• No results found

Studies of the ocean-atmosphere system using a coupled climate model

N/A
N/A
Protected

Academic year: 2021

Share "Studies of the ocean-atmosphere system using a coupled climate model"

Copied!
185
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

INFORMATION TO USERS

This manuscript has been reproduced from the microfihn master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type o f computer printer.

The quality o f this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back o f the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI

A Bell & Howell Information Company

300 North Zed} Road, Ann Aifoor MI 48106-1346 USA 313/761-4700 800/521-0600

(2)
(3)

Studies of the Ocean-Atmosphere System Using a Coupled

Climate Model

by

A u g u stu s Francis F anning

B.Sc. (H onours). M em orial L’niversity of N ew fo u n d lan d . 1991 -M.Sc.. .Memorial U niversity of N ew fo u n d lan d . 1993 .A D issertation S u b m i t t e d in P a r tia l Fulfillment of th e

R e q u ire m e n ts for th e D egree of D O C T O R O F P H IL O S O P H Y

in th e School of E a r t h an d O cean Sciences We acc ep t this d is s e rta tio n as conform ing

to th e requ ire d s ta n d a r d

Dr. .A.J. W eaver. Supervisor (School of E a r th a n d O cean Sciences)

---Dr. 1. Fung. D e p a rtm e n ta l M e m b e r (School of E a r t h a n d O cean Sciences)

Dr. R. Lueck. D e p a r tm e n ta l M e m b e r (School of E a r t h a n d O cean Sciences)

Dr. C..J.R. G a r r e t t . O u t s i d e A W s b e r (Physics D e p a rtm e n tj

Dr. E. S ^ x a c h ^ E x t ë ^ a l E x a m in e r (U n iv ersity of W ash in g to n ) _______________________________

© .Augustus Francis F anning. 1997 U n iversity of V ictoria

.All rig h ts reserved. T h is d is s e rta tio n m ay n ot be re p ro d u c e d in w hole or in p a r t , by photo c o p y in g or o th e r m e a n s, w ith o u t th e perm issio n of t h e au th o r.

(4)

.ABSTR.ACT

.An idealized a tm o s p h e r ic m odel consisting of en erg y a n d m o is tu re c o n s e rv a tio n

eequations is dev elo p ed for studie s of th e o c e a n 's role in clim a te . T e s tin g u n d e r

fi.xed o c e a n ic c o n d itio n s yie lds a clim ato lo g y c o m p a r a b le w ith direct o b s e rv a tio n s,

as does th e case w hen th e in t e r p e n ta d a l ( 19.55-59: 1970-74) se a surface t e m p e r a t u r e

fields a r e ap p lie d .

T h e a t m o s p h e r ic m o d e l is th e n coupled to an o c ea n g e n e ra l c irc u la tio n m ode l

as well as a t h e r m o d y n a m i c ice m odel w ith o u t t h e use o f Hux a d j u s t m e n t s . W h e n

config u re d for a global realistic geom etry, th e m o d e l fa ith fu lly rep re s e n ts d e e p wa­

t e r f o r m a tio n in th e .Atlantic a n d S o u th e r n O ceans w ith upw elling th r o u g h o u t th e

Pacific a n d I n d ia n O ceans. T h e m odel is th e n utiliz ed to in v e stig a te t h e influence

of m e l t w a t e r disch arg e on t h e s ta b ility of N o r th .Atlantic D eep W a te r (N.ADW )

p r o d u c ti o n a n d th e Y ounger Dryas (Y D ~ 14ka). R e s u lts suggest p re -Y D m e ltw a ­

t e r is c a p a b le of d im in is h in g N.ADW to t h e point w here d iv e rsio n of m e l t w a t e r from t h e G u lf of M exico to t h e S t. Law rence c o m p le te ly in h i b its its p r o d u c tio n . T h e

c o u p le d m o d e l a p p e a rs to b e stab le in this s ta t e , e q u iv a le n t to th e " S o u th e r n S ink­ ing" e q u i lib r i u m identified in previous m odels. Inclusion of th e wind s t r e s s / s p e e d

(5)

feedback, however, has a d r a m a t i c effect c a u s in g a r e e s ta b lis h m e n t of N.ADW p ro­

d uction.

T h e m odel is th e n configured in a four basin -tw o h e m is p h e re s e c to r geom etry,

c rudely re p re s e n ta tiv e of t h e global oceans. T w o identically f o rm u la te d m odels

(one of which em ploys d ux a d ju s t m e n t s ) a r e th e n p e r tu r b e d to assess th e role

of dux a d j u s t m e n t s on th e o c e a n 's response to a "global w arm in g -lik e" scenario.

Signidcant global a n d b asin-scale differences e x ist betw een th e cases which is linked

to th e ind u e n ce of th e s a lt - d u x a d j u s t m e n t on th e o v e rtu r n in g cells w ithin th e

m odel .Atlantic a n d S o u th e rn O ceans. R esu lts f u r th e r suggest t h a t m in im izin g th e

coupling shock prior to a p p ly in g th e p e r t u r b a t i o n leads to re s u lts slightly closer

betw een th e m odels, a lth o u g h large differences still persist.

T h e m odel is th e n c o n d g u r e d for a highly idealized 60° s e c to r g e o m e try to

s tu d y th e in d u e n ce of h o riz o n ta l resolution a n d p a r a m e te riz e d e d d y processes on

polew ard h eat tr a n s p o r t. .As resolution increases, th e to tal o c ea n ic h e a t tr a n s p o r t

s tead ily increases. T his re s u lt is also ev id e n c e d in a parallel series of ocean-only

m odel studie s driv en by r e s to r in g b o u n d a ry co n d itio n s. In each case t h e increase in

h e a t tr a n s p o rt is associated w ith th e ste a d y c u rre n ts . In p a r ti c u la r t h e baroclinie

gyre tr a n s p o r t (our m ode l a n a lo g of th e t r a n s p o r t associated w ith th e "W a rm

Core" je t region of th e G u lf S tr e a m ) increases by a factor of -5 b e tw e e n coarsest

a n d dnest resolution.

(6)

is th e rm a ll y driven by a n advective-convective m e c h a n is m a n d linked to th e value

of th e h orizontal dilfusivity em ployed. Increasing th e difFusivity in th e high reso­

lution cases is enough to destro y t h e variability, while decre asin g t h e diffusivity in

th e m o d e ra te ly coarse resolution case is enough to in d u c e th e variability. T h e s e

results p o in t to th e im p o r ta n c e of highe r resolution in t h e oceanic c o m p o n e n t of

cu rre n t c lim a te m odels, yielding e n h a n c e d poleward h e a t tr a n s p o r ts a n d reveal­

ing th e ex isten ce of richer d ecadal-scale variability in m ode ls which re q u ire less

p a r a m e te r iz e d viscosity a n d diffusion.

E x am in ers:

Dr. .\..J. W eaver. S u p ervisor (School of E a r t h and O c e a n Sciences)

---Dr. I. F ung, D e p a r tm e n ta l M em b er (School of E a rth a n d O cean Sciences)

Dr. R. Lueck. D e p a rtm e n ta l M e m b e r (School of E a r t h a n d Ocean Sciences)

Dr. C..J.R. G a r r e ^ M e m b e r (P h y sics D e p a r tm e n t)

Dr. "«E T aarachikÆ xterind E x a m in e r (U n iv ersity of W a s h in g to n )

(7)

C o n te n ts

A b stract

ü

List o f Tables

viii

List o f Figures

ix

A ckn ow led gem ents

xii

1 In trod uction

1

2 M odeling the C lim ate S y stem

9

2.1 T h e A tm o s p h e ric E n erg y M oisture B a la n c e M o d e l ... 9

2.1.1 M odel P a r a m e te r s ... 13

2.1.2 L 'nce rtain ty in M odel P a r a m e t e r s ... 19

2.2 T h e Ice M o d e l ... 20

2.3 T h e O cean G eneral C irc u la tio n M odel ... 22

3 T esting U nder F ixed O ceanic C on ditions

26

3.1 P resent D ay C l i m a t o l o g y ... 26

3.2 S ensitivity to Model P a r a m e t e r s ... 37

3.3 In te ra n n u a l V a r i a b i l i t y ... 40

(8)

4 C oupling to an O cean G eneral C irculation M od el

51

5 S e n sitiv ity to N orth A tlantic Freshw ater P ertu rb ation s

61

Ô.1 S e n s itiv ity to M e ltw a te r D i s c h a r g e s ... 65

5.2 C o m p a r is o n of M odeled C li m a t ic Signal to t h e Y o unger D ryas . . . 70

5.3 R e e s t a b lis h m e n t of th e N o rth .Atlantic C o n v e y o r ... 77

5.4 D i s c u s s i o n ... 80

6 On th e R ole o f F lu x A d ju stm en ts in C oupled M od el P ertu rb ation

E xp erim en ts

84

6.1 M o d e ls ’ D e s c rip tio n an d E q u i l i b r i u m ... 85

6.2 C li m a t e P e r t u r b a t i o n E x p e r i m e n t s ... 99

6.3 D i s c u s s i o n ...108

7 A H orizontal R esolu tion and P a ra m eter S e n sitiv ity Study o f P o le ­

ward H eat Transport in the C ou p led M odel

112

7.1 M odel D escrip tio n a n d E x p e r i m e n t a l D escription ... 116

7.2 P o lew ard H eat T r a n s p o r t ... 121

7.2.1 Basic D e f i n i t i o n s ...121

7.2.2 T h e C o u p le d Model R e s p o n s e ... 122

7.2.3 C o m p a ris o n to C o x - B r y a n ...133

7.3 D i s c u s s i o n ... 137

8 T h erm ohalin e Variability: T h e E ffects of H orizontal R eso lu tio n

and D iffusion

141

8.1 D e c ad al-S cale V a r i a b i l i t y ... 143

8.2 D i s c u s s i o n ... 150

(9)

