thevalueoftablecr

(

∅,

∅,

∅,

kv

,

ke

)

,ifexists,isaminimum-costsolutionforthisinstance.

Thepartialfunctiontableci isconstructedforeveryi

V

(

T

)

similarlytotheconstruction oftablei for DPGGD.Because

thereareatmost

(

t

+

1

)

t+1partitions

P

ofeach Xi,wehavethateachtablecontains

(

t

(

kv

+

ke

))

O(t)entries.Therefore,the

runningtimeofthedynamicprogrammingalgorithmis

(

t

(

kv

+

ke

))

O(t)n.

2

Referenties

GERELATEERDE DOCUMENTEN

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

But the problem might also arise in those situations where the Union cannot point to any specific legal duty incumbent upon the relevant Member State as a matter of directly

In de Schenck-machine wordt mechanisch niets gewijzigd aan de ophanging van het lichaam. Er zijn echter twee potentiometers, die om beurten dienen voor de onderlin- ge

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

These observations are supported by Gard (2008:184) who states, “While I would reject the idea of a general ‘boys crisis’, it remains true that there are many boys who

complex and detailed circumstances surrounding the phenomena to be explained and permits valid predictions on the basis of them alone (Friedman, 1966)

This algorithm predicts the target value from the target values of the k most similar instances that are stored in the various concept descriptions.. Mostly k=1 and that is also

As will be shown in section 4.5, this definition of modal tautology is adequate in the sense that it can form the counterpart to a sound and complete deduction system for alethic