• No results found

Longitudinal network re-organization across learning and development

N/A
N/A
Protected

Academic year: 2021

Share "Longitudinal network re-organization across learning and development"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

NeuroImage

journalhomepage:www.elsevier.com/locate/neuroimage

Longitudinal

network

re-organization

across

learning

and

development

Ethan

M.

McCormick

a,∗

,

Sabine

Peters

b,c

,

Eveline

A.

Crone

b,c,d

,

Eva

H.

Telzer

a a Department of Psychology and Neuroscience, University of North Carolina, 235 E. Cameron Avenue, Chapel Hill, NC 27599, United States b Department of Developmental and Educational Psychology, Leiden University, 2333AK Leiden, the Netherlands

c Leiden Institute for Brain and Cognition, 2333ZA Leiden, the Netherlands

d School of Social and Behavioural Sciences, Erasmus University Rotterdam, Rotterdam, the Netherlands

a

b

s

t

r

a

c

t

Whileitiswellunderstoodthatthebrainexperienceschangesacrossshort-termexperience/learningandlong-termdevelopment,itisunclearhowthesetwo mechanismsinteracttoproducedevelopmentaloutcomes.Herewetestaninteractivemodeloflearninganddevelopmentwherecertainlearning-relatedchanges areconstrainedbydevelopmentalchangesinthebrainagainstanalternativedevelopment-as-practicemodelwhereoutcomesaredeterminedprimarilybythe accumulationofexperienceregardlessofage.Participants(8–29years)participatedinathree-wave,acceleratedlongitudinalstudyduringwhichtheycompleteda feedbacklearningtaskduringanfMRIscan.Adoptinganovellongitudinalmodelingapproach,weprobedtheuniqueandmoderatedeffectsoflearning,experience, anddevelopmentsimultaneouslyonbehavioralperformanceandnetworkmodularityduringthetask.Wefoundnonlinearpatternsofdevelopmentforbothbehavior andbrain,andthatgreaterexperiencesupportedincreasedlearningandnetworkmodularityrelativetonaïvesubjects.Wealsofoundchangingbrain-behavior relationshipsacrossadolescentdevelopment,whereheightenednetworkmodularitypredictedimprovedlearning,butonlyfollowingthetransitionfromadolescence toyoungadulthood.Theseresultspresentcompellingsupportforaninteractiveviewofexperienceanddevelopment,wherechangesinthebrainimpactbehavior incontext-specificfashionbasedondevelopmentalgoals.

1. Introduction

Thebrainisadynamicsystemcapableofreshapingitselfacrosstime toadapttoitsexternalenvironment.Forsomedevelopmentalprocesses (e.g.,cognitivecontrolorrisk-taking;Casey,2015;orsocioemotional development;BlakemoreandMills,2014),thesechangesunfoldacross longtimehorizons(e.g.,monthsoryears).However,functional devel-opmentdoesnotrequireyears,orevenmonths,toshowmeasurable changes.Indeed,abroadliteraturehasdemonstratedthatbrain func-tionrapidlyadaptstotaskdemandsandfeedbacktosupportskill acqui-sitionorgoal-directedbehavior(e.g.,Dawetal.,2006;Bassettetal., 2011; McCormick and Telzer,2017a, 2017b, 2018; Telesford et al., 2017;Gerratyetal.,2018).However,itremainsunclear towhat ex-tenttheseshort-term,learning-relatedchangesinbrainactivation over-lapwiththelong-term,maturationalplasticity seenacross yearsand decadesofdevelopment(Galván,2010).Here,wetesttwopotential ex-planationsforhowexperienceanddevelopmentinteractacrosstimeto explainchangesinlearningperformanceandthefunctionalbrain sys-temsthatsupportthatperformanceacrosstime.Toprobethese interac-tions,weadoptanovelapplicationoflongitudinalmodelingthatallows ustoconsiderchangesacrossminutes,years,andthecourseof devel-opmentsimultaneously.Thisapproachoffersanintegratedperspective oflearninganddevelopmentasco-dependentprocessesofneuraland behaviorplasticitywhichinteractacrosstime.

Correspondingauthor.

E-mail address: emccormick@unc.edu(E.M.McCormick).