9 C onclusions

R eferences

(10)

2.1 S u m m a r y of .-Xtmospheric M odel P a r a m e t e r s ... 14

2.2 S u m m a r y of Ice M odel P a r a m e t e r s ... 21

3.1 S u m m a r y of M odel S e n s itiv ity E x p e rim e n ts ... 38

3.2 B asin M ean I n te r p e n ta d a l M odel F i e l d s ... 43

•5.1 Im posed R unoff by B a s i n ... 65

5.2 Inferred Cooling D uring th e Y ounger D ryas... 75

6.1 S u m m a r y of F lu x .Adjustm e n t M odel E x p e r i m e n t s ... 89

7.1 Resolution S tu d y E x p e r i m e n t s ... 120

7.2 R esolution E x p e r i m e n t s ' \ iscosity a n d D i f f u s i v i t y ... 120

(11)

L ist o f F ig u res

1.1 .Atlantic C o n v e y o r ... 2 1.2 M u ltip le E q u i l i b r i a ... 5 2.1 .A tm ospheric Diffusion ... 16 2.2 .A tm ospheric P a r a m e t e r s ... 16 2.3 D alton N u m b e r ... IS 3.1 L ev itu s' C lim a to lo g ic a l S S T ... 27

3.2 C lim a to lo g ic a l S urface .Air T e m p e r a t u r e ... 2S 3.3 C lim a to lo g ic a l Surface Specific H u m i d i t y ... 30

3.4 C lim a to lo g ic a l E v a p o ra tio n R a t e ... 32

3.5 C lim a to lo g ic a l P r e c ip ita tio n R a t e ... 33

3.6 C lim a to lo g ic a l F re s h w a te r F l u x ... 35

3.7 C lim a to lo g ic a l S urface H eat F l u x ... 36

3.S S u m m a r y of P a r a m e t e r S e n s itiv ity S t u d y ... 39

3.9 I n te r p e n t a d a l C lim ato lo g ic al C h a n g e ... 41

3.10 L e v itu s ’ I n te r p e n t a d a l SST C h a n g e ... 44

3.11 I n te r p e n t a d a l C lim ato lo g ic al C h a n g e (M arginal C a s e ) ... 46

3.12 I n te r p e n t a d a l C lim ato lo g ic al C h a n g e (U n a c c e p ta b le Case) ... 47

4.1 R ealistic G e o m e t r v M odel D o m a in ... 52

(12)

4.4 E M B M - O G C M Zonal T e m p e r a t u r e P r o f i l e s ... 57 4.5 E M B M - O G C M Zonal A t l a n t i c S a l i n i t y ... 58 4.6 E M B M - O G C M P o lew ard H e a t T r a n s p o r t ... 59 5.1 In ferred G r e e n la n d C li m a t e R e c o r d ... 62 5.2 M e lt w a t e r In tr o d u c tio n R e g i o n s ... 67 5.3 D eglacial M e ltw a te r E x p e r i m e n t s ... 68

5.4 T i m e E v o lu tio n of A tla n tic C o n v e y o r ... 69

5.5 Y D -like C l i m a t e S t a t e ... 72 5.6 M odeled Y D -like T e m p e r a t u r e C h a n g e ... 73 5.7 E s t i m a t e d W i n d Stress A n o m a l y ... 79 6.1 Idealized S e c to r G e o m e t r y ... 88 6.2 Non-flu.x A d ju s te d S S T ... 91 6.3 Non-flux A d ju s te d S S S ... 92 6.4 N on-flux A d ju s te d Zonal T e m p e r a t u r e ... 93 6.5 .Non-flu.x A d ju s te d Zonal S a l i n i t y ... 94

6.6 Non-flux .Adjusted .A.tlantic O v e r tu r n in g ... 96

6.7 .Non-flux A d ju s te d Pacific O v e r t u r n i n g ... 97 6.8 N on-flux A d ju s te d H eat T r a n s p o r t ... 98 6.9 F lux A d j u s t m e n t Fields ...100 6.10 A p p lie d R a d i a ti v e F orcing P e r t u r b a t i o n ... 101 6.11 T i m e D e p e n d a n t M odels’ R e s p o n s e ...103 6.12 N on-flux A d ju s te d A n o m a l y ... 105 6.13 F lu x V ersus Non-flux A d j u s t e d A n o m a l y ... 106 6.14 C o u p lin g S h o c k ...107 X

(13)

6.1-5 F lu x Versus N on-flux .\d ju s te d . A n o m a l i e s ...109

7.1 S olar Insolation a n d W ind Stress ... 117

:1 T o ta l H eat T r a n s p o r t Coupled Versus H a n e y ... 123

.2 C o n t i n u e d ... 124

.3 D ecom p o sitio n of H eat T r a n s p o r t s ... 126

.3 C o n t i n u e d ... 127

.3 C o n t i n u e d ... 128

.3 C o n t i n u e d ... 129

.4 T i m e M ean a n d V arying Heat T r a n s p o r t s ... 131

.4 C o n t i n u e d ... 132

.5 R e s to rin g P r o f i l e s ...134

.6 T o ta l H eat T r a n s p o r t ( R e s t o r i n g ) ...135

.7 B aroclinie G yre T r a n s p o r t ( R estoring) ... 136

.8 P ow er S p e c t ru m of K inetic Energy D e n s i t y ... 138

.9 T i m e V ariant H eat T ran sp o rt ( R e s t o r i n g ) ... 140

8.1 H igh a n d Low P h a s e of Decadal O s c i l l a t i o n ... 145

8.2 T i m e Series of K in e tic Energy D e n s i t y ...146

8.2 C o n t i n u e d ...147

8.3 S en s itiv ity to N o n lin e a r .-Vdvection T e r m s ...148

8.4 S en s itiv ity to D i f f u s i v i t y ... 148

(14)

This w ork has been carried o u t w ith su p p o rt from th e A tla n tic A c c o rd C a re e r D e­ v e lo p m e n t A w a rd 's p ro g ra m m e , an d o p e ra tin g g ra n ts a w a rd e d to .Andrew W eaver from X S E R C . .AES. CTCS. a n d th e XO.A.A S c rip p s -L a m o n t C o n s o r t i u m on t h e O cean 's R o le in C lim ate.

(15)

C h ap ter 1

In tr o d u c tio n

O n e of t h e fu n d a m e n ta l roles of t h e ocean in c l i m a t e is its a b ility t o s to r e and effectively t r a n s p o r t h e a t polew ard. T h e th e r m o h a l i n e c irc u la tio n ( T H C ) . driven by th e c o m p e tin g effects of h eat a n d fresh w a ter fluxes, is a n i m p o r t a n t c o m p o n e n t in h eat t r a n s p o r t from low to high la titu d e s . I n te n s e h ig h l a t i t u d e co o lin g and low la t i t u d e h e a tin g ac c e le ra te s a polew ard surface flow w ith high l a t i t u d e sinking in th e n o r th e r n N o r th .Atlantic, b ala n c e d by a d e e p r e t u r n flow o f cold dense w a te r at d e p t h - th e N o rth .Atlantic deep w a te r (N .A D W . see F ig u re 1.1). T h e n o r th w a r d surface flow t r a n s p o r ts w a rm w a te r to h ig h n o r t h e r n l a t i t u d e s , w arm in g t h e E u ro p e a n c o n tin e n t along its route.

Interestingly, since w a rm w aters a re less dense, s u c h a t r a n s p o r t s h o u ld act to d estro y th e o v e r tu r n i n g circ u latio n . F u r th e r m o re , for w aters n e a r 0 ° C . it is t h e salin ity which p r im a r ily d e te rm in e s its density. T h i s p re s e n ts a n o t h e r caveat, s u b p o la r la titu d e s a re regions of m o is tu r e converg e n ce in t h e a t m o s p h e r e (see Fig­ u re 1.1). w ith p r e c i p ita tio n exceeding e v a p o ra tio n , y e t t h e w aters o f t h e n o r th e r n N o rth .Atlantic are q u i t e saline (cf. 32.S psu (p r a c t ic a l s a li n ity u n its) in t h e Pacific versus 34.9 psu in t h e .Atlantic). T h is high l a t i t u d e A t l a n t i c s a li n ity is in part d u e to th e o v e rtu r n in g circ u la tio n t h e r e (a n d conv ersely its a b sen ce in t h e Pacific).

