• No results found

Planning for sustainable urban food systems : an analysis of the up-scaling potential of vertical farming

N/A
N/A
Protected

Academic year: 2021

Share "Planning for sustainable urban food systems : an analysis of the up-scaling potential of vertical farming"

Copied!
81
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

1

Planning for Sustainable Urban Food Systems

An Analysis of the Up-scaling Potential of Vertical Farming

Thesis, MSc Urban and Regional Planning University of Amsterdam 11th of June, 2018 Daniel Petrovics daniel.petrovics1@gmail.com (11250844) Supervisor: Dr. Mendel Giezen Second Reader: Dr. Marco te Brömmelstroet

(2)
(3)

Abstract  

 

 

Cities  cover  only  2%  of  the  Earth’s  surface,  yet  they  generate  over  70%  of  the  world’s  GDP,  and  account  for  70%  of  the   world  GHG  emissions  and  waste  output.  Hence  cities  can  be  seen  as  nodes  in  the  web  of  metabolic  resource  flows,   where   the   intensity   of   resource   and   energy   use   is   the   highest.   Projections   suggest   that   these   phenomena   will   be   further  intensified  by  planetary  urbanization,  ultimately  producing  larger  cities,  which  in  effect  further  contribute  to   anthropogenic  climate  change  at  unprecedented  rates.  One  of  the  most  resource  intensive  areas  in  this  context  is  that   of  food  systems.  From  production  to  consumption,  resources  are  utilized  at  an  immense  rate,  ultimately  raising  future   concerns   for   food   security   and   availability,   climate   change,   and   growing   population   levels.   A   proposed   supply-­‐side   solution  to  these  issues  is  Vertical  Farming  (VF),  a  high-­‐yield  form  of  controlled  environment  agriculture  with  potential   to  produce  fruits  and  vegetables  within  cities,  ultimately  reducing  their  resource  intensity.  VF  has  been  explored  from   multiple  perspectives  in  the  past;  nevertheless  an  assessment  from  an  urban  planning  perspective,  with  an  integrative   approach  to  understanding  its  wider  potential  to  mitigate  the  climate  impact  of  food  systems  is  still  lacking.  Hence  the   principal  objective  of  this  thesis  is  to  understand  what  the  potential  for  up-­‐scaling  this  sociotechnical  niche  is.  In  terms   of  scope,  this  research  aims  at  1.)  understanding  how  VF  can  be  up-­‐scaled  in  the  sense  of  spatial  reproduction  and  in   terms  of  institutionalization,  2.)  substantiating  if  the  sustainability  discourse  that  promises  for  more  sustainable  cities   through   the   expansion   of   VF   aligns   with   the   accounts   of   experts   working   with   this   sociotechnical   niche,   and   3.)   providing   an   indication   of   whether  and  how  VF  can  contribute  to  reducing  the  impact  of  food  systems  in  terms  of   anthropogenic   climate   change.   This   was   done   by   assessing   the   perceptions   of   prominent   actors   in   the   field   of   VF   through   17   semi-­‐structured   key   informant   interviews,   conducted   with   entrepreneurs,   consultants,   researchers,   and   municipal  actors.  The  research  design  takes  an  abductive  approach,  which  allowed  for  the  emergence  of  two  sets  of   findings.   On   the   one   hand   the   primary   analytical   framework   has   been   amended   by   further   explanatory   variables,   while  on  the  other  hand  three  findings,  specific  to  the  up-­‐scaling  potential  of  VF,  emerged.  With  regards  to  the  second   set  of  findings,  firstly,  it  is  argued  that  singular  VF  interventions  in  cities  should  have  further  functions  integrated  at   the   scale   of   the   farm   for   the   sake   of   viability,   on   the   lines   of   functions   serving   marketability,   environmental   sustainability,   the   built   context,   education,   and   community   engagement.   Secondly,   it   is   discussed   that   VF   interventions  carry  the  most  potential  for  climate  mitigation  if  they  are  conceived  of  as  elements  of  wider  urban-­‐level   systemic  food  planning.  Finally,  the  analysis  also  yields  results,  which  highlight  the  globalized  dynamics  of  the  political   economy,  and  in  turn  the  localized  effects  for  food  systems,  and  their  implications  for  VF.  The  thesis  concludes  with  a   set  of  practical  recommendations  for  practitioners  working  in  the  field  of  VF.  

Keywords   –

  urban;   vertical   farming;   food   systems;   up-­‐scaling;   multi-­‐level   perspective;   climate   mitigation;  

(4)

 

Table  of  Contents  

 

Abstract  ...  ii  

Table  of  Contents  ...  iii  

List  of  Acronyms  ...  vi  

List  of  Illustrations  ...  vii  

 

1.  Introduction  ...  1  

2.  Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  ...  4  

2.1.  Ontological  Understanding  of  Cities  –  The  Metabolic  City  ...  4  

2.2.  Embedding  the  Vertical  Farm  within  the  Urban  ...  5  

2.3.  The  Multi-­‐Level  Perspective  and  its  Critique  –  A  Theoretical  Backdrop  ...  5  

2.4.  Up-­‐scaling  Low  Carbon  Urban  Initiatives  –  An  Operational  Framework  ...  8  

2.5.  Conceptual  Scheme  ...  11  

2.6.  Concluding  Remarks  ...  12  

3.  Methodology:  A  Qualitative  Design  Taking  an  Abductive  Approach  ...  13  

3.1.  Epistemology  ...  13  

3.2.  Research  Questions  ...  13  

3.3.  Research  Design,  Unit  of  Analysis,  and  Operationalization  ...  14  

3.4.  Methods,  Sampling,  and  Structure  of  Data  Collection  ...  15  

3.5.  Data  Analysis  ...  16  

3.6.  Ethical  Considerations  ...  16  

3.7.  Methodological  Reflection  ...  16  

3.8.  Limitations  ...  17  

4.  The  Up-­‐Scaling  Potential  of  Vertical  Farming  ...  19  

4.1.  Measures  for  LCUD  ...  19  

4.2.  Operational  Arrangements  ...  21  

4.3.  Policy  Context  ...  22  

4.4.  Market  Context  ...  26  

4.5.  Social-­‐cultural  context  ...  29  

4.6.  Natural  and  Built  Context  ...  31  

4.7.  Emerging  Factors  ...  32  

4.8.  Theoretical  Reflection  on  the  Emerging  Factors  ...  34  

(5)

