• No results found

Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg.

N/A
N/A
Protected

Academic year: 2021

Share "Derivation of a Distribution Function of Relaxation Times for the (fractal) Finite Length Warburg."

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Derivation

of

a

Distribution

Function

of

Relaxation

Times

for

the

(fractal)

Finite

Length

Warburg.

Bernard

A.

Boukamp

UniversityofTwente,Fac.ofScienceandTechnology&MESA+InstituteforNanotechnology,P.O.Box217,7500AE,Enschede,TheNetherlands

ARTICLE INFO

Articlehistory: Received9June2017

Receivedinrevisedform22August2017 Accepted27August2017

Availableonline1September2017

Keywords:

ImpedanceSpectroscopy

DistributionFunctionofRelaxationTimes FiniteLengthWarburg

Simulation

ABSTRACT

AnanalyticDistributionFunctionofRelaxationTimes(DFRT)isderivedforthefractalFiniteLength Warburg (f-FLW, also called ‘Generalized FLW’) with impedance expression: ZfFLW(v)=Z0tanh

(vt0)n(vt0)n.t0isthecharacteristictimeconstantofthef-FLW.Analysisshowsthatforn!0.5(i.e.

theidealFLW)theDFRTtransformsintoaninfiniteseriesofd-functionsthatappearinthet-domainat positionsgivenbytk=t0/[p2(k1/2)2]withk=1,2,3, ... 1.Themathematicalsurfaceareasofthese

d-functionsareproportionaltotk.ItisfoundthattheFLWimpedancecanbesimulatedbyaninfinite

seriescombinationofparallel(RkC0)-circuits,withRk=C0tk1andtkasdefinedabove.Rk=2tkZ0and

C0=0.5Z01.Z0isthedc-resistancevalueoftheFLW.

A fullanalysis of theseDFRTexpressionsis presented and comparedwithimpedance inversion techniquesbasedonTikhonovregularizationandmulti-(RQ)CNLS-fits(m(RQ)fit).Transformationof simplem(RQ)fitsprovideareasonablyclosepresentationint-spaceofthef-FLW,clearlyshowingthefirst twomajorpeaks.ImpedancereconstructionsfromboththeTikhonovandm(RQ)fitderivedDFRT’sshowa closematchtotheoriginaldata.

©2017TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1.Introduction

OverthelastfiftyyearsElectrochemicalImpedance Spectros-copy(EIS)hasbeendevelopedintoanimportantresearchtoolfor studying electrochemically active systems [1]. The principles, practisesand applicationsofEIS havenowbeenlaiddownin a number ofimportant textbooks [2–5]. Impedancespectroscopy hasalsobecomeamajorresearchmethodforcharacterisingSolid Oxide Fuel Cells (SOFC) [6] and Solid Oxide Electrolyser Cells (SOEC)[7]atafundamentallevelforwell-definedhalfcells,aswell asonasystemslevelforcompletecells.Duetothenatureofthe complex,porouselectrodes,wheretheadsorption,chargetransfer andtransportprocessesaredistributedoverasignificantpartof themicrostructure,theimpedancegraphsarenoteasytomodel withso-called equivalentcircuitsusingcomplexnonlinearleast squares(CNLS)fitting routines[8–12]. Recentlythere hasbeen renewed interest into the transformation of the frequency dispersionintoadistributionfunctionofrelaxationtimes(DFRT)

[13–29].EspeciallythegroupofIvers-Tifféehaspioneeredtheuse of DFRT analysis in the study of SOFC’s [15,17,18] and Li-ion batteries[19,21].TheDFRTprovidesamodel-freerepresentationof essential relaxation times that are directly connected to the

physicaltransportand(charge)transferprocesses.ForSOFC,SOEC andotherfuelcells,thestudyofthepositionandthepeakheightas functionoftemperatureand/orpartialpressureofthegasphase components provides insight in the transport processes in the electrodes.InbatteryresearchthechangeoftheDFRTwiththe ‘StateofCharge’providesessentialinformation,whileforSolarCell research the relation between illumination level and the correspondingDFRTcouldbeabletorevealfundamental process-es.Furthermore,itcanbeaninterestingapproachtouseDFRTto studyaginginavarietyofelectrochemicalsystems.

Thetransformationtothe

t

-domainisdefinedby: Zð

v

iÞ ¼R1þRp Zþ1 1 Gð

t

Þ 1þj

v

i

t

dln

t

ð1Þ

Z(

v

)isthemeasuredimpedance,R1isthehighfrequency

cut-off resistance, Rp is thepolarization resistanceand G(

t

) is the

soughtdistributionfunctionofrelaxationtimes(DFRT).G(

t

)isa normalizedrealfunctionwith:RG(

t

)dln

t

=1.The

t

-domainisthe inverseofthefrequencydomainwith

t

=(2

p



f)1.Unfortunately, Eq.(1)isknownasanill-posedinverseproblemforwhichmany solutionsarepossible.Imposingthe(logical)restrictionthatG(

t

) must always be positive reduces the number of possibilities. SeveralmethodsexisttoarriveataviableDFRT:FourierTransform (FT) [15,17,28,29], Tikhonov Regularization (TR) [16,18–27], E-mailaddress:b.a.boukamp@utwente.nl(B.A. Boukamp).

http://dx.doi.org/10.1016/j.electacta.2017.08.154

0013-4686/©2017TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

ElectrochimicaActa252(2017)154–163

ContentslistsavailableatScienceDirect

Electrochimica

Acta

(2)

Maximum Entropy (ME) [13,14] and multiple-(RQ) CNLS-fit, abbreviated‘m(RQ)fit’[28,29].In theFourier Transformmethod awindowfunctionmustbeapplied,whichwilldampenunwanted oscillations [28]. The width and shape of this window has significant influence on the shape of the DFRT. But also the TikhonovRegularizationand theMaximumEntropyrequire the adjustment of a ‘smoothing’ parameter in order to obtain an acceptableDFRT.Recentlyacriticalcomparison betweentheFT andm(RQ)fithasbeenpublishedbythisauthor[28].Inasecond paper [29] a comparison was made between the FT and TR methodsandthem(RQ)fit.FortheTR-transformationsapublicly availableMatLabapplicationwasused[30].

AquitedifferentapproachistakenbythegroupofTsur[31–33]. Theyuseevolutionaryprogramming(dubbed‘ISGP’,ref[33])for constructingadistributionfunctionbasedonaselectedsetfroma largelibraryofplausiblefunctions.Intheevolutionary program-mingthenumberandtypesoffunctions,andtheirparameters,are automatically adjusted until the impedance conversion of the DFRTmatches,withinpredefinedcriteria,theoriginal measure-mentdata.Theclearadvantageisthatnosmoothingparameteris neededinordertoarriveatanoptimalresult.Thedrawbackcould bethelackofaphysicalinterpretationofcertainfunctionsthat havenoclearcounterpartintheimpedancerepresentation.There areafewimpedancefunctionsthatdo haveanexactDFRT:the (RQ)orZARC[2],whichisaparallelcombinationofaresistance andaconstantphaseelement(symbol:Q),withZQð

v

Þ¼Z0ðj

v

Þn;

theHavriliak-Negami(H-N)response[29,34,35]andtheGerischer

[29,36]orchemicalimpedance[37],whichisaspecialcaseofthe H-Nrelation.Itisimportanttonotethattheparallelcombination of a resistance with a capacitance, (RC), is represented in the

t

-domainbya

d

-function.