While traditionally thought of as a period of vulnerability (Steinberg et al., 2008; Casey et al., 2008; Shulman et al., 2016), adolescence isalso aperiodassociated withincreasesin flexible be-havior and thecapacity tolearn from feedback in the environment (Johnsonand Wilbrecht,2011; Crone andDahl, 2012; Casey,2015; Vigilantetal.,2015),withneuralchangesassociatedwithage support-ingincreasedlearning(VanDuijvenvoordeetal.,2008;Petersetal., 2016;McCormickandTelzer,2017a;PetersandCrone,2017).In gen-eral.theabilitytolearnandengageinothercomplexcognitivetasks (Caseyetal.,2005;Lunaetal.,2010),improveswithagethroughthe firstdecadesoflife.However,thisco-occurrencedoesnotbyitself im-plythatmaturationisnecessaryfortheage-relatedimprovements in learningseenduringdevelopment.Withincreasedagealsocomesmore experienceandpracticeatskillsneededtosupporttaskperformance. Underthisview,developmentinvolvestheaccumulationofpracticeor trainingofneuralsystems,andtheneuralmechanismsforthisprocess shouldcloselyresemblethoseinvolvedinshort-termlearning.In con-creteterms,thiswouldimplythatdevelopmentallyyoungerindividuals canbetrainedtoperformaswellasolderindividualsgivensufficient practice.

Incontrast,aninteractiveviewoflearninganddevelopmentwould suggestthatcertainkindsofneuralchangesinresponsetolearningare constrainedbydevelopmentalchangesinthebrain.Inotherwords,it shouldbepracticallyimpossibletotrainachildtoperformatadult lev-elsbecausetheyhavenotexperiencedthematurationalchangesinthe brainnecessarytosupportthatperformance.Thiswouldsuggestthat

https://doi.org/10.1016/j.neuroimage.2021.117784

Received23October2020;Receivedinrevisedform7January2021;Accepted11January2021 Availableonline24January2021

1053-8119/© 2021TheAuthor(s).PublishedbyElsevierInc.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

certainkindsofneuralchangesinresponsetolearningwillberelatively uniquetoolderindividuals.Thesetwoalternativeaccountsarenot mu-tuallyexclusive,sincetrainingstudiesin youngerindividualsclearly demonstratethatthere issomecapacitytoimprovecognitive perfor-manceandshiftbrainfunctioneveninthematuringbrain(Jollesand Crone,2012).However,thefirstexplanationofhowlearningand devel-opmentinteractwouldpredictthatthiscapacitytotrainshouldbequite extensive,whereasthesecondexplanationwouldpredictthat biologi-calmaturationimposesstricterlimitationsontheabilitytotrainyoung individualto“adult” levelsofperformance.Itisimportanttonote, how-ever,thatthese limitationsmaynotbemaladaptive,butratherserve someotherdevelopmentalfunctionwhere“immature” brainstatesor behavioralperformanceareimportantforflexiblelearningand adapta-tion(e.g.,JohnsonandWilbrecht,2011;JollesandCrone,2012;Crone andSteinbeis,2017;McCormickandTelzer,2017a).

Amajorchallengeinmodelingexperienceanddevelopment simulta-neouslyisthatinrealdata,theyareoftenconfounded(Bell,1953;Jolles andCrone,2012;Telzeretal.,2018)indevelopmentalmodels.In lon-gitudinalstudieswhichuseacohort-sequential(orpanel)design,where individualsarerepeatedlyassessedatthesameages,olderparticipants arealsomore-experiencedparticipants(bothinlifeandpracticeinthe specificmeasuresofinterest).Inneuroimagingcontexts,these experi-enceeffectscanconfounddevelopmentaleffectsinanumberofways, includingreducinganxietyaboutthescanner environment,changing baselineconditions(the“taskB” problem),orreduce errorsontasks throughfamiliarityratherthanchangeinunderlyingability(Jollesand Crone,2012;Telzeretal.,2018).Fortunately,wecanleveragean alter-native,theacceleratedlongitudinaldesign,toaddressthesechallenges. Inacceleratedlongitudinalstudies,individualsvaryintheageoffirst as-sessmentandarefollowedlongitudinallythereafter.Byadoptingthis de-sign,wecande-coupleexperiencefromage(orothermeasureof devel-opmentalstage)sufficientlytosuccessfullymodeltheaccumulationof experienceanddevelopmentalmaturationsimultaneously(McCormick,

preprint).