5.  Vertical  Farming  Viewed  Through  the  Multi-­‐Level  Perspective  ...  38  

5.1.  Integrative  Functions  of  Vertical  Farming  on  the  Niche  level  ...  38  

5.2.  Food  Systems  and  Vertical  Farming  on  the  Regime  Level  ...  41  

5.3.  Global  Dynamics  of  the  Political  Economy  and  Local  Implications  for  Vertical  Farming  on  the  

Landscape  Level  ...  43  

5.4.  Concluding  Remarks  ...  45  

6.  Conclusion  ...  46  

6.1.  Core  Findings  and  Implications  ...  46  

6.2.  Contribution,  Limitations,  and  Further  Research  ...  47  

6.3.  Recommendations  for  Practitioners  ...  48  

 

Bibliography  ...  49  

Annex  I.  Definitions  of  Concepts  Incorporated  in  the  Research  Questions  ...  54  

Annex  II.  Interview  Participants  ...  56  

Annex  III.  Sample  Interview  Guide  ...  57  

Annex  IV.  Findings  ...  58  

 

(6)

 

Acknowledgements  

 

 

First   and   foremost,   I   would   like   to   thank   Juliette   for   believing   in   me   and   for   providing   me   with   the   professional   environment  necessary  for  managing  and  completing  a  Master’s  thesis  next  to  a  full-­‐time  job.  Without  your  support,   guidance,   and   patience   I   would   not   have   been   able   to   complete   this   project   this   way.   I   would   also   like   to   thank   Gonçalo,  Arpad,  and  everyone  at  OneFarm  for  taking  such  profound  interest  in  my  research.  Seeing  the  social  focus   and  innovative  approach  you  envision  towards  this  field  is  a  great  source  of  inspiration.  I  would  also  like  to  thank  my   team   at   the   Global   Reporting   Initiative   (GRI)   for   showing   continuous   interest   in   how   my   research   was   developing.   Working  with  you  guys  has  been  fun  and  inspiring,  something  that  was  crucial  in  the  last  6-­‐months  for  managing  a   healthy  work-­‐thesis  balance.  I  would  also  like  to  express  my  gratitude  to  everyone  else  at  GRI  for  all  the  input  at  the   beginning  of  this  project.  

I  would  also  like  to  thank  Bella  for  supporting  me  in  the  ups  and  downs  of  the  last  six  months,  and  particularly  for   proving  to  me  what  strong  will  can  do  in  the  last  stretch  –  and  by  this  directly  contributing  to  the  completion  of  my   research.  Your  emotional  support  and  help  are  invaluable,  let  alone  the  careful  reviews  of  my  work  and  direct  input,   which  have  shaped  the  outcome  immensely.  I  am  also  grateful  to  all  my  friends  who  have  not  only  challenged  my   thoughts  but  have  actively  re-­‐sparked  my  curiosity  and  interest  in  this  topic.  I  would  like  to  thank  Noemie,  Adri,  Jill,   and  Enrique  in  particular.  I  would  also  like  to  extend  my  gratitude  to  my  mother,  who  has  continuously  proven  why  it   is  worth  being  open  to  new  ideas,  and  to  my  father,  who  has  proven  over  the  last  year  several  times  that  there  is  a   way  out  of  every  seeming  difficulty.  

I  would  furthermore  like  to  thank  all  my  interviewees,  who  have  taken  their  time  and  energy  to  answer  my  questions   and   participate   in   some   enlightening   conversations.   These   interviews   form   the   backbone   of   this   research,   and   therefore  I  cannot  stress  enough  how  grateful  I  am  for  your  contribution.  Last  but  not  least,  I  would  also  like  to  thank   my  supervisor,  Mendel  for  continuously  reassuring  me  that  I  am  on  the  right  path  and  for  providing  me  with  critical   insights  and  the  theoretical  foundation  of  this  thesis,  as  well  as  Marco  for  taking  on  the  role  of  second  reader.  

(7)

List  of  Acronyms  

 

 

AMS  ...  Amsterdam  Institute  for  Advanced  Metropolitan  Studies   AVF  ...  Association  for  Vertical  Farming   CAP  ...  Common  Agricultural  Policy   CEA  ...  Controlled  Environment  Agriculture   CFA  ...  Carbon  Footprint  Analysis   CO2  ...  Carbon  Dioxide   EU  ...  European  Union   FAO  ...  Food  and  Agriculture  Organization  of  the  United  Nations   FDI  ...  Foreign  Direct  Investment   GHG  ...  Greenhouse  Gas   GRI  ...  Global  Reporting  Initiative   LCUD  ...  Low  Carbon  Urban  Development   LCUI  ...  Low  Carbon  Urban  Initiative   LED  ...  Light  Emitting  Diode   MLP  ...  Multi-­‐Level  Perspective   OECD  ...  Organization  for  Economic  Cooperation  and  Development   PPP  ...  Public-­‐Private  Partnership   R&D  ...  Research  and  Development   SME  ...  Small  and  Medium-­‐Sized  Enterprise   UA  ...  Urban  Agriculture   VC  ...  Venture  Capital   VF  ...  Vertical  Farming   WRI  ...  World  Resources  Institute  

(8)

List  of  Illustrations  

Figure  1  -­‐  Categorization  of  Vertical  Farming  ...  2  

Figure  2  -­‐  The  Multi-­‐Level  Perspective  (Geels,  2011,  p.  28)  ...  6  

Figure  3  -­‐  Cross-­‐scale  Dynamics  –  Spatial,  Temporal,  and  Organizational  Interactions  (Cash  et  al.  2006,  p.  7)  ...  11  

Figure  4  -­‐  Horizontal  and  Vertical  Pathways  to  Scaling-­‐Up  (van  Doren  et  al.,  2018,  p.  179)  ...  9  

Figure  5  -­‐  Conceptual  Scheme:  The  Up-­‐scaling  of  Vertical  Farming  ...  11  

Figure  6  -­‐  Principle  Findings  Viewed  Through  the  MLP  ...  311  

Figure  7  -­‐  Five  Categories  of  Integrative  Functions  at  the  Level  of  the  Vertical  Farm  ...  39  

Figure  8  -­‐  Alternative  Scaled  Logistics  (based  on  accounts  of  interviewee  003)  ...  42  

(9)

1. Introduction

In   2016,   the   Food   and   Agriculture   Organization   (FAO)   released   a   report   stating   that   humanity   is   facing   an   unprecedented  challenge  in  having  to  mitigate  a  destabilized  global  climate  system  and  eradicate  hunger  and  poverty   on   a   global   scale   (FAO,   2016).   With   13%   of   global   greenhouse   gas   (GHG)   emissions   resulting   from   the   agriculture   sector   (WRI,   2014)   it   becomes   clear   that   there   is   a   link   between   these   two   challenges,   which   necessitates   more   sustainable  approaches  to  food  systems.  This  is  further  intensified  by  projections  of  population  increases  as  well  as   their  concentrations  in  urban  areas  (UN,  2014).  This  means  that  the  21st  century  will  be  decidedly  urban  in  focus,  and   therefore  global  issues  –  such  as  climate  change,  diminishing  food  security,  growing  demand  for  comfort  and  varied   (out  of  season)  foods,  growing  population  levels,  and  intensified  resource  and  energy  use  –  will  both  originate  and  will   have  their  biggest  impact  in  cities  as  well.  

