• No results found

Attention training in order to reduce anxiety

N/A
N/A
Protected

Academic year: 2021

Share "Attention training in order to reduce anxiety"

Copied!
29
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

anxiety  

        Sofie  Valk  

University  of  Amsterdam   Brain  and  Cognitive  Sciences  

Track:  Cognitive  Sciences   Feb  –  July  2012   30  EC       Supervisor:   Dr.  Sonia  Bishop   U.C.  Berkeley   Coassessor:   Elise  Seip,  PhD   University  of  Amsterdam    

     

(2)

The   aim   of   this   study   was   to   assess   non-­‐emotional   attention   training   in   order   reduce   anxiety   in   high   anxious  individuals.  Our  study  had  several  sub-­‐goals,  (1)  we  aimed  to  verify  the  reliability  of  the  tasks  we   used,   (2)   we   aimed   to   implement   an   emotion-­‐free   training   paradigm   in   order   to   improve   sustained   attention   and   reduce   trait   anxiety.   We   conducted   a   behavioral   study   with   healthy   volunteers.   We   measured  the  reliability  of  the  dot-­‐probe  paradigm,  a  frequently  used  measure  of  attention  bias,  and  a   letter-­‐search   task   of   high   and   low   perceptual   load   superimposed   on   fearful   faces,   ambiguous   faces,   negative   faces,   or   houses.   However,   we   found   no   test-­‐retest   reliability   in   the   dot-­‐probe   task   and   the   letter-­‐search   task.   We   implemented   an   emotion-­‐free   training   paradigm   by   adjusting   the   regular   sustained  attention  to  response  task  (SART)  by  adding  audio  cues  and  performance  feedback  to  the  task.   Performance  in  the  regular  SART  and  the  “training”  SART  was  found  reliable  across  days.  Participants   performed   the   training   task   for   one   hour   on   three   consecutive   days.   The   effect   of   the   training   was   assessed   with   the   regular   SART   without   feedback,   the   dot-­‐probe   task   and   level   of   trait   anxiety.   We   found  that  our  participants’  performance  in  the  SART  task  decreased  after  pre-­‐training  assessment,  and   we  found  that  the  training  with  feedback  had  a  negative  effect  on  performance.  Furthermore  we  found   a   significant   increase   in   trait   anxiety   in   the   low   anxious   group,   the   high   anxious   group   showed   no   difference  in  trait  anxiety  level.  Also  the  dot-­‐probe  paradigm  showed  not  consistent  results,  possibly  due   to   its   unreliability.   These   findings   suggest   that   the   current   assessment   tasks   for   attention   bias   are   unreliable   and   underline   the   importance   of   verification   of   reliability   of   used   tasks   in   general.   Furthermore  we  found  our  training  paradigm  did  not  improve  performance  in  the  tasks  and  even  had  a   negative   effect   on   level   of   trait   anxiety   and   performance   in   the   SART   task.   Possible   causes   and   improvements  on  the  current  paradigm  are  discussed.          

 

 

             

(3)

   

Introduction  ...  4  

Methods  ...  7  

Overview  of  tasks:  ...  8

 

Study  part  I  ...  12  

Procedure  ...  12

 

Results  ...  13

 

Study  part  II  ...  14  

Procedure  ...  14

 

Results  ...  14

 

Self-­‐reported  personality  measures:  results  ...  15

 

Assessment  and  training  of  sustained  attention  ...  16

 

Assessment  of  attention  bias  in  high  anxious  individuals  ...  18

 

Discussion  ...  20  

Literature  ...  24  

Appendix  ...  29  

                 

 

   

(4)

Introduction    

Anxiety   is   the   displeasing   feeling   of   fear   and   concern   (Cannistraro   &   Rauch,   2003;   Davison,   2003;   Seligman,  Walker,  &  Rosenhan,  2000)  and  is  a  generalized  mood  that  can  occur  without  an  identifiable   triggering  stimulus.  Anxiety  disorders  affect  around  one  in  five  individuals  (Cannistraro  &  Rauch,  2003;   Kessler,  Chiu,  Demler,  &  Walters,  2005)  creating  a  significant  clinical  burden  (Kessler  et  al.,  2003).    Many   affected  individuals  do  not  receive  treatment  (Mojtabai,  Olfson,  &  Mechanic,  2002),  and  among  those   who  do,  many  continue  to  suffer  (Ballenger,  2001;  Doyle  &  Pollack,  2003;  Pine,  Helfinstein,  Bar-­‐Haim,   Nelson,  &  Fox,  2009).  It  is  necessary  to  continue  refining  existing  treatments  and  actively  pursue  more   efficacious  ones.  Recently  attention  bias  modification  (Bar-­‐Haim,  2010;  Matthews  &  MacLeod,  2002)  has   started   to   emerge   as   one   such   treatment.   The   aim   of   attention   bias   modification   is   to   alter   the   way   people   focus   their   attention   in   order   to   relieve   symptoms   of   anxiety.   This   theory-­‐driven   treatment   is   based  upon  established  experimental  data  on  attention  biases  in  anxiety.  It  has  been  found  that  people   with  high  anxiety  have  an  attention  bias  toward  negative  information,  or  even  a  more  general  attention   bias  that  possibly  reinforces  the  anxiety  mechanism  in  the  brain  (Bar-­‐Haim,  Lamy,  Pergamin,  Bakermans-­‐ Kranenburg,  &  Van  IJzendoorn,  2007;  Bishop,  Jenkins,  &  Lawrence,  2007).  Following  the  landmark  study   of   Mathews   &   MacLeod   in   2002,   where   they   described   that   induced   processing   biases   have   a   causal   effect   on   anxiety,   processing   bias   has   been   further   explored   as   a   possible   new   therapy   to   reduce   anxiety.   Multiple   studies   report   to   have   reduced   anxiety   level   with   attention   bias   modification   (Amir,   Beard,  Burns,  &  Bomyea,  2009;  Amir,  Bomyea,  &  Beard,  2010;  Browning  et  al.,  2011;  Eldar  &  Bar-­‐Haim,   2010;   Klumpp   &   Amir,   2009).   Traditional   attention   bias   modification   is   assessed   using   tasks   with   emotional   content,   such   as   images   of   fearful   faces.   However,   modulatory   effects   of   emotion-­‐free   attention  training  paradigms  on  anxiety  level,  where  the  attention  deficit  itself  is  also  addressed,  as  well   as   some   methodological   concerns   and   improvements   of   commonly   used   experimental   paradigms   are   yet  to  be  addressed.    