Thecurrentstudyteststhetwocompetinghypothesesofhow expe-rienceanddevelopmentinteracttodriveneuralplasticityduring learn-ing.Participantsacrossawideagerange(8–29years)participatedina three-wave,acceleratedlongitudinalneuroimagingstudyduringwhich they completeda feedback learningtask.Byleveraging the acceler-atedlongitudinaldesignandanovelextensionofmixed-effectsmodels (McCormick,preprint),wedifferentiatebetweenthreetemporallevels ofneuralplasticity:1)short-termpractice-relatedchangeswithinascan session(within-individual)acrossblocksoffeedbacklearning;2) long-termchangeswithin individuals,acrossmeasurementoccasions (i.e., waves);and3)themixed(i.e.,within-andbetween-individual)effect ofchangesassociatedwithage.Byconsideringthesethreelevelsinthe samemodel,wecanpartitioneffectsateachlevel.(1)Within-session changesreflecthowbrainandbehavioradaptduringlearningthetask structure,(2)between-session changesreflect changesdue to experi-enceafterrepeatedexposuretothetaskandtestingenvironments,(3) whileagereflectsthedevelopmentaleffect.Importantly,including ef-fectsatthesecondlevelallowsustode-confoundageandexperience, givingamore reliableestimateof thedevelopmentaleffect. Because learningis anintegrative process,involvingtheinteractionsbetween manybrainregions (Bassettet al.,2011; Gerratyetal.,2014, 2015; McCormickandTelzer,2017a;Gerratyetal.,2018;McCormick,Gates, &Telzer, 2019),wetestthis developmentalmodelinthecontext of brainnetworks.Specifically,wemodeltheinteractionofpractice, expe-rience,anddevelopmenteffectsonnetworkmodularity.Modularityis ameasureofthedegreeofnetworksegregationintodistinctfunctional units(BullmoreandBassett,2011).Higherlevelsofmodularityinbrain networkspredictsincreasedlearning(Bassettetal.,2011;Ellefsenetal., 2015)andworkingmemory(Braunetal.,2015)performanceinadults. Ouranalyticapproachtoaddressingthesequestionsinvolvedseveral steps.First,wefitmixed-effectsmodelswithonlylinearandquadratic effectsofageonbehavioralperformanceandnetworkmodularity

dur-inglearningseparately(Petersetal., 2016;PetersandCrone,2017) forcomparisontomorecomplexmodels.Wethenincludedpredictors ofwithin-andbetween-sessionchangeasmaineffectstoconsiderthe uniqueeffectsofpractice,experience,anddevelopment,beforefitting amodelthatincludedinteractiontermsbetweenourpredictors.This thirdmodelallowedustoprobehowtheeffectsofthelower-level pre-dictors change across development in a continuous fashion. Finally, weestimatedabrain-as-predictormodelwhereweprobedhowbrain states(e.g.,highversuslowmodularity)differentiallypredicted learn-ingperformanceacrosspractice,experience,anddevelopment.This fi-nalmodeltestsacoredifferencebetweenthetwoexplanationsof devel-opmentalimprovementinlearningperformance.Inthe development-as-practiceview,networkmodularityshouldpredictlearningperformance consistentlyregardless ofwhenin thedevelopmentaltrajectory(i.e., there isnomoderationbyage).This iscontrastedbytheinteraction viewofdevelopmentandexperience,wherewewouldexpectthat mod-ularitywouldpredictperformancedifferentiallydependingonage. 2. Methods

2.1. Sample

Atotal of299participants(ages 8–29years;153female) partici-patedina3-wave,acceleratedlongitudinalMRIstudy.Participantswere scannedevery2years,spanninga5-yearperiod(Fig.1).Atwave1,28 participantswereexcludedforanumberoffactorsincludingnot com-pletingtheMRIsession(N=4),excessivemovementduringthescan session(>3mmrelativemotionin anydirection/rotation)(N=22), ADDdiagnosisdisclosure(N=1),andreportedmedicineuse(N=1), re-sultinginafinalsampleof271participantsattheinitialdatacollection (140female;Mage =14.17,SD=3.63,range=8.01–25.95years).Atwave2 (2yearslater),254participantswerescanned(33couldnotbescanned duetobraces;11declinedtoreturn).Ofthescannedparticipants,an additional21wereexcluded(12formotion;2forpreprocessingerrors; 5for T2artifacts;1formedicine use;1forADDdiagnosis),leaving afinalsampleof233participants(121female;Mage =16.15,SD=3.62,

range=10.02–26.61years).Duringthefinalwave(2yearslater),243 participantswerescanned(11couldnotbescannedduetobraces;45 declinedtoreturn).Ofthese,11wereexcluded(3didnotcompleteMRI session;4formotion;2forprocessingerrors;1formedicineuse;1for ADDdiagnosis),foratotalfinalsampleof232participants(121female;

Mage =18.15,SD=3.68,range=11.94–28.72years).Acrossthedataset, 183participantshaddataatallthreewaves,78participantshaddata attwowaves,31participantshaddataatonlyonewave,and7were excludedatallthreewaves.Atotalof736scanswereincludedforfinal dataanalyses.Whenconsideredatthetraillevel,thesescansyielded 4799observationsformodeling.