The   geological   epoch   these   processes   have   produced   has   been   coined   the   anthropocene   by   many   (Haff,   2014;   Rockström  et  al.,  2009;  Biermann,  2012;  Gupta,  2016).  This  means  that  the  impact  of  human  activity  on  the  planet  in   environmental  terms  is  so  extensive  and  substantial  that  humanity  has  become  the  primary  driver  of  geological  and   natural   processes   today.   These   effects   have   been   illustrated   on   numerous   occasions,   however   the   framework   of   Rockström  et  al.  (2009)  outlining  planetary  boundaries,  and  the  problematic  state  of  the  planet  on  multiple  points  -­‐   such  as  biodiversity  loss,  climate  change,  and  the  misbalance  in  the  nitrogen  cycle  -­‐  calls  for  immediate  action.  In  the   past   it   has   been   theorized   that   these   processes   constitute   the   symptoms   of   deeper   systemic   ills,   which   manifest   themselves  in  what  has  been  termed  the  metabolic  rift  (Foster,  1999).  This  rift  means  that  there  is  a  clear  rupture  in   the  relationship  between  humanity  and  nature.  Building  on  this  conception  a  number  of  authors  have  pointed  to  the   resulting  metabolic  nature  of  cities  (Wachsmuth,  2012;  Giezen  and  Roemers,  2015;  Swyngedouw,  2006).  This  line  of   thought   conceives   of   cities   as   metabolic   entities,   which   encompass   flows   of   resources   and   the   resulting   intensified   consumption   patterns.   Next   to   illustrating   the   necessity   for   immediate   and   innovative   action,   aimed   at   closing   the   metabolic  rift,  this  line  of  thinking  serves  as  a  general  basis  for  understanding  the  interrelations  of  humankind,  society,   and   technological   developments,   ultimately   establishing   the   scene   for   this   research.   In   this   sense   humanity’s   planetary  impact  can  be  taken  as  a  given,  where  the  urban  environment  and  the  technosphere  (Haff,  2014)  take  on  a   central  role,  essentially  constituting  the  core  of  the  studied  reality.  Considering  cities  house  over  half  of  the  world’s   population  (UN,  2014)  and  contribute  to  over  70%  of  the  world’s  CO2  emissions  (C40,  2018),  it  can  be  said  that  cities   of  the  anthropocene  are  the  central  nodes  in  the  web  of  human  resource  use;  and  hence  focusing  on  one  of  the  most   resource  intensive  industries  –  that  of  food  –  is  absolutely  necessary  if  one  aims  at  finding  integrated  solutions  to  the   above  outlined  problems  (Steel,  2008).  

In  this  context,  technologically  intense  solutions  have  emerged,  which  ultimately  carry  the  potential  to  be  urban  level   supply-­‐end  interventions  in  food  systems.  Vertical  Farming  (VF)  is  one  such  proposed  solution.  In  order  to  understand   what   VF   entails,   it   is   necessary   to   explore   the   conceptual   context   in   which   it   arose.   Firstly,   without   conducting   a   thorough  review  of  the  subject,  agriculture  can  be  understood  in  general  as  the  cultivation  of  soil-­‐based  domesticated   plant  varieties  as  well  as  farm  animals  (Harari,  2011).  Within  this  broad  category,  urban  agriculture  (UA)  as  a  subset   with  an  explicit  focus  on  farming  within  cities  has  been  gaining  prominence  in  the  recent  decades,  due  to  its  promise   to  contribute  to  more  secure  food  supplies,  improve  health  conditions  of  local  populations,  enhance  the  immediate   economy,  create  social  value,  and  also  contribute  to  environmental  sustainability  (Orsini  et  al.,  2013).  This  being  said,  

(10)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

not  all  UA  is  necessarily  soil-­‐based.  Considering  there  is  a  limited  amount  of  space  available  in  cities  for  agricultural   purposes,  it  has  been  suggested  that  innovative  forms  of  agriculture  that  have  the  highest  yields  per  km2  should  be   preferred  –  at  least  from  a  climate  mitigation  viewpoint.  One  of  these  methods  for  urban  food  production  is  VF.  

VF  is  a  form  of  controlled  environment  agriculture  (CEA)  (Despommier,  2010)  involving  stacked  layers  of  crops,  usually   implicating  soilless,  Zero-­‐acreage  (Z-­‐farming)  cultivation  methods  (Thomaier  et  al.,  2014).  This  means  that  by  isolating   the  environment,  in  which  the  plants  grow,  the  basic  physiological  requirements  of  the  plants  can  be  fully  controlled.   Hence  cultivation  methods  utilizing  approaches  with  water  circulation  in  order  to  feed  the  plants  with  nutrition  –  such   as  aeroponics,  or  hydro/aquaponics  –  are  the  primary  methods  utilized  in  VF.  These  methods  can  be  used  in  single   layer  plants  –  for  example  on  rooftops  –  and  hence  the  differentiation  of  VF  from  Z-­‐farming  in  general,  as  is  outlined  in   the  Figure  1.  bellow.  

With  regards  to  the  visions  of  the  use  of  VF,  early  proponents  such  as  Despommier  (2010,  and  2011),  take  a  clear   supportive  stance  from  a  holistic  perspective.  In  his  pioneering  and  visionary  book  titled  The  Vertical  Farm:  Feeding  

the  World  in  the  21st  Century  (2010)  he  outlines  multiple  advantages  for  this  type  of  cultivation  method.  These  are  1.)  

year-­‐round   crop   availability,   2.)   no   crop   failures   resulting   from   bad   weather,   3.)   no   agricultural   run-­‐off,   4.)   the   possibility   of   eco-­‐system   restoration   (in   areas   reclaimed   form   traditional   agriculture),   5.)   lacking   necessity   to   use   fertilizers,  pesticides,  and  herbicides,  6.)  70-­‐95  %  less  water  requirement,  7.)  shorter  food  miles,  8.)  closer  control  over   food   security   and   safety,   9.)   employment   opportunities,   10.)   grey-­‐water   purification,   and   11.)   availability   of   animal   feed  from  green  waste  (p.  245).  Similarly,  conceptions  outlining  utopian  visions  of  Skyfarms  populating  the  world  and   remedying  most  of  the  above  outlined  ills  have  also  been  put  forward  (Germer  et  al.,  2011).  This  is  accompanied  by   concepts   such   as   the   Biopolus   (Biopolus,   2018),   or   the   Polydome   (Except,   2011),   which   are   indoor   farming   designs   aimed   not   only   at   food   production,   but   the   integration   of   other   functions,   such   as   ecosystem   services   and   water   purification.  In  the  past  it  has  been  argued  that  this  form  of  agriculture  carries  multiple  benefits  for  cities  and  can   provide  remedies  to  most  of  the  above  outlined  global  ills  and  crises  (Despommier,  2011).  However  this  technological   innovation   is   still   in   an   early   phase,   with   experimentation   happening   in   a   number   of   cities   around   the   world.   Nevertheless,  large-­‐scale  systemic  transformations  are  still  lacking.  