Anxiety  can  be  conceptualized  in  two  ways:  trait  anxiety  and  state  anxiety.  State  anxiety  is  a  transitory   emotional   state,   or   arousal,   to   perceived   dangerous   stimuli,   while   trait   anxiety   is   a   relatively   stable   behavioral   disposition   to   respond   anxiously   to   a   wide   range   of   perceived   threatening   stimuli   (Spielberger,  Gorsuch,  &  Lushene,  1983).  Initial  evidence  suggests  there  is  a  disruption  of  the  amygdala-­‐ prefrontal   circuitry   in   high   anxious   individuals,   with   deficient   recruitment   of   prefrontal   attention   mechanisms  found  related  to  trait  anxiety  level  and  amygdaloidal  hyper-­‐responsiveness  to  threat  found   related  to  state  anxiety  (Bishop,  2007).  More  specifically,  individuals  in  general  are  reported  to  show  an  

(5)

increased  amygdala  response  to  attended  threat-­‐related  stimuli  (fearful  faces)  compared  to  non-­‐threat-­‐ related   stimuli   (neutral   faces),   but   only   high   state   anxious   volunteers   showed   an   increased   amygdala   response  to  unattended  threat-­‐related  stimuli  (Bishop,  2007;  Bishop,  Duncan,  &  Lawrence,  2004).  Trait   anxiety,   on   the   other   hand,   seems   to   specifically   relate   to   threat-­‐related   biases   in   selective   attention   expressed   by   a   reduced   prefrontal   control   signal   (Mathews   &   Mackintosh,   1998;   Bishop,   2009).   Increased   attention   to   threat   normally   serves   an   adaptive   function   by   facilitating   the   detection   of   danger   (LeDoux,   2000).   Considerable   research   demonstrates,   however,   that   the   attention   system   of   anxious   individuals   is   impaired   (Bar-­‐Haim   et   al.,   2007;   Mogg   &   Bradley,   1998).     High   trait   anxious   individuals   have   an   attention   bias   favoring   the   threatening   location   (Derryberry   &   Reed,   2002),   regardless   of   the   actual   threat   value   of   a   given   stimulus.   Furthermore,   it   has   been   shown   that   trait   anxiety  can  be  linked  to  impoverished  recruitment  of  prefrontal  attention  control  mechanisms  to  inhibit   distractor  processing  especially  when  attention  demands  are  low  (Bishop,  2009).    

This  impaired  attention  control  system  found  in  high  trait  anxious  individuals  might  relate  to  their  style   of  information  processing,  rather  than  a  deficit  per  se.  If  so,  then  it  may  be  possible  to  train  high  trait   anxious  individuals  to  maintain  attention  focus  more  effectively.  Attention  regulation  can  be  successfully   manipulated   through   repeated   practice   (Amir   et   al.,   2008;   Eldar   et   al.,   2008;   Klumpp   &   Amir,   2010;   MacLeod   et   al.,   2002;   Wadlinger   &   Isaacowitz,   2011)   and   might   aid   in   normalizing   the   prefrontal   attention   mechanisms   that   are   found   to   be  deficient   in   high  trait   anxious   populations   (Bishop,   2009).   Attention   bias   modification   is   believed   to   specifically   target   early   attention   processes   by   way   of   implicit/unconscious  intervention  (Bar-­‐Haim,  2010;  Eldar  &  Bar-­‐Haim,  2010;  Monk  et  al.,  2008)  

At   present,   paradigms   used   in   attention   training   research   consist   of   assessments   of   anxiety   level   and   attention  bias  followed  by  training  on  a  specific  attention  related  task.  The  task  used  most  often  is  the   dot-­‐probe   task   (MacLeod,   Mathews,   &   Tata,   1986).   In   the   dot-­‐probe   task,   stimuli   with   neutral   and   emotional  valence  are  presented  in  pairs  on  a  computer  screen.  After  these  stimuli  disappear,  a  visual   probe  (usually  one  or  two  dots)  appears  on  the  screen  and  participants  have  to  indicate  the  identity  of   the  probe.  Response  time  serves  as  an  indicator  of  where  attention  has  been  allocated.  In  an  integrative   review  of  recent  studies  on  cognitive  training  with  attention  bias  modification  protocols,  Hakamata  and   colleagues  found  that  these  interventions  are  effective,  especially  in  clinical  samples  (Hakamata  et  al.,   2010).   However,   there   are   several   theoretical   considerations   to   be   addressed   concerning   these   protocols.   Firstly,   it   remains   unknown   whether   the   anxiety-­‐reducing   effect   of   these   commonly   used   protocols   might   reflect   a   more   general   attentional   control   process   (Bar-­‐Haim,   2010).   For   example,  

(6)

training  paradigms  that  bias  attention  away  from  threat  were  compared  with  those  that  bias  attention   toward   threat   (Klumpp   &   Amir,   2009)   and   it   was   found   that,   in   both   cases,   participants   exhibited   a   relative   decrease   in   anxiety   during   a   speech   challenge   compared   to   participants   in   a   placebo   control   condition.  This  could  indicate  that  it  is  not  the  threat-­‐related  component  of  the  training  that  benefits   high  anxious  individuals,  but  only  the  attention  aspect  of  the  training.    Secondly,  most  studies  use  the   same  task  (with  slight  modifications)  for  both  attention  training  and  assessment.  Therefore  the  results   should  be  interpreted  with  caution,  as  the  pre-­‐  to  post-­‐training  assessment  differences  may  only  reflect   a  habituation  effect  on  the  specific  task  used.  Furthermore,  the  commonly  used  dot-­‐probe  paradigm  has   been   reported   to   have   relatively   low   test-­‐retest   reliability   (Browning   et   al.,   2011;   Lebel   &   Paunonen,   2011;  Staugaard,  2009;  Schmulke,  2005).  This  means  that  testing  from  one  day  to  the  next  could  result   in  different  effect  sizes.  High  test-­‐retest  reliability  is  desirable  for  assessment,  since  the  measurements   used   should   reflect   an   objective   standard,   such   as   attention   bias,   and   not   change   over   time   (Lebel   &   Paunonen,  2011).    

The   aim   of   the   current   study   is   to   develop   a   non-­‐threat-­‐related   attention   training   protocol   with   feedback  in  order  to  reduce  anxiety  and  negative  attention  biases,  including  the  use  of  a  different  task   to  assess  the  efficacy  of  this  training.  At  the  same  time,  we  aim  to  address  the  low  test-­‐retest  reliability   present  in  commonly  used  attention  training  paradigms  by  exploring  the  option  of  another  assessment   task  for  attention  bias.    

