• No results found

CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment

N/A
N/A
Protected

Academic year: 2021

Share "CRISPR/Cas9: A powerful tool for identification of new targets for cancer treatment"

Copied!
17
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

CRISPR/Cas9

Liu, Bin; Saber, Ali; Haisma, Hidde J

Published in:

Drug Discovery Today

DOI:

10.1016/j.drudis.2019.02.011

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Liu, B., Saber, A., & Haisma, H. J. (2019). CRISPR/Cas9: A powerful tool for identification of new targets

for cancer treatment. Drug Discovery Today, 24(4), 955-970. https://doi.org/10.1016/j.drudis.2019.02.011

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Teaser

This

review

provides

the

latest

findings

regarding

the

application

of

CRISPR/Cas9

for

the

identification

of

new

therapeutic

targets

and

associated

major

challenges

in

cancer

treatment.

CRISPR/Cas9:

a

powerful

tool

for

identification

of

new

targets

for

cancer

treatment

Bin

Liu

z

,

Ali

Saber

z

and

Hidde

J.

Haisma

DepartmentofChemicalandPharmaceuticalBiology,GroningenResearchInstituteofPharmacy,Universityof Groningen,TheNetherlands

Clustered

regularly

interspaced

short

palindromic

repeats

(CRISPR)/

CRISPR

associated

nuclease

9

(Cas9),

as

a

powerful

genome-editing

tool,

has

revolutionized

genetic

engineering.

It

is

widely

used

to

investigate

the

molecular

basis

of

different

cancer

types.

In

this

review,

we

present

an

overview

of

recent

studies

in

which

CRISPR/Cas9

has

been

used

for

the

identification

of

potential

molecular

targets.

Based

on

the

collected

data,

we

suggest

here

that

CRISPR/Cas9

is

an

effective

system

to

distinguish

between

mutant

and

wild-type

alleles

in

cancer.

We

show

that

several

new

potential

therapeutic

targets,

such

as

CD38,

CXCR2,

MASTL,

and

RBX2,

as

well

as

several

noncoding

(nc)RNAs

have

been

identified

using

CRISPR/

Cas9

technology.

We

also

discuss

the

obstacles

and

challenges

that

we

face

for

using

CRISPR/Cas9

as

a

therapeutic.

Introduction

Theaccumulationofgeneticmutationsincellsovertimeleadstocancer.Inaddition,certain

genechanges,suchasdrivermutationsinTP53,EGFR,KRAS,BRAF,HER2,andMET,canmakea

cellcancerous.Treatmentstrategiesareconventionallybasedonhistologicalsubtypes.However,

in addition to the conventional histological classifications, each cancer type can now be

subdividedintovariousmolecularsubtypesthathaveacrucialroleinthetreatment

decision-makingprocess.Eachmolecular subtypeis treateddifferentlyand clinicianscanalso predict

treatmentoutcomes andpatient survival.Forinstance, patientswithlungcancer with

EGFR-activatingmutationsaretreatedwithdifferenttypesoftyrosinekinaseinhibitor(TKI),suchas

gifitinib,erlotinib,orafatinib,dependingonthemutation.Yet,resistancetotheTKIsinevitably

emergeseitherbyDNAmutationsor/andmetabolicchanges.Asaresult,treatmentstrategiesare

modifiedbasedonthenewmolecularsignature.However,eventually,the tumorcellsdonot

respondto anytreatment[1].Therefore,identificationofnewtherapeutictargets toimprove

patientsurvivalandclinicaloutcomesiscrucial[2,3].

Inrecentyears,CRISPR/Cas9hassignificantlyinfluencedthefieldofmolecularbiologyand

genetherapy.Solidtumorsarethemostcommontypeoftumors,butlessprogresshasbeenmade

Reviews

FOUNDA

TION

REVIEW

BinLiuisaPhDstudentin theDepartmentof Chemicaland PharmaceuticalBiology, UniversityofGroningen, TheNetherlands.His researchfocusesoncancer moleculartherapybased onadenovirus,CRISPR/

Cas9,andtargeteddrugs.HeisamemberofDutch SocietyofGeneandCellTherapy.

AliSaberdidhisPhDon tumorheterogeneityand drugresistanceatthe UniversityofGroningen, TheNetherlands,focusing ontheroleofgenomic aberrationsindrug resistance.Currently,heis apostdoctoralresearcher

attheUniversityofGroningen.Heisinterestedinthe identificationofnoveltherapeutictargetsto overcomedrugresistanceandimproveclinical outcomesinpatientswithcancer.

HiddeHaismawas awardedanMScinmedical biologyattheUniversityof Utrecht,TheNetherlands in1983;hethenworkedas ascientistatCentocorInc. Malvern,PA,USA(1985˘ 1986),DanaFarberCancer Institute,Brighamand

Women’sHospitalBostonMA,USA(1986˘1987),and asaninstructoratHarvardMedicalSchool,Boston MA,USA(1986˘1987).In1987,hewasawardedhis PhDbytheUniversityofUtrecht,TheNetherlands forhisthesisentitled‘Monoclonalantibodiesand cancer’.From1987to1997,heworkedasascientistin theSectionforExperimentalTherapyofthe DepartmentofMedicalOncology,UniversityHospital ofAmsterdam,TheNetherlands,where,in1997,he wasappointedassistantprofessor/sectionleaderof theDivisionofGeneTherapy.In2000,hebecamea fullprofessorattheUniversityofGroningen,The Netherlands.Haisma’sresearchisdevotedtothe developmentofgeneticmedicinesfortherapeutic interventionofgeneexpressioninpatients.Heis memberoftheeditorialboardofseveraljournals,has co-authoredover150publications,andholdsseveral patents.Haismaistheformerpresidentandmember oftheboardofTheDutchSocietyofGeneandCell Therapy.Inaddition,heismemberoftheGeneand CellDopingExpertGroupoftheWorldAnti-Doping Agency(WADA).

Correspondingauthor.

zTheseauthorscontributedequally.

(3)

for gene therapy-based treatment compared with nonsolid

tumors, such as leukemia. However, this situation is rapidly

changingwithdevelopmentsinCRISPR/Cas9.Thereisagrowing

amountofpromisingpreclinicaldatashowingCRISPR/Cas9tobe

an effectivetool tospecifically target cancer cellsand suppress

tumor growth [4–6].This could lead to the discoveryof novel

moleculartargetsforcancertreatment.

ThereisanincreasingnumberofclinicaltrialsutilizingCRISPR/

Cas9technologytotreatcancersofdifferentorigin(Table1).Most

ofthesetrialsarebasedongeneticallyengineeredTcellsforcancer

immunotherapy,ratherthantargetingaspecificgeneinthetumor

cellsthemselves.Oneofthe mainproblemsassociatedwiththe

directtargetingofcanceristhelackofaneffectiveandsafedelivery

method that can be used in patients. Tumor heterogeneity is

anotherissuethatmightbeachallengebecausetumorsusually

comprisedifferentsubclones(i.e.,intratumorheterogeneity)[7–

10].Thus, evenwith the rightdelivery system, outgrowthof a

minorsubclonecanemergeandthetreatmentwouldnolongerbe

effective.Nonetheless,identificationofdifferentmajorsubclones

beforetreatmentandrecruitmentofmultipleCas9/guide(g)RNA

mightbeanoptiontominimizerelapseinpatients.

Here,weprovideanoverviewofstudiesinwhichCRISPR/Cas9

has been utilized forthe identification ofpotential therapeutic

targetsinsomeofthemostfrequentsolidtumors,includinglung,

breast, brain,liver, and colorectal cancer. Wediscuss potential

candidatesfortherapythatareeitherhighlyexpressedoractivated

in different cancer types,becausethey are moreconvenient to

inhibitordisrupt.Weendbypresentingrecentadvancesin,and

differentdeliverymethodsfor,CRISPR/Cas9.

CRISPR/Cas9

gene-editing

technology

CRISPR/Cas9isarecentlydiscovered,powerfulgene-editingtool

derivedfromaprokaryoticdefensesystem[11–14].This

technol-ogyhasenabledresearcherstoeditthegenomeofeukaryoticcells

morepreciselyandefficientlycomparedwithpreviousmethods,

suchaszinc-fingernucleases(ZFNs)andtranscription

activator-likeeffectornucleases(TALENs)[15].

The

structure

of

CRISPR/Cas9

ThestructureofCRISPR/Cas9hascomprehensivelybeendescribed

elsewhere [15–17]. The CRISPR/Cas9 system has three

compo-nents;a singleguideRNA(sgRNA),whichisspecifictoatarget

sequenceofDNA;Cas9proteinwithDNAendonucleaseactivity;

andatracrRNAthatinteractswithCas9(Fig.1).ThegRNA

(ap-proximately20basepairsinlength)bindstothetargetsiteinthe

genomeanddirectstheCas9protein.TheCas9proteinisa

RNA-guidednucleasethatwasdiscoveredintheCRISPRtypeIIadaptive

immunitysystemofStreptococcuspyogenesanditisresponsiblefor

cleavingdouble-strandDNA[17].

gRNAsandtheirspecificity

Severalfactors,suchassequence,length,andsecondarystructure,

ofgRNAscaninfluencetheirefficiencyandspecificity[18,19].In

addition,theefficiencyoftheCRISPR/Cas9complexcanbe

influ-encedbyotherfactors,includingthegenomiclocusofthetarget,

chromatin accessibility, nucleosomes, and other components

aroundgRNA-bindingsites[19].ThegRNAsequencehasacrucial

roleinthe efficiency, specificity,and accuracyof

CRISPR/Cas9-mediatedgenomeediting.Thefirst10–12nucleotidesatthe30end

ofgRNA,immediatelyadjacent toa protospaceradjacent motif

(PAM),calledthe‘seedsequence’,bindtothetargetsequenceand

determinethe specificity[18,20].TruncatedgRNAswithshorter

complementarynucleotides(<20)canreduceoff-targeteffectsby

5000-foldwithoutsacrificingon-targetefficiency[21].Moreover,

extending the gRNA duplex by 5 base pairs can significantly

improvetheknockoutefficiency[22].