TheareaunderaDFRTcurve,definedasRRG(

t

)dln(

t

),isequal tothedc-resistanceoftheimpedancecounterpart(i.e.Rforthe ‘(RQ)’orZARC),whichfollowsfromthenormalizationofG(

t

)and Eq.(1).Fora(RC)circuit,however,theresistanceinformationis inaccessibleinthe

t

-domainastheDFRTbecomesa

d

-function, althoughthemathematicalsurfaceareaisequaltoRp1.Hence,a

purecapacitanceinparallelwitha resistancein theimpedance complicatestheconstructionofaDFRT.Asimpleapproachisto approximatethe

d

-functionbyasharpGaussfunction[28,29]: RGðRCÞð

t

Þ R Wp effiffiffiffi

p

lnðt0 =tÞ W  2 ð2Þ where

t

0=R



C.W was set at 0.15 as a good compromise for

visibility(width)andpeakheight(nottoolargewithrespectto other peaks) and small error with respect to the impedance reconstructionfrom theDFRT [28]. A smallervaluefor Wwill decreasethewidthandincreasethepeakheight,whilethearea underthecurveremainsequaltoR.

BesidestheGerischerimpedance,theFinite LengthWarburg (FLW,[38])isalsoacommondiffusionbasedimpedancefunction. Itpresentsthefrequencydispersionforone-dimensionaldiffusion througha layer witha fixed activity for the mobileion atone interface.Stoynov[39]has, basedonaboundedconstantphase element(BCP),derivedafractalformforthefinitelengthWarburg, indicatedherebyf-FLW(seethenextsection).Itseemsthatfor thesetwoboundeddiffusiondispersionsnoexactDFRThasbeen publishedsofar.InthispublicationageneralDFRTforthef-FLWis derivedusingaspecialtransformationmethod[40].Forthisanew frequencydependentvariableisintroduced:

z¼lnð

v



t

0Þ¼ln

t

0

t

 

ð3Þ with

t

0thecharacteristictimeconstantforthedispersionrelation

thatistobetransformed.TheDFRT,G(

t

),isthenobtainedfromthe

imaginary part of the impedance expression by the following transformprocess: Z0Gð

t

Þ¼ 1

p

Zimag zþj

p

2   þZimag zj

p

2   h i ð4Þ Z0 represents the dc-resistance of the impedance function.

Using thisapproachitis quitesimpletoderivethewell-known DFRT for a (RQ) circuit [41] from the imaginary part Zimagð

v

Þ¼Z0

v

nsinðn

p

=2Þ:

RGðRQÞð

t

Þ¼2R

p



sinðn

p

Þ

coshðnlnð

t

0=

t

ÞÞþcosðn

p

Þ ð5Þ

Thecharacteristictimeconstantisgivenby:

t

0=(R/Z0)1/n,Z0is

theCPEconstantdefinedabove.Eq.(5) representsasymmetric peak centredaround

t

0 ona log(

t

)scale.For n=1, i.e.theCPE

becomesa purecapacitance,a

d

-functionisobtained.Forlower valuesofnthespreadofthepeakincreasesrapidly[28].

In the following section the impedance expression for one-dimensional diffusion through a mixed conducting layer is presented.FromthisthefractalFLW,alsoknownas‘generalized FLW’,isderived.Thecompactimpedanceexpressionisdividedinto aseparaterealandimaginarypart,neededforthetransformtoa DFRTusingEq.(4).ItisnotpossibletodirectlyderivetheDFRTfor theidealFLWusingthetransformmethodofEq.(4),asisindicated in Section 4. Therefore first the general DFRT of a f-FLW is developedandthelimitingcasesfor

t

!0and

t

!1areexplored. The DFRT for the ideal FLW is then obtained using a special approachforn!0.5.FinallytheDFRT’sobtainedfromTikhonov Regularization and multi-(RQ) CNLS-fits (i.e. ‘m(RQ)fit’) are comparedtotheexactDFRTrepresentations.

2.FLWdispersionrelation

The FiniteLength Warburg is derived for a linear diffusion problem with a special boundary condition, see Fig. 1. The electrodeisa mixedionicandelectronicconductor(MIEC).It is assumed thattheelectronicconductivityis sufficientlylarge,so that it can be ignored in the derivation. In the presented 3-electrodesetuptheactivityofthemobileionismeasuredatthe electrode/electrolyte interface with respect to the (standard) activity of the reference electrode. The current through the

Fig.1.ModelfortheFiniteLengthWarburg,basedon1-dimensionalbounded diffusion.Asanexamplethediffusionofamobilecation,M+

,inamixedionicand electronicconductor(MIEC)ispresented.Butthismodelappliesequallywellto oxygeniondiffusion.Theelectrolyte/MIECinterfaceisatx=0.Thebacksideofthe MIECiscoveredbyafixedactivity(concentration)ofthemobileion,aM,eq.The

currentpassesbetweentheworkingandcounterelectrode.Theactivity(potential) ofthemobileionismeasuredbetweenthereferenceandworkingelectrode.

(3)

working electrode is provided by the counter electrode. The electrodeareaisA,thethicknessisland ~Disthechemicaldiffusion coefficient.Atthebackplaneatx=l,theconcentration(oractivity) ofthemobileionisfixedtotheequilibriumconcentration,Ceq.(or

fixedactivity,aeq.)Thispresentsanideallyfasttransferofmobile

ionsatthebackplane.Fortheelectrode/electrolyteinterfacethe particlefluxisdescribedbyFick’sfirstlaw:

J¼~DdCdðx;xtÞjx¼0 ð6Þ

Thetimedependentconcentrationintheelectrodeisgivenby Fick’ssecondlaw:

dCðx;tÞ dt ¼ ~D

d2Cðx;tÞ

dx2 ð7Þ

Theboundaryconditionforx=lisexpressedby:

Cðx;tÞjx¼l¼Ceq: ð8Þ

Applyingasmallpotentialperturbation,

D

E,willcauseasmall changeintheconcentration,withC(x,t)=Ceq.+

D

c(x,t).Thechange

inactivity,a(t),attheelectrode/electrolyteinterfaceisgivenbythe Nernstrelation,which becomeslinear fora smallperturbation, withzthechargeofthemobileion:

D

E¼RT zFln aðtÞ aeq: ¼ RT zFln aeq:þ

D

aðtÞ aeq:  RT zFaeq:

D

aðtÞ ð9Þ

Therelationbetweenactivityandconcentrationisgivenbythe ThermodynamicFactor,

G

:

D

a

D

c da dc¼ a C dlna dlnc¼ a C

G

ð10Þ

Thethermodynamicfactor,

G

,canbeobtainedfromaso-called titrationexperimentwheretheNernstpotential(oroxygenpartial pressure)ismeasuredasfunctionofaddedconcentrationofthe mobile ion. The solution of the set of diffusion and boundary equationsiseasilyobtainedbyLaplacetransform,seeAppendixA. TheLaplacetransformleadsdirectlytotheimpedanceexpression fortheFLW(Eq.(A7)):

ZFLWð

v

Þ ¼ Z0 ffiffiffiffiffiffiffiffiffiffiffi j

vt

0 p tanh ffiffiffiffiffiffiffiffiffiffiffij

vt

0 p   with: Z0¼ RTl z2F2 ACeq~D d ln a d ln c   and:

t

0¼ l2 ~D ð11Þ

wherezisthechargeofthemobileion.F,RandThavetheirusual meaning. An example of the dispersion in the impedance representation,forZ0=1

V

and

t

0=1s,isgiveninFig.2.Forhigh

frequencies a semi-infinite diffusion (or Warburg: Z(

v

)=

Z0



(j

vt

0)0.5) is obtained, i.e. the perturbation does not reach

thebackplaneatx=l.Atlowfrequenciesthedispersionbecomes veryclosetoa semi-circle,i.e. aR(RC)circuit.Here the‘Circuit DescriptionCode’isused(CDC,[42]).Itisimportanttonotethatin thisderivationitisassumedthattheelectronicconductivityofthe electrode is significantlylarger thanthe ionicconductivity and hence can be ignored. When the electronic conductivity is relativelylow then thespecial derivation by Jamnikand Maier

[43,44]mustbeused,whichleadstoamorecomplexdispersion relation.