IQscoresweremeasuredatthefirsttwowavesofdatacollection, us-ingtheWISC-III(forparticipants<16years;NW1=195;NW2=119)or WAIS-III(forparticipants≥16years;NW1=76;NW2=114).All partic-ipantswerewithinthenormalrangeatwave1(M=109.8,SD=10.34,

range=80–142.5)andwave2(M=108.3,SD=10.27,range=80–147.5). Further details andthedistributions of thedescriptivevariables are availableinthesupplementalmaterial.

2.2. Feedbacklearningtask

ParticipantscompletedafeedbacklearningtaskduringanfMRI ses-sion(Petersetal.,2014,2016).Oneachtrial,participantssawascreen withthreeemptyboxesandone(outofapossiblesetofthree)stimulus underneath(Fig.2).Participantsweretoldthateachstimuluswithina givensethadacorrespondingcorrectlocationamongtheemptyboxes andthattheirgoalonthetaskwastoappropriatelysorteachstimulus intoitslocation.Foreachstimulus-locationchoice,participantseither receivedpositive(a“+” sign)ornegative(a“-” sign)feedbackbased ontheirchoice.Positivefeedbackindicatedcorrectstimulusplacement,

(3)

Fig.1. Structureofrepeatedmeasureswithin the accelerated longitudinal design. Partici-pantsareorderedinascendingorderbasedon theirageatwave1.Sexisdenotedbyseparate colors.

Fig.2. DuringtheFeedbackLearningtask,participantslearnedthecorrectplacementofeachstimuli(e.g.,theelephant)throughfeedback.Participantsreceived eitherpositiveornegativefeedbackoneachtrial.

whilenegativefeedbackindicatedincorrectplacement.Eachstimulus withinasetassociatedwithaunique,deterministicallycorrectlocation. Stimuliwithinasetwerepresentedinpseudorandomorder,constrained suchthatnostimuluswithinasetwaspresentmorethantwiceinarow. Afteramaximumof12trialsperblock,orafterallthreestimuliwithin asetwerecorrectlyplacedtwice(indicatingthatalllocationswere suc-cessfullylearned),stimulussetswereswappedoutforanewsetwith threenewstimuli.Participantssawatotalof15blocksof3-stimulisets (foramaximumpossibleof180trials)atwaves1and2,and10blocks (maximumpossible120trials)atwave3.PriortotheMRIsession, par-ticipantspracticedthreeexamplesetsofstimuli.Eachtrialconsistedof thefollowing:1)a500-msfixationcross,2)stimuluspresentationfor 2500mswhileparticipantsmadelocationdecisions,and3)feedback presentationfor1000ms. Trialswereseparatedbyintervalsjittered basedonOptSeq(Dale,1999),withdurationsthatvariedbetween0 and6s.

2.3. Behavioralanalyses 2.3.1. Taskmetricsofbehavior

Ourprimarymetricoftaskperformancewasthelearningrate par-ticipantsdisplayedinformingcorrectstimulus-locationassociations.To calculate learningrate,we distinguishedbetween twophasesoftask performance:thelearningandtheapplicationphase(Petersetal.,2014, 2016).Thelearningphasewasdefinedastrialswherethecorrect loca-tionforagivenstimuluswasstillunknown,andparticipantsneeded torely ontrial-and-erroror hypothesistesting tocorrectlyplacethe stimulus.Trialsinthelearningphasecouldresultineitherpositive (in-dicatingafuture staystrategy)ornegative(promptingafutureshift strategy)feedback. Incontrast,theapplicationphasewas definedas trialswherethecorrectlocationforthepresentedstimulusisalready known(asestablishedbyanearlierlearningtrial)andparticipants cor-rectly placethatstimulusagain.Learning ratewascalculatedas the

(4)

proportionoftrialsinthelearningphasewherefeedbackwascorrectly appliedinthefollowingtrialinvolvingthesamestimulus(eitheras re-peatedplacementfollowingpositivefeedbackorasalteredplacement followingnegativefeedback)outofall thetrialsduringthelearning phase.