CRISPR-associatednucleases

Different versions of CRISPR-associated nucleases are currently

underdevelopment,greatlyexpandingtheCRISPR-basedtoolbox

forgenomeediting(Table2).Cpf1isanRNA-guidedendonuclease

thatbelongstotheclass2CRISPR-Cassystem,thesameasCas9

TABLE1

PhaseI/IIclinicaltrialsthatuseCRISPR/Cas9genome-editingtechnologies

Condition Target Interventions Phase Status ClinicalTrialsGov

Identifier Solidtumor,adult PD-1andTCR Anti-mesothelinCAR-T

cells

I Active NCT03545815

Melanoma;synovial sarcoma;liposarcoma

TCRendoandPD-1 NY-ESO-1;drug: cyclophosphamide, fludarabine

I Active NCT03399448

Gastrointestinalcancer CISH,inactivatedTIL Drug:

cyclophosphamide, fludarabine,aldesleukin

I – NCT03538613

Human papillomavirus-relatedmalignantneoplasm

HPV-relatedcervical intraepithelialneoplasia

Biological:TALEN, CRISPR/Cas9

I – NCT03057912

Gastrointestinalinfection Hostfactorsofnorovirus Duodenalbiopsy;saliva – Active NCT03342547 Bcellleukemia;Bcell

lymphoma CD19andCD20orCD22 CAR-T Universaldual-specificity CD19andCD20orCD22 CAR-TCells I/II Active NCT03398967

Leukemia;lymphoma RelapsedorRefractory CD191

UCART019 I/II Active NCT03166878

StageIVgastriccarcinoma; StageIVnasopharyngeal carcinoma;StageIVTcell lymphoma – Drug:fludarabine, cyclophosphamide, interleukin-2 I/II Active NCT03044743 Reviews  FOUNDA TION REVIEW

(4)

[23].However,Cpf1hasdifferentfeaturescomparedwithCas9.For

example,ithasonlyone singlenucleasedomainand a shorter

gRNA.Creating staggeredcutsis oneofthe maincharacteristic

features ofCpf1. This typeof cut isimportant forintroducing

exogenousDNAintothegenomebythehomologydirectedrepair

(HDR)pathway.Inaddition,Cpf1hasbothendoribonucleaseand

endonucleaseactivities,whichisuniqueforanuclease[24].These

propertiesmakeCpf1bothacomplexandeffective

genome-edit-ingtoolforgenetargeting andgenesilencing.C2C2isanother

memberofclass2typeVI-ACRISPR-Casandwasfoundin

Lepto-trichiashahii,whereitprotectsthebacteriumagainstRNAphages.

C2C2canbeusedtotargetandregulateRNAs.IthastwoRNase

catalyticpocketswithdualRNaseactivities,whichcanberecruited

fortheidentificationofcellulartranscripts[25].Thestructureand

function ofC2C2 isuniqueand provides a noveltool forRNA

manipulation[25–27].

Preciselyeditingasinglebaseinthegenomewithout

introduc-ingdouble-strandedbreaks(DSBs)wasalongstandinggoalthat,

with engineered Cas9 base editors, is now possible. The ‘base

editors’comprisefusionsofa deadCas9domainandacytidine

deaminase enzyme that is able to convert GC to AT without

introducingDSBs[28].Recently,researcherscreatedaCas9fused

withatransferRNAadenosinedeaminasethatcanmediate

con-versionofATtoGC[29].Thesebaseeditorsarevaluabletoolsfor

repairingdisease-relatedmutations.

Advantages

of

CRISPR/Cas9

over

ZFN

and

TALENs

The CRISPR/Cas9 system has several advantagesover ZFN and

TALENsintermsofitssimplicity,flexibility,andaffordability.The

most important difference is that the CRISPR system relieson

RNA–DNArecognition,ratherthanontheprotein–DNA-binding

mechanism [11,17,30]. Thus, it is more ‘doable’ and easier to

constructacustomizedCRISPR/Cas9complexbyonlychanging

the gRNAsequence instead of engineeringa newprotein. The

target sequence needs to be immediately upstream of a PAM

sequence(50-NGG-30)[17],becausethelatterisessentialfortarget

recognitionby Cas9. Thisshortsequence occursapproximately

onceeveryeightbasepairsinthehumangenome,whichmakesit

possibletodesignseveralgRNAsforonespecifictargetgene[31].

Targeting

cancer-related

genes

and

identification

of

potential

therapeutic

targets

in

solid

tumors

CRISPR/Cas9isroutinelyusedinresearchlaboratoriesbecauseof

its simplicityand efficiency. Inaddition, the costofthis

gene-editing tool is reducing daily. The CRISPR/Cas9 gene-editing

technology helped researchers to identify the role of different

genesincancer;forinstancewhethertheyfunctionasoncogenes

ortumorgenes[32–36].Severalgroupsgeneratedinvitroandinvivo

knockoutmodelstostudythemolecularbasisofdifferentcancer

types[37–39].CRISPR/Cas9isalsowidelyusedforinducing

spe-cificmutationsincertaingenestoexplorethepotentialcausative

Cas9 nuclease gRNA HDR NHEJ Target DNA Indel

Knockout

Knock-in

HDR template DSB DSB

Drug Discovery Today

FIGURE1

Schematicpictureofgenomeeditingmediatedbyclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)/CRISPRassociatednuclease9(Cas9),and DNArepairing.TheCas9protein,whichisguidedbyadesiredsingle-strandguideRNA(gRNA),cutsthedouble-strandedDNAandmakesadoublestrandbreak (DSB).Subsequently,DNArepairoccursthrougheitherthenonhomologousendjoining(NHEJ)orthehomology-directedrepair(HDR)pathways.

Reviews

FOUNDA

TION

(5)

role of these mutations in disease development. In addition,

CRISPRbarcoding technologycanbeusedto investigatetumor

heterogeneity [40,41]. Moreover, genome-wide CRISPR/Cas9

screening is frequently used to identify potential therapeutic

targetsindifferentcancers.Here,wemainlyfocusonnew

poten-tialmoleculartargetsthathavebeenidentifiedbyusingCRISPR/

Cas9insomeofthemostfrequentsolidtumors,includinglung,

breast,brain,liver,andcolorectalcancers.

Lung

cancer

Lungcanceristheleadingcauseofcancer-relateddeathworldwide.

Non-smallcelllungcancer(NSCLC)subtypesaccountfor85%of

alllungcancers[42].Theidentificationofspecificgenetic

aberra-tions isimportanttochoosethe appropriatetreatmentstrategy,

particularly in patientswithadenocarcinoma. Currently,several

moleculartargets,suchasEGFR,BRAF,ALK-EML4,andcMET,are

clinicallyavailableforthetreatmentofNSCLC.However,treatment

optionsare limited by the number ofmoleculartargets and by

emergingdrugresistance[1,42].Inrecentyears,CRISPR/Cas9-based

in vitro and in vivo studies of lung cancer have identified new

treatmentstrategiesandpotentialtherapeutictargets.

TargetingthemutantversionofcertaingenesusingtheCRISPR/

Cas9 gene-editing system can specifically target mutant cancer

cells, butnotnormalcells. Targetingthe mutantversionofthe

EGFRgene(L858R)resultedintheselectiveeliminationofmutant

cellsandreducedcellproliferationbothinvitroandinvivo[43].In

anotherstudy,Kooetal.selectivelyabrogatedEGFRmutantalleles

(L858R)inaNSCLCcellline(H1975)usinganadenovirus(AdV)

vectorthatresultedincancercelldeathandsignificantlyreduced

tumorsizeinvivo[4].Thesefindingsunderscorethepotentialof

CRISPR-basedtherapeuticsintumor-specifictargetedtherapyand

indistinguishingnormalfrommutanttumorcells.

Approximately30%ofpatientswithlungcancerhavesomatic

activatingKRASmutations.Currently,thereisnoeffective

treat-ment for KRAS mutant lung tumors, which are considered as

undruggable.CRISPR-baseddeletionofmurineKrasintwo

differ-entKrasG12D/1/p53/lungcancercelllinesresultedinasignificant

reductionincellproliferation,butthecellswerestillviableand

sustained their ability to form tumors in vivo. Transcriptome

sequencingrevealeda substantially higherexpressionofFas

re-ceptorin theknockoutcells. Interestingly,anactivatingFas

re-ceptor antibody selectively induced apoptosis in these Kras/

lung cancer cells [44]. Oncogenic Ras can inhibit Fas

ligand-mediatedapoptosisthroughdownregulationofFas[45];therefore,

simultaneousinhibitionofKRASandactivationofFASmightbe

aneffectivetherapeuticapproachagainstKRAS-drivenlungcancer

tumors.