In  this  sense,  making  the  connection  between  singular  VF  experiments  and  the  potential  to  plan  for  broader  systemic   transformations  capable  of  contributing  to  mitigating  the  climate  impact  of  cities  is  yet  to  be  seen.  So  far  no  explicit  

Agriculture   Urban   Agriculture   Z-­‐Farming   Verlcal   Farming  

(11)

attempt  has  been  made  to  connect  the  two,  and  in  effect  to  scope  the  necessary  governance  milieu  for  the  successful   expansion   and   up-­‐scaling   of   VF   on   the   one   hand;   while   on   the   other   hand   no   explicit   attention   has   been   paid   to   understanding  the  climate  mitigation  potential  the  introduction  of  VF  in  cities  carries.  These  two  issues  go  hand-­‐in-­‐ hand,  as  understanding  the  true  climate  mitigation  potential  of  these  solutions  requires  an  assessment  resulting  from   the  marriage  of  understanding  issues  specific  to  VF  installations,  as  well  as  to  understanding  the  urban  governance   environment   surrounding   them.   Therefore,   integrated   approaches   assessing   this   combination   in   terms   of   climate   mitigation  are  yet  to  be  developed.  The  true  gap  in  the  academic  literature  is  to  be  found  here.  

Hence   in   terms   of   scope,   this   research   aims   at   1.)   understanding   how   VF   can   be   up-­‐scaled   in   the   sense   of   spatial   reproduction   and   in   terms   of   institutionalization,   2.)   substantiating   if   the   sustainability   discourse   that   promises   for   more   sustainable   cities   through   the   expansion   of   VF   aligns   with   the   accounts   of   experts   working   with   this   sociotechnical  niche,  and  3.)  providing  an  indication  of  whether  and  how  VF  can  contribute  to  reducing  the  impact  of   food  systems  in  terms  of  anthropogenic  climate  change.  For  this  reason,  this  research  asks  the  following  question:  

How  can  vertical  farming  contribute  to  mitigating  the  climate  impact  of  urban  food  systems?  

This  question  is  further  broken  down  into  three  sub  questions,  namely:  What  barriers  and  opportunities  does  vertical  

farming  encounter  in  terms  of  spatial  reproduction  –  or  horizontal  up-­‐scaling?  What  barriers  and  opportunities  does   vertical   farming   encounter   in   terms   of   institutional   and   structural   integration   –   or   vertical   up-­‐scaling?   And   viewed   through  the  multi-­‐level  perspective,  what  dynamics  have  created  these  opportunities  and  barriers?  In  order  to  answer  

these  questions,  the  research  utilizes  two  theoretical  frameworks  –  that  of  the  up-­‐scaling  framework  developed  by   van   Doren   et   al.   (2018)   and   the   multi-­‐level   perspective   (MLP)   of   Geels   (2002,   2011).   The   two   frameworks   are   embedded  in  a  qualitative  design,  which  takes  an  abductive  approach  –  allowing  for  not  only  an  analysis  of  the  up-­‐ scaling  potential  of  VF,  but  also  for  a  theoretical  contribution  based  on  the  collected  data.  The  data  is  based  on  17   semi-­‐structured   key   informant   interviews,   which   assessed   the   perspectives   of   entrepreneurs,   researchers,   consultants,  and  municipal  actors  working  with  VF.  Next  to  the  theoretical  contribution,  three  core  findings  emerge   from  the  research  pointing  towards  the  necessity  to  view  VF  in  terms  of  1.)  integrative  solutions  at  the  level  of  the   farm,  2.)  solutions  focusing  on  urban  and  regional  food  systems,  and  3.)  globalized  dynamics  of  the  political  economy   having  localized  effects.  

The  thesis  is  structured  as  follows.  Chapter  2  explores  literature  discussing  food  systems  in  order  to  understand  the   wider   contextual   embedding   of   VF.   It   furthermore   discusses   the   two   theoretical   families,   the   reasons   for   choosing   them,   and   the   conceptual   scheme   arising   thereof.   Chapter   3   outlines   the   chosen   qualitative   research   design   and   accompanying  methodology.  Chapter  4  summarizes  the  results  of  the  interviews  through  the  lens  of  the  up-­‐scaling   framework,  and  Chapter  5  provides  an  analysis  of  the  data  from  the  perspective  of  the  MLP  and  discusses  the  three   core  findings.  Finally,  Chapter  6  concludes  and  provides  recommendations  for  practitioners.  

(12)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

2. Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling

The   present   chapter   outlines   the   contextual   understanding   of   cities   in   terms   of   ontology,   assesses   VF   through   systemic  understandings  of  urban  food  systems,  and  outlines  the  proposed  theoretical  and  analytical  framework.  The   metabolic  conception  of  cities  constitutes  the  ontological  backdrop  of  how  food  systems  and  the  resulting  resource   flows  of  cities  function.  Building  on  this,  the  theories  of  the  multi-­‐level  perspective  (MLP)  on  sustainability  transitions   (Geels,   2002,   2011)   provides   the   wider   theoretical   framing,   while   the   up-­‐scaling   theory   (van   Doren   et   al.,   2018)   provides  the  specific  analytical  tool  for  understanding  the  climate  mitigating  potential  of  VF  within  this  backdrop.  Next   to  this,  these  theories  are  reinforced  by  a  specific  understanding  of  power  in  order  to  situate  the  socio-­‐political  reality   of  sustainability  within  the  research,  as  outlined  below.  

 

2.1.  Ontological  Understanding  of  Cities  –  The  Metabolic  City  

In  broad  terms  ontology  can  be  understood  as  the  elements  constituting  the  underlying  structures  of  social  reality.   Forsyth  (2003)  describes  ontology  in  the  context  of  anthropogenic  climate  change  quite  fittingly,  and  addresses  the   relationships  between  causes  of  climate  change,  and  the  resulting  responsibility.  He  is  worth  quoting  in  length.  

