• No results found

Broadband acoustical superresolution imaging of breaking ocean waves

N/A
N/A
Protected

Academic year: 2021

Share "Broadband acoustical superresolution imaging of breaking ocean waves"

Copied!
293
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

by

Rex Kelley A ndrew

B .S.. U niversity of W a sh in g to n . 1981 M .S .E .E ., U niversity o f W a sh in g to n . 1987 D issertation S u b m itte d in P a rtia l Fulfillment o f th e

R equirem ents for th e D egree of D O C T O R O F P H IL O S O P H Y

in th e D ep artm en t o f Electrical an d C o m p u te r E ngineering We accept this d isse rta tio n as conform ing to th e required s ta n d a rd

---Dr. Lynn ^irlhv, C o-supervisor (D e p t, of E lectrical a n d C o m p u te r Engineering)

___________________________________________________________ Dr. David M. Farm er. C o-supervisor (D e p t, of Elec. &: C om p. E ng.)

---Dx<-nale Shpak, D ep arjro en tal M em ber (D e p t, o f Elec. & C om p. E ng.)

Dr. C harles K onzelm an. O utside M em ber (D e p t, o f M echanical E ng.)

G . Lueck. Outside^^^i€hiber (School o f E a rth a n d O cean Sciences)

Dr. Michael .1. Buckingham . E xternal E xam iner (M a rin e Physical L ab o rato ry . Scripps In stitu te of O ceanography)

0 R e .x Kelley .Andrew, 1997 University of V ic to ria

All rights reserved. This d isse rta tio n m ay not be produced in w hole or in p a rt, by- photocopying or o th e r m eans, w ith o u t th e perm ission o f th e a u th o r.

(2)

A B S T R A C T

. \ n acoustic a rra y w as deployed in th e n earsurface lay e r in Saanich In le t. B .C .. to im age break in g waves using only th e n a tu ra lly occurring aco ustical rad ia tio n from the b rea k in g region over th e band [160 H z, 2000 Hz]. T he 1.5-element array was configured as a h o riz o n tal cross w ith an 8 m a p e r tu r e , b o tto m -m o o re d , and positioned nom inally 3 m b e n e a th the surface.

D ue to sensor sp arsen ess, th e a rr a y P S F at any p a rtic u la r frequency w as badly c o n ta m in a te d by g ra tin g lobes. .A novel b ro ad b a n d schem e was devised to com bine in fo rm a tio n at m ultiple in d ependent frequencies to yield unam biguous im ages w ith res­ o lu tio n o f a b o u t 0 . 2 m a t th e sea su rfa c e.

T h e b ro a d b a n d schem e assum ed sp a c e -tim e sep arab ility in th e source m u tu a l spec­ tra l d en sity . This is o nly considered vabd for breaking waves above a b o u t 400 Hz. N o n s ta tio n a rity and tim e -b a n d w id th c o n s tra in ts yielded a t m ost six in d ep e n d e n t fre­ q u en cy b a n d s w ithin th e system p a s sb a n d .

p a ra m e tric im age analysis show ed th a t the im ages align closely w ith th e wind and can be observed m oving dow nw ind w ith a speed a b o u t tw o-thirds the p h a se speed of th e d o m in a n t c o m p o n en t of th e w ind waves.

.A.bsolute power levels were found to be consistent w ith previously published results. T h e a b s o lu te power levels were p a ra m e te riz e d by w here So = 1 /iP a ^ /H z and A (/) is w ell-described by a sim ple first o rd e r relation X = bo + bi I n / , w here bo varied d e p e n d in g on th e size o f th e wave b u t 6% ap p e are d to be a m ore universal c o n sta n t e s tim a te d a t -4..5.5 ± 0.47.

(3)

T he source m echanism for frequencies below about, 400 Hz w as modeled tw o ways: ( I ) as a point source (w hich would follow if an acoustically c o m p act “collective os­ cillation" region had fo rm ed ), and (2 ) as d u e to oIf-peak s p e c tra l co n trib u tio n s from bubbles reso n an t a t 400 Hz. Neither m odel achieved a s a tis fa c to ry fit to th e observed d a ta . T his seems to im ply th a t the m echanism below a b o u t 400 Hz was acoustically extended a n d rad ia tin g as energetically as any reso n a n t bubbles.

Dr. R , 'C ^ i n ^ K ^ ü î ^ C o -supervisor (D e p t, o f E lectrical and C o m p u te r Engineering)

Dr. D avid M. Farm er. C o-supervisor (D e p t, of Elec. & C om p. E ng.)

__________________________________________________________________________________

Dr. TÎale S hpak. D e p a rtm e n ta l M em ber (D e p t, of Elec. & C om p. Eng.)

Dr. C harles K onzelm an. O utghfe M em ber (D e p t, o f M echanical E ng.)

olf G . Lueck. O u tsid e M em ber (School o f E a rth and O cean Sciences)M^iftb

Dr. M ichael .1. B uckingham . E xternal E x a m in e r (M arin e Physical L aboratory. Scripps In stitu te o f O ceanography)

(4)

C o n ten ts

A b s t r a c t ii A c k n o w le d g e m e n t s x iv F r o n t is p ie c e x v i L ist o f A c r o n y m s x v ii E p ig r a p h x v iii 1 I n t r o d u c tio n 1 1 . 1 B a c k g r o u n d ... 1 1.2 This W o r k ... 5 1.3 S u p e r r e s o lu tio n ... 6 1.4 Thesis O rg an izatio n ... 8 2 S o u r c e P h y s ic s 10 2.1 B u b b l e s ... 11 2.1.1 B irth in g W a i l s ... 1 2 2.1.2 .\d u lt S c r e a m s ... 13

2.1.3 G ang Rum bles (C ollective O scillations) ... 14

2 . 2 Breaking W a v e s ... 2 1 2.2.1 Spiliers versus P l u n g e r s ... 21 2.2.2 W h ite c a p E v o l u t i o n ... 23 2.2.3 B ubble Size D i s tr i b u ti o n ... 25 2.3 T he S o u r c e ... 26 3 S ig n a l P h y s ic s 29 3.1 E xtended S o u r c e s ... 30 3.2 Source In fo rm atio n P r o p a g a t i o n ... 32 3.3 P ro p a g atio n I s s u e s ... 38 3.3.1 G reen F u n c t i o n s ... 38

(5)

4 I m a g e R e c o n s t r u c t io n 4 6

4.1 I n tr o d u c tio n ... 46

4 .2 R esolution a n d S u p e r r e s o l u t i o n ... 49

4.2.1 F a r-Field Im aging ... 50

4.2.2 N earfield Im aging ... 53

4.3 B eam form ing I m a g i n g ... 54

4.4 .A.n .A lternative P ro b ab ilistic .A p p r o a c h ... 63

4..5 ( N o n )P a ra m e te riz in g the S o l u t i o n ... 6.5 4.5.1 .V onparam etric I m a g e s ... 6 8 4.5.2 P a ra m e tric I m a g e s ... 70 5 T h e E x p e r im e n t 72 5.1 SU R FE X III D e p l o y m e n t ... 72 5.2 D a ta D e s c r i p t i o n ... 77 6 S ig n a l P r o c e s s in g 85 6.1 D a ta R ecord I d e n tif ic a tio n ... 8 6 6.2 CSDM E s t i m a t i o n ... 8 8 6.3 P O C S ... 91 6.4 .A W ell-behaved I m a g e ... 93 6.5 W h a t C an Clo W rong ... 97 7 D a t a A n a ly s is 101 7.1 Event M o t i o n ...101 7.1.1 W ave W 3 ... 102 7.1.2 W ave W 5 ... 109 7.1.3 M otion . A n a l y s i s ... 109 7.2 Inferences on W in d D i r e c t i o n ... 112 7.3 Source S t r e n g t h ...114 7.3.1 D a ta R e d u c t io n ...114

7.3.2 Source S tre n g th .Analysis ... 118

7.4 M odeling Low -Frequency ( / < 400 Hz) E m is s io n s ...122

7.4.1 Point S ou rce Model ... 122

7.4.2 R a d ia te d Low -Frequency S p e c t r u m ...132

7.4.3 Low -Frequency M odeling C o n c l u s i o n s ...135

8 C o n c lu s io n s 137 8.1 R e s u lts ...137 8.2 A c h ie v e m e n ts ... 138 8.3 R eco m m en d atio n s ...140 B ib lio g r a p h y 146 A W a v e F o r e c a s t 158 B S im u la t io n s w i t h E x t e n d e d S o u r c e s 162

(6)

C N o n p a r a m e t r i c A l g o r i t h m D e t a il s 1 6 9 C l " C o s t” Function ... 169 C.2 " G ra d ie n t” F u n c t i o n ... 173 C.3 I m p le m e n ta tio n ... 174 D M a x i m u m L ik e lih o o d D e t a i l s 1 7 9 D .l “‘C o s t” Function ...179 D.‘2 “‘G ra d ie n t” F u n c t i o n ... 181 D.3 I m p le m e n ta tio n ... 182 D.4 S im u la tio n ... 184 D.5 E rro r E s t im a t e s ... 187 E U L S A S S y s t e m D e s c r i p t i o n 191 E .l S ystem Block D i a g r a m ... 191 E.2 A rray S u b s y s t e m ... 197 E.2.1 A ttitu d e S e n s o r s ... 198 E.3 A nalog S u b s y s t e m ... 207