CD38isaglycoproteinthatfunctionsasbothanADP-ribosyl

cyclaseandaNADglycohydrolase.Itsexpressionlevelis

negative-lyassociatedwithpoorprognosisinpatients withchronic

lym-phocyticleukemiaanditisusedasatherapeutictargetinmultiple

myeloma[46,47].However,itsroleissolidtumors,suchaslung

cancer, is not clear. CRISPR-based deletion of CD38 in a lung

adenocarcinomacellline(A549)resultedinsubstantial

suppres-sionofcellgrowthandinvasioninvitroandinxenograftsinmice,

suggesting CD38 as a potential target in lung cancer. Further

investigationsunraveled anelevatedlevelofCD38in 93%(27/

29)oflungcancercelllinesand40%(11/27)ofNSCLCprimary

tumors.Hence,directdisruptionofthistargetthrough

monoclo-nal antibodies, such as daratumumab, might be effective in

patientswithNSCLCwithCD38overexpression[48].

Disruptionoffocaladhesionkinase(FAK),anonreceptor

tyro-sinekinasethatisfrequentlyamplifiedinlungcancercelllines,

resultsin DNAdamageandsensitivity to ionizingradiation.In

addition,usingCRISPR/Cas9approaches,thepresenceofFAKwas

showntobecrucialfortheoncogenicandclonogenicabilitiesof

KRASmutants in tumor xenografts[49,50].Inaddition, FAK is

significantlyoverexpressedinpatientswithNSCLCandis

associ-ated with poorer clinical outcomes [51–53], which make it an

attractivetargettotreatNSCLCandpreventdistantmetastasis.

TAZisacoactivatoroftheHippopathwayandisupregulatedin

lungcancer.DualinactivationofTAZandYAP(atranscriptional

TABLE2

CRISPR-associatednucleases

Class Name Advantages Applications Refs

NaturallyCas9 SpCas9 Mostcommonused Geneediting [17,23,200,201]

SaCas9 1kbsmallerthanSpCas9 StCas9 DifferinPAMsequence CjCas9

FnCas9

CasX MostcompactnaturallyCRISPRvariant Potentiallyuseful untappednucleases CasY

Cas12a(Cpf1) SmallerthanSpCas9;gRNAshorterthanSpCas9 Moreeconomicalto produce

EngineeredCas9 variants

Cas9nickases VariantsnickasingleDNAstrandratherthanDSB Highfidelity [202,203]

eSpCas9 Enhancednuclease Highspecificityandlow

off-targetrate Baseeditors BE1/2/3;ABEs Completerangeofnucleotideexchangeswithout

DSBs

Genewriting [28,29]

RNAeditors Cas13a/Cas13b/Cas13d TargetingRNAratherthanDNA RNAediting [26,200,204]

Reviews



FOUNDA

TION

(6)

activator)suppressedcellproliferationaswellascancerstemcell

(CSC)sphereformationinlungcancer,suggestingthemaspotential

molecular targets [54]. CRISPR-based disruption of oncogenic

MUC1-ChinderedthegrowthofKRAS-dependentlung

adenocarci-nomacells(i.e.,A549andA460)[55].Inaddition,overexpressionof

MUC1hasbeenshownin>80%ofNSCLCsandisassociatedwith

poorprognosis[56,57].Italsohasaroleinepithelial-mesenchymal

transition(EMT)andself-renewalability,eachofwhicharedrug

resistance mechanisms in cancer [58,59]. Thus, suppression of

MUC1-Cmightdelayresistanceorevenpreventtumorrecurrence.

Likewise, it has been reported that overexpression of TNC, an

extracellularmatrix(ECM)protein,isassociatedwithlungcancer

recurrence[60].CRISPR-basedtranscriptionalactivationofTncled

tometastaticdisseminationoflungadenocarcinomacellsinvivo.

ThishighlightsthecentralroleofEMC-relatedproteinsinmetastasis

andtheirpotentialuseasrecurrenceandmetastasisbiomarkersas

wellastherapeutictargetsinNSCLCs[61].

Chromatin-remodelinggenes arefrequently mutated,mostly

inactivatingmutations,inlungadenocarcinoma[62–64].Arecent

study usedCRISPRtechnologyto knockoutSmarca4, Arid1a,or

Setd2toinvestigatetheirroleinlungtumorigenesis.LossofArid1a

andSetd2resultedinthedevelopmentofhigher-gradetumorsand

strongtumor progression in both early- and late-stage lesions,

respectively.Bycontrast,ablationofSmarca4ledtotumor

devel-opment, whereas itattenuated disease progression in vivo over

time[34].Previously,itwasshownthat SMARCA4inactivation

promotesNSCLC aggressiveness[65].Nevertheless,

loss-of-func-tionmutationsinSMARCA4havebeenreportedtoincreasetumor

cellsensitivitytotheAurorakinaseAinhibitorVX-680bothinvitro

andinxenograftmousemodels[66].Thesediscrepanciesmakeit

challengingtodecidewhetherSMARCA4isanappropriate

molec-ularcandidatefortherapy.However,geneticdisruptionor

chemi-cal-basedinhibitionofSMARCA4couldbeofbenefitforpatients

withmoreadvancedNSCLC.

miRNAshaveimportant rolesincellsandtheirdysregulation

hasbeen shownin varioustypesofcancer [67].Arecentstudy

exploitedCRISPR/Cas9-basedgeneactivationtechnologyto

inves-tigatetheroleofmiRNAslocatedon14q32inlungcancercells.

OverexpressionofthosemiRNAssignificantlyelevatedcell

migra-tionandinvasion.Moreover,higherexpressionlevelsofmir-323b,

mir-487a,andmir-539wereassociatedwithmetastasisandpoorer

prognosis in patients with lung adenocarcinoma, especially in

those who had never smoked[68]. Thus,these 14q32 miRNAs

mightbepotentialtargetstopreventtumorcelldisseminationand

distantmetastasisinpatientswithlungadenocarcinoma.

Overall,applicationoftheCRISPR/Cas9genome-editingsystem

inlung cancerhas ledto theidentification ofseveral potential

therapeutictargets.Bothinvitroandinvivostudieshaveshown

promisingresults,especiallyinthesuppressionofdistant

metas-tasis,whichisthemaincauseofdeathofpatients.Inaddition,

CRISPR/Cas9cantargetspecificoncogenicallelesofcertaingenes,

suchasEGFR,which isanimportant step towardscancer gene

therapy.

Breast

cancer

Breastcanceristhemostcommontypeofcancerandtheleading

cause of cancer-related death in women worldwide [69]. It is

dividedintovarioussubtypeswithdistinctmorphologies.Based

ontheexpressionofestrogenreceptor(ER),progesteronereceptor

(PR),ERBB2(HER2),p53,andKi-67,itcanbeclassifiedintofour

main molecular subtypes: triple-negative/basal-like; the

Her2-enriched; luminal A; and luminal B [70]. ER-positive luminal

subtypes arethe most common types of breast cancer (almost

70%) and resistanceto endocrine therapies occursin 30%of

thesepatients [71].Therefore,findingnewtreatmentoptionsis

crucial,especiallyinthecaseofrecurrence.Recent

CRISPR-medi-atedstudieshaveledtotheidentificationofpotentialtherapeutic

targetsindifferentbreastcancersubtypes.

Distantmetastasisisoneofthemaincharacteristicsoflate-stage

cancersandthemainreasonforcancermortality.Identificationof

newtherapeutictargetscouldhelptoprolongpatientsurvivaland

improvetheirlifequality.MLK3isamemberoftheMAP3Kfamily,

which is involved in signaltransduction and activation of the

MAPK pathway. Abrogation of Mlk3 in murine triple negative

breastcancer(TNBC)4T1cells,whicharehighlymetastatic,led

to suppressionof cell invasionand migration [72]. Inanother

study,CRISPR-mediateddepletionofCX3CR1,aproteininvolved

inthe disseminationoftumorcellsintobloodvessels,inbreast

cancercellsimpairedlodgingofthecancercellstoboneandledto

areductioninthenumberofcancerouslesionsinmice[73].

Ina recentstudy by Liaoand colleagues, deletionofUbr5, a

member of the E3 ligase family, in a murine mammary TNBC

model resulted in the inhibition of tumor growth and distant

metastasis in vivo as well as the promotion of apoptosis and

necrosisthroughimpairment of angiogenesis. The authorsalso

showed highexpressionlevelsofUBR5in patients withTNBC,

whichmakethisproteininterestingforfurtherinvestigationfor

targetedtherapy[74].CRISPR-mediatedknockoutofCXCR2(IL-8

receptor)inbreastcancercells,showedasignificantreductionin

cellmigrationinvitroaswellasalowerrateoflungmetastasisin

vivo[75].CXCR2isastem-likecellmarkerforTNBCandshows

significantlylowerexpressioninthissubtypecomparedwith

non-TNBC[76].ItisalsoknownthattargetingCXCR2improvesthe

chemotherapeuticresponseinlungcancer[77].Thus,treatmentof

patientswithadvancednon-TNBCwithanti-CXCR2drugsmight

bebeneficial.Inaddition,MARK4andFERMT2areotherpotential

targetsrelatedtobreastcancercellmigrationandmetastasisthat

havebeenidentifiedbyCRISPR/Cas9[78–80].