“An   ontological   approach   to   anthropogenic   climate   change   would   aim   to   understand   the   causal   mechanisms   of   climate   change,   and   the   accurate   apportioning   of   responsibility   to   different   human   causes  according  to  their  influence  on  the  biophysical  process  of  warming.”  (Forsyth,  2003,  p.  16)  

In  this  sense,  it  is  important  to  briefly  outline  the  conceptions  of  these  causal  mechanisms,  and  to  see  how  the  city  as   an  entity  fits  in  this  framework.  This  research  conceives  of  cities  in  ontological  terms  as  a  socially  constructed  system,   which   functions   on   a   metabolic   basis   (Wachsmuth,   2012;   Giezen   and   Roemers,   2015;   Swyngedouw,   2006).   The   metabolic  conception  of  cities  has  its  root  in  what  Karl  Marx  outlined  as  the  growing  rift  between  society  and  nature,   ultimately  coined  as  a  metabolic  rift  (Foster,  1999).  This  means  that  the  materials  used  in  production  and  consumption   processes  have  become  untraceable  from  their  natural  origin,  ultimately  fueling  urban  growth  under  capitalist  modes   of  production  and  creating  the  cities  we  know  today.  In  this  sense,  the  city  as  an  entity  is  entangled  in  a  myriad  of   processes  and  flows  also  external  to  its  physical  boundaries  –  which  can  be  natural,  social,  or  political  to  name  a  few;   ultimately  resembling  that  of  the  human  circulatory  system,  or  metabolism.  Building  on  the  metabolic  conception,  it  is   important  to  point  out  that  cities  and  the  constituting  social  reality  –  especially  in  the  urban  political  ecology  line  of   thought  –  cease  to  exist  as  separate  entities  from  nature.  By  concentrating  on  flows  of  materials  and  processes,  this   line  of  thought  re-­‐embeds  cities  within  and  reunites  society  with  nature  (Wachsmuth,  2012).  In  this  understanding,   urban  reality  should  and  can  only  be  conceived  of  at  the  cross-­‐section  of  natural  flows,  and  socio-­‐political  processes  –   ultimately   annulling   the   society-­‐nature   divide   put   forward   by   many   in   the   past.   This   ontological   perspective   also   implies  that  social  and  political  processes,  such  as  decisions  over  resource  allocation  and  the  surrounding  governance   structures,  should  be  considered  when  studying  any  topic  related  to  climate  mitigation  in  cities.  This  means  that  any   type  of  theoretical  and  analytical  framework  has  to  either  point  towards  these  elements,  or  has  to  be  extended  with   this   fundamental   understanding   of   power.   This   research   elaborates   on   the   second   option,   as   is   expanded   in   detail   below.  

(13)

2.2.  Embedding  the  Vertical  Farm  within  the  Urban  

Based  on  this  ontological  account  of  resource  flows  and  their  culmination  in  the  urban  environment,  it  is  worthwhile   contextualizing  it  through  an  urban  food  systems  lens.  An  urban  food  system  can  be  understood  as  “the  food  system  

in   the   city   and   the   food   system   of   the   city”   (Ilieva,   2016,   p.   72).   Food   system   in   the   city   entails   every   person,   the  

utilized  organic  and  inorganic  matter,  infrastructure,  alongside  cultural  norms,  values  and  rules  governing  food  in  the   city.  Food  system  of  the  city  is  not  confined  to  the  city;  but  is  particularly  urban  as  it  operates  and  is  propelled  by   growingly  urban  dynamics  (Ibid.).  

Based  on  this  conception,  a  growing  body  of  literature  is  discussing  food  planning  at  the  urban  scale,  with  focus  put  on   evidence-­‐based  planning  (AMS,  2018),  the  potential  to  bridge  the  traditional  dichotomous  conceptions  of  rural-­‐urban   (Forster  and  Escudero,  2014),  or  how  cities  should  and  can  manage  their  food  systems  (Cohen  and  Ilieva,  2015).  Next   to  this,  some  authors  take  a  similar  ontological  understanding  as  this  thesis,  and  take  a  systems  approach  by  focusing   on  metabolic  resource  flows  and  on  the  potential  integrated  approaches  to  urban  farming  carry  in  terms  of  recovering   resources   (Ilieva,   2016).   Others   focus   on   the   role   innovation   and   learning   play   in   UA   and   assess   the   disruptive   potential  of  technical  innovation  in  terms  of  rethinking  the  socio-­‐economic  status  quo  (Pfeiffer  et  al.,  2014;  Opitz  et   al.,  2016).  Scholars,  such  as  Mancebo  (2016)  conceive  of  urban  agriculture  in  general,  from  a  critical  political  economy   perspective,   and   propagate   innovation   in   the   context   of   redistributing   resources   and   power,   and   commoning   resources  and  cities.  Steel  (2008)  focuses  on  the  role  bottlenecks  in  supply-­‐chains  play  in  feeding  cities,  and  points   towards   innovation   playing   a   role   in   providing   viable   solutions.   Closely   related,   dos   Santos   (2016)   calls   for   shorter   supply   chains   in   the   context   of   smart   cities   and   aquaponics   –   an   energy   intense   technological   approach   to   CEA,   commonly  used  in  VF  as  well  (de  Graaf,  2013).  

Other  authors  focus  on  the  specific  planning  and  zoning  challenges  that  the  required  multifunctional  land  use  in  effect   necessitates   (Thomaier   et   al.,   2014;   Deelstra   et   al.,   2001).   Finally,   more   integrative   approaches   also   exist.   These   include  accounts  of  the  multi-­‐faceted  potential  innovation  in  Urban  Agriculture  in  cities  of  the  Global  South  carries  (de   Zeeuw  et  al.,  2011;  Orsini  et  al.  2013);  or  approaches  focusing  on  academic  integration  and  assessing  VF  through  a   systematic  literature  review  (Kalantari  et  al.,  2017).  Ultimately  all  of  these  conceptions  grasp  a  certain  aspect  of  the   problem   at   hand,   and   conclude   in   the   lowest   common   denominator:   the   necessity   to   alter   the   way   resources   are   produced,  consumed,  and  ultimately  flow  within  urban  food  systems.  