E.3.1 G ain and T H D ... 209

E .3. 2 System Noise F l o o r ... 209

E .3 .3 C r o s s t a l k ... 210

E .l D igital Subsystem ... 210

E.4.1 .Analog to d ig ita l p a t h ... 210

E.4.2 M UX ... 21.5 E .4.3 System C o n tro lle r ... 215

E.5 G l o s s a r y ... 217

F I n - S i t u A m b i e n t S o u n d C a l i b r a t i o n 2 1 9 F .l I n tr o d u c ti o n ... 219

F.2 C a lib ra tio n E q u a t i o n s ...222

F.3 Sound Fields N ear th e Surface ... 223

F.4 E s tim a tin g th e O u tp u t . A u t o s p e c t r a ... 228 F.5 C a lib ra tio n P r o c e s s i n g ...230 G H y d r o p h o n e M o u n t s : V i b r a t i o n T r a n s m i s s i b i l i t y 2 3 3 H H y d r o p h o n e M o u n t s : D i f f r a c t io n 2 4 4 H .l I n tr o d u c tio n ... 244 H.2 B E M ... 246 H.3 R e s u l ts ...249 I W a v e P r o c e s s i n g S u m m a r y 2 5 1 I.1 W ave D a t a ... 251 1.2 W ave M odel P a r a m e t e r s ...“262 1.3 .A dditional P rocessing D e t a i l s ...265

(7)

S o u r c e S t r e n g t h C o n s id e r a t io n s 2 6 9

J . l P o in t S o u r c e s ... 269 J.2 S ource L a y e r ... 273 J.3 R a n d o m Source L a v e r ... 273

(8)

L ist o f F ig u res

1.1 A typical a m b ie n t noise s p e c t r u m ... 4

2 . 1 R esonant freq u en cy versus bu b b le r a d i u s ... 1 2 2.2 T h e bubble co lu m n e x p e r i m e n t ... 16

2.3 P ro p a g a tio n o f a W ave into a S w arm of B ubbles... 16

2.4 Effective S o u n d speed ... 19

2.5 B ubbly F luid a n d its Sound Speed A n a l o g ... 20

2.6 T h e bubble co lu m n ex p erim en t a n d its sound sp eed a n a l o g ... 20

2.7 P rim a ry a n d s e c o n d a ry ra d ia tio n fo r a breaking w a v e ... 28

2.8 Bulk Sound S peed A nalog for a B re a k in g W a v e ... 28

3.1 R a d ia tio n fro m a source elem ent ... 33

3.2 .Actual p ro p a g a tio n p r o b l e m ... 40

3.3 Idealized p ro p a g a tio n pro b lem ... 40

3.4 M a g n itu d e o f th e k space G reen f u n c t i o n ... 44

4.1 Schem atic d ia g ra m o f a 1-D im a g in g p r o b l e m ... 47

4.2 C o n cep tu al d ra w in g o f “re so lu tio n ” ... 50

4.3 G eo m etrical co n sid e ratio n s for d efin in g the far field o f an a r r a y ... 51

4.4 P S F h alf-w id th ( “reso lu tio n ” ), S U R F E X I I I ... 54

4.5 ULSAS se n so r c o n ste lla tio n , p lan view , SU R F E X I I I ... 56

4.6 P S F a t 603 H z ... 57 4.7 P S F a t 861 H z ... 57 4.8 P S F a t 1120 H z ... 58 4.9 P S F a t 1378 H z ... 58 4.10 P S F a t 1637 H z ... 59 4.11 P S F a t 1895 H z ... 59 5.1 D eploym ent g e o g ra p h y , S U R F E X I I I ... 74

5.2 D eploym ent s ite , S U R F E X I I I ... 75

5.3 M ooring sch em e for S U R F E X I I I ... 76

5.4 V ector-averaged w ind speed, S U R F E X III, 4 / 1 3 / 9 5 ... 77

5.5 A lr-Sea T e m p e ra tu re Difference, S U R F E X III, 4 / 1 3 / 9 5 ... 78

5.6 W ind D irec tio n , S U R F E X III, 4 / 1 3 / 9 5 ... 78

(9)

5.8 A rra y d e p th , S U R F E X III, 4 /1 3 /9 5 ... 79

5.9 A rra y b earing, S U R F E X III. 4 /1 3 /9 5 80

5.10 E x a m p le d a ta fro m ch annel 5 from th e w ind e v e n t of 4 / 1 3 / 9 5 ... 82

5.11 N arro w b a n d levels versus tim e for a sam ple b rea k in g event ... 83

5.12 B ro a d b a n d a c o u stic signals p e r channel for a ty p ical w a v e ... 84

6.1 W ave W 3: 15:24:01 P D T ... 87

6.2 T a p e rs A: = 1, . . . , 5 ... 90

6.3 Field in ten sity v e rsu s sen so r p o sitio n , x-axis, w ave W 3 ... 92

6.4 S equence of P O C S so lu tio n s for th e Field in te n sity , x-axis. w ave W 3. . . 93

6.5 N o n p a ra m e tric s o lu tio n . W ave W 3 ... 95

6 . 6 P a ra m e tric s o lu tio n . W ave W 3 ... 96

6.7 F ield in ten sity v e rsu s sen so r po sitio n , wave W6 ... 99

6 . 8 .Acoustic p ressu re, channels 6. 5 and 3. wave W6 ... 100

. 1 S h o rt-tim e s e g m e n ta tio n o f W ave W 3 ... 102

.2 N o n p a ra m e tric s o lu tio n . W ave W 3, segm ent .A ...103

.3 N o n p a ra m e tric s o lu tio n . W ave W 3. segm ent B ...104

.4 N o n p a ra m e tric s o lu tio n . W ave W 3, segm ent C ...105

.5 N o n p a ra m e tric s o lu tio n . W ave W 3, segm ent D ...106

. 6 S equence of s o lu tio n s. W ave W 3 ...107

.7 S h o rt-tim e s e g m e n ta tio n o f W ave W 5 ... 109

. 8 S equence of so lu tio n s. W ave W 5 ...I l l .9 S equence of in fe rre d wind d i r e c t i o n s ...113

.10 H isto g ram of re p lic a te s ... 114

. 1 1 S o u rc e stre n g th p a r a m e t e r s ... 115

.12 H isto g ra m of 6% r e p l i c a t e s ... 119

.13 C o m p a riso n o f W 3 so u rce level versus a m b ien t a n d Knudsen levels . . . 121

.14 C o m p ariso n o f W 3 im age an d finite dipole low -frequency so lu tio n s . . . 126

.15 C o m p a riso n of W 5 im ag e and finite dipole low -frequency so lu tio n s . . . 127

.16 C o m p a riso n o f W 7 im age an d finite dipole low -frequency so lu tio n s . . . 128

.17 C o m p a riso n o f W 1 3 im age and finite dipole low -frequency so lu tio n s . . . 129

.18 C o m p a riso n o f W 2 2 im age and finite dipole low -frequency so lu tio n s . . . 130

.19 C o m p a riso n o f W 23 im age a n d finite dipole low -frequency so lu tio n s . . . 131

. 2 0 C o m p a riso n o f b u b b le sp e c tru m versus W.3 a m b ie n t and signal levels . . 134

.21 C o m p a riso n o f W 3 im age and finite dipole low -frequency so lu tio n s. / = 245 H z ...136

B .l S im u la tio n s o u rc e -a rra y g e o m e t r y ... 163

B.2 E igenvalue Aj v e rsu s n u m b e r o f p o int s o u r c e s ...165

B.3 E igenvalue Aj v e rsu s n u m b e r o f p o in t s o u r c e s ...165

B.4 E igenvalue A3 v e rsu s n u m b e r o f p o in t s o u r c e s ...166

B.5 E igenvalue A4 v e rsu s n u m b e r o f p o in t s o u r c e s ...166

(10)

E .l ULSAS system d i a g r a m ... 192

E.2 ULSAS sy stem block d i a g r a m ...193

E.3 ULSAS shore-end sy ste m ...196

E.4 ULSAS la b o ra to ry play b ack s y s te m ...197

E.5 H y d ro p h o n e a rra y plan v i e w ... 199

E. 6 .\ r r a y ‘‘a rm s ” ...200

E.7 Excess h y d ro d y n am ic pressu re signal due to su rface w a v e s ... 203

E. 8 P re ss u re sensor c a li b r a t io n ... 203

E.9 P re ss u re sensor h y s t e r e s i s ... 206

E.IO .A^nalog signal c o n d itio n in g schem atic d i a g r a m ...207

E .l 1 S y stem tra n s fe r f u n c t i o n ...209

E. 1 2 S y stem noise floor, all c h a n n e l s ...2 1 2 E.13 D igital su b sy stem block d i a g r a m ... 214

E.14 F in ite S ta te M achine for th e m u lt ip l e x e r ...215

E.15 Level 0 c o n te x t d iag ram for th e system c o n t r o l l e r ...216

F .l E ssential Signal C o n d itio n in g C om ponents for H ydrophone C a lib ra tio n . 222 F.2 G e o m e try for N ear-S urface Sound Field C a l c u l a t i o n s ...224