Several research groups have functionally studied different

proteinswithoncogeniceffectsthatmightbesuitableforfurther

investigationastherapeutictargetsinbreastcancer.Forinstance,

microtubule-associated serine/threonine kinase-like (MASTL) is

involved in the DNA damage response and its overexpression

correlateswithpoorclinicaloutcomesinER-positivebreastcancer

[81,82].CRISPR-based disruptionof MASTL kinase reduced cell

proliferationin breastcancer cell linesand showed therapeutic

effectsinvivo.FurtherMASTLexpressionanalysisinhumanbreast

primary tumors showed higherexpression in tumor cells

com-paredwithnormaltissue.Inaddition,higherMASTLexpression

wassignificantlyassociatedwithpoorerprognosisandits

abun-dancewasassociatedwithhigherhistologicalgrades,suggesting

its crucialrole in the progression of breastcancer [83].Hence,

inhibitionofMASTLmightsuppresstumorgrowthinhigh-grade

breasttumors.

Onestudyshowedthat theSRCfamilykinase (SFK)FYNand

proteintyrosinephosphatase N23(PTPN23)have animportant

Reviews

FOUNDA

TION

(7)

roleinbreastcancer.DoubleknockoutofPTPN23andFYNusing

CRISPR/Cas9significantlyattenuatedcellgrowthinbothCal-51

cells(aTNBCcellline)andxenograftmousemodels.Theauthors

also foundthat expressionofPTPN23was positivelyassociated

withabetterclinicaloutcome[84].Moreover,FYNisimplicatedin

drug resistance and is highly expressed in resistant cell lines

comparedwithparentalcells[85,86].Thus,inhibitionofFYNin

resistantpatientswithPTPN23lossmightbeasuitableoptionto

improveclinicaloutcomes.

Lossofcyclin-dependentkinase7(CDK7)indifferentTNBCcell

linessubstantiallyreducedcancercellgrowthinthesecells,but

notinnon-TNBCcells[87].However,elevatedexpressionofCDK7

hasbeenshowninprimarybreastcancertissuesanditsexpression

isnegatively associatedwithtumorgradeand size.Inaddition,

higherexpression ofCDK7wasassociated withbetteroutcome

[88].Therearesome discrepanciesbetweeninvivo and

patient-basedstudies,whichmightbetheresultofdifferencesinbreast

cancersubtypes.Nevertheless,CDK7mightbeasuitabletargetat

least for a subset of patients with breast cancer. Disruption of

SHCBP1, a member of the Src homolog and collagenhomolog

family,inbreastcancercelllinesinhibitedcellproliferationand

promoted apoptosis. The authors also showed that SHCBP1 is

overexpressedin>60%ofbreastprimarytumorsandisassociated

with poorer survival [89]. Thus, suppression of these proteins

mightresult inthe inhibitionoftumorgrowth inpatients and

improvetheirsurvival.

Zhengetal.performedCRISPRscreeningforRNA-binding

pro-teins(RBP)involvedin breasttumorigenesis.They showedthat

PHD finger protein5A (PHF5A) is a key splicing factor and its

knockoutleadstosuppressionofcellproliferation,tumor

forma-tion,andcellmigrationinbreastcancercells.Theyalsoidentified

anelevated expressionlevelofPHF5Ain primarybreast cancer

samplesandshoweditsinversecorrelationwithpatientsurvival

[69].Thisissimilartoarecentreportinprimarylung

adenocarci-noma[90].Interestingly,inhibitionofPHF5Aledtotumorgrowth

suppression in glioblastoma xenograft mice [91]. Thus, PHF5A

might be a suitable therapeutic candidate not only in breast

tumors,butalsoothertypesofcancer.

ncRNAsarealso importantincarcinogenesisand their

dysre-gulationcanleadtocancer.Singhetal.revealedhigherexpression

ofBC200,alongncRNA(lncRNA)thatregulatesproteinsynthesis,

in ER-positivebreastcancerprimarytumors comparedwith

ER-negative ones.Genetic abrogationofBC200 invitro(MCF7 cell

line)andinvivoledtoreducedcellgrowththroughexpressionof

Bcl-x,aproapoptoticprotein[92].Inaddition,ablationofmiR-10b

significantlysuppressedcellmigrationinmetastaticbreastcancer

cells (i.e., MDA-MB-231) [93]. These data suggest that genetic

suppressionofspecificncRNAswitharoleinimportantsignaling

pathways in tumor cells is a good therapeutic option for the

treatmentofbreastcancer.

In general, breast cancer preclinical studies have led to the

identification of several genes and proteins, the inhibition of

whichmightsignificantlyimprovetreatmentoutcomes.

Gliomas

Malignant glioma is the most frequent form of brain primary

tumors.BasedonWHOguidance,itisclassifiedintoastrocytomas,

ependymomas,oligoastrocytomas,andoligodendrogliomas.The

grade of malignancy varies from one subtype to another. For

instance,oligodendrogliomasand oligoastrocytomasare

catego-rizedasgradeIIandIII,respectively,whereasastrocytomas

com-prisefourdifferentgrades(I–IV)[94].AstrocytomasgradeIVare

alsocalledglioblastomamultiforme(GBM),andaccountsfor60–

70%of allmalignant gliomas [94,95].GBM isone ofthe most

heterogeneousandaggressiveformsofbraintumor,withapoor

prognosis [96]. These characteristics might increase chance of

recurrenceinpatientswithGBM.Currently,surgery,

radiothera-py, and chemotherapy are the common treatment options for

GBM[97].However,differentsignaltransductionsand TKIsare

nowbeingevaluatedinclinicaltrials.

Thereareseveralpreclinicalstudiesinvestigatingdifferent

pu-tativetherapeutictargets inglioma.For example,patients with

GBMwithEGFRmutationsandamplificationshavepoorer

prog-nosiscomparedwithpatientswithwild-typeEGFR.Knockoutof

eitherwild-typeormutant(EGFRvIII)EGFRresultedinthe

inhibi-tionoftumorgrowthinhumangliomaU87andLN229cellsas

wellasinmice[98].Thus,completeinhibitionofEGFRcouldbea

promising therapeuticoptionforpatients withGMB. However,

moredetailedstudiesandconfirmationsareneeded.

Targeting key playersofany activatedpathwayin cancers is

predictedtohaveinhibitoryeffectsontumorcells.Basedonthe

pathway,itmightinfluencecellproliferation,invasion,and

mi-grationabilities.STAT3activation,rangingfrom9%to83%,has

beenreportedinpatientswithglioma,probablybecauseof

differ-ences in tumor grade [99,100]. Apositive correlationhas been

shownbetweenSTAT3activation levelsand gliomagrades,

sug-gestingacrucialroleforthisproteinintumorinvasivenessand

possiblydistantmetastasis[101].InducingCRISPR-mediated

loss-of-functionmutationsinSTAT3stronglyinhibitedGBM

tumori-genesisinvivo inmice. Moreover, glioma-initiating cells(GICs)

werehighlyaddictedtoSTAT3andwerenotviableuponSTAT3

depletion[102].Arecentpreclinicalstudyalsoshowedthatthe

AK2/STAT3inhibitorpacritinibstronglyinhibitedpatient-derived

GBMcells[103].Basedontheseresults,inactivationorinhibition

ofSTAT3by eithergenemanipulationorchemicalcompounds,

especially during early disease stages, could be beneficial for

patientswithGBM.

Liuetal.investigatedtheroleofER

b

isoformsintheprogression

ofGBMusingCRISPR-mediatedknockoutinpatient-derivedGBM

cells.DisruptionofER

b

increasedmigratoryandinvasive

proper-tiesof the gliomacells. The authorsrevealed tumorsuppressor

activityofER

b

1inGBMcells,whereasER

b

5hadmoreoncogenic

effectsanditsrestorationincreasedcellviability.Theyalso

identi-fied significantly higher expression of ER

b

5 in glioma tumors

comparedwithnormalbraintissues,withthehighestexpression

in GBM [104]. Thus, anti-ER

b

5 drugs could be prescribedas a

therapeutic strategy in patients with high-grade glioma in the

future.

TheCRISPR/Cas9knockoutsystemhasfrequentlybeenusedto

elucidatethe role ofdifferent proteinsin glioma pathogenesis.

Pengandcolleaguesinvestigatedtheroleofchromatinassembly

factor 1 subunit A (CHAF1A) in glioma cell survival. Loss of

CHAF1Asignificantly increased apoptosisand causedcell cycle

arrestintwoGBMcelllines(U251andU87).Theyalsoobserved

thatexpressionofCHAF1Awasnegativelyassociatedwithoverall

survivalofpatientswithGBM[105],similartoapreviousstudyon

Reviews



FOUNDA

TION

(8)

coloncancer[106].Therefore,suppressionofCHAF1Ainpatients

might prolongtheir overall survival. Disruptionof brain

lipid-bindingprotein(BLBP)resultedintheinhibitionofcell

prolifera-tioninU251GBMcells.Furthermore,higherexpressionofBLBP

wasassociatedwithpoorerclinicaloutcomeinpatientswithGBM

[107].Inanotherstudy,depletionofpolo-likekinase1(PLK1)in

mousemodelbrain tumorsimproved survival and significantly

inhibitedtumorgrowth[108].Interestingly,severalPLK1

inhibi-tors,includingBI-2536,GSK461364,andvolasertib,arecurrently

inclinicaltrialsforthetreatmentofothersolidtumors,butnot

gliomas[109].Inhibitionofallthegenesandproteinsdiscussed

couldbebeneficial forpatients andimprove clinical outcomes.