 

2.3.  The  Multi-­‐Level  Perspective  and  its  Critique  –  A  Theoretical  Backdrop  

As  mentioned  above,  a  particular  set  of  theories  is  utilized  in  order  to  explicitly  address  the  field  of  VF,  to  understand   the  emergence  of  this  phenomenon  within  the  context  of  the  urban  setting,  and  to  explore  it’s  potential  in  terms  of   climate  mitigation.  This  is  due  to  the  theories’  explanatory  power  when  assessing  the  management  and  governance  of   innovative   technological   solutions,   and   low   carbon   projects   in   the   urban   environment.   As   a   basis   to   this   analytical   approach  two  closely  related  theories  are  chosen.  The  first  one  is  the  family  of  transition  theories  (Geels,  2002;  2011;   Hodson   and   Marvin,   2010;   Rotmans   and   Loorbach,   2009;   Smith   et   al.,   2005),   which   primarily   assess   sociotechnical   transitions   from   a   three-­‐tiered   perspective   or   Multi-­‐Level   Perspective   (MLP),   explaining   regimes,   landscapes,   and  

(14)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

forces,   technologies,   policy,   science,   culture,   and   industry   (Geels,   2011).   Landscapes   describe   broad   overarching   processes,   which   put   pressure   on   the   dominant   regime   on   the   one   hand,   and   open   up   opportunities   for   transformations  of  this  constellation  on  the  other.  Niches  describe  novelties,  which  ultimately  challenge  the  dominant  

regime   through   establishing   alternative   constellations   of   the   given   sociotechnical   reality.   These   three   levels   are  

depicted  in  Figure  2.  

In  the  case  of  VF  the  dominant  regime  can  be  understood  as  the  current  food  system,  fed  by  extensive  food-­‐miles  and   factory   farming,   concentrating   produce   in   a   small   number   of   distribution   centers,   and   ultimately   distributing   this   produce  through  carefully  orchestrated  assemblages  of  supermarkets  (Steel,  2008).  The  landscape  in  this  context  can     be  best  understood  as  phenomena,  such  as  the  approaching  food  crisis,  globalized  neoliberal  capitalism,  or  the  afore   mentioned  misbalance  in  the  nitrogen  cycle.  These  seemingly  independent  and  disconnected  phenomena  in  reality   create  a  certain  type  of  milieu,  which  under  certain  circumstances  enables  or  blocks  regime  change.  The  niche  to  be   assessed  in  this  research  is  that  of  VF.  In  this  sense,  this  alternative  form  of  food  production  carries  elements,  which   under   the   right   circumstances   could   challenge   the   current   regime   and   could   contribute   to   reconfiguring   food   production  and  consumption  in  cities.  

Transition  theories  –  and  the  MLP  specifically  –  provide  an  analytical  lens  for  understanding  the  interrelation  of  broad  

phenomena  with  potentially  global  reach  and  niche  innovations.  The  three-­‐tiered  analytical  perspective  allows  for  a  

nuanced  understanding  of  sociotechnical  reality,  with  a  particular  focus  on  the  processes  of  transitions.  Nevertheless,   this   approach   has   also   been   criticized   on   multiple   occasions.   Lawhon   and   Murphy   (2011)   have   outlined   a   comprehensive  critique  from  the  perspective  of  political  ecology,  which  falls  in  line  with  the  aforementioned  political  

(15)

nature  of  resource  flows  in  the  metabolic  city.  They  suggest  the  following  four  major  limitations,  specifically  situated   in  the  context  of  VF  for  the  sake  of  this  research.  

Firstly,  the  MLP  can  be  seen  as  representing  the  opinions  of  the  elite,  in  the  position  to  initiate  transformations.  In  the   context   of   VF   this   means   that   it   is   necessary   to   see   the   perspectives   of   a   wider   array   of   actors,   exemplified   by   consumers,  activists,  and  workers.  This  thought  ties  in  closely  with  the  critiques  put  forward  by  Smith  et  al.  (2005)   alongside  de  Haan  and  Rotmans  (2018).  They  outline  how  this  approach  substantially  disregards  the  role  of  actors  and   agency  in  the  transition  process.  Building  on  this  critique,  a  central  question  of  political  nature  becomes  evident:  How   do   pioneers   and   entrepreneurial   actors   actually   take   lead   in   exploiting   opportunities   to   the   best   manner   possible?   Secondly  and  closely  related,  the  MLP  also  focuses  extensively  on  the  role  of  technology,  independent  of  social  and   political  processes.  In  this  sense,  VF  should  not  only  be  understood  as  a  transformation  in  technological  processes  but   as   a   phenomenon   with   transformative   power   in   the   societal   sphere   –   and   on   the   urban,   neighborhood,   and   community  levels.  Thirdly,  spatial,  geographical,  and  consequently  resulting  contextual  factors  are  missing  from  this   theoretical  framework,  which  is  essential  when  studying  transitions  in  the  urban  setting.  The  deception  focusing  on   national  level  processes  primarily  ignores  the  potential  for  different  geographical  scales  to  have  different  implications.   Hence  by  studying  VF  in  the  urban  environment  and  by  situating  urban  reality  in  a  wider  context  of  anthropogenic   climate  change  a  more  nuanced  and  contextually  embedded  conception  of  desired  transitions  and  potential  pathways   emerges.  Finally,  the  role  power  relations  play,  and  the  productive  nature  of  political  struggles  are  also  fully  neglected   in  the  MLP.  With  a  focus  on  rules  and  regulation,  there  is  insufficient  space  given  to  actors  in  the  process.  Hence  it  is   necessary  to  continuously  reflect  and  ask,  if  VF  becomes  a  regime,  who  benefits  from  this?  How  can  the  benefits  of  VF   be   distributed   in   the   most   just   way?   This   last   point   ties   in   very   closely   with   the   aforementioned   understanding   of   power.  Studying  changes  and  transitions  in  order  to  contribute  to  climate  mitigation  in  cities,  inherently  has  to  assess   the  social  and  political  reality  surrounding  the  transformation.  This  is  where  the  above-­‐mentioned  understanding  of   power   ties   in.   Due   to   the   ontological   basis   of   this   research   focusing   on   the   metabolic   resource   flows   of   cities,   the   added  extension  of  power  complements  the  analytical  framework.  Considering  cities  are  the  sums  of  natural  resource   flows,  as  well  as  socio-­‐political  process’,  resulting  in  strife  for  power  and  dominance;  the  political  and  social  nature  of   resource  flows  as  outlined  by  Swyngedouw  (2006)  is  carried  on  complementarily  to  the  analytical  framework.  

At  this  point  it  is  essential  to  ask  if  this  research  caters  sufficiently  to  all  of  these  critiques.  The  answer  is  no,  as  the   main   aim   of   the   research   is   not   to   reassess   the   MLP   as   a   theoretical   framework.   However   two   points   can   provide   justifications  for  carrying  on  the  MLP  as  a  backdrop  to  the  analytical  framework  in  light  of  these  valid  critiques.  Firstly,   this  theoretical  framework  still  carries  explanatory  power  in  terms  of  framing  the  relationships  between  small-­‐scale   innovations  and  exogenous  contexts  (Geels,  2002,  2011).  Secondly,  through  a  process  of  conscious  reflection  on  these   points   throughout   the   data   collection   as   well   as   the   analysis,   a   more   nuanced   understanding   of   the   (potential)   transition   processes   becomes   possible.   This   means   that   by   continuously   catering   to   the   politicizing   nature   of   the   critiques   of   the   MLP   during   the   periods   of   data   collection   as   well   as   analysis   can   allow   for   understanding   further   aspects  of  the  studied  socio-­‐technical  reality.  