2.3.2. Linearmixed-effectsmodel

Totestourdevelopmental/experienceinteractionmodel,wefita lin-earmixed-effectsmodeltoparticipants’learningratedata.Wefollowed amodel-buildingproceduresimilartotheoneusedinpreviouswork inthissample(Petersetal.,2016;PetersandCrone,2017).This pro-cedureinvolvedabuild-upapproachwherewetestedmaineffectsand theninteractionsoftimetoestablishtheoptimaldevelopmentalform beforebringinginadditionalpredictors.WefitarandomeffectsANOVA modelwitharandominterceptwhichservedasacomparisonfor subse-quentmodels.Fordescriptivepurposesattherandomeffectslevel,we fitathreelevelmodelwhereblockswerenestedwithinwaveandthen withinperson,howeverforcomparisonwithfuturemodels,wealsofita twolevelmodelwherewaveandagewereincludedatlevel1.To com-pareacrosslevelsofchange,weconstructedamodelusingthelme4 softwarepackagethroughR(version1.1–21;Batesetal.,2015),where stimulusblocks(N=1-max15)andwave(N=1–3)werenestedwithin individual,andagewasincludedasatime-varyingcovariate.Because wave(i.e.,repeatedexposuretothetask)wasapredictorofinterest, wedidnotnestwithrespecttowavesincethatwouldresultina vari-ablethatactsasbothanestingfactorandlineareffectofinterest.We includedinteractionsbetweenwave,age,andblocks.Tocapturemore complexchangesin behaviorbetweenblocks ofthetask,weutilized piece-wiseregressionatlevel1(Flora,2008;Lietal.,2001),including predictorswhichmodelthelineareffectsacrossthefirstandsecondhalf ofthetaskseparately.Thismodelresultedinthefollowingequation:

ReducedForm: 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑅𝑎𝑡𝑒𝑖𝑗 =𝛾00+𝛾10𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 +𝛾20𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 +𝛾30𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾40𝐴𝑔𝑒𝑖𝑗 +𝛾50𝐴𝑔𝑒2𝑗 +𝛾60𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾70𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾80𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾90𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾100𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝛾110𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝛾120𝑊𝑎𝑣𝑒𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾130𝑊𝑎𝑣𝑒𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝑢0𝑗 +𝑟𝑖𝑗

While previous work has discouraged using wave as a predic-torin longitudinalmodels(insteadusing preciseage;see Mehtaand West,2000),herewedrawameaningfuldistinctionbetweenwaveand age.Wewouldexpectchangesinbehavioraftereachsubsequent expo-surethetaskenvironment(Telzeretal.,2018),whichduetothe sam-plingmethodinacceleratedlongitudinaldesignsisdisassociatedwith agetosome degreebecausealarge agerangeis representedateach wave.

2.4. fMRIdataacquisitionandprocessing 2.4.1. MRIdataacquisition

Scans across all three waves were acquired using the same Philips 3T MRI scanner, utilizing identical scan settings. The Feed-back Learning Task includedT2∗-weighted echoplanar images (EPI; slicethickness=2.75mm;38slices; sequentialacquisition; TR=2.2s; TE=30 ms; FOV=220 × 220 × 114.68 mm). Additionally, struc-tural images were acquired, including a high-resolution 3D T1-FFE anatomical scan (TR=9.76 ms; TE=4.59 ms; 140 slices; voxel size=0.875×0.875×1.2mm;FOV=224×177×168mm;flipangle=8). Priortoundergoingthescanprocedure,participantswereintroducedto thescannerenvironment(e.g.,spaceandnoises)throughamockscan session.

2.4.2. fMRIdatapreprocessingandanalysis

PreprocessingandanalysesutilizedasuiteoftoolsfromFSLFMRIBs SoftwareLibrary(FSLv6.0;https://fsl.fmrib.ox.ac.uk/fsl/),Stepstaken duringpreprocessingincludedskullstrippingofallimagesusingBET; andslice-to-slicemotioncorrectionofEPIimagesusingMCFLIRT; co-registerationinatwo-stepsequencetothehigh-resolutionT2-weighted andT1-FFEanatomicalimagesusingFLIRTinordertowarptheminto thestandardstereotacticspacedefinedbytheMontrealNeurological Institute(MNI) andtheInternationalConsortium forBrainMapping; andtheapplicationofa128shigh-passtemporalfiltertoremovelow frequencydriftwithinthetime-series.