However, further preclinical and clinical studies are warranted

beforesuchapproachesentertheclinic.

Thereare alsosomereports showingthatloss-of-functionchanges

in several ncRNAs can be apromising treatmentapproach in patients

with GBM. CRISPR-mediated knockout of the lncRNA MANTIS

resultedinan50%reductioninangiogeniccapacityofthe

endo-thelial cells isolated fromGBM and attenuated tube formation.

Thesedatashowedthattheangiogeniccapacityofendothelialcells

isdependentonMANTIS[110],whichcouldbeexploitedtoimpair

angiogenesisintumors.Inaddition,disruptionofmiR-10binGBM

cellsrevealedtheirstrongaddictiontothismiRNA.Itimpairedcell

viabilityand resultedintheupregulationofmiR-10bverifiedtargets,

including cell-cycle inhibitor P21 andthe mediator of apoptosis BIM.

DisruptionofmiR-10bwaslethalbothinvitroandinvivo.

Interest-ingly,miR-10bwasoverexpressedin patients withGBM,which

makesitasuitabletargetingliomas[93].Thus,suppressionofsuch

ncRNAswithoncogenicactivitycouldsignificantlyinhibittumor

growthinpatientswithglioma.

As discussed above, CRISPR-based preclinical studies have

shown promising results in the treatment of gliomas. Several

genes, including those encoding kinases, have been shown to

haveoncogenicrolesinglioma,whichcouldbeexploitedtotarget

tumorcellsinasubsetofpatients.However,furtherclinicalstudies

areneededtovalidatethesecandidatetargets.

Liver

cancer

Primarylivercanceristhesecondcauseofcancer-relateddeathin

theworldand ismorecommoninmen. Primarylivercancer is

dividedintotwomainsubtypes:hepatocellularcarcinoma(HCC)

and intrahepatic cholangiocarcinoma (ICC). HCC and ICC

ac-countfor80%and 15%ofthe totalcases,respectively. The

remaining 5%arethe raresubtypes of livercancer [111].Most

patientswithlivercancerhaveapoorprognosis,frequent

recur-rences, and limited treatment options.Therefore, CRISPR/Cas9

technologycouldbeapromisingapproachtoidentifynew

thera-peutictargetsinthiscancer[112].

CXC chemokine receptor 4 (CXCR4) expression levels have

significantnegativecorrelationwithclinicaloutcomesinpatients

withHCC[113].CRISPR-mediatedablationofCXCR4inHepG2

cellsresultedinsuppressedcellproliferationandmigration.

More-over,CXCR4attenuationresultedinasmallertumorsizeinvivo

[114].Thus,CXCR4hasanoncogenicroleinHCCandcouldbe

usedasatreatmenttargettocontrolgrowthordistantmetastasis.

SeveralotherpotentialtargetsinHCChavebeeninvestigatedby

using CRISPR/Cas9. For example, simultaneous CRISPR-based

knockoutofPtenandoverexpressionofNrasledtoHCCformation

invivo,whereassinglegenemanipulationdidnotresultin

tumor-igenesis.AberrationintheexpressionofPtenorNrasisnecessary

forlivertumorigenesis,butitisnotsufficientifthesechangesare

notpresentsimultaneously [115].Therefore,inhibitionof

over-expressedNRASinpatientswithPTENlossmightsuppresstumor

growth andimprove patientsurvivala subsetofHCCs.Nuclear

receptorcoactivator5(NCOA5)encodesacoregulatorforERsand

is dysregulated in several typesof cancer. Geneticknockout of

NCOA5significantlyinhibitedcellgrowthandmigrationinHCC

cells. Inaddition, lossofthe NCOA5proteinsubstantially

sup-pressedEMT,whichisacommondrugresistancemechanismin

different cancer types [116]. Nogo-B is a negative regulator of

apoptosis[117] and itsCRISPR-baseddeletionled tosignificant

inhibitionof cellproliferation invitroaswell assuppressionof

tumorgrowthanddistantmetastasisinvivo[118].Allthe

afore-mentionedgenescouldbeconsideredasappropriatetherapeutic

candidatesforfurtherinvivostudiesorclinicaltrialsasinhibitors

aredeveloped.

HepatitisBvirus(HBV)isoneofthepathogensforHCC,and

HBVinfectioncanleadtoHCC.Oneofthepotentialtherapeutic

applicationsofCRISR/Cas9systemistopreventHBV-derivedliver

cancer by destroyingviral DNA. HBV particles containrelaxed

circular DNA (rcDNA), whichis converted to covalentlyclosed

circularDNA(cccDNA)uponenteringhepatocytes.cccDNAserves

astemplateforallHBVtranscripts.Thus,eliminationofcccDNA,

for instance by cleaving, could cure HBV. Several preclinical

studiestargetingHBVhaveshown promisingresultsthatmight

bebeneficialtoeradicateHBVasoneofthemainriskfactorsfor

liver cancer. Lin and colleagues used CRISPR/Cas9 technology

againstHBV.UsingagRNAtargetingaconservedHBVgenomic

region,productionofEBVsurfaceandcoreproteinswas

success-fully suppressedbothin vitroand invivo. Theauthors also

effi-ciently reduced rcDNA and cccDNA levels in the cells [119].

AnotherresearchgroupshowedthatHBV-specificgRNA

combina-tionsreducedHBVDNAandcccDNAupto1000-andtenfoldin

vitro,respectively[120].Lietal.usedtheCRISPR/Cas9systemto

successfully eradicate HBV infection from HBV-positive HepG2

cellsbydeletingtheentireintegratedHBVgenomeanddisruption

of cccDNA [121].Similarresults werereported by othergroups

[122–124].Inaddition,CRISPR-basedablation offlap

structure-specificendonuclease1 (FEN1)in Hep38.7-Tet,anin vitroHBV

model,resultedinreducedcccDNAlevels,suggestingacrucialrole

forthehostFEN1proteinincccDNAproduction[125].

Colorectal

cancer

Colorectalcancerisoneofthemostfrequenttypesofcancerand

thefourthcauseofcancer-relateddeathworldwide[126].

Adeno-carcinoma(ADC)accountsfor>90%ofallcolorectalcarcinomas.

Theremaining10%areraresubtypes,includingadenosquamous,

squamouscell,neuroendocrine,spindlecell,andundifferentiated

carcinomas.Approximately 95%ofcolorectalcasesaresporadic

and5%areinherited.Colorectaltumorscanbetriggeredbydriver

mutationsinwell-knowncancergenes,suchasKRASandBRAF,in

40%and10%ofpatients,respectively.Treatmentofpatientsis

based onhistology and moleculartesting, but,similar toother

cancers, tumorseventuallybecomeresistanttotreatment[127].

Therefore, overcoming resistance by the identification of new

therapeutictargetsiscrucial.

Reviews

FOUNDA

TION

(9)

Yauetal.usedgenome-wideCRISPR/Cas9screeningofKRASmut

andKRASwtcolorectalcancerxenograftstoidentifygenesthat

pro-moteorsuppresstumorgrowthinvivo.Theyshowedthatdisruption

ofNADkinase(NADK)orketohexokinase(KHK)significantly

inhib-itedKRASmuttumorxenograftscomparedwithKRASwtxenografts,

suggesting them aspotential therapeutic targets in KRAS-driven

colorectaltumors [128].SeveralNADKandNHKinhibitorshave

beensynthesized[129,130].However,preclinicalandclinicalstudies

areneededtoevaluatetheirefficacyandtoxicityinhumancells.

Caspase-3(CASP3)isinvolvedinapoptosisanditshigher

activ-ityisassociatedwithahigherriskoftumorrelapseincoloncancer

[131].Itisoverexpressedincolorectalcancerprimarytissuesand

itshigherexpressionissignificantlyassociatedwithshorteroverall

survival [132]. CRISPR-mediatedknockout of CASP3 in a colon

cancercellline(HCT116)significantlyattenuatedcell

tumorigen-esis, invasion, and migration. Interestingly, deletion of CASP3

resultedinthehighersensitivityofthecellstoradiotherapyboth

invitroandinvivo[133].Together,thesedatasuggestthat

inhibi-tionofcaspase-3could beusedtoimprove clinicaloutcome in

patientswithcoloncancer.

NAT1 is a member of the N-acetyltransferases family and is

associated with cancer cell proliferation [134]. In addition,

NAT1canprotectcoloncancercellsduringnutrientdeprivation,

anditsabsenceislethal[135,136].GeneticablationofNAT1in

HT-29coloncancercellssuppressedcellgrowthandpromoted

apo-ptosisunderglucosestarvationbyenhancedproductionof

reac-tive oxygen species (ROS) [134]. Thus, inhibition of NAT1 in

combinationwithspecificdietscouldbeaneffectivemethodto

treatcoloncancer.AstudybyNishietal.revealedthatproduction

ofROSsignificantlyreducedexpressionofaproteincalled

NHL-repeat-containing protein 2 (NHLRC2), resulting in increased

levelsof apoptosisin HCT116colon cancercells. They showed

thatgeneticallyengineeredNHLRC2/cellsweremore

suscepti-bletoROS-inducedapoptosis[137],whichmighthavepotential

therapeuticbenefitsforpatientswithcolorectalcancer.