(16)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

2.4.  Up-­‐scaling  Low  Carbon  Urban  Initiatives  –  An  Operational  Framework  

Following   the   above   outline   of   the   MLP   this   section   turns   to   the   second   subset   of   the   utilized   theories;   literature   discussing  the  up-­‐scaling  potential  of  Low  Carbon  Urban  Initiatives  (LCUIs)  with  a  particular  focus  on  the  taxonomy   developed   by   van   Doren   et   al.   (2018).   This   framework   establishes   a   classification   of   different   elements   that   can   contribute  to  the  spatial  expansion  and  reproduction  of  LCUIs,  as  well  as  the  institutional  and  regulative  embedding  of   these  initiatives,  ultimately  operationalizing  the  transition  process  of  the  MLP.  However,  in  order  to  understand  what   up-­‐scaling  LCUIs  means,  it  is  necessary  to  dissect  the  utilized  terminology.  

Firstly  the  term  scale  has  to  be  outlined.  Gibson  et  al.  (2000)  define  scale  as  “the  spatial,  temporal,  quantitative,  or   analytical  dimensions  used  by  scientists  to  measure  and  study  objects  and  processes”  (p.  219).  In  this  context,  as  Cash   et   al.   (2006)   outline,   the   most   studied   scale   is   spatial,   which   is   in   line   with   the   urban   focus   of   this   research.   Nevertheless   the   authors   go   on   to   describe   the   complexity   involved   in   the   management   of   environmental   issues   resulting   from   the   multiple   scales   and   levels   that   exist   in   terms   of   spatial,   temporal,   jurisdictional,   institutional,   management,  network  and  knowledge  arrangements  (Ibid.).  This  complexity  is  illustrated  in  Figure  3.    

 

(17)

As  can  be  seen,  accounting  for  a  variety  of  scales  when  modeling  and  categorizing  environmental  processes  reveals   the  complexity  of  problems  at  hand;  and  ultimately  hints  at  the  complexity  taken  on  by  the  transformations  meant  to   address   anthropogenic   climate   change   in   cities.   Building   on   this   outline,   van   Doren   et   al.   (2018)   conceive   of   Low   Carbon   Urban   Developments   (LCUDs),   as   a   ”reconciliation   between   urban   development   and   the   mitigation   of   anthropogenic  climate  change”  (Ibid.  p.  176).  This  being  said,  for  this  reconciliation  to  take  place,  a  focus  on  LCUIs  is   necessary,  as  these  are  the  means  to  the  LCUDs.  Hence  successful  LCUIs  entail  two  types  of  pathways,  or  scaling-­‐up:  

horizontal  and  vertical.  Horizontal  up-­‐scaling  entails  the  spatial  growth  of  an  initiative.  This  means  it  can  grow  in  size,  

or  it  can  reproduce  itself  in  quantity.  In  terms  of  VF  this  could  mean  1.)  having  a  larger  farm  sufficient  to  feed  a  greater   geographical  area  than  before  (e.g.  neighborhood  instead  of  a  street)  or  2.)  having  more  numbers  of  farms  within  a   city.   Vertical   up-­‐scaling   entails   the   structural   learning   and   institutional   transformations   necessary   for   establishing   a   wider-­‐impact  of  LCUIs.  This  means  that  ideas,  values,  policy,  and  institutions  are  all  meant  to  be  transformed  in  the   process   of   vertical   up-­‐scaling,   ultimately   creating   an   enabling   environment   for   Low   Carbon   Urban   Developments   (LCUDs)  (van  Doren  et  al.  2018).  In  terms  of  VF  this  could  mean  favorable  zoning  regulation,  subsidy  schemes  targeting   this  type  of  agriculture  specifically,  or  even  education  activities.  These  two  types  of  pathways  (horizontal  and  vertical   up-­‐scaling)  and  their  interrelation  is  sketched  in  Figure  4.  

(18)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

At  this  point  it  is  essential  to  point  out  that  the  two  different  pathways  do  not  follow  in  a  linear  manner.  They  form  a   dialectic   relationship,   as   on   the   one   hand   the   growth   in   the   spatial   presence   of   LCUIs   (in   the   horizontal   pathway)   potentially   informs   institutional   and   regulative   changes   (in   the   vertical   pathway).   In   the   ideal   scenario,   this   then   informs  the  creation  of  even  more  and  even  larger  LCUIs,  ultimately  closing  the  loop.  

Considering  this  research  focuses  on  the  process  of  up-­‐scaling,  it  is  essential  to  reflect  on  the  fact  that  the  success  of   these   pathways   is   informed   by   barriers   and   opportunities.   Van   Doren   et   al.   (2018)   have   developed   a   detailed   taxonomy   of   potential   factors   that   can   contribute   to   the   up-­‐scaling   of   LCUIs.   As   is   outlined   in   the   methodological   chapter,  these  factors  form  the  core  of  the  analytical  framework  in  terms  of  structuring  the  interviews  as  well  as  the   results.  The  taxonomy  covers  a  comprehensive  set  of  factors,  which  can  potentially  further  the  LCUIs,  but  can  also   serve  as  barriers  in  the  process.  The  specific  factors  are  as  follows:  

Measures  for  LCUD  

• Financial  Advantage   • Reliability   • Low  Complexity     Operational  Arrangements   • Leadership   • Stakeholder  Involvement   • Resource  Mobilization   • Communication     Policy  Context  

• Regulatory  Policy  Instruments   • Financial  Policy  Instruments   • Informative  Policy  Instruments   • Political  Leadership  

• Trust  in  the  Policy  Framework  

Market  Context  

• Low  Capital  and  Installment  Costs   • Expertise  and  Skills  of  Supply  Actors   • Information  Availability  

• Access  to  Credit   • Energy  Price    

Social-­‐cultural  context  

• Environmental  Awareness  and  Values    

Natural  and  Built  Context   • Technical  Compatibility    

(19)

Finally,  it  is  also  necessary  to  point  out  that  the  up-­‐scaling  literature  has  been  chosen  in  combination  with  the  MLP  as   it  caters  to  a  number  of  the  above  outlined  critiques  describing  the  limitations  of  the  MLP.  Theories  discussing  the   scalability  of  LCUIs  speak  directly  to  the  role  “pioneers”  or  “leadership”  carry  in  assessing,  and  ultimately  overcoming   potential  barriers  and  utilizing  opportunities  in  the  context  of  sociotechnical  transitions  (van  Doren  et  al.  2018;  2016).   In  this  sense  actors  and  agency  are  given  a  much  bigger  role.  Next  to  this,  the  up-­‐scaling  literature  conceives  of  LCUIs   in   a   similar   manner   to   how   the   MLP   sees   niche   experiments,   however   it   gives   greater   attention   to   the   community   aspect   of   bottom-­‐up   initiatives,   ultimately   aimed   at   “strengthening   community   networks   and   ownership”   (Ibid.   p.   177).  Finally,  the  above  outlined  specific  factors  that  can  outline  the  barriers  and  opportunities  for  up-­‐scaling  allow  for   a   more   tangible   and   practical   approach   to   analyzing   the   accounts   of   interviewees   –   as   is   outlined   in   the   methodological  section  of  the  thesis.  