In  order  to  investigate  the  test-­‐retest  reliability  in  of  our  proposed  paradigm,  the  reliability  of  the  dot-­‐ probe  (MacLeod,  Matthews,  &  Tata,  1986),  the  letter  search  task  (Bishop,  Jenkins,  &  Lawrence,  2007;   Jenkins,   Lavie,   &   Driver,   2005;   Lavie,   2001)   and   the   SART   (Sustained   Attention   to   Response   Task,   Robertson,   Manly,   Andrade,   Baddeley,   &   Yiend,   1997)   are   explored   and   compared.   The   letter   search   task  is  an  adaptation  of  a  task  commonly  used  to  study  perceptual  load  (Bishop,  Jenkins,  &  Lawrence,   2007;  Jenkins,  Lavie,  &  Driver,  2005;  Lavie,  2001).  Bishop  and  colleagues  found  significant  interactions   between   trait   anxiety   and   performance   in   this   task   that   we   hoped   to   replicate.   The   SART   is   a   non-­‐ emotional   go/no-­‐go   task,   and   has   been   successfully   used   to   identify   sustained   attention   deficits   in   stroke  patients  (Roberson,  Manly,  Andrade,  Baddeley,  &  Yiend,  1997).  In  order  to  investigate  attention   training,  here  we  used  a  variant  of  the  SART  with  feedback  for  three  days  of  attention  training  (“training   SART”),  and  we  assessed  the  efficacy  of  this  non-­‐emotional  training  using  both  the  dot-­‐probe  task  and  a   non-­‐feedback  variant  of  the  SART  (“regular  SART”).  The  feedback  we  chose  to  implement  was  based  on   a  previous  study  that  showed  auditory  feedback  at  random  intervals  is  beneficial  in  the  context  of  the  

(7)

SART  (Manly  et  al.,  2004).  They  found  that  periodic  audio  cues  had  a  positive  effect  on  accuracy  without   slowing   down   reaction   time.     Thus,   we   expected   feedback   during   the   training   days   would   help   participants  to  improve  their  training  SART  performance  (Manly  et  al.,  2004)  as  well  as  improve  their   performance  in  the  regular  SART  and  reduce  attention  biases  in  the  dot-­‐probe  task.  Furthermore  we  will   provide   our   participants   with   visual   feedback   during   the   task   breaks,   to   indicate   their   increase   or   decrease  in  reaction  time  and  error  rate  (Hattie  &  Timperley,  2007).  In  order  to  assess  the  effect  of  the   training  we  compared  performance  on  the  regular  SART  and  dot  probe,  and  self-­‐reported  trait  anxiety,   on  the  last  day  to  the  first  day.  Our  expectations  were  threefold:  (1)  to  find  improvement  in  the  regular   SART,  expressed  by  fewer  mistakes  without  slowing  of  reaction  time,  (2)  to  find  improvement  in  the  dot-­‐ probe  task,  signified  by  a  smaller  attention  bias  to  threat,  and  (3),  to  find  a  decrease  in  trait  anxiety.    

Methods  

Participants    

All  participants  were  students  at  the  local  university.  They  were  right  handed  with  normal  or  corrected   vision,  and  learned  English  as  their  first  language.  They  were  not  taking  any  psychotropic  medication  and   were  unfamiliar  with  the  tasks  presented.  Twenty-­‐three  participants  (four  male)  took  part  in  the  study   part  1  (mean  age  ±  SD:  20.9  ±  1.6;  range:  18-­‐24  years).  Twenty-­‐three  participants  (seven  male)  took  part   in   the   study   part   2   (mean   age   ±   SD:   22.1   ±   2.9;   range:   19-­‐29   years).   One   participant   (female)   was   excluded,  since  she  was  unable  to  participate  in  all  five  sessions,  resulting  in  22  remaining  participants.     Questionnaires  

All   participants   completed   several   self-­‐report   questionnaires   before   beginning   the   experiments.   They   included  the  State  Trait  Anxiety  Inventory  (STAI:  Spielberger  et  al.,  1983),  which  provides  a  measure  of   anxiety   in   the   present   moment   (state)   and   in   general   (trait),   as   well   as   the   Attentional   Control   Scale   (ACS:  Derryberry  &  Reed,  2002),  which  provides  a  measure  of  ability  to  voluntarily  control  attention.  The   range   of   scores   on   both   questionnaires   is   20-­‐80,   with   higher   scores   indicating   greater   anxiety   or   attentional  control,  respectively.      

 

 

(8)

Overview  of  tasks:  

All  tasks  were  presented  via  custom  scripts  using  the  VisionEgg  module  (Straw,  2008)  for  Python  2.6  (van   Rossum  &  Drake,  2001).  

Letter  Search  Task  

The  letter  search  task  was  adapted  from  Jenkins  and  others  (2005,  experiment  2,  and  similar  to  ones   used  in  previous  perceptual  load  studies  (Bishop  et  al.,  2007;  Lavie,  2001).  On  each  trial,  a  string  of  six   letters   superimposed   on   a   task-­‐irrelevant   unfamiliar   face   or   house   was   presented.   The   face   stimuli   comprised   four   different   individuals   with   fearful   and   neutral   expressions   taken   from   the   Pictures   of   Facial  Affect  Series  (Ekman  &  Friesen,  1976)  as  well  as  morphed  versions  of  these  faces  (50%  fear,  50%   surprise;   using   FantaMorph   Software;   www.fantamorph.com,   Abrosoft,   2012).   Face   stimuli   were   cropped   with   an   oval   to   remove   extraneous   background   information,   and   the   background   was   filled   with   gray.   Fearful   facial   expressions   of   conspecifics   act   as   cues   to   potential   danger,   which   have   been   shown  to  share  some  of  the  functional  properties  of  “prepared”  (intrinsically  threat-­‐related)  fear  stimuli   (Lanzetta  &  Orr,  1986).  They  have  also  been  used  in  the  majority  of  studies  arguing  for  the  pre-­‐attentive   and  automatic  processing  of  threat-­‐related  stimuli  (Bishop  et  al.,  2007;  Vuilleumier,  Armony,  Driver,  &   Dolan,   2001;   Whalen   et   al.,   1998;   Whalen   et   al.,   2004).   Morphed   faces   were   used   because   previous   unpublished   work   from   our   lab   showed   that  morphs   specifically   attracted   more   attention   of   the   high   anxious   individuals   due   to   their   ambiguity.   Furthermore,   in   addition   to   neutral   faces,   we   used   four   images  of  houses  as  a  non-­‐facial  neutral  baseline,  since  neutral  faces  could  appear  threatening  to  high   anxious  individuals  (Yoon  &  Zinbarg,  2008).  The  house  stimuli  were  matched  in  size  with  the  faces.  In  the   high  perceptual-­‐load  condition,  the  letter  string  comprised  a  single  target  letter  (X  or  N)  and  five  non-­‐ target   letters   (H,   K,   M,   W   and   Z)   arranged   in   a   pseudo-­‐random   order.   In   the   low   perceptual-­‐load   condition,  the  letter  string  comprised  six  Xs  or  six  Ns,  reducing  attention  search  requirements.  The  high   and  low  perceptual-­‐load  conditions  were  mixed  within  each  block.  The  task  was  to  indicate  as  quickly   and  accurately  as  possible  whether  there  was  an  X  or  N  in  the  letter  string.  