Dysregulationinautophagyisknowntobeinvolvedincancer

pathogenesis [138]. For instance, MARCH2 is involved in the

regulationofautophagy[139].CRISPR/Cas9-baseddisruptionof

MARCH2attenuatedcellproliferation,whilepromotingapoptosis

andcellcyclearrestincoloncancercellsbothinvitroandinvivo.

Furtherinvestigationsonprimarytumorsamplesrevealedhigher

expressionofMARCH2comparedwithnormaltissue.Moreover,

higherexpressionofthisproteinwassignificantlyassociatedwith

pooreroverallsurvivalinpatients[140].Therefore,eithergenetic

disruption or chemical inhibition of MARCH2 could improve

clinicaloutcomesinasubsetofpatientswithcoloncancer.

ApplicationofCRISPR/Cas9genome-editingtechnologyhasled

totheidentificationofseveralothercandidatetargetsincolorectal

cancer.Forexample,deletionoftheRNA-bindingproteinELAVL1

(HuR)incolorectalcancercellsresultedinasignificantreductionin

tumorgrowthcomparedwiththecontrolgroupinvivo.Theauthors

alsorevealedthatELAVL1issubstantiallyoverexpressedincolon

primarytumors,whichmakesita suitabletherapeuticcandidate

[141].Wuetal.knockedoutRBX2,acomponentofE3ubiquitin

ligases, in two colon cancer cell linesto investigate its role in

tumorigenesis.RBX2/cellsshowedsignificantlyreducedcolony

formationandmigrationcapacityinvitro.Inaddition,abrogationof

RBX2significantlyreducedtumorsizeandlungmetastasisinvivo.

Furtherinvestigationsusingcolorectalprimarytumorsrevealeda

higher expressionofthis proteincompared withnormal tissues

[142].Thus,RBX2appearstobeasuitabletargetinpatientswith

overexpressedRBX2toprevent,oratleastdelay,distantmetastasis,

whichisthemaincauseofdeathinallcancertypes.

Similartoothertypesofcancer,ncRNAshaveanimportantrolein

colontumorigenesis.Ithasbeendemonstratedthatasmall

nucleo-larRNA,called SNORA21,hasanoncogenicroleincolorectalcancer.

CRISPR-basedablationofSNORA21resultedinsubstantial

suppres-sionofcellproliferation, invasion,andtumorgrowthcapacities

bothinvitroandinvivo.Theauthorsalsorevealedasignificantly

higherexpressionofSNORA21inprimarycolontumorscompared

withnormal tissues. In addition, they showed that higherexpression

ofSNORA21wasnegativelycorrelatedwithoverallsurvival,disease

stage and distance metastasis [143].Thus,SNORA21could bea

potentialtherapeutictargetanditsinhibitioncouldbebeneficial

forpatientswithhigh-stagecolorectaltumors.

CRISPR/Cas9

delivery

to

cancer

cells

Deliveryofnucleases,suchasCas9,ZFN,andTALENs,remainsone

ofthemostsubstantialchallengestotheuseofsuchtherapyinthe

clinic.WithrapiddevelopmentsofCRISPR-basedtechniques,itis

crucialtodevelopmoreefficient,precise, and accuratedelivery

methods.Allnucleases,includingthemeganucleases,Cas9,ZFN,

andTALENs,arebiomacromoleculesandhavesimilarchallenges

totheirdeliveryintohumancells.Despitedifferentcomponents

andcharacteristics,allnucleasescanbegenerallydeliveredinthe

format of DNA, mRNA, or protein. The only difference in the

CRISPR/Cas9systemisthatthegRNAshouldbedeliveredasDNA

orRNAmoleculescomparedwiththeothernucleases[144–146].

Therearetwotypesofgenedeliverysystem:viralandnonviral

vectors.Forbasicresearch,forinstance,theidentificationofgene

functionand identificationofnoveltherapeutictargets,diverse

categories of viral or nonviral delivery methods can be used.

Recently,nonviraldeliverytechniques,suchaselectroporation,

hydrodynamic injection, microinjection, and self-assembled

nanoparticles (NPs), were used in ex vivo gene-editing using

nucleases[147,148].Yet,exvivogeneeditingwithNPsand

inte-gration ofa viral system cannot be used in most tissues types

becauseoflowefficiencyandsafetyconcerns[149].

Viralvectorsaremoreeffectiveandattractiveforthedeliveryof

CRISPR/Cas9invivo. Comparedwithtraditional non-integrated

viral-basedgenetherapy,inwhichcontinuoustransgene

expres-sionisneededbyrepeateddose,permanentgenomeeditingcanbe

achieved by transient expression of CRISPR/Cas9 with a single

administration.GiventhatCRISPR/Cas9hasshownhighlevelsof

efficiency, specificity, and stability, requirements of the viral

vectors for delivery of CRISPR/Cas9 might not be as strict as

previously required. The preferred viruses for the delivery of

nucleasesare AdVs, integrase-defective lentiviruses (IDLV), and

adeno-associatedviruses (AAVs)[150–152].Here,we providean

overviewof appropriate viraland nonviralvectors usedforthe

deliveryofnucleasesincancercells.

Viral

vectors

AdVsandAAVvectors

AdVandAAVvectorshavebeenextensivelystudiedforthedelivery

ofdifferentnucleasesinvitro,exvivo,andinvivobecauseoftheirhigh

Reviews



FOUNDA

TION

(10)

titer,relativelymildimmuneresponse,abroadrangeofcell

infec-tivity,andsafety.OnestudyshowedthatZFNscanbeexpressed

moreefficientlyusingAdVvectorscomparedwithIDLVin

geneti-callyengineeredprimaryTcells[153].Moreimportantly,modified

AdVvectorsshowedmoreaccuracyandspecificitythanIDLVfor

donorDNAdelivery[153].However,hostinflammatoryresponses,

includingcytotoxicTcells,limitsAdVvectorapplication[154].The

other drawback is the expression level of coxsackie-adenovirus

receptor(CAR)onthetumorcell surface,whichdeterminesthe

efficiencyofdeliveryusingAdVvectors.TheCARexpressionlevel

has a negative correlation with tumor grade.Thus, AdVis not

efficientforthedeliveryofnucleasesdirectlytohigh-gradetumors.

RecombinantAAVs(rAAVs)arealsoattractiveoptionsforthe

deliveryofnucleases.Theyarecommonlyusedinthedeliveryof

ZFNs,TALENs,andCRISPR/Cas9,becauseAAVvectorshavethe

abilitytoavoidrandomintegrationandshowlowimmunogenic

characteristics [152,155–158]. The low packaging capacity

(4.7kbp)isthemainlimitationofAAVvectors.Therefore,the

recombinantsequenceneedstobecarefullydesignedtomatchthe

AAVcapacity.

LVandIDLVvectors

Self-inactivating lentiviral vectors (LVs) are commonly used as

vehicles for gene therapy in dividing and nondividing cells

[159–161]. Afterdecades ofpreclinical and clinical testing,LVs

arebeingused totreat a variety ofgeneticdiseases, suchas

X-linked adrenoleukodystophy and Wiskott–Aldrich syndrome

[160,162–164]. Currently, several studies have shown that LVs

canbeusedtoefficientlydeliverCRISPR/Cas9tomammaliancells

and mice for cancer gene therapy [165–167]. However, unlike

usingLVsforgenereplacementtherapy,thecontinuous

expres-sionofCas9isunnecessaryandmightbeaproblem.

ComparedwithintegratingLVs,IDLVsminimizeproviral

inte-grationbecauseofmutationsintheintegraseprotein,whichmake

itmoresuitableforthedeliveryofCRISPR/Cas9[151,166].IDLVs

havebeensuccessfullyusedtodeliverCRISPR/Cas9anditsdonor

template in vitro. Approximately 6–11% gene knock-in was

achieved in hematopoietic stem and progenitor cells (HSPCs)

[168].IDLVshavealsobeenusedtocodeliverZFNs/TALENsand

HDRdonortemplatesintoavarietyofcelltypes,including

prima-ryandstemcells,witharelativelyhighefficiency(>20%).

How-ever, IDLV-mediated gene editing can cause undesired gene

modifications,suchasepigeneticsilencingandtheinductionof

genomicrearrangements,particularlyinrepetitivesequenceloci.

AnotherdisadvantageisthatIDLV-mediatedCas9deliveryleadsto

ahigheroff-targeteffectinquiescentorslowlydividingcells,such

ashepatocytesandneurons[169].

Nonviral

vectors

Nonviralvectorsarebeingrapidlydevelopedandseveralnonviral

vectors,includinglipid-basedvectorsandpolymer-basedvectors,

arewidelyusedin genetherapy [170].Unlikeviralvectors,the

capacityofnonviralvectorsisflexible.Inaddition,itappearsthat

many disadvantages of viral vectors, such as mutagenesis and

immunogenicity, can be addressed by using nonviral vectors

[170–172].Lowerimmunityorabsenceofpre-existingimmunity

inpatientsisanimportantadvantageofnonviralvectorsoverviral

vectors. However, compared with viral vectors, some nonviral

vectors are not able to penetrate cells efficiently, resulting in

low levelsof gene transfer efficiencyand highin vivo toxicity,

whichcouldlimittheiruseofinclinicaltrials[16].