(16)

E V A P O R A T I O N

_ - 3 0N

cc

60S

Figure' L I. .Schematic of th e o v e r tu r n i n g c irc u la tio n in th e .\U a n tic . a n d of th e su rfa c e freshw ater flux, (from Held. 1993).

(17)

T h e h ig h e r sea surface te m p e r a t u r e s of th e A tla n tic favor s tro n g er e v a p o ra tio n at low la titu d e s , a n d t h e s h o rte r residence ti m e in regions of net p re c ip ita tio n are both consequences of th e T H C (W a rre n . 196:3). T h is p ic tu r e of a self-sustaining c irc u la tio n raises th e q u e s tio n as to w h e th e r a c l im a t e w ith o u t X.ADW fo rm a tio n (or in w hich it is i n t e r m i t t e n t ) m ight also be possible.

In a pioneering s tu d y . S to m m e l (1961) d e m o n s t r a t e d th e existence of a th e r ­ m o h a lin e circ u la tio n (in a two box m o d e l) w ith tw o s ta b le regimes of flow. T h e flow regim es ( n o r th e r n sinking, or s o u th e r n sinking) d e p e n d e d on w h e th e r heat loss or s a lin ity d o m i n a te d th e d ensity g ra d ie n t d riv in g th e circulation. B roecker ( I960) s p e c u la te d t h a t ra p id tra n s itio n s b etw ee n glacial m odes (observed in the c lim a te record) could be linked to th e r a t e of fo rm a tio n (or absence) of N.ADW. In effect, changes in N.A.DW p ro d u ctio n cou ld p ush t h e c lim a te s y ste m fro m one q u a s i-s ta b le m o d e of o p e r a tio n to a n o th e r. B ry an (1966) d e m o n s tr a te d t h a t m u l­ tiple ecpiilibria of th e th e rm o h a lin e c irc u la tio n could e x is t in a 2 h e m is p h e re , th re e d im en sio n al ocean general circulation m odel. He found t h a t a m odel w ith s y m m e t ­ ric forcing a b o u t th e e q u a t o r could easily s u s ta in a circ u la tio n with pole to pole o v e rtu rn in g , a n d deep w a te r form ation confined to o n ly one hem isphere. M a ro tz k e a n d W ille b ra n d (1991) fu rth e re d this s tu d y by c o n sid erin g a two basin, tw o h e m i­ sphere m o d e l (w ith in te rc h a n g e a b le . \ t l a n t i c a n d Pacific basins) linked by a cyclic, c irc u m p o la r circ u latio n in th e so u th e rn h e m is p h e re . T h e s e a u th o rs identified four sta b le e q u ilib ria (see F ig u re 1.2):

• C o n v e y o r Circulation (w ith deep sin k in g in t h e N o r th .Atlantic a n d upw elling in th e N o rth Pacific)

• Inverse C o n v e y o r ( th e opposite of th e presen t d a y conveyor.)

• N o r t h e r n S i n k in g (w ith deep sinking in th e n o r t h e r n h em is p h e re for b o th b asins)

(18)

etry, a n d o th e r m ode l p a r a m e te r s (e.g.. w ind s tre s s , im plied hydrological cycle ...) a n d were able to narrow M a ro tz k e an d W i lle b r a n d 's four e q u ilib ria to only two: e lim in a tin g th e N o rth e rn S inking an d th e Inv erse C onveyor sta te s .

E ach of the se th r e e d im e n s io n a l ocean m o d e l s tu d ie s have in c o rp o r a te d a m ix e d b o u n d a r y cond itio n for sp ecifying th e su rfa c e h e a t a n d salt fluxes. T h a t is. th e m o d e ls ' are initia lly s p u n up to eq u ilib riu m by r e s to rin g to specified surface t e m ­ p e r a t u r e s and salinities. T h e surface salt flux is t h e n diagnosed fro m th e e q u ilib ­ riu m s t a t e an d held fixed, w hile th e resto rin g b o u n d a r y cond itio n o n t e m p e r a t u r e is m a in ta in e d . U n d e r such b o u n d a r y co n d itio n s , t h e th e rm o h a lin e circ u la tio n is g en era lly near t h e s ta b ility tr a n s i tio n p o in t, allo w in g th e m odel to pass b etw een s ta b le a n d u n s ta b le regim es t h r o u g h only m o d e r a t e changes in t h e p rescrib e d fresh­ w a te r flux (B ry a n . 1986: W eaver a n d S ara c h ik . 1991b). Recent e x p e r im e n ts have s u g g ested th a t allowing for long wave r a d ia tiv e d a m p in g to space (Z hang et al. 1993). or th e inclusion of a tm o s p h e r ic heat t r a n s p o r t ( R a h m s t o r f a n d W illeb ra n d . 1995) g re a tly e n h a n c e s th e s ta b ility of th e th e r m o h a l i n e circ u la tio n This is also t h e case when t h e resto rin g tim e s c a le used in t h e sp in -u p p ro c e d u re , an d in th e m ix e d b o u n d a ry c o n d itio n is incre ased (P o w e r a n d K leem an . 1994: T z i p e r m a n et al. 1994: M ikolajew icz a n d M aier-R e im e r. 1994). T h is sta b iliz a tio n h as d raw n into q u e s tio n w h e th e r m u ltip le e q u ilib ria a n d h en c e tra n s itio n s b etw een these e q u ilib ­ ria (deca dal to m illenial tim e s c a le v ariability - see W eaver a n d H ughes. 1992) can exist in ocean m odels w hen d riv e n u n d e r m o r e realistic b o u n d a ry conditio n s. It h as also been sugg ested t h a t d e c a d a l scale v a ria b ility is in tim a te ly tie d to m o d e l resolu tio n , w ith th e possibility t h a t no v a r ia b ility w ould exist a t h ig h e r resolution ( W in t o n . 1996).

(19)

P A C IFIC A T L A N T IC

Kx

-. ■TTT rr r

F igure 1.2. SclicMiialic of tlic four tlicriuolialiue cq u ilih riiu u '.tates identified bv M arotzke a n d W i lle b r a n d (1991). Dashed arrows in d ic a te How a t d e p t h (re p r o ­ d u c e d frotn Held. 1993).

(20)

s im ilar to th e p resen t c lim a te (e q u ilib ria 1. F igure 1.2). w hile th e second s ta te has upw elling in b o th th e .Atlantic a n d Pacific (e q u ilib ria 4. F ig u re 1.2). T h e surface freshw a ter fiux differences b e tw e e n th e cases in d ic a te s a roughly 0.1 r n /y r freshening of th e n o r th e r n N o rth . \ t l a n t i c between th e tw o s ta te s (see F igure 21. M a n a b e a n d StoufFer. 1988). S tock e r a n d W right (1991) hav e also identified these s ta te s in a zonally av e ra g e d coupled o c e a n -a t m osphere m o d e l. T h e y in d ic a te th a t red u cin g t h e net salt fiux in th e N o rth .Atlantic by 0.03 Sv is enough to induce a t r a n s i tio n to th e S o u th e r n Sinking eq u ilib ria , an d t h a t on ce in duced it requires an increase of 0.36 Sv to re-establish t h e C o n v e y o r Circulation. Recently. R a h m s to r f ( 1995) h a s shown a s im ila r s en sitiv ity (0.06 Sv) in an idealized a t m o s p h e r ic model coupled t o a realistic geom etry , global o cean general circ u la tio n m o d e l (O G C M ).

Del w o rth et. al (1993) have also in d ic a te d th a t i n t e r m i t t e n t tra n s itio n s be­ tween t h e s tr e n g th of N.ADW p ro d u c tio n (decadal varia b ility ) can also exist in the model o f M a n a b e a n d StoufFer (1998). It is not clear, however, to w h a t extent th e v a ria b ility in th e s e studies is p re c o n d itio n e d by t h e h e a t a n d salt fiux fields em p lo y ed . In th e realistic g e o m etry cases, heat and salt a d j u s t m e n t fields (which are g e n e ra lly larger t h a n t h e prognostic fields) are recjuired to p revent c l im a t e drift (see F ig..A l. M a n a b e a n d StoufFer. 1988; W eaver and H ughes. 1996). T h e precip­ ita tio n s ch em e em p lo y e d by Stocker a n d W right (1991) is also e s s en tially a fiux a d j u s t m e n t . It is re a s o n a b le to ex p e c t t h a t these specified h e a t a n d sa lt fluxes (to­ g e th e r w ith th e a n n u a l m e a n fields) d e t e r m in e th e oceanic s ta t e . High frequency air-sea fluxes are th e n c a p a b le of p ro v id in g a stochastic c o m p o n e n t w hich can ex­ cite tr a n s i tio n s b e tw e e n e q u ilib riu m s ta t e s , leading to d e c a d a l scale v aria b ility (as in ea rlie r ocean only s tu d ie s - W eaver et al. 1991. 1993). S uch a n effect has also been d e m o n s t r a t e d in o c e a n only m o d e ls w hen driven u n d e r c o n s ta n t fiux forcing

(21)

( G r e a tb a tc h a n d Z hang, 1993: W in to n . 1996).