3.FractalFiniteLengthWarburg

Thefractal-FLWisaphenomenologicalexpression,inanalogy withtheparallelcombinationofaresistanceandaconstantphase element(CPE)or‘ZARC’element[39].Eq.(11)isthenrephrasedby: ZfFLWð

v

Þ¼ j Z0

vt

0

ð Þntanhðj

vt

0Þn; n0:5 ð12Þ

InAppendixBtheseparationintoarealandimaginarypartis presented,whichresultsin(Eq.(B4)):

ZfFLWð

v

Þ¼ Z0

vt

0

ð Þn

Csinh 2

a

þSsin 2

b

jðSsinh 2

a

Csin 2

b

Þ

cosh2

a

þcos2

b

ð13Þ

With C=cos(n

p

/2), S=sin(n

p

/2),

a

=(

vt

0)nC and

b

=(

vt

0)nS.

Fig.2 alsoshows thedispersions fora f-FLWwithn=0.45 and n=0.4.

4.DerivationoftheDFRT

ThetransformationprocedurepresentedbyEqs.(3)and(4)in theintroduction,willbeusedforderivingtheDFRTforthef-FLW. Insertingthevariablezj1

2

p

,withz=ln(

t

0/

t

),intheimaginarypart

ofEq.(13)resultsin: Z0GfFLWðzÞ¼ Z0

p

ZfDLW;im zþj

p

2   þZfDLW;im zj

p

2   h i ¼Z0 GþfFLWð

t

ÞþGfFLWð

t

Þ h i ð14Þ FromthecompleteanalysisofEq.(14)itwasfoundthatonlythe GþfFLWð

t

Þtermneedstobecalculated.ThetransformtoGfFLWð

t

Þ

yieldsexactlythesame realpartwithan oppositesignfor the imaginarypart.ThisisnotsurprizingastheDFRTshouldbeareal function. Hence only the real part of GþfFLWð

t

Þ needs to be consideredwithGfFLWð

t

Þ¼2< GþfFLWð

t

Þ

 

Replacing

v

by(z+j

p

/2)inthefirstpartofEq.(13)leadstothe followingtransformation: Z0

vt

0 ð Þn¼>Z0 ezþj p 2  n ¼Z0enz cos n

p

2   jsin n

p

2   h i ¼Z0 Q½CjS ð15Þ

withQ=(

t

0/

t

)n.Here‘=>’signifiesthetransformationstep.The

transformofthedenominatorofEq.(13)yields,seeAppendixCfor thederivation,Eq.(C3):

cosh2

a

þcos2

b

¼>cosh2QC2þcosh2QS2cosB

þjsinh2QC2sinh2QS2sinB ð16Þ

Fig.2.ImpedancedispersionsofatrueFLW(n=0.5)andtwofractalFLW’swith n=0.45andn=0.4.Frequencyrange:1mHz100kHz.

(4)

withB=2QCS=Qsin(n

p

).Thetransformoftheimaginarypartof the numerator of Eq. (13) is derived in the same manner, see

AppendixD,Eq.(D3):

S sinh2

a

C sin2

b

¼>Ssinh2QC2cosBCcosh2QS2sinBþ þjnScosh2QC2sinBCsinh2QS2cosBo

ð17Þ Inthefollowingsectionsthetermsnumeratoranddenominator willbeabbreviatedinequationsbyNum.andDenom.respectively. MultiplyingthisresultwiththeZ0



Q1



(CjS)fromEq.(15)gives:

Num:¼Z0 Q CS sinh2QC2 sinh2QS2   cosB þ S2cosh2QC2 C2cosh2QS2   sinB n o þ þj  S2sinh2QC2 þC2sinh2QS2   cosB þCS cosh2QC2 þcosh2QS2   sinB n o 2 4 3 5 ð18Þ It is interesting to note that for n=0.5, i.e. C=S=p1/

2, the

denominatorchangesto:2QcoshðQÞcosðQÞ,whiletherealpartof thenumerator becomes zero!Eqs. (16) and (18) can easily be combinedinaspreadsheettocalculatethedistributionfunction foralimitedrangeof

t

-values.TheDFRT’sforn=0.45,0.48and 0.49arepresentedinFig.3.ItshowsforeachDFRTonemajorpeak, situatedatalowervaluethanthecharacteristictimeconstant,

t

0,

followedbysmallerpeaksfordecreasing

t

.Theappearanceofthe DFRT’s are similar to those presented by Leonide et al. [17], although no mathematical expression is presented in that publication. For too small values of

t

, the arguments of the hyperbolicfunctionsbecometoolargetobeevaluatedinaspread sheet.Henceadifferentapproachisneededforsmall

t

.

4.1.Analysisforsmall

t

Forsmall

t

-values theargumentQbecomes large,hencethe sinh() and the cosh() functions can be approximated by the positiveexponentials,e.g.:

sinh 2QC2cosh 2QC212e2QC2

ð19Þ ThusEqs.(16),(18)canbereducedbyreplacingthehyperbolic functionsbytheirrespectiveexponentialfunctions.Furthermore, boththenumeratoranddenominatorcanbedividedbytheright handsideofEq.(19).NowarelativelysimplefunctionfortheDFRT isfound(inwhichthefactor2hasbeentakencareof):

Z0Gð

t

Þ¼ Z0

p



t

t

0 n sinðn

p

Þ1Y22cosðn

p

ÞYsinð2Qsinðn

p

ÞÞ 1þ2Ycosð2Qsinðn

p

ÞÞþY2 ð20Þ withY¼exp½2Qcosðn

p

Þ.Writtenoutinfull,Eq.(20)becomes:

Z0Gð

t

Þ¼ Z0

p



t

t

0 n sinðnpÞ 1e4ðtt0Þ n cosðnpÞ   2cosðnpÞe2ðtt0Þ n cosðnpÞsin 2t0 t  nsinðn pÞ   1þ2e2ðtt0Þ n cosðnpÞcos 2 t0 t  nsinðn pÞ   þe4ðtt0Þ n cosðnpÞ ð21Þ In Fig. 4 the DFRTof the simplifiedfunction of Eq. (21) is comparedtotheDFRTobtainedfromasimulationusingthefull expressions defined by thecombination of Eqs. (16), (18).It is surprizingthat,withintheaccuracyofExcel,theresultsareexactly identicalovertheentire

t

-rangeforwhichEqs.(16),(18)canbe evaluated.HenceEq.(21)canbetakenasasimplifiedexpression thatexactlyrepresentstheDFRTofaf-FLW.Forverysmallvaluesof

t

(e.g.

t

<

t

0



103forn=0.45)Eq.(21)canbefurtherreducedtoa

simplepowerrelation,presentedasthedashedlinesinFig.5: Z0Gð

t

Þ¼ Z0

p



t

t

0 n sinðn

p

Þ ð22Þ

WhereastheDFRTshowsforn=0.45afewdecreasingpeaksfor

t

<

t

0,thenumberofpeaksincreaserapidlyfornapproaching0.5.

ThisisclearlydemonstratedbytheDFRTforn=0.48inFig.5.The limiting

t

-valuebelowwhichEq.(22)canbeappliedshiftsrapidly forn!0.5to

t

=0,orln(

t

)=1.AlthoughitseemsthatEq.(22)

givesafiniteresultforn!0.5,theupperlimitin

t

forwhichthis equationcanbeusedgoestozero.