Inrecentyears,nonviralvectorshave beenused forCRISPR/

Cas9deliveryinvitroandinvivo.Forinstance,onestudyshowed

thatupto80%genemodificationcanbeachievedinvitrousing

cationic liposomes. In addition, cationic liposomes have been

successfullyusedtodeliverCRISP/Cas9totheinnerearinmouse

models[172].Anotherstudysuccessfullyusedpolyethylenimine

(PEI)forthedeliveryofCRISPR/Cas9tomousebrain[173].

Combined

viral

and

nonviral

delivery

Arecentstudyshowedthatthecombineduseofviralandnonviral

vectors(lipid-basedvectorsandAAVs)achieved>6%generepair

(HDR)inhepaticcells[174].Theyalsoappliedthisapproachtoa

mousemodelandsuccessfullyrepairedthedisease-causinggene.

This method might be an efficient option for the delivery of

CRISPR/Cas9topatients.

Tissue-

or

tumor-specific

delivery

of

CRISPR/Cas9

SeveralstudieshaveshownthatCRISPR/Cas9iscapableofediting

geneswithhighaccuracyand efficiency[19,175,176].However,

forcancergenetherapy,howtospecificallydeliverCRISPR/Cas9to

cancercellsisstillamajorobstacle.Herein,webrieflyexplainsome

ofthesedeliverymethods,includingtheuseofappropriateviral

serotypes,specificpromoters,andbispecificconjugates.

More than 200 AAV serotypes have been identified so far.

Packaging CRISPR/Cas9 into the appropriate AAV serotype for

tissue-specific delivery is a promising strategy for cancer gene

therapy. Several rAAV vectorshave been developedfor clinical

trials and, recently, the firstgene therapy for treatment of an

inheritedretinaldiseaseusingAAVwasapprovedbytheUSFood

and Drug Administration(FDA) [177]. One study showed that

CRISPR/Cas9 deliveryusing AAVserotype9 (AAV9)was highly

efficientfortissue-specificdeliveryanddidnotcausesubstantial

cellulardamageinvivo[178].

Utilizingapromoter-based‘AND’logicgatecancontrolCRISPR/

Cas9tobespecificallyexpressedinbladdercancercells[179].The

strategyofpromoter-basedlogicgates,including‘AND’,‘OR’,and

‘NOT’, have the potential to create more complex and precise

regulatorypatternsthatcanbeconditionallyexpressed.Delivery

ofCRISPR/Cas9totumorcellswithsuchprecisioncouldaccelerate

theuseofCRISPR-basedcancergenetherapyfrombenchtobedside.

LowexpressionofCARonthe tumorcellsurfaceand lackof

specificreceptorssignificantlylimitstheclinicaluseofAdVvectors

in cancer gene therapy. However, redirecting AdV vectors to

tumor-specificcellsurfacetargetreceptors,suchasEGFR,EpCAM,

CD40, PDGF-Rbeta, and VEGFR, can selectively target tumors,

whichmayimprovethespecificityandefficiencyofAdV

simulta-neously[180–183].

CRISPR/Cas9;

hopes

and

challenges

in

cancer

treatment

CRISPR/Cas9 genome-editing technologyhas shown promising

results in preclinical studies. It is a convenient tool that has

enabled researchers to perform gene manipulation at a single

base-pairresolutioninarelativelyefficientway.Preclinicalstudies

have led to the identification of several potential therapeutic

targetsbyusingCRISPR-basedmethods(Table3).Thishasbrought

Reviews

FOUNDA

TION

(11)

TABLE3

Listof(potential) therapeutictargetsindifferentsolidtumorsidentifiedbyusingCRISPR/Cas9genome-editingtechnologiesa

Target invitro Cellline invivo CRISPR Vector Effect Refs

Lungcancer

EGFR + H1975 + Knockoutofmutantallele

(L858R)

AdV Promotedcelldeathandreducedtumor size

[4]

EGFR + H1975 + Knockoutofmutantallele

(L858R)

LV Reducedcellproliferationandtumorsize [43]

KRAS + A549andKP-KrasG12D/1 (mouselungcancercells)

+ Bothallelesknockout LV Reducedcellproliferation [44]

CD38 + A549 + Bothallelesknockout Nonviral Inhibitedcellgrowthandinvasion [48]

FAK + H460 + Bothallelesknockout Nonviral Reducedcellproliferationandtumorsize [50]

TAZandYAP + A549 + Bothallelesknockout LV Dualknockoutinhibitedcellproliferation, cancerstemcellsphereformation,and tumorformation

[54]

MUC1 + A549andH460  Bothallelesknockout LV SuppressedMYCexpressionandinhibited cellgrowth

[55]

Tnc + Collectionofcelllines isolatedfrommicewith primarylungtumors(KP mice)

+ CRISPR-mediatedgene activation

LV Enhancedmetastaticpotentialofcells [61]

Smarca4  – + Bothallelesknockout LV Inducedtumordevelopment,but

attenuateddiseaseprogressioninvivoover time [34] mir-323b,mir-487a andmir-539 + H2009  CRISPR-mediatedgene activation

LV Promotedcellmigrationandinvasion [68]

Breastcancer

Mlk3 + 4T1(murinebreast cancercells)

+ Bothallelesknockout Nonviral Suppressedcellinvasionandmigration [72]

CX3CR1 + MDA-MB-231 + CRISPR-basedtranscriptional suppression(CRISPR interference)

LV Impairedlodgingofcancercellstomouse boneandreducednumberofcancerous lesionsineachanimal

[73]

Ubr5 + 4T1(murinebreast cancercells)

+ Bothallelesknockout Nonviral Promotedapoptosisandinhibitedtumor growthanddistantmetastasis

[74]

CXCR2 + MDA-MB-231 + Bothallelesknockout Nonviral Inhibitedcellproliferation,migration, tumorsize,andrateoflungmetastasis

[75]

MARK4 + MDA-MB-231  Bothallelesknockout Nonviral Inhibitedcellproliferationandmigration [79]

FERMT2 + MDA-MB-231and4T1 (murinebreastcancer cells)

+ Bothallelesknockout LV Inhibitedcellmigration,invasion,and tumorgrowth

[80]

MASTL + MDA-MB-231,MCF7, BT549,andBT-483

+ Bothallelesknockout LV Impairedcellproliferationandtumor growth

[83]

PTPN23andFYN + Cal-51 + Bothallelesknockout LV Dualknockoutinhibitedcellproliferation andtumorgrowth

[84]

CDK7 + MDA-MB-231,

MDA-MB-468,HCC38,BT549,and SUM149

+ Bothallelesknockout LV Inhibitedcellproliferationandimpaired cellviability

[87]

SHCBP1 + MDA-MB-231andMCF7  Bothallelesknockout LV Inhibitedcellproliferationandpromoted apoptosis

[89]

PHF5A + CA1aandDCIS + CRISPRscreentargeting RNA-bindingproteins

LV Suppressedcellproliferation,migration, andtumorformation

[69]

lncBC200 + MCF7 + Bothallelesknockout Nonviral Inhibitedcellproliferationandtumor growth

[92]

miR-10b + MDA-MB-231  Bothallelesknockout LV Suppressedcellmigration [93]

Glioma

EGFR + U87andLN229 + Knockoutofbothwild-type andmutant(EGFRvIII)EGFR

LV Inhibitedcellproliferationandtumor growthandimprovedsurvival

[98] Reviews  FOUNDA TION REVIEW

(12)

hopeforthetherapeuticapplicationofthistechnologyincancer

treatment.However,therearesomeconcernsregardingits

appli-cationintheclinicalsetting.Here,wehavemainlydiscussedgenes

withoncogenicactivitiesbecausegeneknockoutismore

conve-nientcomparedwithgeneknock-inusingCRISPR/Cas9(Fig.2).In

addition,oncogenesareusuallyoverexpressedinprimarytumors

andaremoreamendabletopharmaceuticallyinhibition.

Althoughmalignanttumorsaregeneticallyheterogeneous,

tu-morbulkismainlytheresultofoutgrowthofoneortwodominant

clones[184]causedbydrivermutationsincertaingenes.sgRNAscan

distinguishbetweenmutantandwild-typeallelesintumorcells,

reducing off-target effects and improving the specificity [185].