Given th e s e n s itiv ity o f t h e m o d e led th e rm o h a lin e circ u la tio n to t h e surface b o u n d a ry forcing e m p lo y e d , th e q u e s tio n n a tu ra lly arises w h e th e r m u l tip l e e q u i­ libria. or even d e c a d a l-m ille n ia l tim e s c a le variability can exist w hen full coupling of b oth th e heat an d fre s h w a te r duxes a r e em plo y ed in a m o d e l w ith o u t t h e use of flux a d ju s tm e n ts .

In th e present work we u tilize th e fact t h a t since th e tim e s c a le of a t m o s p h e r ic variability is generally s h o rt c o m p a re d to t h e oceanic tim escales of in te re s t (decadal- millenial) we a p p e a l to a s im p le e n e rg y -m o is tu re balance m odel for o u r a t m o s p h e r ic processes. We e x te n d t h e w ork of Z h a n g e t al (1993) a n d R a h m s t o r f a n d W ille­ b rand (1995) by in c lu d in g not only long wave radiative d a m p in g to s p a c e and diffusive a tm o s p h e ric h e a t tr a n s p o r t, b u t also surface long wave, sen sib le a n d la­ te n t heat fluxes: as well as a sim ple a p p r o x im a ti o n to th e hydrological cycle. Since th e tim escale of v a ria b ility of th e c r y o s p h e re lies between t h a t for t h e a t m o s p h e r e a n d ocean, a sim p le th e r m o d y n a m i c ice m odel (S em tner. 1976) (w hich includes heat in su lation a n d b rin e rejection) is also in c o rporated.

In C h a p t e r 2. th e c o u p le d e n e r g y - m o is tu re balance m odel ( E M B M ) is d ev el­ oped. a n d m odel p a r a m e t e r e s tim a tio n a n d u n c e rta in ty is discussed. T h e sim ple th e rm o d y n a m ic ice m o d e l w hich is e m p lo y e d is th e n detailed, along w ith a review of th e e q u a tio n s a n d a s s u m p ti o n s g o v e rn in g th e ocean general c irc u la tio n m odel. T h e a tm o s p h e ric m o d e l is t h e n te sted by specifying th e oceanic s t a t e (as c lim a ­ tological or in t e r p e n ta d a l (1955-59: 1970-74) sea surface t e m p e r a t u r e fields) a n d a discussion of th e c lim a to lo g y (or in fe rre d c lim a te change) is p re s e n te d a n d con­ tra s te d against d irect o b serv atio n s. T h e e n erg y -m o istu re b ala n c e m o d e l is th e n coupled to an ocean g e n e ra l circ u latio n m o d e l - th e G eophysical F lu id D y n a m ic s L ab o ra to ry (G F D L ) M o d u la r O cean M o d el ( M O M l . l . see Pacanovvski e t al.. 1993) as well as th e t h e r m o d y n a m i c ice m odel ( C h a p t e r 4). .A.s a s trin g e n t t e s t of th e

(22)

tic a l eq u ilib riu m s t a t e is th e n c o m p a r e d against o b serv atio n al e s t i m a t e s of t r a c e r q u a n titie s , as well as m e rid io n a l tr a n s p o r t rate s a n d polew ard h e a t t r a n s p o r ts . B eginning from th is c lim a te s t a t e ( C h a p t e r ô) a series of fre sh w a ter p e r t u r b a t i o n e x p e r im e n ts are carried out to in v e s tig a te th e possible influence of th e d e m is e of t h e L a u re n tid e ice sheet on tr ig g e rin g t h e Y ounger D ryas (Y D ) cold ev en t. T h e m o d e led Y D -like c lim a te s t a t e is th e n c o m p a re d to e x istin g p a le o re c o n s tru c tio n s of t h e ^ D clim a te , a n d m e c h a n is m s re g a rd in g th e tr a n s i tio n to th e p re s e n t H olocene a r e discussed. T h e m odel is t h e n configured in a highly idealized s e c to r g e o m e tr y ( cru d ely r e p re s e n ta tiv e of th e g lobal o c ea n s) to s t u d y t h e role of flux a d j u s t m e n t s in co u p led m odel p e r tu r b a tio n e x p e r i m e n t s ( C h a p t e r 6). .A c o m p a ris o n b etw ee n flux a d j u s t e d a n d non-flux a d j u s t e d m o d e ls driven by th e s a m e forcing p e r t u r b a t i o n is c a rr ie d out a n d c o n tra s ts a re linked to th e flux a d j u s t m e n t s e m p lo y e d . T h e m o d e l is th e n f u rth e r simplified ( C h a p t e r 7) to a single b asin in o rd er to in v e stig a te th e role of horizontal resolution a n d p a ra m e te riz e d d is s ip a tio n on t h e m o d e led p o le­ w a rd heat t r a n s p o r t. T h e p o le w a rd h e a t tr a n s p o r t is s u b s e q u e n tly d e c o m p o se d in to its various c o m p o n e n ts a n d c o n t r a s t e d against a series of o cea n -o n ly m o d e l s im u la tio n s. Finally, this s a m e m o d e l configuration is used to in v e s tig a te w h e th e r th e rm o h a lin e variability can still exist in a fully co u p le d m odel (w h ich does not e m p lo y fiux a d ju s t m e n t s ) a n d d o c u m e n t th e im p o r ta n c e of reso lu tio n a n d diffusion in allowing a n d m odifying th is variability.

(23)

C h ap ter 2

M o d e lin g th e C lim a te S y s te m

2.1

T h e A t m o s p h e r ic E n e r g y M o is t u r e B a la n c e

M o d e l

T h e e n e r g y - m o is tu re b a la n c e c l im a t e model we em p lo y is b a s e d u p o n th e v e r t i ­ cally in te g r a te d e n e r g y - m o is tu r e b a la n c e equations, in which a d v e c tio n te rm s a r e replaced by a n ed d y -diffusive a p p ro x im a tio n . O v e r t h e o cea ns, t h e energ y b a l a n c e (in ice-free a n d ice co v ere d regions), is expressed by.

d T

P a H a C p a - ^ = Qt + QsSW ~ QL\V + QRR + Q sH + QLH ( 2 . 1 . 1 a )

over land we a s s u m e no h e a t o r m o is tu re storage, a n d hen ce we w r ite

d T

P a H a C p a - ^ = Qt + QSSW ~ QLW + QLH ( 2. 1. 16)

w here pa is a c o n s ta n t s u rface a ir density. Cpa t h e specific h e a t c a p a c i t y of air. Ha a c o n s ta n t scale h eig h t d e p t h r e p r e s e n ta tiv e of t h e a tm o s p h e r e , a n d Tp th e s u rfa c e a ir t e m p e r a t u r e . T h e te r m s on t h e right h a n d side of (2.1.1) a re th e various

(24)

so u rc e s /s in k s o f h e a t i n t o / o u t of th e s y ste m . Here

is th e ed d y -diffusive h o rizo n tal heat tr a n s p o r t p a r a m e te r iz a tio n , in w hich A is th e lo ngitude, o is t h e l a tit u d e , a is th e ra d iu s of th e e a r t h , a n d u is a la tit u d in a ll y d e p e n d e n t h e a t t r a n s p o r t coefficient.

In general, t h e a t m o s p h e r e may a b s o rb upw ards of 30 % of th e to t a l incom ing short wave r a d ia tio n t h r o u g h the co m b in e d effects of w a te r vapour, d u s t, ozone an d clouds ( R a m a n a t h a n . 1967). To m im ic these effect, we a p p ly a so u rc e te rm in th e a tm o s p h e re :

Q ssw

= 1 — o ) ( l — Co) (2.1.3)

w here is t h e s o la r c o n s ta n t. 5 is t h e annual average d is tr i b u tio n of h eat flux e n te r in g th e to p of t h e a tm o s p h e re ( N o rth . 1975). q is th e alb e d o , a n d Co is a re d u c tio n p a r a m e t e r representing th e s c a tt e r in g / a b s o r p tio n processes d escribed above. O ver la n d , all s h o rt wave r a d ia tio n in te rc e p te d is a s s u m e d r e t u r n e d (via black b o d y ra d ia tio n ) to t h e a tm o s p h e re so th a t

Co

assu m es a value of zero th e re .

T h e net long w ave re la x a tio n to sp a c e is m odeled by co nsidering t h e planet as a grey b o d y w ith e m is s iv ity cp. T he in frared em ission is th e n given by

Ql w = cpcrT^ (2.1.4a) w here a is th e S te f a n - B o l tz m a n n c o n s ta n t. .Alternatively th e m o is tu r e long wave feedback effect c a n b e ta k e n into acc o u n t by em p lo y in g t h e p la n e ta r y long wave p a r a m e te r i z a ti o n of T h o m p s o n and W a rre n (1982).

(25)

11

where a,v = 6o.v + b i \ r + bo.xr’ , .V — 0, 1 . 2 .3 . and b \ f \ a r e e m p irica lly d e riv e d c o n stan ts (see T h o m p s o n a n d Warren. 1982. T able 3).