 

2.5.  Conceptual  Scheme  

On   the   basis   of   the   problem   statement,   research   questions,   and   theoretical   perspective   the   following   conceptual   scheme  has  been  outlined.  

Figure  2  -­‐  Conceptual  Scheme:  The  Up-­‐scaling  of  Vertical  Farming  

As  can  be  seen,  the  boundary  of  the  conceptual  scheme  is  set  by  urban  food  systems.  Embedded  in  this  are  the  two   explanatory  theories,  the  MLP  and  conceptions  of  up-­‐scaling.  The  conception  of  the  urban  metabolism  is  outlined  in   light   grey,   as   it   is   not   an   explanatory   tool,   but   merely   the   ontological   basis   of   the   research,   which   has   lead   to   the   conscious   conceptualization   of   the   social   and   political   nature   of   resource   flows.   This   element   builds   on   the   above   outlined  critique  of  the  MLP  in  terms  of  lacking  agency  and  political  focus.  In  this  context,  the  three  tiers  of  the  MLP   set  the  backdrop  for  understanding  the  analytical  framing  of  this  transition  through   niches,  regime,  and  landscape.  

Urban&Food&Systems& Urban&Metabolism&

REGIME&

LANDSCAPE&

OPPURTUNITIES& BARRIERS& VERTICAL& UPSCALING&

NICHES&

VerBcal& Farming& HORIZONTAL& UPSCALING& HORIZONTAL& UPSCALING&

(20)

Constructing  a  Theoretical  Approach:  Food  Systems,  the  Multi-­‐Level  Perspective,  and  Up-­‐scaling  

The   specific   framing   for   transitioning   VF   from   a   niche   to   a   regime   is   conceived   through   the   theories   of   up-­‐scaling,   assessing  both  horizontal  and  vertical  directions.  This  conception  allows  for  the  exploration  of  factors  enabling  and   blocking   both   the   spatial   reproduction   of   VF   and   also   the   institutional   and   structural   embedding   of   this   novelty.   Finally,  the  up-­‐scaling  framework  also  allows  for  the  assessment  of  barriers  and  opportunities  in  this  context.  

 

2.6.  Concluding  Remarks  

All   in   all,   this   chapter   explored   the   ontological   conception   of   the   city,   situated   VF   within   urban   food   systems,   and   explored  the  two  broad  theoretical  families  utilized  in  the  present  research  –  the  MLP  and  literature  discussing  the  up-­‐ scaling  of  LCUIs.  In  terms  of  ontology,  the  chapter  discussed  the  metabolic  conception  of  cities,  ultimately  suggesting   that  the  polarizing  view  on  urban  society  and  nature  is  a  misconception,  and  hence  it  asks  for  a  reconceptualization  of   socio-­‐nature  (Swyngedouw,  2006)  in  terms  of  flows  of  social  and  natural  processes  and  materials.  With  this  backdrop,   the  growing  body  of  literature  discussing  urban  food  systems  allows  for  a  contextualization  of  the  problem  at  hand.  In   terms  of  theory,  the  MLP  establishes  the  basis  for  understanding  how  niche  sustainability  experiments  can  challenge   dominant  regimes,  and  how  this  process  is  affected  by  broader  exogenous  factors.  Nevertheless,  this  framework  has   been  criticized  on  multiple  occasions,  particularly  for  overlooking  the  social  and  political  tensions,  which  arise  from   transitions,  and  for  this  reason  the  closely  related  theoretical  framework  of  up-­‐scaling  has  been  chosen  in  order  to   complement  these  shortcomings.  Utilizing  the  up-­‐scaling  framework  firstly  leaves  more  space  for  assessing  the  role  of   agency  when  assessing  a  sociotechnical  transition,  secondly  allows  for  conceiving  of  bottom-­‐up  processes,  and  finally   also  allows  for  explicitly  addressing  the  emerging  opportunities  and  barriers  in  the  process  of  up-­‐scaling  LCUIs  due  to   the  extensive  taxonomy  of  contributing  factors.  By  analyzing  opportunities  and  barriers  the  potential  pathways  can  be   better   understood,   and   potential   directions   can   be   outlined   for   overcoming   barriers   and   transforming   them   into   enablers   of   action   –   as   is   put   forward   by   Burch   (2010).   This   theoretical   exercise   ultimately   carries   the   potential   to   inform  conscious  policy  choices  surrounding  VF.  Next  to  this,  it  should  be  mentioned  that  due  to  the  afore-­‐mentioned   ontological  conception,  the  theoretical  framework  is  extended  with  a  conscious  perspective  on  power,  framing  the   political  perspective  of  VF.  

Referenties

GERELATEERDE DOCUMENTEN

Het melkureumgehalte in drie praktijknetwerken van melkveehouders (op veen, klei en zand) werd benut voor het verbinden van bedrijfs en milieudoelen.. Melkveehouders rekenden

2011, gaat de Nederlandse Malacologische Vereniging bijeen- komsten organiseren in Naturalis, Deze zullen hel ‘Kreukel- model’ hebben, dwz.. informele, werkgroep-achtige bijeen-

In this thesis, I set out to determine how the conservation value of grassland ecosystems is affected by commercial timber plantations and the invasive alien

We have developed a uniform, closed framework for representing and querying uncertain data based on concepts from probabilistic graphical models; I will present an overview of

Weens die sukses wat hierdie Museum reeds behaal het in die maak van veselglasreplikas van groot soogdiere is daar gedurende 1973, toe te Skukuza vir hierdie

The lack of a properly defined criterion for optimum thermal efficiency still prevented the tests to produce a steam flow - air flow curve.. There were

The following belongs to the second generation of Bible translations of the fourth era: the Living Bible, Paraphrased (LB) (1967, 1971) by Kenneth Taylor, used the American

Er is een redelijke overtuiging dat de gepresenteerde uitkomsten (teruglopend eigen vermogen en moeilijkere financiële positie) gelden voor gemiddelden, maar dat het voor