F.3 R eflection g eom etry for a nearsurface s e n s o r ... 225

F.4 V a ria tio n o f a u to s p e c tra l level w ith d e p t h ...227

F.5 V ariatio n o f a u to s p e c tra l level w ith d e p th . d B ... 227

F. 6 H isto g ram o f channel 5 o u tp u t power l e v e l s ... 231

G .l ULS.A.S a rra y h y d ro p h o n e m o u n t ... 235

G. 2 Sim plified h ydrophone m o u n t ... 236

G.3 Sim plified 1-D sp rin g -m a ss-d a sh p o t m ount m o d e l ...239

Ci.4 T ran sm issib ility functio n s for th e I T C lO O l...241

G.5 T ran sm issib ility fu nctions for th e ITC4127 ... 241

G. 6 R e so n a n t "ringing” in th e d a t a ... 242

H .l E lem ent m esh for h y d ro p h o n e m o u n t ...*248

H.2 S c a tte re d field versus f r e q u e n c y ...250

I.1 W ave W l : 15:20:01 P D T ... 252 1.2 W ave W 2:..15:22:46 P D T ...252 1.3 W ave W 3:..15:24:01 P D T ...252 1.4 W ave W 4: 15:24:56 P D T ... 253 1.5 W ave W 5: 15:25:16 P D T ...253 1.6 W ave W6 :..15:27:04 P D T ... 253 1.7 W ave W 7: 15:28:07 P D T ... 254 1.8 W ave W S: 15:31:52 P D T ... 254 1.9 W ave W 9: 16:02:05 P D T ... 254 1.10 W ave W IO : 16:05:03 P D T ...255 1.11 W ave W l l : 16:05:52 P D T ... 255 1.12 W ave W 12: 16:07:37 P D T ...255

(11)

1.13 VVaveVVIS: 16:12:22 P D T ...256 1.14 Wave W 14: 16:14:30 P D T ... 256 1.15 W ave W 15: 16:21:42 P D T ... 256 1.16 Wave W 16: 16:22:43 P D T ... 257 1.17 Wave W 17: 16:22:57 P D T ... 257 1.18 Wave W 18: 16:23:31 P D T ... 257 1.19 Wave W 19:.16:36:51 P D T ...258 1.20 W ave W 20:.16:38:20 P D T ...258 1.21 Wave W 21: 16:46:53 P D T ...258 1.22 Wave W 22: 16:48:33 P D T ...259 1.23 Wave W 23: 17:02:33 P D T ...259 1.24 Wave W 24: 17:02:49 P D T ...259 1.25 Wave W 25: 17:03:40 P D T ...260 1.26 Wave W 26: 17:05:05 P D T ...260 1.27 Wave W 27: 17:05:13 P D T ...260 1.28 Wave W 28: 17:05:35 P D T ...261 1.29 Wave W 29: 17:05:47 P D T ...261 1.30 Wave W 30: 17:07:40 P D T ...261

(12)

L ist o f Tables

2.1 S u m m a ry of c h a ra c te ristic fe a tu re s o f M o n a h a n 's bubble fo rm a tio n s . . 25

3.1 Rayleigh roughness p a r a m e t e r s ... 42

4.1 O nset o f far field, —3 dB p o in t a n d h alf fo o tp rin t size ... 53

6 . 1 CSDM e s tim a tio n p a r a m e t e r s ... 89

6 . 2 T aper e ig e n v a lu e s ... 90

6.3 Source s tre n g th solution, w ave \ V 3 ... 97

6.4 P a ra m e te r solution for wave \V3 97

7.1 P a ra m e te r evolution for wave W 3 ... 108

7.2 Source s tre n g th evolution o f w ave \ V 3 ...108

7.3 P a ra m e te r evolution for w ave W 5 ... 110

7.4 Source s tre n g th evolution o f w ave W 5 ... 110

7.5 Source p a ra m e te r regression, each w a v e ...117

7.6 Fit o f L F finite-dipole m odel to several w a v e s ...125

.A..1 E stim a te d W avefield P a ra m e te rs for P a tric ia B ay S i t e ...161

C .I B enchm arks for cost and g ra d ie n t f u n c t i o n s ... 176

D .l Sim ulation resu lts, shape p a r a m e t e r s ... 188

D.2 Sim ulation resu lts, source s tr e n g th p a ra m e te rs ...188

D.3 S ta n d a rd e rro r e stim ates for w ave VV3 shap e p a r a m e t e r s ...190

D.4 S ta n d a rd e rro r e stim a tes for w ave W 3 source s tr e n g th p a ra m e te rs . . . 190

E .l Gain an d T H D p e r c h a n n e l ... 211

E. 2 DC bias a n d b ro ad b a n d noise d e n sity per c h a n n e l...2 1 1 E.3 ULSAS C r o s s t a l k ... 213

E.4 Digital d a ta f o r m a t ...215

E.5 A n n o ta tio n f o rm a t... 217

F .l .\u to s p e c tra l Levels versus D e p t h ... 228

F.2 C a lib ra tio n values for each c h a n n e l ...232

(13)

G .2 M o u n t E ig e n f r e q u e n c ie s ... 239 1.1 M L p a ra m e te rs for w a v e s h a p e s ... 262 1.2 M L p a ra m e te rs fo r wave source s tre n g th p a r a m e t e r ...264

(14)

A ck n o w led g em en ts

I would like to acknow ledge th e su p p o rt of my tw o co-supervisors D r. K irlin. for in v it­ ing me to th e U niversity of V ic to ria, and Dr. F a rm e r, for pro v id in g tru ly wonderful facilities. I m u st th a n k both D rs. Kirlin and F a rm e r for p u ttin g th e ir heads to g eth e r a n d com ing w ith , w h at was for m e a t least, a very challenging p ro je c t. I would also like to th an k th e m em bers of my c o m m ittee for p u ttin g up with me: D r. K onzelm an, for seem ingly endless patience in h an d lin g the sam e old acoustics q u e stio n s over and over; D r. Lueck, for a fun oceanography course w ith lo ts o f neat-o h a rd w a re asides: and D r. Shpak for s u p p o rt and help on questions reg a rd in g optim izers. I also acknow ledge th e financial s u p p o rt o f th e Office o f Naval Research.

No p ro je c t like this is a o n e-m an show, an d I am extrem ely g ra te fu l to th e m any people who helped along the way. Forem ost a m o n g th ese would be th e g u y s a t O ceanetic M easurem ent. L td ., who held my h a n d and m ade E v e ry th in g C om e O u t .A.11 R ight: Mike Dempsey, D avid S p ear, Kim W allace. Don L apshinoff and D ennis H edji. Hey. nothing would have w orked w ithout OML!

I also would like to th an k th e s ta ff a t the A co ustical O cean o g rap h y R esearch G roup for providing assistan ce, advice, an d exceptional co m p u tin g facilities, in p a rticu la r G race K a m itak ah ara-K in g , Ron Techirob, W illi W eichselbaum er. A lan A d rian , and a whole sq u ad o f technicians who would periodically have to com e to m y rescue: Nick HaU -Patch, Reo Phillips, .\n d re w Sinclair and Reece H asam en. P a tr ic ia K im ber also helped w ith g rap h ic s su p p o rt.

I also w ant to th an k Li D ing, Vadim Polonichko. Ron Kessel. Wei.xiu Du, Randy Howell. David C aughey, Jo h a n n es G em m rich a n d Y unbo Xie for s tim u la tin g conver­ satio n s d u rin g my to u r, and D r. Richard Paw low icz for talk in g tech on th e way to clim bing venues.

This m o n stro u s array would have rem ained a p a rk in g lot p ro je c t if it had not been for R /V S tr i c k l a n d and its m a s te r. Don Horn. Don show ed g reat p a tie n c e d u rin g tedious dockside h a rd w a re debugging cycles by lending th e m ain hoist on th e S tric k la n d as a su rro g a te for th e dockside cran e, which had gone dow n. Q uite a few fro sty m ornings it was ju s t m e a n d Don and T h e A rray. T h e S tric k la n d was also th e key c ra ft in o u r deploym ent an d recovery plans.

I also w ant to acknowledge th e efforts of G a ry D uncan. R oger K elly an d A1 Keddy a t UVic and R ichard O u terb rid g e a t lO S /C E O R for m ain ta in in g excellent co m p u ter netw orks. I rare ly saw them b u t I used their sy ste m s every day.

(15)

I m u st also ad m it a huge debt to th e legions o f people w ho have c o n trib u te d to the in tellectu al in fra stru c tu re o f the In te rn et. T h ere is no way I can even begin to list the people in Usenet n ew sgroups such as s c i . m a t h . n u m - a n a l y s i s . a l t . s c i . a c o u s t i c s , s c i . m a t h . s t a t c o m p .s o f t - s y s .m a t l a b and so on w ho have taken th e tim e to reply to my q uestions. T his list also includes th e u n c o u n tab le m asses of people an d in s titu ­ tions th a t provide, m a in ta in and develop freew are for n u m erical processing, electronic d o c u m e n ts, co m p u ter services and word processing. T h a t I can see any d ista n c e a t all beyond m y own nose is d u e prim arily to th e fact th a t I h av e sto o d on th e sh o u ld ers of m illions.

I would be rem iss if I d id n 't also acknow ledge th e s u p p o rt provided by S haron M oulson (form erly E C E g ra d se cre ta ry ), T erry Russell (C E O R ), Vicky S m ith (E C E g rad se c re ta ry ) and Pip Sum sion (.A .0R G /10S ). who tirelessly s tra ig h te n e d o u t every a d m in is tra tiv e snafu I could devise. Gold s ta rs all a ro u n d .