The   main   reaction   time   contrasts   that   we   planned   were   between   conditions   with   emotional   valence   (fear  and  morph)  and  those  with  non-­‐emotional  valence  (neutral  faces  and  houses).  Therefore,  fearful   and  morphed  faces  were  contrasted  with  neutral  faces  and  houses  in  both  low  and  high  load  conditions,   for  both  day  1  and  day  2.    

(9)

Table  1:  Planned  Letter  Search  task  reaction  time  contrasts  

Day  1   Day  2  

Low  Load   High  Load   Low  Load   High  Load  

Fear  –  Neutral   Fear  –  Neutral   Fear  –  Neutral   Fear  –  Neutral   Fear  –  House   Fear  –  House   Fear  –  House   Fear  –  House   Morph  –  Neutral   Morph  –  Neutral   Morph  –  Neutral   Morph  –  Neutral   Morph  -­‐  House   Morph  -­‐  House   Morph  -­‐  House   Morph  -­‐  House  

 

We   expected   to   (1)   find   test-­‐retest   reliability   across   two   days   for   all   contrasts   and   (2)   a   correlation   between  anxiety  level  and  RT  difference  (specifically  under  low  load),  where  we  expected  high  anxious   individuals   to   be   slower   in   the   fearful   and   morphed   face   conditions   in   comparison   to   the   house   and   neutral  face  conditions.  Furthermore  (3)  we  expected  to  find  that  the  morphed  face  and  the  house  RT   difference  would  be  largest  because  these  images  were  the  most  different  in  emotional  value.  The  level   of  accuracy  was  also  measured,  and  we  expected  to  find  high  anxious  individuals  to  be  less  accurate  in   fearful  and  morphed  face  conditions  in  comparison  to  the  house  and  neutral  face  conditions.  

Sustained  Attention  to  Response  Task  (SART)   1)  Regular  SART  

The  regular  SART  was  adapted  from  a  study  that  monitored  sustained  attention  failures  in  patients  with   traumatic   brain   injury   (Robertson   et   al.,   1997).   In   each   session,   there   were   six   runs   consisting   of   10   blocks  each,  divided  evenly  between  letter  and  number  blocks.  Each  block  had  28  trials.  Each  run  took   about  six  minutes  to  complete.  Participants  were  allowed  a  brief  rest  after  each  of  the  first  five  blocks.   On  each  trial  in  the  number  blocks,  a  random  digit  from  1  to  9  was  presented  in  the  center  of  the  screen   for  250ms.  The  digits  varied  in  size  from  trial  to  trial  to  prevent  low-­‐level  visual  influences  on  response.   Following,   a   mask   comprised   of   a   zero   superimposed   on   the   letter   X   was   presented   during   the   Inter-­‐ Stimulus-­‐Interval  (ISI)  that  varied  randomly  from  pre-­‐selected  ISIs  (0.75,  0.85,  0.95,  or  1.05  s).  A  variable   ISI   was   included   to   prevent   participants   falling   into   a   regular   temporal   pattern   of   responding,   succumbing   to   a   speed-­‐accuracy   trade-­‐off.   The   participants’   task   was   to   press   the   spacebar   upon   presentation  of  each  digit  (go-­‐trials)  with  the  exception  of  the  two  or  three  occasions  per  block  when   the  digit  3  (target)  appeared,  where  they  were  required  to  withhold/inhibit  their  response  (no-­‐go  trials).   Letter  blocks  used  letter  stimuli  rather  than  numbers  in  order  to  compare  RTs  between  runs  with  only   go  trials  and  runs  with  both  go  and  no-­‐go  trials.    

(10)

We   expected   high   anxious   individuals   would   be   faster   in   responding   while   making   commission   errors   (failure  to  withhold  a  response  on  no-­‐go  trials).  Furthermore,  we  expected  high  anxious  individuals  to   make  more  commission  errors.  We  also  expected  a  negative  relationship  between  attention  control  and   number   of   commission   errors,   i.e.,   we   predicted   that   participants   with   lower   attention   control   would   have  more  trouble  inhibiting  their  response  on  no-­‐go  trials.  

2)  Training  SART    

The  training  SART  was  adapted  from  the  SART,  with  the  same  set-­‐up.  However,  instead  of  six  runs  there   were  only  three.  Each  of  the  10  blocks  had  double  the  number  of  trials  (54  instead  of  28).  Instead  of  two   to  three  presentations  of  the  target  digit  3,  there  were  three  to  four  presentations  per  block.    During  the   training   task,   feedback   was   provided,   by   way   of   real-­‐time   audio   feedback   and   performance   feedback   during   the   breaks.   The   audio   feedback   was   made   with   the   Audiere   module   for   Python   (audiere.sourceforge.net).   It   consisted   of   a   short   beep   that   sounded   for   500ms   every   time   the   participants’  reaction  time  difference  from  one  trial  to  the  next  deviated  more  than  0.75  SDs  for  four   out  of  six  “test”  trials  from  the  average  reaction  time  difference  of  the  previous  six  “baseline”  trials.  

  Figure  1:  A  screenshot  of  the  performance  feedback  in  the  training  SART.  

The   performance   feedback   was   presented   during   the   breaks   every   five   blocks   (see:   Figure   1).   The   reaction  time  feedback  was  based  on  the  average  reaction  time  during  go  trials  in  these  five  blocks  in   comparison  to  the  average  go  trial  reaction  time  overall.  If  the  reaction  time  was  faster  than  the  average  

(11)

reaction  time,  the  diamond  would  be  colored  green  and  would  be  placed  right  of  the  vertical  gray  line;  if   the  reaction  time  was  slower  than  the  average  reaction  time,  the  diamond  would  be  colored  red  and   placed  left  of  the  middle  line.  The  baseline  reaction  time  we  used  during  practice  was  500ms.  Then,  the   average  reaction  time  found  during  practice  was  used  as  the  baseline  during  the  main  training  task.  It   was   hoped   that   providing   feedback   on   reaction   time   would   help   participants   be   more   aware   of   the   speed   with   which   they   responded,   which   in   turn   may   have   reduced   commission   error   rate.   This   was   based  on  the  finding  that  drifting  of  go-­‐trial  reaction  times  is  a  useful  marker  of  increases  in  error  rate   (Manly,  Robertson,  Galloway,  &  Hawkins,  1999;  Robertson,  Manly,  Andrade,  Baddeley,  &  Yiend,  1997).   In  addition,  we  provided  feedback  on  the  average  commission  error  rate  during  the  last  five  blocks.  If   the   commission   error   rate   was   less   than   the   average   commission   error   rate,   the   diamond   would   be   colored  green  and  would  be  placed  right  of  the  vertical  gray  line  that  indicates  the  previous  commission   error  rate;  if  the  commission  error  rate  was  more,  the  diamond  would  be  colored  red  and  place  left  of   the   vertical   gray   line.   Furthermore,   the   location   of   the   vertical   gray   line   would   indicate   the   average   commission  error  rate  overall,  where  the  axis  goes  from  100%  errors  to  0%  errors.  