4.2.Analysisforlarge

t

Forlarge

t

(i.e.

t

>>

t

0)theargumentsoftheexponentialand

goniometricfunctionsofQapproachzero,hencethesefunctions mustbeexpandedintheirseries.Itisessentialtoincludehigher ordertermscontainingQ3.WithwritingEq.(21)as:

Z0Gð

t

Þ¼

Z0

p



Num:ANum:B

Denom: ð23Þ

Fig.3.CalculatedDFRT’sforn=0.45,n=0.48andn=0.49.Themajorpeaksfall belowthecharacteristictimeconstantt0.

Fig.4.ComparisonbetweentheexactDFRT,eqs(23,25)andthesimplifiedsolution, eq.(28)forn=0.45.

(5)

theseparatecontributionscanbeevaluated: Num:A¼2CS 1e4QcosðnpÞ

 



¼4Qcosðn

p

Þsinðn

p

Þ8Q2cos2ðn

p

Þsinðn

p

Þþ32

3 Q 3 cos3ðn

p

Þsinðn

p

Þ ð24Þ and:

Num:B ¼2cosðn

p

Þe2QcosðnpÞsinð2Qsinðn

p

ÞÞ 

¼4Qcosðn

p

Þsinðn

p

Þ8Q2cos2ðn

p

Þsinðn

p

Þþ

þ8Q3

cos3ðn

p

Þsinðn

p

Þ83Q3cosðn

p

Þsin3

ðn

p

Þ

ð25Þ ThedenominatorofEq.(21)canbeexpandedto:

Denom:¼Qh1þ2e2QcosðnpÞcosð2Qsinðn

p

ÞÞþe4QcosðnpÞi

4Q ð26Þ

CombinationofEqs.(24)–(26)leadstothelimitingexpression for

t

>>

t

0: Z0Gð

t

Þ¼ Z0

p

 8 3Q 3

cosðn

p

Þsinðn

p

Þcos2ðn

p

Þþsin2ðn

p

Þ h i 4Q ¼Z0 3

p

t

0

t

 2n sinð2n

p

Þ ð27Þ

Forn=0.5Eq.(27)becomeszero.

5.DerivationoftheDFRTfortheidealFLW Analysisforlimitn!0.5

Insertingn=0.5directlyintoEq.(18)doesnotyieldaresultas thehyperbolicfunctionswillreducetocosh(Q)andsinh(Q),which willcanceloutinthenumeratorofEq.(18).Inordertoanalysethe DFRTforn=0.5,oneshouldapproachthisvaluebyreplacingnby: n¼0:5

d

p

ð28Þ

Asaresultfor

d

!0thefollowingrelationssimplifyto: sinðn

p

Þ¼sin

p

2

d

  ¼cosð

d

Þ1 cosðn

p

Þ¼cos

p

2

d

  ¼sinð

d

Þ

d

ð29Þ

Usingthefirsttermsofthegoniometricandexponentialseries expansions,Eq.(21)canberewrittenas:

Z0Gð

t

Þ¼

Z0

p



2

d

þ2

d

2

d

Q1sinð2QÞ

1þð12Q

d

Þcosð2QÞ2Q

d

ð30Þ

Forn=0.5,i.e.

d

=0,thedenominatorofEq.(30)reducesto:

Denom:¼1þcosð2QÞ ð31Þ

ForQ=

p

(k-0.5),withk=1,2, ...,thedenominatorbecomes zero,whichresultsina

d

-functionfortheDFRT.HenceG(

t

)will becomeasumof

d

-functions.The

t

kpositionsaregivenby:

t

t

0

p

2ðk0:5Þ2; k¼1; 2; ::: ð32Þ

Thefirst

d

-functionoccursat0.4053

t

0.Forsmallvaluesof

d

(i.e.

d

<103)itispossibletocalculatethemaximumvaluesforG

(

t

k).Fig.6showstheresultsforthefirst10maximainG(

t

)for

decreasingvalues of

d

. Fromthis a clear relationbetween the maxima,

t

and

d

isobtained:

ð33Þ Thesurfaceareaunderthepeakrepresentsthecorresponding dc-resistance value of the related impedance expression. The problemhereisthatthereisnoclearwaytoseparatetheareas undertheconsecutivepeaks(seeFig.5forthecasen=0.48)andto relatethesetocorrespondingresistancevalues.When

d

!0,the peakscollapseto

d

-functionswithnoobservablesurfacearea.In the impedance representation, however, a

d

-function is repre-sentedbyacapacitanceandresistanceinparallel,e.g.:(RC).Hence itseemsplausibletosimulatetheDFRTforaFLWwithaninfinite seriesof

d

-functionsthatarerepresentedinthefrequencydomain byaninfiniteseriesof(RC)circuitswithtimeconstantsdefinedby Eq.(32).Inasimulationeffortinaspreadsheetitwasobservedthat the following relation leads to the Finite Length Warburg dispersion: ZFLWð

v

Þ¼Z0 X1 k¼1 2

t

k 1j

vt

k 1þ

v

2

t

2 k ð34Þ

Fig.7showsthesimulationofaFLWwithZ0=1

V

and

t

0=1s,

togetherwiththeapproximationusingEq.(34)forthefirstten

t

k

values.Uptoafrequencyoff20

t

10 Hztheerrorislessthan1%

fora10-(RC)simulation.Fora100-(RC)simulationthe1%errorlies abovef2103

t

10 Hz.

6.Discussion

AremarkableresultistheidentitybetweenthecomplexDFRT, formedbythequotientofEq.(18)andEq.(16),andthesimplified Eq.(21),whichis obtainedthroughan approximationfor small

t

-values.Noefforthasbeenundertakentoprovidearigorousproof Fig.5. ComparisonbetweenthetwoDFRT’sforn=0.45andn=0.48,derivedfrom

eq.(21).Thesmalltapproximation,eq.(22),ispresentedbythedashedlines.

Fig.6.RelationbetweenG(tk)maxandd.Thefirsttenmaximaareshown.

(6)

for this identity, as this would be outside the scope of this contribution.

ThederivedDFRTequations providea usefuladditiontothe libraryoffunctionsusedintheevolutionaryalgorithm method. Thisreversedtransformmethod,developedbythegroupofTsur

[31–33],hasbeendescribedbrieflyintheintroduction.Butthese equationsarealsousefulforthecomparisonofregularinversions ofimpedancedatatothe

t

-domain.Theorderofmismatchshows how reliable the DFRT transform methods are. First we will considerthef-FLWwithn=0.45.Thesimulation,withZ0=1

V

and

t

0=1s,isperformedoverthefrequencyrange0.1mHz1MHz.

FortheDFRTanalysiswithTikhonovregularizationthepublically availableMatLabapplication‘DRTtools’[30]isused.Thisprogram hasmanyadjustableparameters,but herethedefault settingis used except for theregularization parameter, RP.In a previous study[29]itwasobservedthatanincreaseinRPdiminishedthe (unwanted)oscillationsintheDFRT,butalsowidenedandlowered thepeakssignificantly.