Therefore,hotspotdrivermutationsingenessuchasEGFR,KRAS,

BAP1,BRAF,BRCA1,andBRCA2canbeexploitedasatherapeutic

TABLE3(Continued)

Target invitro Cellline invivo CRISPR Vector Effect Refs

STAT3 + MT330 + Bothallelesknockout LV Inhibitedtumorigenesisinvivo,butlimited effectoncellproliferationinvitro

[102]

ERb + U87andU251 + BothallelesknockoutofER

b

followedbyreintroduction ofER

b

1andER

b

5 separately

Nonviral/LV ER

b

knockoutelevatedmigratoryand invasiveproperties.Overexpressionof ER

b

5enhancedcellmigrationand invasion

[104]

CHAF1A + U87andU251  Bothallelesknockout LV Inhibitedcellproliferation,increased apoptosis,andcausedcellcyclearrest

[105]

BLBP + U251  Bothallelesknockout LV Inhibitedcellproliferationandcausedcell cyclearrest

[107]

PLK1 NA NA + Bothallelesknockout Nonviral Inhibitedtumorgrowthandimproved survival

[108]

lncRNAMANTIS Exvivo Endothelialcellsisolated fromGBM

+ Bothallelesknockout Nonviral Reducedangiogeniccapacityofcellsand suppressedtubeformation

[110]

miR-10b + U251,LN229,andA172 + Bothallelesknockout LV Impairedcellviability,enhancedexpression ofmiR-10btargets,andsuppressedtumor growth

[93]

Livercancer

CXCR4 + HepG2 + Bothallelesknockout Nonviral Inhibitedcellproliferationandmigration andreducedtumorsize

[114]

PtenandNras  + Bothallelesknockoutand

CRISPR-mediatedgene activation

Nonviral SimultaneousknockoutofPtenand activationofNrasledtolivertumorigenesis

[115]

NCOA5 + LM3  Bothallelesknockout LV Inhibitedcellproliferationandmigration, suppressedtumorformationandEMT

[116]

Nogo-B + SMMC-7721and QGY-7703

+ Bothallelesknockout Nonviral Inhibitedcellproliferationandsuppressed tumorgrowthanddistantmetastasis

[118]

Colorectalcancer

NADKandNHK + HCT116KRASWT/, HCT116KRASWT/mut, DLD-1KRASWT/,and DLD-1KRASWT/mut

+ Genome-wideCRISPR screeningknockout

LV InhibitedKRASmuttumorgrowth [128]

CASP3 + HCT116 + Bothallelesknockout NA SuppressedEMTandattenuatedcell tumorigenic,invasion,andmigration abilities

[133]

NAT1 + HT-29  Bothallelesknockout Nonviral Inhibitedcellgrowthandpromoted apoptosisunderglucosestarvation

[134]

NHLRC2 + HCT116  Bothallelesknockout LV Inhibitedcellproliferationandpromoted apoptosis

[137]

MARCH2 + HCT116 + Bothallelesknockout NA Inhibitedcellproliferation,promoted apoptosisandcellcyclearrest,reduced tumorsize

[140]

ELAVL1 + HCT116 + Bothallelesknockout Nonviral Suppressedtumorgrowth [141]

RBX2 + HCT116andSW480 + Bothallelesknockout Nonviral Inhibitedcolonyformationandcell migrationcapacity,reducedtumorsizeand lungmetastasis

[142]

SNORA21 + HCT116andSW48 + Bothallelesknockout LV Suppressedcellproliferation,invasionand tumorgrowth

[143]

a

Abbreviation:NA:notavailable.

Reviews

FOUNDA

TION

(13)

approachatleastinasubsetofpatients.Oneofthemainadvantages

of this strategyis thatnormal cells,do notcontain themutant alleles,

arenottargetedand,thus,remainintact.Inaddition,mutationsin

oncogenessuchasKRASareindicatorsofdrugresistanceandpoor

prognosisinasubgroupofpatientswithNSCLC,includingAsiansor

womenwithlow-gradetumors[186].Bycontrast,CRISPR/Cas9can

preciselytargetaspecificlocusinthegenome.Therefore,

substitut-ingKRASmutantversions(p.G12Vandp.G12D)withthewild-type

allelecouldpositivelyimprovetreatmentresponsein

KRAS-depen-dentcancers.

SeriesofCRISPR-associatednucleaseshavebeendiscoveredover

the past few years that can greatly facilitate genome editing.

However, there are still some major problems that need to be

solved before CRISPR/Cas9 enters the clinic, such as off-target

effects[187],continuousactivityofCas9[187],lowefficiencyof

current delivery systems [187], low efficiency of

CRISPR/Cas9-mediated gene knock-in [168], pre-existing adaptive immunity

[187],anduncontrollableDNArepair [187].Inaddition,recent

studieshaveshownthatp53caninhibitCRISPR/Cas9gene-editing

efficiency [188,189]. According to these studies, CRISPR/Cas9

tendstotargetcellswithintactp53,leavingbehindp53-deficient

cells,whichhavethepotentialtobecomecancerous.Thus,

evalu-ationofp53proteinbeforeandaftergeneeditingforthetreatment

ofthepatientsiscrucial.However,CRISPR-inducedp53activation

appearstooccuronlyduringgeneeditingbyHDR.Thebaseeditors

probably willnottriggerp53 and,thus,aresafer inthis regard

comparedwithCRISPR/Cas9technology.

Selectionoftherighttargetisanimportantsteptowards

devel-opinganewtreatmentstrategy.Acandidateproteinand/or

mole-culecannotbeconsideredasanappropriatetargetbasedonlyon

itshigherexpressioninprimarytumortissues.Extensive

function-alinvitroandinvivostudiesarerequiredbeforeproceedingtoa

clinicaltrial.Forexample,FOXC,atranscriptionfactor,is

consid-eredasprognosticbiomarkerinbreastcancerandhasbeen

sug-gestedasatherapeutictarget[190,191].However,arecentstudyby

Mott and colleagues showed no difference in tumor size and

metastasis between FOXC1/ and parental tumor cells in vivo

[192].Similarly,onerecentthought-provokingstudyshowedthat

maternalembryonicleucinezipperkinase(MELK)isnotacancer

target,whereasmultipleongoingclinicaltrialsaretryingtoinhibit

MELKtotreatcancer[193].Theseresultshighlighttheimportance

ofinvivostudiesusingCRISPR/Cas9inthevalidationof

biomark-ersandtherapeutictargetsandtheirreliability.

Overall,therearefourstepstobringaproteinormoleculeasa

therapeuticapproachfromthebenchtotheclinic:(i)

identifica-tionofkeymoleculesindifferentdiseases;(ii)validationofthose

moleculesbyinvitroandinvivostudies;(iii)developmentofan

efficientmethodto inhibitthatspecificmolecule;and (iv)

suc-cessfulPhaseI–III clinicaltrials.If anyofthesesteps fails,new

therapeuticapproacheswillnotbeabletoenterintoclinics.

Thelowrateofall-allelesknockoutin cancercellsisanother

important challengethat has to betaken intoaccount. This is

causedbythehighamountofaneuploidyincancercells,which

can result in an unpredictable outcome [194]. Therefore, the

application of multiple gRNAs for a certain gene can increase

thechanceofall-allelesknockout incancercells.However,this

strategymightleadtoasubpopulationofcellswithactivealleles

resultingfromanin-framerepairofDSBinthetargetsiteinduced

by several gRNAs. In addition, not all gRNAs have the same

efficiency;somearemoreactivethanothers.Onesolutionisto

TP53 TP53 TP53 TP53 TP53 APC KRAS TGFBR2 CDH1 GATA3 ESR1 TERT TERT ARID1A ARID2 IDH1 ERBB2 PTEN PTEN ATRX H3F3A CDKN2A CDKN2A CTNNB1 CIC EGFR ARID1A TBX3 EGFR LRP1B LRP1B LRP1B SMAD4 AXIN1 KRAS KEAP1 FAT4 FAT4 FAT4 KMT2C KMT2C KMT2C CDKN2A FAT1 STK11 PIK3CA PIK3CA ACVR2A BRAF PIK3CA Disruption Knockout Knock-in Repair

Activating mutations Loss-of-function mutations

38% 27% 27% 27% 20% 20% 27% 34% 40% 15% 15% 13% 13% 27% 21% 16% 11% 11% 11% 10% 10% 10% 8% 8% 8% 8% 8% 8% 7% 7% 7% 4% 4% 4% 4% 12% 14% 15% 13% 17% 18% 20% 31% 48% 50% 4% 4% 5% 6% 6%

Drug Discovery Today

FIGURE2

Potentialtherapeuticclusteredregularlyinterspacedshortpalindromicrepeats(CRISPR)-mediatedtargetingstrategiesforcancergenetherapy.Thepriority optionforcancergenetherapyisthedisruptionofoncogenesratherthanrepairinginactivatedtumorsuppressorgenes.Thebarchartsshowthetop-ten mutatedgenesindifferentcancersbasedontheCOSMICdatabase(v87).Mutationfrequencieshavebeencalculatedusingaweightedaveragemutation frequencybasedonsamplesizeacrossallstudies.ThisfigurecontainsmodifiedelementsfromServierMedicalArt(http://smart.servier.com).

Reviews



FOUNDA

TION

Referenties

GERELATEERDE DOCUMENTEN

This sort of combination therapies, especially combining CRISPR/Cas9 with CAR-T or PD-1 associated trials (Table 1), may improve outcomes of clinical cancer treatment in the

A combination of sgRNAs and shRNAs was used in lung cancer cells (PC9) treated with gefitinib resulted in the identification of several subunits of the SWI/SNF complex (a

HER2 and HER3 complex binding to cyclin D1 promoter and cyclin D1 expression levels upon EGFR loss or erlotinib resistance in different NSCLC cell lines.. Enrichments of

Our data show that wild-type EGFR plays a significant role in KRAS-mutant NSCLC cancer cells and revealed CXCR7 upregulation as a potential survival mechanism in KRAS-mutant cells

Although EGFR loss leads to cell survival and multiple drug resistance, sunitinib can further inhibit renal cancer cell proliferation upon loss of EGFR (Figure 6). Proposed model

Although we hypothesized that HDAC inhibitors may increase the CRISPR/Cas9 mediated gene editing by increasing the accessibility of the target loci, viral transduction and transgene

In order to deepen our understanding of EGFR targeting resistance, in Chapter 4, we focus on characterizing of EGFR ablation in NSCLC cells using CRISPR/Cas9 and

CX Chemokine Receptor 7 Contributes to Survival of KRAS-Mutant Non-Small Cell Lung Cancer upon Loss of Epidermal Growth Factor Receptor..