Dot-­‐probe  task  

The  dot  probe  task  is  a  visual-­‐probe  task  (MacLeod,  Mathews,  &  Tata,  1986;  MacLeod  et  al.,  2002)  that   is  used  to  assess  attentional  bias  to  emotional  information.  The  version  we  used  has  been  adapted  from   Browning   and   colleagues   (2011).   On   each   trial,   a   pair   of   faces   was   briefly   presented   on   a   black   background  and  followed  by  a  probe  (two  horizontal  or  two  vertical  white  dots),  which  appeared  behind   one  of  the  faces.  The  faces  were  taken  from  the  Pictures  of  Facial  Affect  Series  (POFA;  Ekman  &  Friesen,   1976),   the   NimStim   face   set   (Tottenham   et   al.,   2009),   and   the   Karolinska   Directed   Emotional   Faces   (KDEF;  Lundqvist,  Flykt,  &  Ohman,  1998).  They  displayed  positive  (happy),  neutral,  or  negative  (fearful   and   angry)   expressions,   with   each   trial   of   the   task   presenting   faces   from   two   different   valences   and   identities,   but   with   the   same   gender.   These   combinations   resulted   in   three   possible   face   pair   types:   positive-­‐neutral,   positive-­‐negative,   and   negative-­‐neutral.   During   the   task,   the   relative   position   of   the   faces   (upper   or   lower)   was   counterbalanced   throughout   the   experiment.   Probe   location   was   also   counterbalanced   between   the   relatively   more   negative   and   positive   stimulus   location,   and   stimulus   duration  (100ms,  500ms,  1000ms)  was  blocked.  This  resulted  in  six  blocks  of  48  trials,  with  the  order  of   blocks  counterbalanced  (two  blocks  per  stimulus  duration).  A  unique  set  of  faces,  mixed  between  the   POFA,   NimStim   and   KDEF,   was   used   for   pre-­‐   vs.   post-­‐assessment.   During   practice,   simple   colored   geometric  shapes  were  used  in  place  of  faces  to  avoid  habituation  while  participants  learned  the  button   mapping  for  responding  to  the  probes.    

(12)

Importantly  this  task  is  able  to  assess  whether  the  attention  training  produced,  as  expected,  a  reduction   in  high  anxious  individuals’  tendency  to  direct  attention  to  negative  information.  We  expected  to  find  a   correlation   between   level   of   anxiety   and   the   mean   reaction   time   difference   between   negative   invalid   and  negative  valid  trials.  That  is,  high  anxious  participants  will  be  slower  on  average  to  respond  on  trials   where  the  dot  probe  replaces  the  neutral  face  when  a  negative  face  is  present  (“neutral  valid,  negative   invalid”)   compared   to   trials   when   the   dot   probe   replaces   the   negative   face   when   a   neutral   face   is   present   (“negative   valid,   neutral   invalid”).   We   also   expected   to   find   a   reduction   in   the   mean   RT   difference  between  these  conditions  during  post-­‐training,  indicating  a  reduction  in  attention  bias.  The   same   estimation   of   attention   bias   is   done   for   the   positive   image   conditions   (“positive   valid,   neutral   invalid”   contrasted   with   “neutral   valid,   positive   invalid”),   however   we   did   not   hypothesize   any   relationship  between  anxiety  level  and  RT  to  positive  images.  

Table  2:  Dot  Probe  reaction  time  contrasts.  

Day  1   Day  5  

NegValidNeuInvalid  -­‐  NeuValidNegInvalid     NegValidNeuInvalid  -­‐  NeuValidNegInvalid     PosValidNeuInvalid  -­‐  NeuValidPosInvalid   PosValidNeuInvalid  -­‐  NeuValidPosInvalid  

 

Study  part  I    

The  goal  of  this  study  was  to  explore  an  alternative  assessment  task  for  attention  bias  in  high  anxious   individuals.  The  test-­‐retest  reliability  for  both  the  letter  search  task  and  the  regular  SART  were   measured.  

Procedure  

The  study  took  part  in  one  hour  on  four  consecutive  days,  at  the  same  time  of  day.  Participants  were   tested   in   a   quiet   room   at   the   research   unit.   Upon   first   arriving,   the   participants   filled   out   the   STAI   (Spielberger   et   al.,   1983)   and   ACS   (Derryberry   &   Reed,   2002).   The   experimenter   read   aloud   the   task   instructions  while  the  participants  followed  along.  The  participants  then  performed  a  short  practice  in   order   to   familiarize   themselves   with   the   task   with   the   instructor   in   the   room.   After   the   practice   the   instructor  started  the  task  and  left  the  room.  The  letter  search  task  was  administered  on  the  first  two   days  and  the  SART  was  administered  on  the  second  two  days  (see:  Table  3).  

(13)

Table  3:  The  schedule  for  study  part  I.  

Day  1   Day  2   Day  3     Day  4  

Questionnaires  

Letter-­‐search  task   Letter-­‐search  task   Regular  SART     Regular  SART    

Results  

One  participant  (female)  had  to  be  excluded  from  the  letter  search  task  for  not  responding  on  more   than  10%  of  the  trials.  Five  participants  (four  female)  had  to  be  excluded  from  the  SART  for  having   greater  than  10%  omission  rate  (not  responding  on  go  trials).  

Questionnaires  

In  our  group,  we  found  a  median  trait  anxiety  ±  SD  of  39  ±  9.9,  range:  23-­‐58  and  a  mean  attentional   control  score  ±  SD  of  55  ±  4.6,  range:  45-­‐62.  These  scores  are  typical  of  those  published  previously.   Test-­‐retest  reliability    

The   letter   search   task:   none   of   the   eight   reaction   time   contrasts   reached   significant   test-­‐retest   reliability,  neither  in  the  case  of  reaction  time  nor  accuracy.      

The   Regular   SART:   Overall   there   was   good   test-­‐retest   reliability   for   go   trial   reaction   time   (r=0.81,   p<0.00),  commission  error  reaction  time  (r=0.56,  p<0.02)  and  for  commission  error  rate  (r=0.84,  p<0.00).   There  was  poor  test-­‐retest  reliability  for  omission  error  rate  (r=0.17,  p<0.51).  