L astly, I would also like to th an k : G ary and L arry a n d Michelle a t th e B ody B arn for ru n n in g a friendly place w here I was able to w ear o u t m y fru s tra tio n s a n d keep the ship to g e th e r during to u g h tim es; my M o th er and F a th e r, w ho have alw ays s u p p o rte d me even th o u g h I never seem ed to know w here 1 was going; a n d my best friend M arilee. who was m arried , e x tra c te d from a lucrativ e jo b . and y an k ed in to a foreign c o u n try , all w ithin a few m onths, a n d w ho still stuck aro u n d to s u p p o rt me.

(16)

B ro a d b a n d A c o u stic a l

S u p erreso lu tio n Im a g in g o f

B rea k in g O cean W aves

Dipole Source Strengths

ii 90 m 80 603 861 1120 1378 1637 1895 amplitude 0.0215 0.0186 0.0156 0.0127 0.0097 0.0068 '

Broadband Acoustic S h ap e Function

-1 0 1

array x axis [m]

(17)

L ist o f A cro n y m s

Acronym E xpansion D efined

AORG A coustical O c e an o g rap h y R esearch G roup S e c tio n E.5

CSDM C ro ss-S p e c tra l D ensity M a trix pg 61

HW HM H alf W id th a t H alf M axim um Pg 49

lOS I n s titu te o f O cean Science S ectio n E.5

M CF M u tu a l C oherence Function pg ;jO

M EM M axim um E n tro p y M ethod pg ~

MSD M u tu a l S p e c tra l D ensity pg 30

NAFI Nearfield A co ustical H olography pg 43

PO C S P ro je c tio n O n to Convex Sets pg 91

P S F P o in t Spread F unction pg 49

SU R FE X SU R Face E x p e rim e n t pg 6

(18)

O ften, th e things which a re m ost fam iliar to us tu rn o u t to be th e h a rd e st to u n d e rs ta n d . — E dw in T. J a yn es

T ake w h a t is useful and develop from there. — Bruce Lee

2 + 2 = 5 for sufficiently larg e values o f 2. N et.w isd o m fr o m U senet newsgroup s c i . m a t h . n u m - a n a l y s i s

If we d o n 't succeed, we run th e risk o f failure. — D an Quayle

Daddy. 1 overdid it again! — his son

(19)

In tr o d u c tio n

1.1

B ack grou nd

B reaking wind waves are now believed to play a fu n d a m e n ta l rôle in th e cou p lin g o f the a tm o sp h e re a n d th e ocean. They a re th e p rim a ry m ec h a n ism for tra n s fe r rin g a t ­ m ospheric m o m e n tu m into surface c u rre n ts (M elville [96]), w hich in tu r n d riv e ocean circulation p a tte rn s . B reaking waves, b o th large a n d sm a ll, p ro vide a " d a m p in g fac­ tor" th a t d issipates m echanical energy and m o d era te s t h e g ro w th of waves a g a in s t th e influence of wind forcing a n d wave-wave in te ra c tio n (K o m en et al.. [69]). B re a k ers en ­ tra in a tm o sp h e ric gases in to subsurface bubbles, p ro d u c in g an in h o m o g en eo u s layer of bubbly fluid, which m ay affect sound p ro p a g a tio n (F a rm e r a n d Lem on [46]) a n d m ay significantly increase aco ustic b a c k sc a tte r from th e su rfa c e a t n e a r-g ra z in g an g les ( Mc­ D onald [93]). T h e tu rb u le n c e g e n e ra te d by b reak in g w aves is su sp ec te d o f e n h a n c in g th e d issip atio n in th e near-su rface sublayer (C ra ig and B a n n e r [26]) which in tu r n g re a tly enhances h eat a n d gas tra n s fe r from th e b o tto m of th e a tm o s p h e ric b o u n d a ry lay er into the o cean (T h o rp e

[131])-O u r ab ility to m o n ito r th e co n trib u tio n o f breakers to th e coupling p ro cess requires m easu rem en ts d u rin g w indy an d often s to rm y co n d itio n s, w hich a re not id ea l a n d som e­ tim es h a z ard o u s for h u m an observers. For th ese re a so n s, o c e a n o g ra p h e rs a re seeking

(20)

a lte rn a tiv e m e th o d s for re m o te ly m o n ito rin g th e b rea k in g a c tiv ity o f th e sea s u rfa c e in all possible sea s ta te s .

One o f th e m o re accessible aspects o f b re a k in g w ind-driven w aves is th e “c ra sh in g " so u n d th ey ra d ia te . E a rlier th is century, d u r in g th e d ev elo p m en t o f m ilita ry so n a r sy ste m s, th e so u n d ra d ia tin g from break in g w aves was c o n sid ered “noise", a n d h a d a significant a lth o u g h d u b ious rôle as a d e g ra d in g fa c to r in s o n a r sy ste m p e rfo rm a n c e.

.More recently, how ever, we have g re a tly e x p a n d e d o u r a b ility to use th e so u n d ra d ia te d by b rea k in g waves to a ctu ally in te r p r e t th e s ta te o f th e m arine b o u n d a ry layer.

Early d e scrip tio n s of th e d e ep -w ater a m b ie n t noise field a sc rib e d a d o m in a n t c o m ­ p o n en t o f th e a m b ie n t noise to a con tin u o u s s u rfa c e “s h e et" o f dipoles ( U rick [137]. c h a p te r 7). T h e dipole sh eet w as. of co u rse, a s ta tis tic a l m odel for a ran d o m ly rough sea surface ran d o m ly p o p u la te d by ra n d o m -siz ed b reakers.

L ater. .A.nderson [I] used a high-gain a c o u s tic a rra y m o u n te d on an u n d e rw a te r blim p to acq u ire d ire c tio n a l se a surface noise. . \ co m p lic a ted s ta tis tic a l a rg u m e n t was th e n used (.\n d e rs o n [Ij. S h a n g a n d .\n d e rs o n [120]) to infer t h a t th e sound so u rc e s a t th e sea surface were a c tu a lly d iscrete so u rces, a s o p p o se d to a c o n tin u u m .

This m ore-or-less in tu itiv e finding was verified by F arm er a n d V'agle [47] w ho used sim u ltan eo u s a u d io a n d visual o b servations to sh o w th a t a n in d iv id u a l b reak in g w ave indeed ra d ia te s a b ro a d b a n d aco u stic signal in to th e w ater.

This ra d ia te d signal was su b seq u en tly used by D ing a n d F a rm e r [37] to lo c a te a n d tra c k breaking w aves. U sing a four-elem ent a rr a y , th ey d e te rm in e d th e p o sitio n for in d iv id u al sources (i.e .. b re a k e rs) by c ro ss-c o rre la tin g th e signals received on each se n so r to c o m p u te th e tim e-difference o f arrival ( F a rm e r a n d Ding [4-5]).

Th^jse resu lts, com bined w ith recent a d v a n c e s m a d e in th e la b o ra to ry , show ed t h a t th e sound ra d ia te d by su rfa c e sources, specifically b rea k in g w aves, could in fact b e used to m easure sea su rface p ro p e rtie s . T h e m e c h a n ic a l energy d iss ip a te d by a b re a k in g w ave a p p e ars to be d ire c tly re la te d to th e in te n s ity o f th e r a d ia te d sound (L oew en a n d

(21)

M elville [82]): th is a d m its th e p o te n tia l for in fe rrin g th e surface w ave field d iss ip a tio n via an a co u stical m easu re. T h e ra d ia te d a u to s p e c tr u m also a p p e a rs to be re la te d to sim ple m odels o f th e b u b b le size d istrib u tio n w ith in th e breaking region (L oew en a n d Melville [83]. M edw in a n d D aniel [95]). possibly pro v id in g an inverse p ro b lem for th e bu b b le size d is trib u tio n a n d hence th e volum e o f gas e n tra in e d by th e b rea k e r. T h e s p a tia l s ta tis tic s o f waves tra c k e d across th e o c e a n surface provide key p a ra m e te rs needed in m odels o f su rface w ave field g row th (D in g a n d F arm er [36]. Phillips [111]). T h e sea su rface a m b ie n t so u n d a n d w h itecap p in g a c tiv ity also c o rre la te well w ith w ind s tre n g th (K n u d se n et al. [65]. M o n a h an and O 'M u irc h e a rta ig h [102]) a n d now a m b ie n t so u n d is used to m o n ito r o c e an surface wind s p e e d (K e rm a n et al. [64]).

These im p o r ta n t a c o u stic a l m easures of b re a k in g waves, and th e inferences th e y p ro ­ vide on th e s ta te o f th e m a rin e b o u n d a ry layer, h a v e all been achieved w ith rela tiv e ly sim ple sensors. O u r u n d e rs ta n d in g o f sea su rfa c e processes, how ever, is far from c o m ­ p lete . and we m u st th ere fo re tu r n to m ore s o p h is tic a te d in stru m e n ts . . \ s an e x a m p le , if breaking waves can be d e te c te d , m easured a n d tra c k ed by th e n a tu rtilly -o c c u rrin g so u n d they ra d ia te , can th e ir individual s p a tia l dim ensions also be im ag ed by th e ir ra d ia te d sound? If so. w h at w ould this tell us?