T h e long wave r a d ia tio n e m itte d by t h e o c e a n is s tr o n g ly ab sorbed by g r e e n ­ house gases p re s e n t in t h e atm osphere. T h e a t m o s p h e r e t h e n re-em its this a b ­ sorbed en ergy b o t h u p w a r d a n d dow nw ard resu ltin g in a long wave Hux a t th e base of th e a t m o s p h e r e , which we model as a grey b o d y em ission. T h e ra d ia tiv e flux is w r itte n as

f So(tTj — if ice-free:

Qr r = { (2.1.5a)

[ S{crT^ — z o th e rw ise

where To.T, is t h e sea. a n d ice surface t e m p e r a t u r e , re s p e c tiv e ly : and £q . c / . £a

are th e oceanic, ice. a n d a tm o s p h e ric em issivities. .A lternatively th e m o is tu r e long wave feedback effect c an b e ta k e n into a c c o u n t by e m p lo y in g th e p la n e ta r y long wave p a r a m e te r i z a ti o n of B erliand and B e rlia n d (1952)

f £ocrT^(0.'-i9 — O.Oo\/t)Fc + Ai£oO'T^{To — T J . if ice-free:

Ç/Î/Î = s (2.1.56)

[ c/crT^(0.39 — 0 .0 5 v /e)F c + À£ [ aT ^{ T, — Ta). otherw ise

where e is th e w a te r v a p o u r pressure (in m b . - e = 1.61 x ICPg). q is th e specific hum idity, an d F c is r e la te d to th e cloud cover fraction a n d various o th e r e m p ir ic a l co nstants (see E s b e n s e n a n d K ushnir. 1981 for a discussion).

F c = l l . 5 - 2 2.gr 4- ll.T r^

where r is th e r e la tiv e h u m id ity .

. \ tr a d itio n a l b u lk p a r a m e te r iz a tio n is u tiliz e d for t h e s e n s ib le heat flux:

f PaCRCpaF(To - Ta), if ice-free:

= I . ( - 1 6 )

[ PaCnCpai {T, — Ta), o th c rw is e

(26)

la te n t h e a t flux in to t h e a tm o s p h e r e ta k e s the form

Qlh — —— LuP ( 2. 1. 7)

.iijr

w h e re is th e l a t e n t h e a t of ev a p o ra tio n , s y r is th e n u m b e r of seconds in a year, a n d P is the p r e c i p ita tio n (in m e ters p e r year - a s s u m e d to o c c u r w h e n s a t u r a t i o n ex ce ed s So %).

.A m o istu re b a l a n c e e q u a tio n has also been a d d e d so t h a t t h e a t m o s p h e r ic h y ­ drological cycle c a n b e included. VVe o b ta in a p a r a m e te r i z a ti o n of t h e h ydrological cycle by considering a n a p p ro x im a tio n to th e b a la n c e e q u a tio n for w a te r vapor in t h e a tm o s p h e re . In th i s a p p r o x im a tio n we replace t h e h o rizo n tal a d v e c tio n t e r m s by a n ed d y diffusive t e r m . \'e rtic a lly in te g ra tin g over t h e d e p t h of t h e a t m o s p h e r e we o b ta in

^ I + a ( . . c o s o ^ ) I + (■> , . s )

a t a-COSO [ cos o c/A- a o \ o o y j s y r

w h e re is a c o n s ta n t scale height d e p t h for th e specific h u m id ity , k is an e d d y diffusive horizontal r e d is t ri b u ti o n t e r m . P is th e p r e c ip ita tio n , a n d E is t h e e v a p ­ o r a ti o n (abla tion o v e r ice is neglected in th e m o is tu re source te rm s , b u t r e ta in e d in t h e ice heat b u d g e t ) . T h e e v a p o ra tio n is c a lc u la te d from its tr a d i ti o n a l bulk fo rm u la

P .C 'E r s w r f ( g X r j - g j . if ice-free;

£ = (2. 1. 9)

Po [ ( ç ^ ( r .) — 7 u ) . o th e rw is e

w h e re Ce is th e D a lt o n n u m b e r. q s { T ' ) is th e s a t u r a t i o n specific h u m i d ity a t

(27)

13

e m p iric a l fo rm u la of B olton. 1980):

f ific e -fre e :

9. = 3.802 X 1 0-^ezp { (2.1.10)

I i f , +271%) • O t h e r w i s e

T ra d itio n a lly , a co n s ta n t h u m i d i t y is used in th e bulk p a r a m e t e r i z a t i o n for t h e e v a p o ra tio n (e.g. Haney. 1971). however, sin ce we also m o d e l t h e c o n s e rv a tio n of w a te r vap o r, th is is not n ec e ss a ry in th e p re s e n t fo rm u latio n .

To o b t a i n closure of (2.1.8) we p a r a m e te r i z e th e p r e c i p ita tio n as

p _ P a H r j y i (2.1.1 1)

P o ^ t

w here A / is t h e model ti m e s te p . qs[T^) is t h e s a tu ra tio n specific h u m i d ity a t 7),.

r is th e r e la tiv e hum id ity , a n d

r 1. if r > 85%:

/ / ( r ) = <^ (2.1.12)

1 0. o th e rw is e

2.1.1

M o d e l P a ra m eters

.A. n u m b e r o f p a r a m e te r s m u s t be specified in an effort to s i m u l a t e th e p re s e n t clim ato lo g y ( t h e reader is r e fe rre d to T ab le 2.1 for a c o m p le te listin g o f values). In th e p resen t s t u d y we have d r a w n upon p re v io u s works for m a n y o f o u r p a r a m e t e r s w ith a n eye to w a r d both s im p lic ity an d p h y s ic a l ju stific a tio n . To th is e n d we h a v e re ta in e d o n ly t h e la titu d in a l v a ria tio n of p a r a m e te r s , our o n ly ju s ti f ic a t io n for th is being m o d e l simplicity. .Although a n u m b e r of physical a n d d y n a m i c a l processes which are n o t included in th is m o d e l (e.g.. la n d surface processes) could in d e ed b e sy n th e s iz e d by d e ta ile d s p a ti a l p a r a m e te r i z a ti o n s . we take t h e view t h a t such "fine tu n in g " of t h e m ode l u lt i m a t e l y p ro h ib its its use over a w ide r a n g e of a p p lic a tio n s .

(28)

P a r a m e t e r Description Value

a radius of t h e E a r t h 6371 km

(I - q ) coalbedo see Figure 2 .2d

Pair surface air d e n s ity 1.2.3 k g /m ^

P sea sea surface d e n s ity 1024 k g /m ^

C'e D alton n u m b e r see Figure 2.3

c„

S tan to n n u m b e r 0.94Ce

Co solar s c a tte r in g coefficient see Figure 2.2c heat cap a city of dry air 10T j/(kgK ) = .4 atm o sp h eric em issiv ity see F igure 2.2a

-■p p lanetary em issivity see Figure 2.2b

oceanic em issivity 0.96

Ha atm osp h eric scale d e p t h 8400 m

specific h u m id ity scale d e p t h 1800 m

K eddy diffusivity for m o i s t u r e see Figure 2.1

L. latent heat of e v a p o r a tio n 2.5 X lO M /k g

u eddy diffusivity for h eat see Figure 2 . 1

s

solar insolation d is tr i b u tio n * * •

S'; solar co n stan t 1 3 6 0 \V /m ‘

model tim e s te p 0.5 (0.25) d ay s

a S te fa n -B o ltz m a n n c o n s ta n t 5.67 X l O - n V / ( r n - K ‘ ) T a b l e 2.1. S u m m a r y of . \ t m o s p h e r i c M odel P a r a m e te r s

(29)

15

in th e a t m o s p h e r ic tra n s p o rt te rm s . .As has b e e n p o in t e d o u t. th e l a t i t u d i n a l pro ­ file of 1/ is ju s ti f ie d by Lindzen a n d Farrell (1977. 1980) a n d is t h a t utilized by

N o rth et al. ( 1983). alth o u g h h ere we utilize a lower value (roughly 60%) since th e specified L e v itu s (1982) S S T im plicitly im p lie s a n o cea n ic heat t r a n s p o r t once air-sea fluxes a r e d e te rm in e d . To define th e l a t i t u d i n a l profile for m o i s t u r e diffu­ sion {k). we u tiliz e d observational e s tim a te s o f £" — P a n d in te g r a te d t h e s te a d y s ta t e , zonally a v e r a g e d form of (2.1.8). W hile s u c h a n in te g ra l c o n s tra in s t h e g e n ­ era l s h a p e a n d m a g n i t u d e of k. slight errors ( a c c u m u l a t e d d u rin g in te g r a tio n ) can

radically m o d ify t h e profile. H ence we s y m m e tr iz e d t h e profile a b o u t t h e e q u a t o r a n d tu n e d t h e final profile to m a tc h o b serv atio n al e v id e n c e t h a t E d o m i n a t e s over

P at m i d la t itu d e s , while p r e c ip ita tio n d o m i n a te s a t high la titu d e s . B y c o m p a r ­

ison w ith o b s e rv e d n o rth w a rd a n d eastw ard w a t e r v apor t r a n s p o r t (see P eixoto a n d O ort. 1992. F igures 12.9. 1 2.1 2) this is a g o o d a p p r o x im a ti o n for large-scale

a tm o s p h e ric a n d s ta tio n a r y - e d d y m otions, w ith t h e e x c e p tio n of th e In te rtro p ic a l C onvergence Z o n e (IT C Z ). C o m p a rin g with t h e z o n a l- m e a n tr a n s p o r t o f w a te r va­ p o r (see P e ix o to a n d O o rt. 1992. F ig u re 12.18). diffusive t r a n s p o r t is valid polew ard of roughly 20°. w ith in th e IT C Z . however, t h e t r a n s p o r t is u p -g ra d ie n t. T h e use of a negative diffusion coefficient w ith in this reg io n could m im ic this p h e n o m e n o n : however, t h e s o lu tio n te ch n iq u e we em ploy (w h ic h allows th e m o d e l's efficient im p le m e n ta tio n a n d solution) b reak s down w h e n a n e g a tiv e diffusion coefficient is em ployed. We th e re fo re tra d e resolution of th e I T C Z for n u m e ric a l efficiency. This also explains t h e p eak in k at th e e q u ato r; we s till re q u ire th e s tr o n g s m o o th in g of th e specific h u m i d i t y field th e IT C Z would p ro v id e .