Correlation  with  trait  anxiety  

The   letter   search   task:   under   low   perceptual   load,   the   day   1   morph-­‐neutral   RT   difference   (r=-­‐0.49,   p<0.02)   and   the   morph-­‐fear   RT   difference   (r=-­‐0.539,   p<0.01)   correlated   negatively   with   trait   anxiety.   This  indicates  that  high  anxious  individuals  are  significantly  faster  in  the  morph  condition  compared  to   the  fear  and  neutral  conditions.  However,  this  was  not  the  case  on  day  2.  No  other  contrasts  based  on   reaction  time  under  low  or  high  perceptual  load  were  significant.  Furthermore,  under  high  perceptual   load,   the   day   1   morph-­‐neutral   accuracy   difference   (r=0.430,   p<0.05)   and   the   morph-­‐house   accuracy   difference  (r=0.510,  p<0.02)  correlated  significantly  with  anxiety.  On  day  2,  the  morph-­‐house  accuracy   difference   (r=462,   p<0.03)   also   correlated   significantly   with   anxiety.   This   indicates   that   high   anxious   individuals  were  significantly  more  accurate  in  the  morph  condition  in  comparison  to  in  the  neutral  and   fear  conditions.    

The  Regular  SART:  The  RTs  and  errors  rates  in  the  SART  task  did  not  significantly  correlate  with  trait   anxiety.

(14)

Study  part  II  

The  goal  of  the  second  part  of  the  study  was  to  investigate  whether  the  SART  training  paradigm  could  be   used  to  reduce  attention  bias  in  high  anxious  participants,  reduce  trait  anxiety  and  improve  sustained   attention.  

Procedure  

The  study  took  part  in  one  hour  on  five  consecutive  days,  at  the  same  time  of  day.  A  subset  (n=11)  of  the   participants  returned  for  a  sixth  day  19-­‐42  days  (mean  ±  SD  27.3  ±  8.4)  after  day  1.  The  participants  were   tested   in   a   quiet   room   at   the   research   unit.   Upon   first   arriving,   the   participants   filled   out   the   STAI   (Spielberger  et  al.,  1983)  and  the  ACS  (Derryberry  &  Reed,  2002).  The  experimenter  read  aloud  the  task   instructions  while  the  participants  followed  along.  The  participants  then  performed  a  short  practice  in   order   to   familiarize   themselves   with   the   task   with   the   instructor   in   the   room.   After   the   practice   the   instructor  started  the  task  and  left  the  room.    

Table  4:  The  schedule  for  the  study  part  II.  

Results  

Three  participants  had  to  be  excluded  from  both  the  SART  and  the  training  SART  due  to  a  greater  than   10%  omission  rate  (two  female  participants)  and  failure  to  complete  the  study  (one  female)  participant).   One  female  participant  had  to  be  excluded  from  the  dot  probe  due  to  failure  to  complete  the  study.  Two   participants  (two  female)  were  excluded  from  the  follow-­‐up  due  to  a  greater  than  10%  omission  rate.     After   this,   the   number   of   participants   in   both   the   training   and   the   regular   SART   is   twenty   and   the   number  of  participants  in  the  dot  probe  is  twenty-­‐two.  The  follow-­‐up  study  included  nine  participants.     The   two   sub-­‐groups   of   participants   who   participated   in   Study   Part   I   and   Study   Part   II   were   not   significantly   different   from   each   other   in   trait   anxiety   (t(22)=1.33   p>0.19)   nor   attention   control   score   (t(22)=0.50,  p>0.62).  

Day  1   Day  2   Day  3   Day  4     Day  5   Follow-­‐Up  

Questionnaires   Dot-­‐probe   Regular  SART  

Training  

SART   Training  SART   Training  SART   Questionnaires  Dot-­‐probe   Regular  SART  

Questionnaires     Dot-­‐probe     Regular  SART  

(15)

Self-­‐reported  personality  measures:  results  

Questionnaires  

Trait  anxiety  scores  were  evenly  distributed,  with  a  median  of  35  and  n=11  people  in  the  low  anxious   group,   and   n=11   people   in   the   high   anxious   group.   Furthermore,   attentional   control   scores   had   a   median   of   54   and   n=11   people   in   the   low   attentional   control   group   and   n=11   people   in   the   high   attentional   control   group.   Anxiety   and   attentional   control   were   not   significantly   correlated   (r=-­‐.230,   p>0.30).    

Effects  of  training  on  trait  anxiety  

Trait  anxiety  

There  was  a  significant  difference  between  the  trait  anxiety  score  on  day  1  and  day  5  in  the  low  anxious   group   (m±sd   day   1:   29.8±3.8,   day   5   34.5±5.9,   t(10)=-­‐2.73,   p<0.03).   However   there   was   no   significant   difference  in  the  high  anxious  group  (m±sd  day  1:  43.4±5.3,  day  2:  43.4±8.78).  There  was  no  significant   correlation  between  the  difference  in  trait  anxiety  pre-­‐  to  post-­‐training  and  the  trait  anxiety  level  pre-­‐ training  (Figure  2).    

  Figure  2:  Average  trait  anxiety  scores  in  the  low  and  high  anxious  groups  for  day  1  and  day  2.      *   0   10   20   30   40   50   60  

Low  Anxious   High  Anxious  

Trait  difference  

Day  1   Day  5  

(16)

Assessment  and  training  of  sustained  attention  

Test-­‐retest  reliability  –  SART   Regular  SART    

The   findings   of   reliability   in   the   SART   task   from   Study   Part   I   are   replicated   in   this   study,   with   go   trial   reaction  time  (r=0.806,  p<0.00)  and  commission  error  rate  (r=0.724,  p<0.00)  consistent  across  days  (day   1  and  day  5).    

Training  SART  

The   SART   task   is   also   reliable   in   training,   with   go   trial   reaction   time   (r=0.944,   p<0.00)   and   number   of   target  commission  errors  (r=0.721,  p<0.00)  consistent  across  days  (day  2  and  day  3).  

Sustained  attention  training  task  

In  order  to  compare  the  number  of  commission  errors  between  the  training  SART  and  the  regular  SART   is  it  necessary  to  compare  the  error  ratio,  which  is  the  number  of  commission  errors  divided  by  the  total   number  of  opportunities.  Comparing  the  reaction  times  and  commission  error  rate  of  the  training  SART   with   the   regular   SART,   we   found   performance   to   significantly   worsen   with   feedback.   The   go   trial   reaction  time  speeded  up  between  the  first  assessment  day  and  the  second  training  day  (m±sd  day  1:   0.458±0.09,   day   2:   0.400±0.07,   t(19)=3.39,   p<0.003),   and   the   commission   error   rate     increased   (m±sd   day  1:  0.242±0.14,  day  2:  0.398±0.16,  t(19)=-­‐4.43,  p<0.00).  In  fact,  in  comparison  to  day  1,  the  average   reaction  times  for  go  trials  were  faster  in  all  the  following  days  (see  figures  3  and  4).    

Improvement  in  sustained  attention  -­‐  pre-­‐  vs.  post-­‐training.  