The m(RQ)fit was performed with the CNLS-fit program ‘EqCWin’[46].Inthisprocedurefirstapartofthelowfrequency end isfitted toa R(RAQA) circuit.Next the(RAQA)dispersionis

subtractedfromtheoveralldispersion.AgainaR(RBQB)circuitis

fitted to an appropriate low frequency part of the altered dispersion. Next the combination of a R(RBQB)(RAQA) circuit is

re-fittedtoalowfrequencysectionoftheoriginaldata,resultingin anew,improvedsetofcircuitparameters.The(RQ)(RQ)-partofthe fitted R(RQ)(RQ) circuit is again subtracted from the original dispersionand anewR(RCQC)circuitis fittedtoanappropriate

sectionoftheremainderofthefrequencydispersion.Thisprocess ofiterativeaddinga(RQ)tothesubtractedmulti-(RQ)iscontinued untilanacceptablematchbetweendataand modelisobtained. Each(RQ)circuithasacounterpartinthe

t

-domainaccordingto Eq. (5), hence adding the separate Ri



Gi(

t

) functions yields a

(close)approximationof theDFRT.In someinstances theCNLS procedureresultedintheshiftofa(RQ)intoa(RC)combination (i.e.: n=1). In those cases the corresponding Ri



Gi(

t

) was

calculatedusingtheGaussapproximationofEq.(2).Thenumber of(RQ)and(RC)combinationsinthem(RQ)fitareindicatedasx (RQ)-y(RC),withxandythenumberofrespective(RQ)and(RC) sub-circuits.Thehighfrequencycut-offresistance,R1,whichis

partoftheCNLS-fit,hasbeenomittedfromthedescriptionofthe circuitsusedforthetransformation.

Fig.8showstheexactDFRT(Eq.(21))andtwoTR-DFRT’swith regularization parameters, RP=10-6 and RP=104. Also a DFRT

derivedfromam(RQ)fitwitha6(RQ)circuit(CNLS-

x

2=3.4



109)

is presented. The m(RQ)fit follows the two major peaks quite closely inshape andposition.BothTRresults showlowerpeak height and a somewhat increased FWHM (full width at half maximum)forthemainpeak.WithRP=106thesecondpeakis poorlyreproducedwhileRP=104givesabetterresult,butwith lowerpeakheights.

A good checkof thevalidity of theDFRTis thecomparison betweenthereversedtransform,i.e.applicationofEq.(1)toobtain theimpedancefromG(

t

),andtheoriginalimpedancedata[28,29]. Thereconstructionprocedurehasbeendescribedinref.[28].Both theTR-DFRT,withRP=106,andthem(RQ)fit-DFRTwitha6(RQ) circuit show a very good match with the simulated f-FLW impedance data. This can clearly be seen from the so-called differencesgraphsofFig.9A.Heretherelativerealandimaginary Fig.7.DispersionoftheFLWandthesimulationwithaseriesof10(RC)-circuits.Intheinsertthefirst7(RC)’sareshown.Thebluelineistheenvelopeoftheseparate10-(RC) contributions.

Fig.8.ComparisonofDFRT’sforaf-FLWwithn=0.45.RedlineistheexactDFRT. GreenandpurplelinesarefortheTikhonovregularizationswithresp.RP=106and

104.Bluelineisderivedfromthem(RQ)fitwitha6(RQ)circuit.Dashedlinesare scaledwithafactor5forbettervisibility.

(7)

differences,

D

real and

D

imag, are plotted against log f. The

differencesaredefinedas[1]:

D

real;i¼

Zreal;iZreconreal;i:

jZij ;

D

imag;i¼

Zimag;iZrecon:imag;i

jZij ð35Þ

Zrecon:i represents the reconstructed impedance. The

recon-structedm(RQ)fitdatashowasignificantdeviationin

D

realabove

1kHz.Thisisduetothe‘limited’rangeofthecalculatedDFRTinthe

t

-domain (from 107 to103s). The areaunder the DFRTcurve

representsthetotal dc-resistance(polarisation),whichfallsjust shortof1

V

,i.e.Z0.Addingacorrectionof0.176m

V

totherealpart

ofthereconstructeddatashowsasignificantimprovementinthe residualsplot,seeFig.9B.Butoneshouldalsorealizethatabove 2kHz(i.e.2



103/

t

0)theimpedancemagnitudeislessthan1%ofZ0.

Thefitted6(RQ)impedanceshowsanexcellentfittothesimulated datawitha

x

2=3.4



109,wellbelowthegeneralnoiselevel.The

highfrequencydeviation(Fig.9A)ofthereconstructedimpedance showsthatthe

t

-rangeoftheDFRTshouldbeextendedfurtherin ordertocoverthetotalpolarizationresistance(orZ0).

ThecaseoftheexactFLW(n=0.5)ismorecomplicatedasthe frequencydispersioninvolvescapacitivebehaviour,seeEq.(34). TheTikhonovregularizationshowsratherbroadpeaks,seeFig.10. Thepositionsofthefirstten

d

-functions,i.e.therootsofEq.(32), arepresentedbytheverticalgreylines.Theheightsrepresentthe relativedifferencesin‘strength’,whichareproportionalto

t

k.The

m(RQ)fityieldeda4(RQ)-2(RC)circuit(CNLS-

x

2=1.8



108).Inthe

transformtothe

t

-domainthetwo(RC)circuitswere approximat-edwithGaussfunctions,Eq.(2),withwidthparameterW=0.15. Thesetwomajorpeakscoincidequitewellwiththepositionsofthe firsttwo

d

-functions,ascanbeseeninFig.10.Therelativeheights alsocorrespondquitewelltotheratio

t

1/

t

2.TheTRandthem(RQ)

fit transforms show quite some differences, however, the reconstructedimpedancesagree remarkablywellwiththeFLW simulation. Fig. 11 shows the residuals graph for the TR with RP=106andthem(RQ)fitwitha4(RQ)-2(RC)circuit.Thisonce again shows that it is difficult to define a unique DFRT from invertedimpedancedata.

Inref.[28]ithasbeenarguedthattheDFRTisonlycapableof showingmajorrelaxationpeaks.Itisnotaprocedurethatallowsto

detectminorcontributionstothefrequencydispersion.Themain poweroftheDFRTisshowingtheshiftin

t

-positionand/orchange inheightofthemajorpeakswithtemperatureorpartialpressure ofoneofthegascomponents[15].

Diffusionisanimportantprocessinfuelcellelectrodesandcan bepartoftheratecontrollingprocess.Thefinitelengthdiffusionor FLWimpedancehassomesimilarityinshapewiththeGerischer impedance, see inset in Fig. 12. The latter is a semi-infinite diffusionwithacoupledsidereaction,whichresultsinafinite dc-resistance. The exact DFRT’s are, however, quite different. The Gerischer DFRT is characterized by an asymptotic function for

t

!

t

0andisnon-existing(zero)for

t

>

t

0[29],whiletheDFRTfor

aFLWisaninfiniteseriesof

d

-functions,asshowninFig.12.The TikhonovregularizationsratherpoorlyreproducetheexactDFRT’s, although the reconstructed impedances closely match the simulatedimpedances.Them(RQ)fitsfor theFLWshowa good approximationofthepositionand heightratiofor thefirsttwo peaks.ButfortheGerischerapoorapproximationofitsanalytical DFRTisobtainedwithtwopeaksthatlieclosertogetherthanfor the FLW DFRT [28,29]. This couldbe used as a discrimination between a FLW and a Gerischer, but interference of other relaxationprocessescouldobscurethisobservation.

For the Gerischer impedance the asymptote in the DFRT coincideswiththecharacteristictimeconstant,

t

0.FortheFLWitis

foundfromEq.(32)thatthepositionofthefirst

d

-functionat

t

1isa

factor2.47smallerthanthecharacteristictimeconstant,

t

0.The

timeconstantassociatedwiththeminimumintheimaginarypart Fig.9.A)Relativedifferencegraphfortheimpedancereconstructionsfromthe

TikhonovregularizationofFig.8(RP=10-6)andthem(RQ)fitwitha6(RQ)circuit.