T h e a t m o s p h e r ic em issivity (see Figure 2 .2 a) is d e t e r m in e d by fittin g (2.1.5) to th e da Silva e t al. (1994b) zonally a v e ra g e d n e t longw ave flux ( a n oceanic em issivity of 0.96 (Isem er et al.. 1989). and t h e L e v itu s (1982) z o n a lly averaged S S T d a t a a re also em ployed). T h e p la n e ta ry e m is s iv ity (see Figure 2 .2 b ) has been

(30)

Eddy Diffusive Coefficients 4 3 2 1 0^-- 8 0 - 6 0 - 4 0 -20 0 20 40 60 8 0 Latitude (N)

F igure 2.1. L a titu d in a l profile of t h e h e a t diffusion coefficient, u (solid lin e), a n d th e m o i s t u r e diffusion coefficient, k ( d a s h e d line). U nits a r e 10** m ’/s .

Atmospfieric Emissivity Planetary Emissivity 0.9 0.88 0.86 0.84 0.82 0.8 -5 0 50 Latitude (N) Scattering Coefficient 0.7 0.65 0.6 0.55 0.5 - 5 0 50 Latitude (N) 0.5 0.4 0.3 0.2 - 5 0 50 Latitude (N) C lear Sky Coalbedo

0.8 0.7 0.6 0.5 0.4 0.3 - 5 0 50 Latitude (N)

Figure 2.2. (a) L a titu d in a l profile of t h e a t m o s p h e r ic e m is s iv ity . £.4. (b) . \ s in (a)

b u t show ing th e p la n e ta r y em issivity. S p . (c) .A.s in (a) b u t sh o w in g th e s c a t t e r i n g coefficient. Cq- (d) .As in (a) b u t show ing t h e a p p lie d c o a l b e d o ( 1 — o ) ( th e d a s h e d

(31)

17

inferred by fittin g (2.1.9a) t o t h e C am p b ell a n d V e n d e r H a a r ( 1980) p la n e ta r y longwave Hux using th e z o n a lly averaged c lim a to lo g ic a l surface a ir t e m p e r a t u r e based on th e C o m p r e h e n s iv e O cean-.A tm osphere D a t a Set (CO.ADS) analysis of d a Silva et al. (1994a). T h e o b je c tiv e ly d e t e r m i n e d p la n e ta r y e m is siv ity ( z p ) is consistent w ith values u tiliz e d by Stocker et al. (1992). a lth o u g h it is s o m e w h a t lower tow ard t h e poles. N o tic e t h a t th e p l a n e t a r y e m is siv ity varies a g reat deal w ith la titu d e a n d is lower t h a n t h e a tm o s p h e ric e m is s iv ity a t all la titu d e s . T h is is re la te d to th e s im p lis tic p l a n e t a r y infrared Hux we em ploy. Top of t h e a t m o s p h e r e longwave Hux is m a d e up o f a co m b in a tio n of e m i t t a n c e from t h e surface of th e p la n e t and infrare d a b s o rb in g m a te ria ls in t h e a t m o s p h e r ic c o lu m n (e.g.. w a te r vapor, liquid, ice). In th is r e s p e c t, the p l a n e t a r y e m issiv ity is lower th a n th e a tm o s p h e ric e m is siv ity to a c c o u n t for the fact t h e e m i t t a n c e com es from highe r in th e a tm o sp h ere.

T h e s c a tte rin g coefficient we e m p lo y is also d e r iv e d from t h e CO.ADS analysis of d a Silva et al. (1994b). T h e i r incoming s h o r tw a v e r a d ia tio n is used (along w ith (2.1.3)) to infer C q . (see F ig u re 2.2c). T h e s c a tt e r in g a c ts to filter roughly 30% of the in c o m in g s h o rtw a v e ra d ia tio n , c o n s is te n t w ith th e 20 — 30% e s ti m a t e d from the r a d ia tio n b a lan ce for t h e E a rth . ( R a m a n a t h a n . 1987). Finally. F ig u re 2.2d indicates t h e la tit u d in a l profile of the a n n u a l coalb ed o (1 — q) as derived by G raves et al. (1993) from t h e E a r t h R ad iatio n B u d g e t E x p e r i m e n t d a ta .

In practice, t h e bulk t r a n s f e r coefficients Ce a n d C p (th e D a lto n a n d S ta n to n num b e rs) are o fte n ta k e n as c o n s t a n t s of th e s a m e m a g n itu d e ( ~ 1.3 x 10“ ^). T h e b u lk transfer coefficients are in a c t u a li ty d e p e n d e n t on th e wind s p e e d , air t e m p e r ­ a t u re . SST. a n d re la tiv e h u m id ity . Indeed, th r o u g h fine tu n in g of t h e bulk tra n s f e r coefficients, h e a t Hux e s t i m a t e s c a n be c o n s tra in e d for use in o c e a n m od e lin g (e.g. Isem er et al.. 1989). In a n effort to c o n s is te n tly a p p l y th e b u lk tra n s fe r coeffi­ cients. we con sid ere d th e b e s t lin e a r fit (in a le a st sq u ares sense) to w ind sp eed .

(32)

Zonally Averaged Dalton Number

1.4

1.2

- 8 0 - 6 0 - 4 0 -2 0 0 20 40 60 80

Latitude (N)

F ig u re 2.3. Zonally a v era g ed m o d e l-d eriv e d D a lto n n u m b e r. C'e. T h e S ta n t o n

n u m b e r can be o b ta in e d by C'h = 0.94Cg.

a n d air-sea t e m p e r a t u r e difference (see Isem er et al.. 1989. Table 2). T h e re s u ltin g e q u a tio n s for th e D alto n a n d S ta n t o n n u m b e rs a re th e n given by

6.0 X 1Q-’ < C'e = 1.0 X 10-^(1.0022 - .0 8 2 2 (A T )

+ . 0 2 6 6 D < 2.19 X 10"^

w here A T is th e air-sea or air-ice t e m p e r a t u r e c o n tra s t.

(2.1.13)

C'h = 0.94Cf: (2.1.14) In this m a n n e r th e e x ch a n g e coefficients a re c a p a b le of a d ju stin g ( d u r in g th e m o d e l in te g ratio n ) to changes in t h e m o d e le d air-sea t e m p e r a t u r e difference. T h e zonally averaged clim atological D a lto n n u m b e r o b ta in e d from our m o d e l in te g ra tio n is show n in F igure 2.3. T h e glo b a l m ean value of 1.26 x 10“ ^ c o m p a r e s well w ith o b serv atio n ally derived e s t i m a t e s (e.g.. Large a n d P o n d . 1982: S m it h . 1988). a n d t h e profile is also co n s is te n t w ith th e e s tim a te s of H siung (1986) a n d O b e r h u b e r (1988).

(33)

19

2 .1 .2

U n cer ta in ty in M o d el P a ram eters

T h e p a r a m e t e r s d escribed in t h e p revious se c tio n have been e m p iric a lly d e t e r m i n e d from a p a r t i c u l a r set of o b s e rv a tio n s. T h e i r values would be slightly d iffere n t if a different s a m p le of o b s e r v a tio n s (or b u lk form ulae) were p rescrib e d . H e re we a t t e m p t to place lim its u p o n th e u n c e r t a in t y a sso ciated w ith o u r m odel p a r a m e t e r s . W h ile th e larg e n u m b e r of o b s e rv a tio n s u tiliz e d in defining a c lim ato lo g ic al a n n u a l m e a n held w ould te n d to m i n im i z e th e u n c e r t a i n t y (as would th e zonal a v e r a g in g we e m p lo y ), o b je c tiv e analysis p ro c e d u re s e m p lo y e d (as in th e works of L e v itu s ( 1962) a n d d a Silva e t al. (1 9 9 4 a.b.c. a n d d)) as well as the "fair w e a th e r bias" in d a t a collection in tro d u c e an u n q u a n t i h a b l e u n c e rta in ty . To this end. th e u n c e r t a i n t y we d e h n e below is s o m e w h a t s p e c u la tiv e a n d s h o u ld be viewed m erely as a h r s t - o r d e r e s ti m a t e .