The  average  reaction  time  per  block  in  the  SART  task  speeded  up  significantly  between  the  pre-­‐training   assessment   and   the   post-­‐training   assessment   (m±sd   day   1:   0.46±0.10,   day5:   0.38±0.05,   t(19)=3.88,   p<0.00).  The  number  of  commission  errors  increased  significantly  as  well  (m±sd:  day  1:  0.77±0.50,  day  5:   0.99±0.48,   t(19)=-­‐2.18,   p<0.04).   However,   there   were   no   significant   correlations   between   error   ratio   change  pre-­‐  to  post-­‐training  and  day  1  trait  anxiety  level  or  day  1  attention  control.  

Improvement  sustained  attention  -­‐  follow-­‐up  

In  an  exploratory  follow-­‐up  with  a  subset  of  our  participant  group  of  study  1b  (n=9),  trait  anxiety  m±sd   36±5.8,   attention   control   m±sd   52   ±6.8),   we   found   that   the   patterns   of   decreased   reaction   time   and   increased  error  ratio  indeed  persisted  even  after  a  few  weeks.  However,  since  only  9  of  our  participants   returned,  the  results  can  only  interpreted  for  exploratory  purposes  (see  Appendix,  figures  7  and  8).  

(17)

 

  Figure  3:  Reaction  time  across  days  for  go  trials  in  the  regular  and  training  SART.  Days  2-­‐4  were  the  training  days,  

marked  in  pink.  

  Figure  4:  Commission  error  ratio  across  days,  indicating  the  number  of  errors  divided  by  the  number  of  

opportunities.  Days  2-­‐4  were  the  training  days,  marked  in  pink.     0.000   0.100   0.200   0.300   0.400   0.500   0.600   1   2   3   4   5  

SART-­‐  Go  trial  reacRon  Rme  

0.000   0.050   0.100   0.150   0.200   0.250   0.300   0.350   0.400   0.450   0.500   1   2   3   4   5  

(18)

Assessment  of  attention  bias  in  high  anxious  individuals  

Test-­‐retest  reliability   Dot-­‐probe:    

In  order  to  measure  attention  bias  for  negative  images,  the  difference  between  the  reaction  time  for  the   two  different  neutral  and  negative  contrasts  is  measured,  as  discussed  in  the  Methods.  It  is  expected   that  high  anxious  individuals  respond  more  slowly  when  the  probe  replaces  the  neutral  face,  because   they  are  attentive  to  the  negative  face.  To  measure  test-­‐retest  reliability,  the  difference  in  bias  between   the  first  day  of  testing,  day  1,  and  the  last  day  of  testing,  day  5,  is  measured.  

The  dot-­‐probe  task  is  not  reliable  (table  5).  The  reaction  time  in  the  500ms  condition  in  the  negative  and   neutral   versus   neutral   and   negative   contrast   seemed   to   be   reliable   across   days   at   first.   Further   inspection   showed   us   that   the   high   correlation   across   days   in   the   500ms   duration   of   the   NegValidNeuInvalid   -­‐   NeuValidNegInvalid   contrast   stems   from   one   data   point.   When   this   point   was   removed,  the  correlation  between  days  was  r=0.047,  which  is  not  significant.  

Table  5:  The  test-­‐retest  reliability  per  stimulus  duration.  

  Day  1  –  Day  5  

Duration   NegValidNeuInvalid  -­‐  NeuValidNegInvalid   PosValidNeuInvalid  -­‐  NeuValidPosInvalid  

100   r=0.279   r=0.228  

500   r=0.591   r=-­‐0.071  

1000   r=-­‐0.195   r=0.316  

Improvement  dot-­‐probe  pre-­‐  vs.  post-­‐training  

We  found  no  significant  differences  between  the  high  and  low  anxiety  groups  for  any  of  the  stimulus   durations  in  the  negative  valid,  neutral  invalid  versus  the  neutral  valid,  negative  invalid  contrast,  for  day   1  or  day  5  (figures  5  and  6).  Furthermore  there  were  no  significant  changes  across  days,  either  in  the   group  as  a  whole,  or  in  the  low  or  high  anxious  group  specifically.  We  hypothesized  that  the  high  anxious   group  would  be  slower  in  moving  attention  away  from  the  negative  images,  so  we  expected  the  neutral   valid,  negative  invalid  reaction  time  to  be  slower  than  the  negative  valid,  neutral  invalid  reaction  time.   However,  we  found  this  was  only  the  case  in  the  100ms  and  1000ms  stimulus  duration  conditions  on   day  1,  but  this  was  not  significantly  different  from  the  reaction  time  difference  found  in  the  low  anxious   group.  In  the  500ms  condition,  the  high  anxious  group  was  faster  in  the  neutral  valid,  negative  invalid  

(19)

condition.  Post-­‐training,  this  effect  was  reversed.    However,  there  was  no  significant  difference  between   groups.    

The  positive  valid  and  neutral  invalid  versus  the  neutral  valid  and  the  positive  invalid  showed  the  same   pattern  of  results,  with  no  findings  relevant  to  attention  bias  in  anxiety.    

 

Figure  5:  Negative  valid,  neutral  invalid  vs.  neutral  valid,  negative  invalid  on  Day  1.  A  positive  RT  difference   indicates  that  reaction  time  was  faster  when  the  dot  replaced  the  neutral  image.  

 

Figure  6:  Negative  valid,  neutral  invalid  vs.  neutral  valid,  negative  invalid  on  Day  5.  A  positive  RT  difference   indicates  that  reaction  time  was  faster  when  the  dot  replaced  the  neutral  image.  

(20)

Discussion  

The  aim  of  this  pilot  study  was  to  assess  non-­‐emotional  attention  training  in  order  reduce  anxiety  in  high   anxious  individuals.  Our  study  had  several  sub-­‐goals,  (1)  we  aimed  to  verify  the  reliability  of  the  tasks  we   used,   (2)   we   aimed   to   implement   an   emotion-­‐free   training   paradigm   in   order   to   improve   sustained   attention   and   reduce   trait   anxiety.   We   found   no   test-­‐retest   reliability   in   the   dot-­‐probe   task   and   the   letter-­‐search  task;  we  found  that  our  participants’  performance  in  the  SART  task  decreased  after  the  day   one  assessment,  and  we  found  that  the  training  with  feedback  had  a  negative  effect  on  performance.  In   the  next  section,  we  will  address  the  possible  causes  of  our  findings,  the  implications  for  interpretability   of  past  results  and  provide  suggestions  for  future  improvements.  