To d a te , tw o e x p e rim e n ts have been c o n d u c te d to im age b rea k in g w aves. T h e first ( C ro w th e r a n d H an sla [29] ) utilized a seven-beam s o n a r system co nfigured like a n in se c t- eye. b o tto m -m o o re d in 85 m o f w ater. T he se v en beam s provided seven o v e rla p p in g fo o tp rin ts a t th e su rfa c e, w ith fo o tp rin t d ia m e te r a p p ro x im a te ly 9.7 m a t 24 kHz. T h e y used a tw o -to n e im age m odel a n d an e n tro p y -ty p e function to reg u la riz e th e in verse problem a n d p ro d u ced im ages o f acoustically loud s h a p e s m oving acro ss th e a c o u stica lly q u iet background field-of-view . S im ultaneous v isu a l observations identified w h ite c a p s m ore-or-less w ith in th e p e rim e te rs of these s h a p e s. T h e ir results show ed th e a c o u stica lly a c tiv e region to be c o n sid e rab ly larg er th a n th e a p p a re n t visual size o f th e w h ite c a p .

T he second e x p e rim e n t (E p ifa n io and B u c k in g h a m [44]) used a s o n a r sy stem c o n ­ ta in in g 126 beam s a t a sla n t ran g e from th e s u rfa c e o f 45 m. o p e ra tin g in th e ra n g e

(22)

mechanism ?

60

i

mechanism understood

1 0"

frequency [Hz]

Fi g u r e 1.1: .A. t y p ic a l a m b i e n t noise s p e c t r u m .

S kHz to 80 kHz. E ach b eam had a fo o tp rin t d iam e te r o f a p p ro x im ate ly 0.7-5 m at SO kHz. T h e se results show th a t the s p a tia l s tr u c tu r e of th e acoustically a c tiv e region evolves q u ite rapidly, on tim e scales a t least as sh o rt as 40 m s.

B oth o f these e x p e rim e n ts imaged th e b reak ers a t frequencies well above th e peak of th eir ra d ia te d s p e c tra l sig n a tu re . T h e p o rtio n of th e b ack g ro u n d a m b ie n t sound due to n a tu r a l surface sources has a w ell-know n shape as show n in figure 1.1. T he a u to s p e c tru m has a b ro a d peak a t a b o u t 200 - 500 Hz. and a slope o f a b o u t —5 o r — 6 dB per o c ta v e above. M easu rem en ts have gen erally shown t h a t th e ra d ia te d sig n a tu re s of in d iv id u al breakers te n d , although lo u d er, to have th e sam e sh ape. T h e source m echanism for frequencies above the peak is fairly w ell-established to be th e in co h e ren t "ringing" o f individual b u b bles g enerated by e n tra in m e n t in th e b reaker. T his region is sh ad ed in figure 1.1.

T h e so u rce m echanism for sp ectral en erg y below th e p e a k is not as w ell-established. T here a re . in th e a u th o r 's opinion, no e n tirely convincing th eo ries a t th e p resen t tim e.

(23)

One of th e c e n tra l p ro b le m s is th e lack o f q u a lity d a ta a t th ese frequencies. T h e tw o im aging e x p e rim e n ts d e s c rib e d above, for in s ta n c e , were c o n d u c te d a t frequencies well- above he p eak .

In su m m a ry , th e r a d ia te d break er s ig n a tu re is d o m in a te d by s p e c tr a l c o n trib u tio n s from th e d e c ad e below a n d th e decade a b o v e th e peak, a n d th is is th e signal t h a t appears to be directly c o rre la te d with several o f th e m ost in te re s tin g o c e an o g ra p h ic p a ra m e te rs, such as m ec h a n ic a l wavefield d issip a tio n a n d to ta l g a s e n tr a in m e n t.

In this p ro je c t, we a t t e m p t to image b re a k in g waves at th e se frequencies n e a r th e peak of th e a m b ie n t so u n d a u to s p e c tru m .

1.2

T h is W ork

T he im aging problem a t th e s e low -audio frequencies is form idable. T h e w av elength A a t •500 Hz is a p p ro x im a te ly 3 m . an d a conventional im ag in g sy stem will have a diffraction- lim ited s p a tia l reso lu tio n b o u n d e d by the “ R aleigh resolution” o f a b o u t A /2 . In p ra c tic e , this im plies t h a t th e s u rfa c e fo o tp rin t of a co n v en tio n al im ag in g s y s te m , positio n ed dozens o f m e te rs below th e su rfa c e as in th e tw o previous im aging e x p e rim e n ts, will be far too larg e to resolve th e b reaking region o f all b u t the m ost g a r g a n tu a n wave. T h e sp atial reso lu tio n av ailab le th ro u g h such an a p p ro a c h is u tte rly in a d e q u a te for th e size o f w hitecaps typically e n c o u n te re d in co astal lo ca tio n s.

.A. principle fe a tu re o f th is work is th erefo re th e design an d d e v e lo p m e n t of a te c h ­ nique t h a t w ould p rovide s a tis fa c to ry sp atial reso lu tio n a t these low er a u d io frequencies. N um erous trade-offs were req u ired . T he h y d ro p h o n e a rra y was m oved fro m the far-field to the n earfield, a t th e c o st o f su b je c tin g th e sy ste m to th e h a rs h e r n e a rs u rfa c e e n v iro n ­ m ent an d th o ro u g h ly c o n ta m in a tin g the d a ta w ith m ooring noise. T h e sy s te m 's u p p e r frequency w as set a t 2 kH z. yielding a sp a tia l reso lu tio n on th e s u rfa c e o f less th a n 0.2 m. at th e co st o f a u n ifo rm ly spaced sensor p a tt e r n . In fo rm atio n a c ro ss tw o o c ta v e s in frequency w ere com bined to e lim in ate sp a tia l aliasin g due to th e se n so r sp a rse n e ss, a t

(24)

t h e cost of fo reg o in g tru e single frequency im ages.

T he sy ste m w as deployed th re e tim es, in e x p e rim e n ts labeled herein as S U R F E X I. II a n d III. T h e first tw o d e p lo y m e n ts w ere essen tially "shake-dow n" tricds: th e im a g in g d a t a come from S U R F E X III.

T he e x p e rim e n t u ltim a tely y ield ed never-before-seen im age-like in fo rm a tio n a b o u t b reak in g regions a t frequencies n e a r th e peak of th e ra d ia te d a u to s p e c tru m . T h is in­ fo rm a tio n clearly show s an a c o u stic a lly a c tiv e sh a p e w ith roughly th e sa m e e lo n g a tio n displayed by w h ite c a p s . m oving d o w nw ind, a n d o rie n te d co nsistently w ith th e w ind d i­ rec tio n . T h e te c h n iq u e used h e re also provides a n e s tim a te o f the fre q u e n c y -d e p e n d en t so u rc e s tr e n g th levels of th e b re a k in g region, w hich h a d not been achieved in p rio r im ag in g e x p e rim e n ts.

T he tec h n iq u e, however, falls s h o rt of im aging a t frequencies below th e p eak o f th e rad iated a u to s p e c tru m . T h a t p roblem is really to u g h ! .Adequate s p a tia l reso lu tio n sim p ly could n o t be achieved a t w avelengths m any tim es g re a te r th a n th e e x p e c te d dim ensions o f fe a tu re s of in te re s t. T h e d a ta can be used, however, to m ake som e inferences re g a rd in g th e poorly u n d e rs to o d source m ech an ism in this regim e

1.3

S u p er reso lu tio n

T h e term " su p e rre so lu tio n " in th e title is c e rtain ly an e y ecatch er. b u t it also carries th e c a ch e t of a b u z z w o rd . It is th e re fo re p ru d e n t to arg u e w hy its usage here is a p p ro p ria te .

.A. quick su rv e y o f th e lite r a tu r e does not provide a precise definition o f s u p e rre so ­ lu tio n . It a p p e a rs to have been used originally to d e scrib e th e process o f a n a ly tic a lly e x te n d in g th e F o u rie r tra n sfo rm o f a b a n d lim ite d im age beyond th e b a n d lim its ( Black- ledge et al. [15]). T h e im aging tec h n iq u es p u rsu ed here do not fall u n d e r t h a t s tr ic t d efin itio n . T h e te r m " su p e rre s o lu to n " . how ever, h as com e to signify a m uch w ider class of im age e n h a n c e m e n t tec h n iq u es. R ichardson a n d M arsh ([115]) sug g est t h a t s u p e rre so lu tio n defines any im a g in g process t h a t yields a " b e tte r" im age th a n som e

(25)

c o rre sp o n d in g “co n v e n tio n al" im ag in g process. T he im aging techniques used in this p ro je c t satisfy th is c rite r ia th re e w ays:

1. P ositioning th e a rr a y so t h a t sources a re located in th e nearfield o f th e array. .\s discussed in c h a p te r four, th e p o in t spread function (P S F ) o f th e nearfield a rra y in S U R F E X III has b e tte r resolution th a n th e PS F o f th e a r r a y used in S U R F E X II a n d provides m uch b e tte r resolution th a n would an a r r a y deployed a t th e c o n v e n tio n al d e p th s used by D ing and F arm er [.37]. C ro w th e r a n d H ansla [29] or E pifanio a n d B uckingham [44] .

T h u s, th e choice alone of a nearfield a rra y over a far-field a rra y confers a b e tte r resolving c a p ab ility .