B lanc (1987) in d icate s t h e r m s u n c e r t a in t y in surface air t e m p e r a t u r e is 0.6 K. while P e ix o to and O o rt (1992) in d ic a te t h a t th e C a m p b e ll a n d V o n d e r H a a r ( 1980) p l a n e t a r y longwave h u x h as an u n c e r t a in t y of 1 0 W / m " . in d ic a tin g a n r m s

u n c e r t a in t y of 5% in o u r p l a n e t a r y e m issiv ity Sp (see (2.1.4a)). Fung et al. (1984) c o m p a re d eight different b u lk fo rm u lae for t h e net oceanic longwave h u x . T h e i r results suggest a 10-15 W / m * u n c e r t a in t y a s s o c ia te d w ith th e use of vario u s b u lk form ulae. T h is , to g e th e r w ith t h e roughly 0.6 K u n c e r ta in ty in th e a i r / s e a s u rfa c e t e m p e r a t u r e s , results in a n rm s u n c e r t a in t y in t h e a tm o sp h eric e m is siv ity 0 . 4 (see

(2.1.5)) of r o u g h ly 4.4%.

C o m p a r in g th re e different p a r a m e te r i z a ti o n s of the sh ortw ave ra d ia tio n r e a c h ­ ing th e o c e a n surface su g g e s ts a n u n c e r t a in t y of a p p ro x im a te ly 15 W / m " (or roughly 8 .6% ). If we a s s u m e th e G raves e t al. (1993) coalbedo has an a s s o c i­

a te d u n c e r t a i n t y of 5% (c o n s is te n t w ith th e u n c e r t a in t y in C a m p b e ll a n d V o n d e r H a a r's s a te llite -d e riv e d o u tg o in g longwave r a d ia tio n e s tim a te ), we o b t a i n a n r m s

(34)

u n c e r t a i n t y of 10% in t h e s c a t t e r i n g coefficient Co utilized in (2.1.3).

F inally. B la n c (I9S 7) in d ic a te s a 10% rm s u n c e rta in ty in s h ip -d e riv e d su rface w in d s p eed s d u e to sensor e r r o r a n d ship bias. T h e p resen t analy sis utilizes th e C O .\ D S - b a s e d w ind s p eed e s ti m a t e s of d a Silva et al. (1994b). T h e s e e s ti m a t e s a r e c o n v e rte d from B e au fo rt w inds a n d o b je ctiv e ly an a ly z e d to a 1° x 1° grid. .\s we h av e m e n tio n e d , th e g rid d in g analysis introduces som e a m o u n t of u n c e r ta in ty : h ow ever, t h e B e a u fo rt conversion also in tro d u c e s some d eg ree of u n c e rta in ty . S ince we a re in c a p a b le of e s t i m a t i n g t h e u n c e r t a in t y in these processes, we a s s u m e a 10% u n c e r t a i n t y as in t h e w ork of B lanc (1987).

2 .2

T h e I c e M o d e l

T h e ice m o d e l we e m p lo y is b ased on th a t d escribed by S e m t n e r (1976). T h e m o d e l p re d ic ts ice s u rfa c e t e m p e r a t u r e ( T , ) a n d ice thickness ( / / , ) . T h e ice th ick n ess is c a l c u la te d u tiliz in g th e net en e rg y b ala n c e of th e ice slab.

•-), ~ 7 { Qtop Qhot) (2.2.1 )

a t p, L j

w here p, is a r e p r e s e n t a tiv e value for th e ice den sity (see T able 2.2). L f is th e la te n t h e a t of fusion of ice. Qt op is t h e h e a t flux from th e ice su rface to th e a t m o s p h e r e , a n d Qbot is t h e b asal h e a t flux to t h e ice (h ere we assum e a positiv e flux o u t of th e ice). .At t h e i c e / a i r interface, t h e energy b ala n c e is specified as

Qt op = Q r r + Qs h + L ^ E — ( 1.0 — ) (2 .2 .2 )

sijr

w h ere E is t h e a b la tio n . L , is th e la te n t h eat of su b lim a tio n for ice. /c, is a b u lk e x t i n c t i o n coefficient for ice. Qr r is given by (2.1.5). a n d is t h e in c o m in g

(35)

21

P a r a m e te r D e s c rip tio n Value

ice e m is s iv itv 0.96

Cond ice c o n d u c t iv it y 2.52 VV/mK

bulk e x t i n c t i o n coefficient 1.5 m “ ‘

h la te n t h e a t of fusion of ice 2.93 x IO T J/k g Ls la te n t h e a t of a b la tio n of ice 2.835 xlO'^.J/kg p. r e p r e s e n t a tiv e ice d e n s ity 913 k g /m ^ 5. r e p r e s e n t a tiv e ice salinity 4 psu

T able 2.2. S u m m a r y of Ice .Model P a r a m e te r s

s h o rtw av e ra d ia tio n reaching t h e o c e a n / i c e surface

Q s w = 1 — a )C o (2.2.3) .At t h e ic e /o c e a n interface, t h e en erg y b ala n c e is th a t re q u ire d to m a in ta i n th e ocean s u rfa c e t e m p e r a t u r e a t t h e freezing po in t. Tj.

g f a . = { T , - (2.2.4)

where T / is given by (U N E S C O . 1983)

T f = - .0 5 7 5 5 o + 1.710523 x 1 0 " ^ - 2.154996 x IQ -»5;^ (2.2.5) A c is t h e d e p t h of t h e first o c e a n m odel grid box. Cpo is t h e heat c a p a c it y of seaw ater. A f is th e m odel ti m e s te p , a n d So is th e sea surface salinity.

T h e ice surface t e m p e r a t u r e is c a lc u la te d by e q u a tin g t h e c o n d u c tiv e flux th ro u g h t h e ice with t h e s u rfa c e e n e rg y flux from th e ice

r . = T o - (2.2.6)

(36)

w here /<-ond is a co n s ta n t ice conductiv ity . If. how ever, th e en erg y d u x is in to t h e ice. m elt is a s s u m e d to occur, a n d T, = T/ . T h e resu ltin g e q u a t io n for t h e ice surface t e m p e r a t u r e (when g ro w th is o ccurring) is

T. = r , - Qrr + Qsh h

•s/yr

(2.2.7)

2.3

T h e O cea n G e n e r a l C ir c u la tio n M o d e l

In th e c l im a te m o d e l we em p lo y th e G e o p h y sical F lu id D y n a m ic s L a b o r a to r y (G F D L ) M o d u la r O cean .Model (P acanow ski e t al. 1993). w hich is based u p o n th e p rim itiv e ecjuations for a Boussinesq. h y d r o s ta t ic fluid u n d e r t h e rigid lid a p ­ p ro x im a tio n . T u rb u le n t closure is p a ra m e te riz e d as a Laplacian m ix in g process. T h e h orizontal m o m e n tu m ec[uations (inclu d in g nonlinearities) in sp h e ric a l g e o m ­ et rv are th e n —1 d p „ . —

du

I t

w here

dv

I t

d

di

p.^a cos o aX a : -Pod d o d z -(2.3.1)

(2.3.2)

d dt a d V d a cos o dX ^ a d o d z = 1 — t a n ’ o ' I — tan" o ' d_ ')z 2 sin o d v

u —

V 4-cos^ o dX 2 sin o dll a- cos^ o dX

[J-^ T' ^) a re t h e horizontal L aplacian te rm s r e p r e s e n tin g th e h o riz o n ta l m ix in g of

m o m e n tu m : is th e horizontal Laplacian o p e r a to r : A is longitude: o is l a tit u d e : a n d c is t h e vertical co ordinate. Here, th e v elo city c o m p o n e n ts a r e u. v. a n d

(37)

23

p a r a m e te r , a is t h e rad iu s of t h e e a r t h , p is p re s s u re , po is a r e p r e s e n t a t i v e density for s e aw ate r, t is tim e , a n d Ah- -dv are th e la te r a l a n d v e r tic a l e d d y viscosities.

T h e m odel is a s s u m e d h y d ro s ta tic , so th a t

d p

-qZ ~ ~ ^ P (2.3.3) w here p is d e n s ity a n d g is th e ac c e le ra tio n d u e to gravity. T h e c o n t i n u i t y e q u a tio n is given by

dll' 1 ( d u d ^ \

-I--- ^ + — ( c c o s o = 0 (2.3.4)

d z a cos o \ d \ d o )

T h e co n serv atio n laws for heat a n d salt m a y b e w r i t t e n as

f . V . (.T D = ^ C2.3.Ô)

f ^ . i , S ) = A . V ' g + g g + % g (2.3.6)

w here T is t e m p e r a t u r e . 5 is salin ity . K u . a n d K y are th e l a t e r a l a n d vertical diffusivities. a n d 6{p). 6[k) a re K ro n eck er d e l ta fu n ctio n s d efin e d as

f 1. if k = 1 ;

= ] .

,

.