Opensymbolsrefertotherighthandaxis.B)Relativedifferencesfortheadjustedm (RQ)fitreconstruction,seetextforexplanation.

Fig.10.DFRT’sfortheexactFLW.RedandgreenlinesrepresenttheTikhonov regularizationswithresp.RP=106and104.Bluelineisforam(RQ)fitwitha4

(RQ)-2(RC)circuit.Vertical grey linesrepresentthepositions ofthe first ten d-functions of the exact DFRT. The height differencesrepresent the relative magnitudesofthed-functions.

Fig.11. Difference graphfor thereconstructed impedancesfor the Tikhonov regularization(RP=106)andthem(RQ)fitderivedDFRT’s,ascomparedtothe simulatedFLWdispersion.Them(RQ)fitwasbasedona4(RQ)-2(RC)circuit.

(8)

oftheFLW,

t

min,isafactor2.53smallerthan

t

0.This

t

minisfound

fromthederivativeofZFLW,im.withrespectto

v

.TherootfordZFLW, im/d

v

=0canbefoundthroughaNewton-Raphsoniteration[47].

Thedifferencebetween

t

minand

t

1isduetothehigherorder

(RC)-circuits(seeFig.7)thatareincludedin

t

min.Thepositionof

t

minfor

the Gerischer impedance can be obtained directly from the derivative:

t

0/

t

min=p3[47].

ItappearsthattheTikhonovregularization,TR,alwaysshowsa veryrapiddecayoutsidetheinversefrequencyrange.Thislimited

t

-rangeeasesthereconstructionoftheimpedancefromtheDFRT. Inthem(RQ)fitmethodn-valuesfortheCPEcanbeobtainedthat aresignificantlylessthan0.7.Fig.16inref.[28]clearlyshowsthat thesignificant

t

-rangeoftheDFRTofsucha(RQ)rapidlyincreases withdecreasingn.Forn=0.5(Warburgdiffusion)theFWHMofthe curveextendsalreadyover2.3decades,whilethe10%peakheight valuesoftheDFRTcurvespanmorethan 5decades.Hencethe reconstructionrequires theintegration over a significant larger

t

-range, or the application of a resistance correction for the incompletecoverageoftheareaundertheDFRTcurve,ashasbeen demonstratedabove.

7.Conclusions

For thefractal FiniteLength Warburg (bounded one-dimen-sionaldiffusion)arelativelycomplexanalyticDFRTexpressionis derivedusingthetransformprocedureintroducedbyFuossand Kirkwood[40]. Aremarkablepoint is thepositionof themajor peakat

t

1,whichlieswellbelowthecharacteristictimeconstant

t

0.FromEq.(32)aratioof2.47isobtained,slightlybelowtheratio

of2.53obtainedfromthefrequencyoftheminimuminZFLW,im.,

t

min=(2

p



fmin)1,and the characteristic time constant

t

0. The

DFRTofthef-FLWischaracterizedbyamajorpeakfollowedbya seriesofminorpeaks,thenumberandsharpnessstronglydepends onthevalueofn.Forn=0.5theidealFLWisobtained,butadirect derivationoftheDFRTisnotpossible.Thoroughanalysisof the casewherenapproaches0.5showsthattheDFRTofanidealFLW existsofaninfiniteseriesof

d

-functions.AsaresulttheidealFLW canbedescribedasaninfinitesumof(RC)’swithR=2Z0

t

0/[

p

2(k

1/

2)2], k=1, 2, ... 1, and C0=(2Z0)1. Although the Tikhonov

regularization presents a DFRT withrather broad peaks in the

t

-domain,thereconstructedimpedanceshowsaclosematchwith theoriginaldata.Usingthem(RQ)fitapproachagood approxima-tionoftheDFRTcanbeobtained.

Asstatedbeforeinref.[29],scientistsshouldbeawareofthe inherentlimitsoftheDistributionFunctionof RelaxationTimes analysis method, although with prudent use it can help in understandingtheessentialelectrochemicalprocessesincomplex systems like fuel- and electrolyser cells, complex electrodes, batteriesandsolarcells.

Acknowledgement

TheauthorwantstoexpresshisgratitudetoDr.Wanforsharing onthe Internet theuserfriendly MatLabapplication ‘DRTtools’

[30].

AppendixA.LaplacetransformofFiniteLengthDiffusionModel The Laplace transforms of Eqs. (6)–(9), with p as Laplace variable,leadto:

J¼~Dd

D

cðx;pÞ dx jx¼0 p

D

cðx;pÞ¼ ~Dd 2

D

cðx;pÞ dx2

D

cðx;pÞjx¼l¼0 ðA1Þ

ThegeneralsolutionfortheLaplacetransformofFick-2isgiven by:

D

cðx;pÞ¼

j

sinh x ffiffiffiffiffiffiffiffiffi p=~D q þ

z

cosh x ffiffiffiffiffiffiffiffiffi p=~D q ðA2Þ Fromtheboundaryconditionatx=l(Eq.(A1))itfollowsthat:

z

¼

j

tanh l ffiffiffiffi p ~D r ðA3Þ ThisleadstoanewexpressionforFick-1inLaplacespace: J¼~D

j

ffiffiffiffi p ~D r cosh x ffiffiffiffi p ~D r þ

z

ffiffiffiffi p ~D r sinh x ffiffiffiffi p ~D r   jx¼0 ¼~D

j

ffiffiffiffi p ~D r ðA4Þ Fig.12.ComparisonbetweentheexactDFRT’sfortheFLW(heavygraylines)andtheGerischer(heavyblackline).TheapproximateDFRT’sforthem(RQ)fitmethod(FLW: blue,Gerischer:red)andtheTikhonovregularization(dashedlines)arealsodisplayed.InsertshowstheimpedancedispersionoftheFLWandtheGerischerwithZ0=1Vand

(9)

Thepotentialattheelectrode/electrolyteinterfacecanthenbe expressed by (with z the charge of the mobile ion and

G

the thermodynamicfactor):

D

EðpÞ¼RTzFCaeq:dlna

eq:dlnC¼

RT

G

zFCeq:

D

cðx;pÞjx¼0 ðA5Þ

TheimpedanceinLaplacespacecanbedefinedbydividingthe voltagebythecurrent,I(p)=zFAJ(p),whereAisthesurfacearea:

ZðpÞ¼z

D

FAEðpÞJ ðpÞ¼ RT

G

z2F2 ACeq 

j

sinh x ffiffiffiffip ~D r 

j

cosh x ffiffiffiffip ~D r tanh l ffiffiffiffi p ~D r 

j

ffiffiffiffiffiffiffip ~D q jx¼0 ¼ RT

G

z2F2 A Ceq ffiffiffiffiffiffiffi p~D q tanh l ffiffiffiffi p ~D r ðA6Þ TheadvantageoftheLaplacespaceisthatthevariablepcanbe writtenasp=s+j

v

,wheresrepresentsthetransienttoasteady statesituationand

v

represents the frequencydependent part (with

v

=2

p

f). Hence, the FLW transfer function follows from Eq.(A6): ZFLWð

v

Þ FLW ¼ RT

G

z2F2AC eq  ffiffiffiffiffiffiffiffiffi j

v

~D q tanh l ffiffiffiffiffiffi j

v

~D s ! ¼ Z0 ffiffiffiffiffiffiffiffiffiffiffi j

vt

0 p tanh ffiffiffiffiffiffiffiffiffiffiffij

vt

0 p   ðA7Þ AppendixB.Derivationofthefullimpedanceexpression foraf-FLW

Theterm(j

vt

0)ninEq.(12)canbewrittenas:

ðj

vt

0Þn¼ð

vt

0Þncos

n

p

2 þjð

vt

nsinn

p

2 ¼

a

þj

b

ðB1Þ

Substitution ofEq.(B1)inEq.(12)andexpandingthetanh() functionyields: ZfFLWð

v

Þ¼ j Z0

vt

0 ð Þn:tanhðj

vt

0Þn   ¼ Z0

a

þj

b

:tanhð

a

þj

b

Þ ¼Z0ð

a

j

b

Þ

vt

0 ð Þ2n : eaþjbeajb eaþjbþeajb ðB2Þ

ApplicationoftheEulerformula,ejx=cosx+jsinx,leadstothe

followingexpression: ZfFLWð

v

Þ¼Z0ð

a

j

b

Þ

vt

0

ð Þ2n :

eacos

b

eacos

b

þjðeasin

b

þeasin

b

Þ

eacos

b

þeacos

b

þjðeasin

b

easin

b

Þ

ðB3Þ Multiplying by the complex conjugate of the denominator resultsinaseparaterealandimaginarypart:

ZfFLWð

v

Þ¼Z0ð

a

j

b

Þ

vt

0 ð Þ2n : sinh2

a

þjsin2

b

cosh2

a

þcos2

b

  ¼ ¼ Z0

vt

0 ð Þn: cos n

p

2   sinh2

a

þsin n

p

2   sin2

b

cosh2

a

þcos2

b

2 6 4 jsin n

p

2   sinh2

a

cos n

p

2   sin2

b

cosh2

a

þcos2

b

 ðB4Þ

For n=0.5 this equation reduces to the well-known FLW-function: ZFLWð

v

Þ¼ Z0 ffiffiffiffiffiffiffiffiffiffiffiffi 2

vt

0 p  sinh ffiffiffiffiffiffiffiffiffiffiffiffi 2

vt

0 p þsin ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p cosh ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p þcos ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p jsinh ffiffiffiffiffiffiffiffiffiffiffiffi 2

vt

0 p sin ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p cosh ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p þcos ffiffiffiffiffiffiffiffiffiffiffiffi2

vt

0 p " # ðB5Þ AppendixC.Transformationofthedenominator,Eq.(16)

ThetransformofthedenominatorofEq.(B4)willbedonein twoparts.Firstthecosh()functionistransformed,followedbythe transformofthecosine:

cosh2

a

¼>12 e2

t

0

t

 n CþjS ½ C þe2

t

0

t

 n CþjS ½ C 2 4 3 5 ¼ ¼12 e2QC2 cos2QCSþjsin2QCS ð Þ h þe2QC2 ðcos2QCSjsin2QCSÞ¼

¼cosh2QC2cosBþjsinh2QC2sinB ðC1Þ Transformofthecosineyields:

cos2

b

¼>12 e2j

t

0

t

 n CþjS ð ÞS þe2j

t

0

t

 n CþjS ð ÞS 2 4 3 5 ¼12 ej2QCS2QS2 þej2QCSþ2QS2 h i ¼ ¼12 e2QS2ðcosBþjsinBÞþe2QS2 ðcosBjsinBÞ h i ¼ ¼cosh2QS2cosBjsinh2QS2sinB ðC2Þ CombiningEqs.(C1),(C2)yieldsthefollowingexpressionfor thedenominator:

Denom:¼cosh2QC2þcosh2QS2cosB

þjsinh2QC2sinh2QS2sinB ðC3Þ

AppendixD.Transformationofthenumerator,Eq.(18)

Developmentofthenumeratoroftheimaginarypart,excluding thetermbeforethebracketsinEq.(B4),isalsodoneintwoparts:

Ssinh2

a

¼>S 2 e 2

t

0

t

 n ðCþjSÞC e2

t

0

t

 n ðCþjSÞC 2 4 3 5 ¼S2 e2QC2þj2QCS e2QC2j2QCS h i ¼2S e2QC2ðcosBþjsinBÞe2QC2 cosBjsinB ð Þ h i ¼ ¼Shsinh2QC2cosBþjcosh2QC2sinBi ðD1Þ And: Csin2

b

¼>2jChejð2QCSþj2QS2Þejð2QCSþj2QS2Þi ¼2jC ej2QCS2QS2Þ ej2QCSþ2QS2Þ h i ¼ ¼2jC e2QS2ðcosBþjsinBÞe2QS2 ðcosBjsinBÞ h i ¼ ¼Chcosh2QS2sinBþjsinh2QS2cosBi ðD2Þ

(10)

CombinationofEqs.(D1),(D2)yields:

Ssin2

a

þCsin2

b

¼>hSsinh2QC2cosBCcosh2QS2sinBiþ þjhScosh2QC2sinBCsinh2QS2cosBi

ðD3Þ References

[1]B.A.Boukamp,ElectrochemicalImpedanceSpectroscopyinSolidStateIonics; RecentAdvances,SolidStateIonics169(2004)65–73.

[2]E. Barsoukov, J.R. Macdonald (Eds.), Impedance Spectroscopy: Theory, Experiment,andApplications,2ndEdition,JohnWiley&Sons,Hoboken, NJ,2005.

[3]M.E.Orazem,B. Tribollet, ElectrochemicalImpedance Spectroscopy, John Wiley&Sons,Hoboken,NJ,2008.

[4]V.F.Lvovich,ImpedanceSpectroscopyApplicationstoElectrochemicaland DielectricPhenomena,JohnWiley&Sons,2012.

[5]A.Lasia,ElectrochemicalImpedanceSpectroscopyitsApplications,Springer, NewYork/Heidelberg,2014.

[6]Q.-A.Huang,R.Hui,B.Wang,J.Zhang,AreviewofACimpedancemodelingand validationinSOFCdiagnosis,Electrochim.Acta52(2007)8144–8164. [7]A.Nechache,M.Cassir,A.Ringuedé,Solidoxideelectrolysiscellanalysisby

meansofelectrochemicalimpedancespectroscopy:Areview,J.PowerSources 258(2014)164–181.

[8]J.R.Macdonald,L.D.PotterJr.,Aflexibleprocedureforanalyzingimpedance spectroscopyresults:Descriptionandillustrations,SolidStateIonics24(1987) 61–79.

[9]B.A. Boukamp, A non-linear least squares fit procedure for analysis of immittancedataofelectrochemicalsystems,SolidStateIonics20(1986)31– 44.

[10]B.A.Boukamp,Apackage forimpedance/admittanceanalysis,Solid State Ionics18–19(1986)136–140.

[11]K.E.D.Wapenaar,J.Schoonman,ConductivityenhancementinBal-xLaxF2+x solidelectrolytes,SolidStateIonics5(1981)637–640.

[12] J.R. Dygas,G. Fafilek, H. Durakpasa, M.W. Breiter, Automated setup for impedancemeasurementsofelectrochemicalcellswith2electrodes,J.Appl. Electrochem.23(1993)553–558.

[13]T.Hörlin,Maximumentropyinimpedance spectroscopyofnon-inductive systems,SolidStateIonics67(1993)85–96.

[14]T.Hörlin,Deconvolutionandmaximumentropyinimpedancespectroscopyof noninductivesystems,SolidStateIonics107(1998)241–253.

[15]H.Schichlein,A.C.Müller,M.Voigts,A.Krügel,E.Ivers-Tiffée,Deconvolutionof electrochemicalimpedancespectrafortheidentificationofelectrodereaction mechanismsinsolidoxidefuelcells,J.Appl.Electrochem.32(2002)875–882. [16]J.Macutkevic,J.Banys,A.Matulis,Determinationofthedistributionofthe relaxationtimesfromdielectricspectra,NonlinearAnal.Model.Control9 (2004)75–88.