2.4.3. Nuisanceregressors

Prior tomodelingthefMRIdatafurther,wetook severalstepsto reducetheinfluenceofmotion.Motion,asmeasuredbyframewise dis-placement(Poweretal.,2012),wasminimalacrossthesample(mean acrossparticipants=0.12mmFD;max=0.77mm;average percent-ageof volumeswith>0.3mm FD=4.95%).Wealsocontrolledfor 8nuisanceregressorsin theGLM andtime-seriesanalyses:6motion parametersgeneratedduringrealignmentandtheaveragesignalfrom boththewhitematterandcerebrospinalfluidmasks.Previouswork(see Ciricetal.,2017)hasshownthatthesestrategiesreducetheinfluence ofmotiononfunctionalconnectivityanalyses.

2.4.4. Graphconstruction

Wethenutilizedagraphtheoreticalapproach toinvestigate how networks in the brainchanged across levels of practice, experience, anddevelopment.UsingasubsetoftheBigBrainparcellationscheme (Sietzmanetal.,2020),anatlascomprisedof300,5-mmsphereparcels fromcorticalandsubcorticalregions,weextractedfunctionaltimeseries dataforeachblock(15intotal)inordertomodelchangesinnetwork structureacrosstimeduringthetask.Wechosetoexaminenetwork fea-turesbetweenregions withtheoreticalrelevancetotask performance during learning. This resulted in 147regions including those in the cingulo-opercular(14),defaultmode(55),fronto-parietal(27),salience (14),ventral(9)anddorsal(14)attention,hippocampal(6),andreward (8)sub-networks (fortherelevantROI coordinatesona whole-brain projection,seeFigureS1).Selectionofthesenetworkswereguidedby thoseregionsengagedinthefeedbacklearningtaskinpreviousresearch (Petersetal.,2016;Petersetal.,2016)orclassicallyengagedduring learninganddecision-making (DawandShohamy, 2008; Sadaghiani andD’Esposito,2014;McCormickandTelzer,2018a;McCormicketal., 2019).Thissubsetwaschosentobalanceincludingenoughregionsof interestwiththechallengesofcomputingwhole-brainnetworkson rel-ativelyshorttimeseries.Regionswereincludedorexcludedasagroup basedontheirnetworklabel(e.g.,allfronto-paretialregionswere in-cludedwhileallvisualregionswereexcluded).Asafollow-up sensitiv-ityanalysis,were-ranallanalyseswithmodularitycalculatedonthe whole-brainnetwork(whole-brainmodularityvalues areavailablein theposteddatafile;https://osf.io/62gwz/).Resultsremained substan-tivelyunchangedandweretainedthesubsettomaintainfidelitytothe originalanalysisplan.

Toextract, weconstructed a task regressormadefrom theonset anddurationofeachblockofstimuliconvolvedwithanHRFfunction. These regressorsweremultipliedwiththeentiretimeseriesextracted fromROIsinordertogiveasetoftime-seriesfilesforeachindividual ateachwave.Blockdurations(M=45.32s;SD=3.26;range=37.27– 60.23 s)werecomparabletoapproachesused indynamic functional connectivityanalyses(approximately30s;Shireretal.,2012; Gonzalez-Castilloetal.,2015).Correlationmatriceswereconstructedby comput-ingthezero-lagcross-correlationbetweeneachROI.Graphmetricswere calculatedacrossarangeofcosts(5–20%in5%increments;Cohenand D’Esposito,2016).Weutilizedthestandardcommunityassignmentfor distinguishingwithin-versusbetween-networkedges(Sietzmanetal., 2020).

(5)

Fig.3.ProbingInteractionswithAge.Fourdistinctageswerechosentoprobeinteractionswithage,includingduringearlyadolescence(12,[~ −1SD];red),middle adolescence(16,[~ meanage],green),lateadolescence(20,[+1SD];blue),andyoungadulthood(25,[~ +2SD],purple).Barheightrepresentstheproportionof observationsatthatlevel.Rugplothashes(belowx-axis)representindividualobservations.