L 0. o th e rw is e w here k is th e vertical d e p t h level, a n d

<)(/)) =

(

\ 0. o th e rw is e

th e case 8(p] = 0 re p resen ts in s ta n ta n e o u s c o n v e c tiv e a d j u s t m e n t t h a t restores a n e u tra l s tr a tific a tio n w henever u n s t a b l e s tr a t if ic a tio n occurs ( h e r e p a r a m e te r i z e d im p lic itly by s e tt in g K y = lOOm's"^ when t h e local d e n s ity p rofile was found to

(38)

be s ta tic a lly u n s ta b le ). T h e e q u a tio n of s t a t e for seaw ate r can be w ritte n as

p = p { S . T , p ) (2.3.7) w ith th e density a nonlin ear e q u a tio n of t e m p e r a t u r e , salinity a n d p ressure ( L'.N- E S C O . 1981).

. \ t th e surface, t h e m odel is driv en by b o t h w in d stress (a p p lie d as a bod y force over t h e d e p th of th e first grid box) a n d s u rfa c e buoyancy forcing. T h e s u rfa c e b o u n d a r v conditions a re therefore

d T

ds

d z d z

d u

' 5 •

w here are th e zonal a n d m erid io n al s u rfa c e wind stresses. T h e s u rface b u o y an cy forcing is app lied d ire c tly to th e t r a c e r conservation e q u a tio n s (2.3.5. 2.3.6). T h e net h e a t flu.x into th e ocean is d efined as

f Q s w — Q s h — Q r r — Q l h - if ice-tree:

Qh = \ (2.3.8)

iQbot + Q s w e - otherw ise

T h e definitions of Qs h- Qr r- Qsu - a n d Qbot a re th e sam e as th o s e in (2 .1.6 ).

(2.1.7). (2.2.3). a n d (2.2.4): while th e la te n t h e a t flux out of t h e o cean takes th e form

Ql h = ~ — LtyE (2.3.9)

s y r

a n d th e freshw ater flu.x over th e ocean tak es t h e form

( ^ ( E - P - R ) if ice-free: "

I

+ R) - o th e rw ise

(39)

'O

w here 5 " . 5, a re r e p r e s e n ta tiv e salinities for th e o cean a n d ice respectively. R is th e runoff from th e la n d m a s s . a n d B is th e freshw ater flux from ice fo rm a tio n or

O*

B =

me lt given by

p . s y r A H , Po A f

At th e lower b o u n d a ry o f t h e ocean m odel we specify a no Hux c o n d itio n on trac ers ( h e a t / s a l t ) , and no n o r m a l flow

n . A/

u- = —— = —— = 0 at z = —H

d z d z

We fu rth e r ap p ly a q u a d r a t ic b o t t o m friction (in cases w ith to p o g ra p h y ) as

. 4 v ' 4 ^ = C'oK |(« cosQ — u s i n a )

d z d v

. 4 i ' — = C o | f ' | ( u s i n a + u cos a )

d z

w here C p is t h e drag coefficient, a n d a is th e tu r n i n g angle. . \ t lateral walls, no flux of trac ers is p e r m i tt e d , a n d a no slip condition is applied to th e h orizontal flow:

ti = V = —— = — = 0

d n On

(40)

C h a p ter 3

T estin g U n d e r F ix e d O cean ic

C o n d itio n s

3.1

P r e s e n t D a y C lim a to lo g y

In a s im p le a p p l ic a t io n of t h e e n e rg y - m o is tu r e balance m odel, we begin by c o n ­ sidering t h e in ferred a t m o s p h e r i c clim a to lo g y when th e S S T is fixed to t h e a n n u a l L evitus ( 1982) s u rface c lim a to lo g y a n d t h e surface wind speed a n d so lar in s o la tio n are fixed to t h e a n n u a l clim ato lo g ie s of d a Silva et al. (1994b). a n d G rav es e t al. (1993). respectively. F ig u r e 3.1 in d icate s th e SST held we p re s c rib e as t h e lower b o u n d a r y c o n d itio n for t h e a t m o s p h e r ic m o d e l, th e la n d m a s s is s h a d e d .

F ig u re 3.2a in d ic a te s o u r m o d e l- p r e d ic te d surface air te m p e r a t u r e s . S p a tia lly , th e se p a t t e r n s a re q u i t e realistic. T h e b asin m e a n m odeled surface a ir t e m p e r a t u r e over t h e o cean regions is 17.91°C for t h e clim atological case, c o m p a r a b le to th e basin m e a n value of 17.9S°C b ased on t h e G O A D S an alyzed d a t a of d a Silva e t al. (1994a). F ig u re 3.2b d e p i c ts a c o m p a ris o n of th e zonally averaged d a t a of d a Silva e t al. w ith o u r m o d e le d helds ( n o te t h a t as CO.A.DS d a t a exist only over t h e o c e a n

(41)

27 0 0 ° N 6 0 ° N 4 0 ° N 2 0 ° X 2 0 ° S 4 0 ° S 6 0 ° S 6 0 “ S 3 4 0 ° W 3 0 0 ° W 2 6 0 ° * 2 2 0 ° * 1 8 0 ° * 1 4 0 ° * 1 0 0° * 6 0 ° * 2 0° *

F ig u re -'M. C lim a to lo g ic a l sea s u rfa c e t e m p e r a t u r e (S S T ) specified as th e m o d e l's lower b o u n d a r y c o n d itio n , from L e v itu s (1982). S h a d e d regions in d i c a t e land. T h e c o n to u r interval is 2 °C . w ith d a s h e d contours in d ic a tin g negative values.

regions, o u r fields a r e zonally a v e ra g e d only over t h e ocean for c o m p a r is o n p u r ­ poses). Clearly, t h e m o d e le d fields a r e q u ite close to o b serv atio n s, w i t h differences ge n e ra lly less t h a n 0.5°C . It is in te r e s tin g to n o te t h a t the s o u t h e r n h e m is p h e re t e m p e r a t u r e s ( p o le w a r d of 65° — 70°) a re actu ally w a r m e r th a n c lim ato lo g y , w hile th e s a m e region in t h e n o r th e rn h e m is p h e re is cooler. We a t t r i b u t e th is effect to (1) th e lower p l a n e t a r y em issivity in t h e s o u th ern regions as c o m p a r e d to n o r t h ­ ern p o la r regions a n d (2) th e lower ap p lied coalb ed o in the n o r t h e r n h e m is p h e re

(F ig u re 2.2d).

B lanc ( 1987) in d i c a te s th a t b e c a u se of ship a n d s e n s o r error, rm s e r r o r s of 0.6°C a re not u n c o m m o n in ship-b ased e s ti m a t e s : hence t h e note d differences of roughly 0.5°C are not u n r e a s o n a b le . T h e g e n e ra lly lower s u rfa c e air t e m p e r a t u r e s in th e n o r th e r n region o f o u r m ode l d o m a in m a y sim ply b e a consequence t h e buffering effects of ice p ro cesses which are m issin g in th e p re s e n t model d u e to th e "fair

(42)

8 0 ° N 60"N 4 0 ° N 2 0 ° N 6 0 ° S 3 4 0 ° W 3 0 0 ° W 2 6 0 ° W 2 2 0 ° W 1 8 0 ° * 1 4 0 ° * 1 0 0 ° * 6 0 ° * 2 0° *

Comparison of Surface Air Temperature 30

20

0

--60 -4 0 -20 20 40 80

Latitude (N)

Figure 3.2. (a) E n e rg y -m o ist u re balance m odel ( E M B M ) c a l c u la te d clim atological surface air t e m p e r a t u r e . T h e co n to u r interval is 2°C . w ith d a s h e d contours i n d i c a t ­ ing negative values, (b) C o m p a ris o n of zonally avera g ed m o d e le d surface air t e m ­ p e ra tu re s (solid) w ith th e C o m p re h en siv e O cean -.A tm o sp h ere D a t a Set (C O A D S ) based o b s e rv a tio n s (d a s h e d -d o tte d ) from d a Silva e t al. (1994a).

Referenties

GERELATEERDE DOCUMENTEN

In 2 key sectors, the southwest Pacific (Site 1172) and sw Atlantic Ocean (Site 511), we pair our dinocyst analyses with organic geo- chemical biomarker analyses (TEX 86 and U K ’

In this study, we use an ocean biogeochemical model coupled to a general ocean circulation model (HAMOCC2) to assess the impact of ocean deoxygenation on organic C burial in the

gradually restricted the gateway(s) connecting the Mediterranean to the open ocean (Fig.1) which strongly affected the Mediterranean thermohaline circulation (MTHC) [Meijer et

c) Determine the branches of asymmetric solutions. As the bifurcation diagram, plot the value of A 1 versus σ.. d) Determine the value of σ at the Hopf bifurcation on one of

El Nino and La Nina Precipitation Anomaly Patterns Warm Pacific Cold Pacific.. Red: positive precipitation anomalies Blue: negative precipitation anomalies (normalized [by

Iets meer naar het noordoosten loopt greppel S 16; een redelijk diffuus afgelijnde, 0,74 m brede greppel met een 0,50 m diep komvormig profiel en een lichtgrijze vulling met

As in the observation, we find that the model SST vari- ability is closely coupled to the subsurface variability in the eastern and southern tropical Indian Ocean (Figure 4)..

What are the effects of a large-scale wind farm in the North Sea on the meteorological variables wind speed, wind direction, turbulence and cloud and rain formation near the wind