2. Using im age p rio rs. T h e use o f im age priors is described m ore fully in c h a p te r four. b u t. briefly, an e n tro p y p rio r ( t h a t is. a d a ta -in d e p e n d e n t m o d el enforcing a m onotone im a g e ) p erm its th e reso lu tio n of closely spaced point so u rc e s which can n o t o th erw ise be resolved using conventional d iffraction-lim ited tech n iq u es. R eco n stru ctio n s using e n tro p y ( th e “m axim um e n tro p y m eth o d " o r M E M ) seem to be a u to m a tic a lly qualified for su p e rre so lu tio n s ta tu s (P ress et al. [114]). M EM rec o n stru c tio n s have been very successful in radio astronom y.

It is not clear, th o u g h , th a t e n tro p y is th e best prior for sm o o th e x te n d e d sources t h a t lack th e v a st differences in lu m in o sity th a t a re in h ere n t in a s tro n o m y . Very recently. B riggs [21] has su g g ested th e use of non-negative le a st-sq u a re s - i.e.. essentially a p rio r th a t enforces n o n -n eg a tiv ity - cis an a d e q u a te p rio r for high- fidelity im ag in g o f ex ten d ed so u rces. Inasm uch as his results a re c o m p a ra b le to M EM im ages in te rm s of reso lu tio n , no n -n eg ativ ity c o n s tra in ts , w hich a re used in this p ro je c t, m ay provide im ages w ith “resolution" higher th a n t h a t available w ith co n v en tio n al processing.

3. Using a p a ra m e tric schem e t h a t p e rm its a “b e tte r fittin g " im age so lu tio n th a n can be achieved o th e rw ise . H aacke. L iang a n d Izen [.55] d e m o n s tra te d t h a t a piecewise

(26)

lin ear m odel achieved a b e tte r fit to a piecew ise linear source th a n a c o n v e n tio n a l ( n o n p a ra m e tric ) m odel. T h e im p rovem ent was clearly re la te d to th e u se o f a m odel t h a t m odeled th e source very well. T his was also one o f few a p p ro a c h e s th a t defined reso lu tio n in term s o f an overall fit to an e x te n d e d im age. In th 's sense, a source is b e tte r resolved by a p a ra m e tric im age w hen th e m o d el is an a c c u ra te re p re se n ta tio n o f th e original so u rce. .A. p a ra m ete riz e d source m o d e l is used to a c cu m u la te so u rc e configuration s ta tis tic s in c h a p te r seven.

1.4

T h e sis O rga n ization

T h e essential background for th e im aging a lg o rith m used in th is w ork is d ev e lo p e d over th ree c h a p te rs . C h a p te r tw o se ts fo rth the n a tu r e o f th e p h en o m en a to be im a g e d , a n d reviews th e accep ted a n d sug g ested source m echanism s. C h a p te r th re e e s ta b lis h e s a m a th e m a tic a l m odel for th e source, including four key assu m p tio n s, a n d briefly c o n s id ­ ers the signal p ro p a g a tio n issues. C h a p te r four m erges the source a n d signal p r o p a g a tio n m odels to a rriv e at a b ro a d b a n d im aging s ta te m e n t for producing resolved u n a m b ig u o u s im age-like in fo rm atio n ov er th e frequency b a n d 600 Hz to 2000 Hz. C h a p te r fo u r also has a brief discussion of c o n v en tio n al im aging techniques and why th ese te c h n iq u e s fail in this p a rtic u la r case.

C h a p te r five provides a b rief description o f th e salient fea tu re s o f th e S U R F E X III d ep lo y m en t. .-Attention is d ire c te d tow ards th e d a ta collected d u rin g a d ay-long s to rm on 4 /1 3 /9 5 .

C h a p te r six outlines th e basic signal processing needed to g e n e ra te b ro a d b a n d im ­ ages a n d provides ex am p les from th e d a ta set o f 4 /1 3 /9 5 . C h a p te r seven e x te n d s th e analysis o f c h a p te r six by in te rp re tin g th e im ages in term s of o ce an o g ra p h ic p a r a m e te r s such as w ind d irection a n d b reak er source s tr e n g th level. Som e a d d itio n a l m o d e ls o f th e low er-frequency m echanism a re considered.

(27)

T h e re axe n u m e ro u s a p p e n d ic e s, involving m o stly signal p ro cessin g o r h a rd w a re d e ta ils. O f n o te is a p p e n d ix I. w hich co n tains a “g a lle ry " o f s trip c h a rt-lik e plots a n d a co m p en d iu m o f im a g in g resu lts for every wave a n a ly z e d in c h a p te r seven.

(28)

C h a p te r 2

S ou rce P h y sic s

Before tac k lin g th e im aging p ro b le m , it would be p ru d e n t to consider th e phenom ena we expect to ob serv e via th e im aging process. T h e m a th e m a tic a l m ach in ery of p a s­ sive im aging req u ires sources: upon fu rth e r e x a m in atio n , however, th e definition o f a “source” proves to be an elusive m a tte r . T his is not an issue in e le c tro m ag n e tic rad io m ­ et ry or sp e ctro sc o p y , w here r a d ia n t sources have been used for m ore th a n a century and are quite well u n d e rsto o d . In c o n tra s t, th e acoustical rad ia tio n from breaking waves has a ttr a c te d significant research in te rest only w ithin th e last decad e. F u rth erm o re, th e use of a c o u stic a l ra d ia tio n to s tu d y th e breaking process itself is even m ore recent. .A.nd while th e acou stical p ro p e rtie s of th e breaking region are a n tic ip a te d to be related to the h y d ro d y n am ics of th e b rea k in g process, this relatio n sh ip is still, d esp ite a flurry o f recent in v e stig a tio n , not y e t fully und ersto o d .

T his th e re fo re m otivates a b rie f review of the sound g e n eratio n m echanism of b rea k ­ ing waves. T h e rôle of b u b b les is addressed in m ore d e ta il in section 2 .1, including an e x am in atio n o f “collective o sc illa tio n s” . In section 2 .2, th e key fea tu re s o f th e breaking process t h a t a p p ly to sound g e n e ra tio n a re reviewed. In section 2.3, th e essential fea­ tu res of b re a k in g waves and su b su rfa ce bubbles are com bined to p ro d u c e a definitive pictu re of th e so u rce physics — th a t is, th e principle n a tu r e of th e p h en o m e n a to be im aged.

(29)

2.1

B u b b les

Bubbles play an essen tial rôle in virtually ev e ry aspect of sea su rfa c e sound: th e re fo re , any c o n sid eratio n of sources m u st necessarily involve a c o n sid e ratio n o f th e b u b b les them selves.

An individual bu b b le a c ts like a simple m ass-sp rin g oscillator, w ith th e highly co m ­ pressible in te rn a l gas a c tin g like th e spring, a n d th e fluid e x te rn a l to th e b u b b le p ro ­ viding th e m ass. If som ehow “stru c k " by a n im pulsive force, th e bubble will s e ttle into free decaying radial (o r volum e) oscillatio n s a t a resonant frequency /o inversely related to its quiescent ra d iu s Rq. A rguing t h a t th e internal gas behaves a d ia b a tic a lly .

M innaert [99] derived th e relatio n sh ip

^ ° " 2xiüoV

which is now generally know n as th e M in n a e rt form ula (L eig h to n [78]. section 3 .2 ). Here. 7 is th e po ly tro p ic gas c o n s ta n t. For o rd in a ry w ater (p = 1000 k g /m ^ ) a n d a tm o sp h eric pressure P,o, th is e q u a tio n specifies th e relationship show n in figure 2.1.

T he d am p in g forces t h a t cause bubble o scillations to decay w ere originally inves­ tig a te d by Devin ([33]) w ho show ed the d a m p in g coefficient to b e th e sum o f viscous d issip atio n , acoustic ra d ia tio n resistance a n d th e rm a l dissipation. E x p e rim en ta l o b s e r­ vations by S tra sb e rg [125] a n d UpdegrafF [134] su ggested decay c o n s ta n ts o f o rd e r o f a t m ost tens o f m illiseconds for th e sizes of b u b bles ordinarily e n c o u n te re d u n der n a tu r a l conditions.

W hile bubbles v ib ra tin g in th e radial o scillatio n m ode — w hich is th e d o m in a n t ra d ia tin g m ode — can th e re fo re be identified a s sim ple m onopole sources o f d a m p e d outgoing spherical harm o n ic so u n d waves, it is a lso relevant to c o n sid er how su ch b u b ­ bles are in itially forced. T w o significant ways a r e discussed in sectio n s 2.1.1 a n d 2.1.2 below. .A rela te d problem is th e acoustical in te ra c tio n of m u ltip le bubbles in. e .g .. a sw arm . In th is case, th e b u b b les no longer o sc illa te independently. T h is issue c o n s tra in s th e choice o f analysis b a n d a n d is therefore o f d ire c t concern to th is w ork, a n d so is

(30)

N X >. Ü

c

Œ) 3

cr

0

c

CB

c

o

« 0 q u i e s c e n t b u b b le r a d iu s [m]

Fi g u r e 2.1: T h e M in n a e rt re la tio n sh ip . R esonant frequency v ersus b u b b le ra d iu s. 1 a tm o sp h e re , n o m in a l den sity of w a te r.

tre a te d in m ore d e ta il in section 2 .1.3.