2.4.5. Graphmetric

Forourmeasureofbraindevelopment,wecalculatednetwork mod-ularity,orthedegreetowhichcommunitieswithinthebrainnetwork aresegregated.Modularityiscomputedastherelativenumberofedges betweennodesofthesamecommunitycomparedtothenumberof to-taledgeswithinthebraingraph.Wecalculatedmodularity(Q∗)using positiveandnegativeweightededgesas:

𝑄= 1 2𝑊+ ∑ 𝑖𝑗 ( 𝑤+ 𝑖𝑗 𝑒+𝑖𝑗 ) 𝛿(𝑚𝑖 ,𝑚𝑗 ) − 1 2𝑊++2𝑊− ∑ 𝑖𝑗 ( 𝑤𝑖𝑗 𝑒𝑖𝑗 ) 𝛿(𝑚𝑖 ,𝑚𝑗 )

wherew+isthenumberofpositivelyweightededgesandwisthe num-berofnegativelyweightededges.The𝑒𝑖𝑗 termrepresentstheexpected numberofedgesbetweentwonodesiandj,andthe𝛿(𝑚𝑖 ,𝑚𝑗 )termis1 ifthenodesiandjareinthesamemoduleand0iftheyarenotinthe samemodule.Noticethatnegativelyweightededgesaregivenless influ-encethanpositivelyweightededgesincomputingmodularity(Rubinov &Sporns,2011).

2.5. Developmentalmodel

Wethenutilizedthesamemulti-levelmodelingapproachusedfor thebehaviortomodelchangeinbrainnetworksacrossblocks,waves, andage: 𝑀𝑜𝑑𝑢𝑙𝑎𝑟𝑖𝑡𝑦𝑖𝑗 =𝛾00+𝛾10𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 +𝛾20𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 +𝛾30𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾40𝐴𝑔𝑒𝑖𝑗 +𝛾50𝐴𝑔𝑒2𝑗 +𝛾60𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾70𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝑊𝑎𝑣𝑒𝑖𝑗 +𝛾80𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾90𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾100𝐹𝑖𝑟𝑠𝑡𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝛾110𝑆𝑒𝑐𝑜𝑛𝑑𝐻𝑎𝑙𝑓𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝛾120𝑊𝑎𝑣𝑒𝑖𝑗 𝐴𝑔𝑒𝑖𝑗 +𝛾130𝑊𝑎𝑣𝑒𝑖𝑗 𝐴𝑔𝑒2𝑖𝑗 +𝑢0𝑗 +𝑟𝑖𝑗 2.6. Probinginteractions

Tobetterunderstandpotentialinteractioneffectsinvolvingagein themodelsofbehaviorandbrain,weprobedtheeffectsat four dis-tinct ages (Fig. 3). Ageswere chosen tobe evenlyspaced (approxi-mately standarddeviationdistances within thesample)androughly correspondtodifferentdevelopmentalperiodsincludingearly,middle, andlateadolescences,aswellasyoungadulthood(e.g.,Shulmanetal., 2016).Interactioneffectsin themodelarecontinuousacross theage rangeandthereforeleverageinformationacrossthesample.However, duetolowercoverageofobservationsatlaterages,thesimpleslope esti-mateswhenprobingtheinteractionattheselevelshavecorrespondingly largerstandarderrors.

3. Results

3.1. Descriptivesandage-onlygrowthmodels

Beforeformallyfittingmodelstothedata,weassesseddescriptives ofbothlearningrateandnetworkmodularityasafunctionofwaveand age(takingthemeanofwithin-sessiondata).Connecteddatapoints rep-resentthesameindividualacrosstimeandwavesarelabeledwith differ-entcolors(Fig.4A&B).Asreportedearlier(PetersandCrone,2017), learningratewashighoverallwithlateadolescentsperformingnear ceiling,andeitherlevelingoff or decliningforolderparticipants. Al-thoughnotconstrainedinthesamewayaslearningperformanceat up-pervalues,neuralnetworkmodularityappearstoincreaseatearlierages anddecliningatlaterages(seeSupplementalforformalregionsof sig-nificanceanalysisforallmodels).Asourfirstmodelbuildingstep,we fitarelativelysimplemodelbyincludinglinearandquadraticeffects ofagetobothlearningrateandnetworkmodularity.Predictedvalues ofeachmeasurewereobtainedfromthemixed-effectsmodel(Fig.4C &D;seeTable1),confirmingthesetrends.However,thissimplemodel neithercaptureswithin-sessionpractice-relatedchange,nordoesit dis-aggregatewithin-personchangesduetoexperience(i.e.,acrosswaves) andbetween-personchangesduetomaturation(i.e.,acrossage).We

(6)

Fig.4. Learning(A)andNetworkModularity(B)AcrossAgeandWave.Meansofwithin-sessiondatawereplottedagainstagetovisualizepotentialtime-related trends.Wavenumberwasindicatedbycolor,anddatafromthesameindividualwereconnectedbyasolidline.Ifindividualsonlycontributeddataatonetimepoint, datawasindicatedwithalonepoint.Linearmixed-effectsmodelsthatonlyconsiderthemixedeffectofagesuggestquadraticeffectspeakinginlateadolescencefor learningperformance(C),andfornetworkmodularity(D).Thesemodelsfailtoconsidereffectsofexperience(i.e.,wave)andwithin-sessionpracticeeffects.