Participant  groups.  Our  participants’  level  of  trait  anxiety  was  comparable  to  the  published  norms  for   this  age  group  (Spielberger,  1983).  However,  we  only  had  two  people  with  a  trait  anxiety  score  higher   than   50.   Previous   research   has   suggested   that   the   expected   effects   of   anxiety   on   dot-­‐probe   reaction   time  only  show  when  people  are  clinically  or   highly  anxious  (Hakamata,  2010),  instead  of  moderately   anxious,  as  was  the  case  on  our  group.  Furthermore,  it  has  been  found  that  high  anxious  individuals  with   low  attention  control  specifically  benefit  from  attention  training  to  reduce  anxiety  (Derryberry  &  Reed,   2002;  Bar-­‐Haim,  2010).  Within  our  participants  however,  only  four  high  anxious  individuals  reported  low   attention   control.   This   low   number   may   have   influenced   our   results.   Lastly,   taking   into   account   the   demographics   of   our   subjects,  who   were   all   students   in   the   final   period   of   their   semester,   stress   and   sleep  deprivation  might  have  biased  our  results.  

Reliability.  We  found  that  the  dot  probe  task  has  a  low  reliability,  as  has  been  described  earlier  in  the   literature  (Lebel  &  Paunonen,  2011;  Staugaard,  2009;  Schmulke,  2005).  The  task  we  wanted  to  assess   alternatively,  the  letter-­‐search  task,  also  showed  low  reliability.  Reliability  is  an  important  issue  for  many   implicit  tests  (Lebel  &  Paunonen,  2011).  Thus,  it  is  imperative  to  develop  measurements  that  are  indeed   reliable   in   order   to   accurately   assess   effects   of   training.   The   results   also   indicated   there   were   no   consistent  significant  correlations  between  anxiety  and  planned  contrasts.    

Interestingly,   within   the   letter-­‐search   paradigm,   the   highest   correlations   we   found   were   all   contrasts   with   the   morph   face   condition.   The   morph   face   was   included   in   the   study   in   order   to   include   an   additional   ambiguous   image   that   could   help   differentiate   between   high   and   low   anxious   participants.   Negative   biases   in   the   interpretation   of   emotionally   ambiguous   stimuli   have   all   been   held   to   characterize   anxiety   (Lissek   et   al.,   2005;   MacLeod,   Rutherford,   Campbell,   Ebsworthy,   &   Holker,   2002;  

(21)

Mathews  &  MacLeod,  2002;  Phelps,  Delgado,  Nearing,  &  LeDoux,  2004).  Our  results  indicate  there  is  a   consistent   difference   between   low   and   high   anxious   individuals   in   the   processing   of   morph   faces,   however,  not  in  the  way  we  initially  hypothesized.  In  the  contrasts  with  other  images,  whether  fearful   faces,  neutral  faces  or  houses,  we  did  not  find  this  effect.  High  anxiety  was  related  to  a  relatively  faster   reaction  time  and  more  accurate  responses  in  trials  with  ambiguous  images.  This  effect  was  not  present   in   low   anxious   individuals.   Although   contrary   to   our   expectations   and   unpublished   work   in   the   lab,   it   seems   high   anxious   people   recruited   cognitive   control   mechanisms   more   strongly   in   the   case   of   ambiguous   faces.   Also   contrary   to   previous   research   (Bishop,   Jenkins,   &   Lawrence,   2007),   we   did   not   find  a  higher  correlation  of  anxiety  and  planned  contrasts  in  the  low  perceptual  load  condition.  

In   the   dot-­‐probe   paradigm,   the   reaction   time   is   sometimes   faster   when   the   dot   replaces   a   negative   image  and  the  negative  image  is  invalid  and  sometimes  faster  when  the  dot  replaces  the  negative  image   and  the  neutral  image  is  invalid.  This  effect  might  be  caused  by  different  attention  systems  (Bar-­‐Haim,   2010),  however,  our  findings  are  highly  inconsistent  so  concrete  conclusions  cannot  be  drawn.      

The   SART   task   was   found   to   be   reliable   across   days.   However,   there   was   no   correlation   with   anxiety   scores.  Furthermore,  we  found  our  participants’  performance  decreased  in  the  task  after  the  first  day.   An   exploratory   follow-­‐up   with   a   sub-­‐group   of   participants   a   few   weeks   later   informed   us   that   this   decrease   in   performance   was   consistent,   even   a   month   later.   One   explanation   could   be   that   the   participants,   when   unfamiliar   with   the   task,   were   more   attentive.   After   the   first   experiment   day,   the   participants  might  have  been  not  motivated  to  pay  attention  and  tried  to  rush  through  the  task  by  just   pressing  the  spacebar  as  soon  as  possible,  even  though  this  had  no  effect  on  length  of  the  task.  Indeed,   during   debriefing,   participants   mentioned   their   boredom   with   the   task   and   their   feeling   of   lack   of   challenge  in  the  task,  as  well  as  the  feeling  that  improvement  was  impossible.        

Training.   Feedback   had   no   positive   effect   on   performance   of   the   SART   task.   There   can   be   two   explanations   for   this.   It   could   be   that   during   the   training,   they   aimed   at   improving   the   reaction   time   only.  In  our  current  design,  gradually  speeding  up  reaction  time  is  associated  with  positive  reaction  time   feedback  and  possibly  even  no  audio  feedback.  Furthermore,  many  participants  indicated  they  did  not   find  the  audio  feedback  helpful  and  even  mentioned  it  could  be  distracting.  A  previous  study  has  shown   feedback  is  beneficial  in  the  context  of  the  SART  (Manly  et  al.,  2004),  however  they  implemented  the   feedback   between   different   sub-­‐blocks   in   the   experiment   and   contrasted   the   reaction   time   and   omission  errors  with  blocks  that  had  no  feedback.  This  might  have  resulted  in  different  effects.  Although   it  seems  intuitively  correct  to  use  feedback  to  aid  people,  this  assumption  not  always  correct  (Hattie  &  

Referenties

GERELATEERDE DOCUMENTEN

In dit kader heeft Konsumenten Kontakt het RIKILT verzocht monsters garna l en.. te

De groep heeft een bezoek gebracht aan een bedrijf met snijbloementeelt van gladiolen ten zuidwesten van Parijs.. Op dit bedrijf worden op ± 3 ha gladiolen voor de

Om te voorkomen dat na het bossen grond uitdroogt aan de peen, moeten de bossen alvorens gewassen, zolang bewaard worden onder natte zakken of in tonnen met water.. Kwaliteit:

Uit de gegevens van tabel 12 blijkt dat het bij pinken ook in 1985 weer gelukt is de totale vochtopname door het verstrekken van melassewater sterk te verhogen (proefgroep 280 %

Het onderzoek van Hekhuis en De Baaij schetst een range van betalingsinstrumenten (zoge- naamde payment vehicles) om natuur via de bezoekers te vermarkten, maar gaat grotendeels

Politieke rap benoemt intentioneel politieke instanties, personen, posities of activiteiten en/of adresseert maatschappelijke problemen en/of reikt oplossingen aan

Not only because it turned out that the high-skilled migrant visa policy was not really a pull or push factor, but also because other policies on the national (30% tax ruling)

The aim of this study was to determine whether participants are adherent to post-operative pain control medication following day case orthopaedic surgery after discharge from a