2.1.1

B irth in g W ails

M in n aert and la te r S tra s b e rg p rovided e x p e rim e n tal c o n firm atio n o f E q .(2 .1 ) by lis te n ­ ing to the so u n d p ro d u ce d by o sc illa tin g bubbles. M oreover, by u sin g a c o m b in a tio n o f high-speed p h o to g ra p h y a n d a c o u stic m ea su rem e n ts. S tra s b e rg w as a b le to infer t h a t , a t th e m om ent o f pinch-off (i.e., w h en th e bubble d e ta c h e s from th e in fla tio n nozzle to becom e an in d e p e n d e n t b o d y ), uneven surface forces over th e b u b b le w all a re su d d e n ly freed to induce a variety of v ib ra tio n a l m odes. He th e n show ed t h a t th e z e ro th -o rd e r o r radial m ode w as th e m ost efficient, so th a t th e b u b b le will e sse n tia lly “rin g " a t th e frequency p re d ic te d by E q.(2.1).

T h e a c o u stic s ig n a tu re o f a new ly -created (o r “n e w b o rn ") b u b b le is now g e n e ra lly know n as the “b irth in g wail" (C ru m [30]).

(31)

governed by th e in h om ogeneous wave e q u a tio n I

V ‘ p { T . t ) - = f ( t ) é { T - T o ) (2 .2 )

w here cq is th e p h a se speed in the s u rro u n d in g fluid. E q .(2 .2 ) is valid e v e ry w h e re excep t w ithin so m e sm all neighborhood o f ro (i.e .. except w ith in the b u b b le its e lf). T h e inhom ogeneous te rm , w hich includes t h e so u rce “a m p litu d e " / ( ( ) . re p re s e n ts th e forcing due to th e bubble.

2.1.2

A d ult Scream s

.A.ccording to L ight hill ([80]. section 1.10), th e u n s te a d y p ressu re flu c tu atio n s c h a ra c ­ te ristic of tu rb u le n c e are also sources o f s o u n d . T h ese flu c tu a tio n s a p p e a r as a n in h o ­ m ogeneous te rm in th e governing wave e q u a tio n a n d are m a th e m a tic a lly e q u iv a le n t to a volum e d is tr ib u tio n of q u a d ru p o le so u rc e s. C rig h to n an d Ffowcs-VVUliams [27] su g ­ g e ste d th a t th e presen ce o f bubbles can "‘e n h a n c e " (i.e., am p lify ) th e ra d ia te d so u n d : th e q u a d ru p o le m echanism is in h erently in efficient, b u t m ight couple energy in to th e bu b b les, which th e n ra d ia te using the m o re efficient m o n o p o lar m ode. T h e o re tic a lly , th e bubbles could e n h a n ce th e tu rb u le n t p re s s u re a u to s p e c tru m by a factor of (c o /c e ff )"*. w here cq is th e s o u n d speed in th e pure liq u id a n d Cgg is th e effective or “b u lk " so u n d sp eed in th e b u b b ly tw o -phase flow (see se c tio n 2 .1 .3 ). As an ex am p le, a 1% volum e

fractio n of air (i.e ., a void fractio n of 1%) w o u ld am plify th e p re s s u re a u to s p e c tr u m by •50 dB .

In v estig a to rs (K o rm a n . Roy and C ru m [71], H ughes an d K o rm a n [61], K o rm a n a n d C ru m [70], K olaini a n d G oum ilevski [6 6], K o lain i a n d H obbs [67], Kolaini, p riv a te co m ­ m u n ic a tio n ) h ave so u g h t to verify this p re d ic tio n by using s u b m e rg e d jets in la b o r a to r y ta n k s . .A h y d ro p h o n e m easures th e p ressu re a u to s p e c tr u m r a d ia te d from th e j e t region before a n d a fte r bub b les a re released in to t h e flow. R esults in d ee d in dicate t h a t th e r a d ia te d a u to s p e c tr u m is am plified by b u b b le s , a lth o u g h not to th e ex ten t e x p e c te d .

(32)

" a d u lt" , b u b b le s, w hich have existed long en o u g h for th e ir b irth in g wails to d ie a w ay ( requiring a t m o st ten s of m illiseconds), m ay be stim u la te d in to re-em ission by t h e local pressure flu c tu a tio n s c h a ra c te ristic of a tu rb u le n t flow. C ru m [30] has te rm e d th e s e acoustic s ig n a tu re s "ad u lt sc re a m s". T h e r a d ia te d acoustic field p ( r . t ) of a tu r b u le n t tw o-phase flow is th e n governed by [49]

V ~ p { r . t ) j ^ ^ p ( r . t ) = - m ( r . t ) — d { r . t ) — - — ( 2. 3)

eg o t - a x i d x j

T he in h o m o g en eo u s term s a re : m (r. t). th e m o nopole sources, rep resen tin g th e b u b b le s . th e d ip o le sources, a n d d ^ T , , j / d x i d x j . th e q u a d ru p o le te rm , involving th e excess m o m en tu m flux te n so r r ,.j. T h e m onopole so u rces, how ever, overw helm the d ip o le a n d q u ad ru p o le so u rc e s, so th a t th e equation governing the aco u stic field is e sse n tia lly th e sam e as t h a t in section 2.1.1.

2.1.3

G an g R um bles (C ollective O scillation s)

W hile a th e o ry involving th e " b irth in g wails" o f individually re so n a tin g n e w ly -c re a te d bubbles seem s to account satisfacto rily for th e so u n d g e n e ra te d by breaking w aves a t frequencies a b o v e a b o u t 400 Hz. it appears in a d e q u a te a t lower frequencies: m e a s u re ­ m ents of th e rad ii o f bubbles produced in spilling flows in la b o ra to ry tan k s, u n d e r g e n tle w aterfalls a n d a t-s e a generally do not show evidence of bubbles w ith radii large e n o u g h to possess a re s o n a n t frequency below a b o u t 400 H z .' T w o possibilities exist:

• L arge b u b b les of these sizes are in fact c re a te d du rin g e n tra in m e n t but have th u s far ev ad ed detectio n :

• Som e a lte rn a tiv e m echanism is g e n eratin g so u n d below a b o u t 400 Hz.

T h e first p ossibility has largely been d isc o u n te d because th e rise tim es o f la rg e bubbles a re q u ite s h o rt, im plying th a t they w ould not be su b m e rg e d long e n o u g h to

b u b b le w ith a re s o n a n t fre q u e n c y n ear 200 Hz, for e x a m p le , w ould h a v t by E q .(2 .1 ) a r a d i u s o f 16 m m : n e a r 100 H z, a ra d iu s o f 32 m m .

(33)

m ake a m ajo r c o n trib u tio n to the ra d ia te d sound. In a d d itio n , b ro a d b a n d m e a su re m e n ts by HoUett [60] o f a c o u stic a u to s p e c tra ra d ia te d from break in g w aves show t h a t th e low-frequency c o n trib u tio n reaches its ma_ximum la te in th e dev elo p m en t s ta g e o f th e break er, and th is to o is inconsistent w ith th e s h o rt e x p e c te d lifespans of larg e b u b b les.

.A. popular th e o ry for an a lte rn a tiv e m echanism involves collective o s c illa tio n s of th e entrained bu b b le cloud. In this th eo ry , the in d iv id u al bubbles in a c o m p a c t region o f high bubble d e n sity oscillate in -p h ase (i.e.. “collectively" I. b u t a t a m uch lower

frequency then th e n a tu r a l resonant frequencies o f th e individual b u b b les. In th e sp irit o f earlier n o m en c latu re, th is acoustical sig n a tu re m ight be term ed a “g a n g ru m b le ".

W hile this th e o ry seem s to a c co u n t for a n u m b er o f features o b se rv e d in low- frequency acoustic ra d ia tio n , it m akes th e identification o f th e “so u rc e " a bit m ore su b jectiv e. .And since th e prim ary g oal of a passive im aging sy ste m is to iden tify th e

source, it is p erh ap s w orthw hile to ex a m in e the problem o f collective o scillatio n s a bit

m ore closely.

T h e b u b b l e c o l u m n e x p e r i m e n t Yoon et al. [143] p erform ed th e p a ra d ig m a tic collective oscillation e x p e rim e n t: a re g u la r colum n o f b ubbles was g e n e ra te d in a w a te r ta n k by pum ping a ir th ro u g h a n u m b er o f hollow needles a t th e b o tto m o f th e ta n k , as show n in figure 2.2. T h e radii of th e individual bubbles were m e a su re d o p tically . .A sensor located in th e bubble-free fluid o u tsid e th e bu b b le colum n m e a su re d a ra d ia tin g sound a u to s p e c tru m w ith resonances well below th o se o f th e in d iv id u al bub b les — th e colum n was “ru m b lin g " . .Analysis show ed th a t th e ru m b le resonances c o rre sp o n d e d to th e eigenm odes o f an aco u stic s ta n d in g wave b o u n d ed by (i.e.. tra p p e d in) th e a p p ro x ­ im a te geom etric volum e o f th e bubble colum n. Indeed, w hen m oving a n in te rn a l sensor vertically along th e axis o f th e colum n. Yoon et al. w ere able to p ro d u c e th e definitive p a tte rn s of acoustic s ta n d in g wave m odes a t the ru m b le frequencies.