[17]A.Leonide,V.Sonn,A.Weber,E.Ivers-Tiffée,‘EvaluationandModelingofthe CellResistanceinAnode-SupportedSolidOxideFuelCells’,J.Electrochem.Soc. 155(2008)B36–B41.

[18]V.Sonn,A.Leonide,E.Ivers-Tiffée,‘CombinedDeconvolutionandCNLSFitting ApproachAppliedontheImpedanceResponseofTechnicalNi/8YSZCermet Electrodes’,J.Electrochem.Soc.155(2008)B675–B679.

[19]J.P.Schmidt,T.Chrobak,M.Ender,J.Illig,D.Klotz,E.Ivers-Tiffée,‘Studieson LiFePO4ascathodematerialusingimpedancespectroscopy’,J.PowerSources 196(2011)5342–5348.

[20]H.Sumi,T.Yamaguchi,K.Hamamoto,T.Suzuki,Y.Fujishiro,T.Matsui,K. Eguchi,‘ACimpedancecharacteristicsforanode-supportedmicrotubularsolid oxidefuelcells’,ElectrochimicaActa67(2012)159–165.

[21] J.Illig,J.P.Schmidt,M.Weiss,A.Weber,E.Ivers-Tiffée,‘Understandingthe impedancespectrumof18650LiFePO4-cells’,J.PowerSources239(2013)670– 679.

[22]T.Ramos,M.Søgaard,M.B.Mogensen,‘ElectrochemicalCharacterizationofNi/ ScYSZElectrodesasSOFCAnodes’,J.Electrochem.Soc.161(2014)F434–F444. [23]S.Kazlauskas,A.Kežionis,T.Šalkus,A.F.Orliukas,ElectricalpropertiesofYSZ

andCaSZsinglecrystals,SolidStateIonics231(2013)37–42.

[24]M. Saccoccio, T.H. Wan, C. Chen, F. Ciucci, Optimal Regularization in DistributionofRelaxationTimesappliedtoElectrochemicalImpedance Spectroscopy:RidgeandLassoRegressionMethodsATheoreticaland ExperimentalStudy,Electrochim.Acta147(2014)470–482.

[25]T.H.Wan,M.Saccoccio,C.Chen,F.Ciucci,InfluenceoftheDiscretization MethodsontheDistributionofRelaxationTimesDeconvolution:

ImplementingRadialBasisFunctionswithDRTtools,Electrochim.Acta184 (2015)483–499.

[26]Y. Zhang, Y. Chen, M. Yan, F. Chen, Reconstruction of relaxation time distributionfromlinearelectrochemicalimpedancespectroscopy,J.Power Sources283(2015)464–477.

[27]Y.Zhang,Y.Chen,M.Li,M.Yan,M.Ni,Ch.Xia,Ahigh-precisionapproachto reconstructdistributionofrelaxationtimesfromelectrochemicalimpedance spectroscopy,J.PowerSources308(2016)1–6.

[28]B.A.Boukamp,Fouriertransformdistributionfunctionofrelaxationtimes; applicationandlimitations,Electrochim.Acta154(2015)35–46.

[29]B.A.Boukamp,A.Rolle,Analysisandapplicationofdistributionofrelaxation timesinsolidstateionics,SolidStateIonics302(2017)12–18.

[30]DRTtoolsandmanual:https://sites.google.com/site/drttools/.

[31]S.Hershkovitz,S.Baltianski,Y.Tsur,Harnessingevolutionaryprogrammingfor impedancespectroscopyanalysis:Acasestudyofmixedionic-electronic conductors,SolidStateIonics188(2011)104–109.

[32]Z.Drach,S.Hershkovitz,D.Ferrero,P.Leone,A.Lanzini,M.Santarelli,Y.Tsur, Impedancespectroscopyanalysisinspiredbyevolutionaryprogrammingasa diagnostictoolforSOECandSOFC,SolidStateIonics288(2016)307–310. [33]A.K.Baral,Y.Tsur,ImpedancespectroscopyofGddopedceriaanalyzedby

geneticprogramming(ISGP)method,SolidStateIonics304(2017)145–149. [34]A.Bello,E.Laredo,M.Grimau,Distributionofrelaxationtimesfromdielectric spectroscopyusingMonteCarlosimulatedannealing:Applicationtoa-PVDF, Phys.Rev.B60(1999)12764–12774.

[35]A.Bello,E.Laredo,M.Grimau,Relaxationtimedistributionfromtimeand frequencydomaindielectricspectroscopyinpoly(aryletheretherketone),J. Chem.Phys.113(2000)863–868.

[36]B.A.Boukamp,H.J.Bouwmeester,InterpretationoftheGerischerimpedancein solidstateionics,SolidStateIonics157(2003)29–33.

[37]Y.Lu,C.Kreller,S.B.Adler,Measurementandmodelingoftheimpedance characteristicsofporousLa1-xSrxCoO3-delectrodes,J.Electrochem.Soc.156 (2009)B513–B525.

[38]D.R.Franceschetti,J.R.Macdonald,R.P.Buck,Interpretationof Finite-Length-Warburg-typeimpedancesinsupportedandunsupportedelectrochemical cellswithkineticallyreversibleelectrodes,J.Electrochem.Soc.138(1991) 1368–1371.

[39]Z. Stoynov, Impedance modelling and data processing: structural and parametricalestimation,Electrochim.Acta35(1990)1493–1499.

[40]R.M.Fuoss,J.G.Kirkwood,ElectricalPropertiesofSolids.VIII.DipoleMoments inPolyvinylChloride-DiphenylSystems,J.Am.Chem.Soc.63(1941)385–394. [41]F.Dion,A.Lasia,Theuseofregularizationmethodsinthedeconvolutionof underlyingdistributionsinelectrochemicalprocesses,J.Electroanal.Chem. 475(1999)28–37.

[42]CDC_Explained.pdf, available from: www.utwente.nl/tnw/ims/publication/ downloads/.

[43]J. Jamnik, J. Maier, Treatment of the Impedance of Mixed Conductors EquivalentCircuitModelandExplicitApproximateSolutions,J.

Electrochem.Soc.146(1999)4183–4188.

[44]J. Jamnik, J. Maier, Generalised equivalent circuitsfor mass and charge transport:chemicalcapacitanceanditsimplications,Phys.Chem.Chem.Phys. 3(2001)1668–1678.

[46]A.Wisse,B.A.Boukamp,EqCWin95:www.wisseq.nl/portfolio.aspx(inDutch). [47]B.A. Boukamp, private communication: www.utwente.nl/tnw/ims/

Referenties

GERELATEERDE DOCUMENTEN

The inclusion of the inhomogeneous flux is very important for dominant advection, since it ensures that the flux approximation remains second order accurate, in contrast to

Vooral opvallend aan deze soort zijn de grote, sterk glimmende bladeren en de van wit/roze naar rood verkleurende bloemen.. Slechts enkele cultivars zijn in het

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Different design procedures are considered: applying a white noise gain constraint, trading off the mean noise and distortion energy, and maximizing the mean or the minimum

Uit zijn nieuwe autobiografische roman Logica voor idioten blijkt dat zijn leven of in elk geval dat van zijn literaire alter ego voornamelijk bestaat uit het aflopen van

In order to study chains of finite length without periodic boundary conditions, the question arises as to which boundary condition to use, e.g., whether to leave the chain ends open

van den Berg: Heat content and Brownian motion for some regions with a fractal boundary. Carmona: Can one hear the dimension of

29–31 However, in the context of local theories, i.e., theories in which the free energy depends only on one position, and not, as for the pressure tensor, on two positions