W a v e p r o p a g a t i o n i n a b u b b l y m e d i u m Since th e bubbles a re ra n d o m ly lo c a te d in th e bubble cloud, th e behavior o f th e acoustic wave in th e b u b b ly region m ay be

(34)

— internal p o in t % •o , J O oo OO 3 lll llll llll ll field point

Fi gL'R E 2.2: T h e b u b b le colum n e x p erim en t. B ubbles a re released from a n a rr a y o f

hollow needles show n a t th e b o tto m c e n te r o f th e ta n k . T h e so u n d speed in th e ta n k is Cq. T h e e x p e rim e n t is m o n ito re d with tw o h y d ro p h o n es, o n e o u tsid e th e b u b b le colum n m e a su rin g th e ra d ia tin g a c o u stic field, a n d a n o th e r inside th e colum n for s a m p lin g th e in te rn a l aco u stic field.

%

m

: ; :

F i g u r e 2.3: P ro p a g a tio n o f a plane wave in to a sw arm o f bu b b les. Left: a n in cid en t

plane wave p ,. rep re sen te d by rays, p ro p a g a te s to th e rig h t th ro u g h a fluid w ith sound sp eed Cq. R ight: th e c o h e re n t wave (p) inside th e b u b b ly fluid has th e s a m e ra d ia n frequency b u t a different w avelength th a n th e incident p la n e w ave p,.

(35)

viewed as wave p ro p a g a tio n in a ra n d o m m edium . C o n sid e r th e p ro p a g a tio n o f a plane wave from a bubble-free fluid halfspace in to a sw arm o f b u b b le s, as show n in figure 2.3. Each bubble wUl s c a tte r a p o rtio n o f th e acoustic field in cid en t on it. T h e form al solution for th e aco u stic field p ( r) a t a p o in t r is (M orse a n d In g a rd [103], section S.2)

p(r) = p . ( r )- r ^ y y ( p(ro)Vo5(ro. r) - 5 (ro, r) Vop( ro)) • dSo (2.4)

w here 5 , is th e surface of th e b u b b le, i = 1 .. ..V. T h is e q u a tio n is valid ev ery w h ere, in th e p u re fluid o r bu b b ly fluid, e x c e p t inside or on th e su rface o f a b u b b le. T h e te rm <7( r o .r ) is the G reen fu nction sa tisfy in g th e asso c ia te d inhom ogeneous e q u a tio n

V^g(To. T) -t- Argg(ro.r) = - ^ ( r o - r)

a n d the Som m erfeld ra d ia tio n b o u n d a ry condition a t infinity. T h e te rm fcQ = ~j/cq.

Eq.(2.4) is an inhom ogeneous in te g ra l equation; th e inhom ogeneous te rm is pi ( r ) .

rep resen tin g a field lau n ch ed by a so u rc e lo cated a t n e g a tiv e infinity. C o n sid e rin g only th e bubbly region. E q .(2 .4 ) c o rre sp o n d s to th e problem o f solving for th e field o beying th e hom ogeneous H elm holtz e q u a tio n

V^p( r ) 4- k^pi r ) = 0 (2.3)

w ith prescribed b o u n d a ry c o n d itio n s on th e surface o f e a ch bubble.

For th e lim iting case w here th e b u b b les can be c o n sid ered isotropic p o in t s c a tte re rs . a n d for in terb u b b le d ista n c es m uch less th a n an aco u stic w avelength. F oldy [50] showed t h a t th e ensem ble average o f th e su m o f sc a tte re d c o n trib u tio n s from a la rg e n u m b e r of ran d o m ly located s c a tte rs yields a “c o h e re n t wave" ( p (r)) in th e bubbly region o beying

V 2 (p { r))4 -fc 2 ^ (p (r)) = 0 (2.6 )

w here k ^ ^ is th e effective w av en u m b er given by k^g = ■ U sing term in o lo g y

from M orse an d In g a rd [103]. Peff is th e effective d e n sity a n d is th e effective com ­ pressibility of th e bubbly fluid. T h e se a re essentially local p ro p ertie s a v e ra g e d over th e

(36)

e n tire bu b b le sw a rm . For tw o -p h ase flows w ith a void fra c tio n o f ab o u t L% o r less.

peff % pq. th e d en sity o f th e p u re fluid, b u t K^ff

kq-T h e physical p ic tu re is as follows: a d e te rm in istic wave incident on a ran d o m b u b b ly m edium s c a tte rs so u n d from every b u b b le. T h e bubbles a re n o t them selves p r im a r y sources o f so u n d , b u t secondary sources: th e s c a tte re d ra d ia tio n is therefore se c o n d a ry r a d ia tio n . T hese s c a tte re d w aves in te rfe re d e stru c tiv e ly w ith in th e random regim e in all d ire c tio n s except one: in th e fo rw ard d ire c tio n , th ey in terfere c o n stru ctiv ely a n d sum to p ro d u c e a sto c h a s tic w ave p {r). W h en a p p ro p ria te ly av erag ed . (p (r)) a p p e a rs to be a wave w ith th e s a m e fre q u e n c y as th e d e te rm in istic incid en t w ave, b u t a low er p h ase sp eed, a n d th ere fo re a s h o rte r w avelength.

N ote t h a t n e ith e r E q .(2 .5 ) nor E q .(2 .6 ) have inhom ogeneous te rm s — th e re a re no sources in th e bu b b ly region.

W hile th e aco u stic field in th e b u bble sw arm is a c tu a lly a sto c h a s tic wave, in p ra c tic e th e finite surface a re a o f an a c tu a l h y d ro p h o n e provides a degree o f sp a tia l a v e ra g in g th a t yields an a p p ro x im a te m ea su re Pmeasuredlf ) o f th e co h eren t field (p (r)).

T h e e flfe c tiv e s o u n d s p e e d T h e bulk o r effective so u n d speed properties o f a two- phase flow were d escrib ed by W ood [140]. w ho show ed th a t th e presence of th e b u b bles induces a significant increase in th e “bulk co m p ressib ility " over th e co m p ressibility of th e p u re fluid. U sing a sim ple iso th e rm a l re la tio n for th e bulk d e n sity p^ff, he d eriv ed th e rela tio n

1 d’Pfff ( 1 — d , Pod( 1 - d ) , ,

w here d is th e I'oid frac tion, th e volum e fra c tio n occupied by th e gas a n d c , is th e so u n d sp eed in th e gas. T h is is now know n as W o o d 's e q u a tio n . As an e x a m p le, th e effective so u n d sp eed for various void fra c tio n s is show n is figure 2.4 for one a tm o s p h e re , s ta n d a r d se aw a te r density, a n d cq = 1-500 m s~U T h e effective so u n d speed can clearly

be m uch less th a n th a t in th e p u re fluid — in fa c t, less th a n th e sound speed in th e p ure g as too!

(37)

(O TJ 0 m Q. U1 T3 c 3 O CO

1600

1400

1200

1000

800

600

400

200

v oid fra c tio n

Fi g u r e 2.4: E ffe c tiv e so u n d s p e e d ( W o o d 's e q u a tio n ) .

T his effective so u n d speed is significant when c o n sid e rin g p ro p a g a tio n c o n d itio n s in th e ocean because void fractions can range from very sm all ( 1 0“ ^ - 1 0“ *. see ta b le 2.1) in th e background b u b b le layer to q u ite high (up to 100% . L am arre a n d M elville [73. 74]) in th e core o f b rea k in g waves.

Since in p rac tic e th ere is little difference betw een ( p (r )) and Pmeasuredf r)- it is cus­ to m a ry when d ealin g w ith problem s o f p ro p a g a tio n in a bubbly fluid to consider th e "analogous sound speed pro b lem ". In th e analo g p ro b le m , th e tw o -p h a se flow is re­ placed by a pure fluid possessing th e bulk so u n d sp e ed as in figure 2.5. T his sim plifies th e tr e a tm e n t to th a t o f a first-year physics p roblem in w ave p ro p a g a tio n .

S o w h e r e ’s t h e s o u r c e ? T he bubble colum n e x p e rirn e n t can th e re fo re be an alyzed by considering th e so u n d speed a n alo g problem , a s in figure 2.6 : th is is th e m eth o d used by Yoon et al. T h e y solved for th e acoustic field s u b je c t to

V * p (r ) -t- kopi r) = 0 e x t e r n a l fluid ( 2 .8 a )

a n d

Referenties

GERELATEERDE DOCUMENTEN

Depart- ing from a strange metal normal state, holographic “nat- uralness” seems to insist that the spontaneous symmetry breaking at low temperature should necessarily give rise

For example, they can be used to estimate the range of scales at which wave breaking occurs in the wave spectrum and thus the rate of energy which is dissipated due to

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

Uptake of ARS by COS-7 Cells Cultured on Multilayers In this study, multilayered thin films of (ChS+ARS#BA-PAA) are investigated as a drug delivery system with ARS as a re-

In dit onderzoek werd de bufferende werking van intrateam vertrouwen onderzocht op de relatie tussen relationele conflicten en enerzijds teamprestaties en anderzijds tevredenheid

De precieze omvang en inhoud van deze revolutie is omstreden, maar in grote lijnen kunnen we zeggen dat het gaat om een ontwikkeling van een zeker historisch

The World Economic Forum (WEF) (2017) Inclusive Development Index (IDI) Report further highlights that emerging markets often find it difficult to counter slow

Ten spyte hiervan, lê die waarde van die dagboek in die weergee van ‘n familie- verhaal wat meer as net Anna Barry en haar familie se gebeure, persepsies en emosies tydens en na