Table1

Modeloutputfromage-onlymodels.

Learning Rate Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df

Intercept 0.937 0.004 < 0.001 359.604 0.994 0.011 < 0.001 361.688 Age std 0.277 0.023 < 0.001 1003.133 0.275 0.023 < 0.001 1992.711 Age 2 std − 0.140 0.021 < 0.001 1924.892 − 0.209 0.020 < 0.001 3523.698 Random Effects 𝜎2 0.010 0.055 𝜏00 0.002 ID 0.030 ID ICC 0.18 0.35 N 297 ID 297 ID Observations 4799 4799 Marginal R 2 / Conditional R 2 0.065 / 0.236 0.075 / 0.402

Note: Alleffectsroundedtothethirddecimalplacefordisplaypurposes.std=standardizedeffectsreported.𝜎2=level1 randomeffect.𝜏00=higherlevelrandomeffect(effectspecifiedbysubscript).ICC=Intraclasscorrelation.N =number ofunitsateachlevel.

nextformallytestedtheseeffectsusingthedevelopmentalmodel speci-fiedabove.

3.2. Behavioralimprovementsinlearningperformance

WebeganbyfittinganunconditionalrandomeffectsANOVAmodel (i.e.,arandominterceptateachlevel)todeterminethedistributionof varianceacrossthethreelevelsofthemodel(level1=within-session; level2=waves;level3=individual).Resultsindicatedthatthe

major-ityofvarianceinlearningratewasbetweentrialswithinthesamescan session(68.7%),anadditional19.3%ofthevariancewasbetweenscan sessionswithinthesameindividual(i.e.,changeacrosswaves),andthe remaining11.9%variancewasaccountedforbybetween-individual dif-ferencesinoveralllearningperformance(seeTable2 forfulldetails). However,toestablish abaselineforfuturemodels,wealsofitatwo levelrandomeffectsANOVAmodelwherelevel1and2arecollapsed (seeTable2).

(7)

Table2

ModeloutputfromrandomeffectsANOVAmodels.

3-Level Model Learning Rate Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df

Intercept 0.927 0.003 < 0.001 256.681 0.949 0.012 < 0.001 284.150 Random Effects 𝜎2 0.009 0.048 𝜏00 0.002 ID:Wave 0.014 ID:Wave 0.002 ID 0.030 ID ICC 0.31 0.49 N 297 ID 297 ID 3 Wave 3 Wave Observations 4799 4799 Marginal R 2 / Conditional R 2 0.000 / 0.313 0.000 / 0.486

2-Level Model Learning Rate Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df

Intercept 0.925 0.003 < 0.001 271.214 0.946 0.012 < 0.001 289.668 Random Effects 𝜎2 0.010 0.056 𝜏00 0.003 ID 0.037 ID ICC 0.22 0.40 N 297 ID 297 ID Observations 4799 4799 Marginal R 2 / Conditional R 2 0.000 / 0.218 0.000 / 0.398 Note: Alleffectsroundedtothethirddecimalplacefordisplaypurposes.𝜎2=level1randomeffect.𝜏

00=higherlevel randomeffect(effectspecifiedbysubscript).ICC=Intraclasscorrelation.N =numberofunitsateachlevel.

Table3

Modeloutputfrommaineffects-onlymodels.

Learning Rate Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df

Intercept 0.927 0.004 < 0.001 717.508 0.987 0.013 < 0.001 520.937 First Half std 0.025 0.016 0.113 4473.435 0.088 0.013 < 0.001 4491.297 Second Half std 0.022 0.016 0.151 4473.468 0.121 0.013 < 0.001 4491.319 Wave std 0.023 0.018 0.198 1205.547 − 0.004 0.019 0.845 694.861 Age std 0.250 0.31 < 0.001 299.628 0.285 0.039 < 0.001 311.080 Age 2 std − 0.136 0.021 < 0.001 1941.031 − 0.209 0.020 < 0.001 3747.423 Random Effects 𝜎2 0.010 0.051 𝜏00 0.002 ID 0.030 ID ICC 0.18 0.37 N 297 ID 297 ID Observations 4799 4799 Marginal R 2 / Conditional R 2 0.060 / 0.232 0.112 / 0.441

Note: Alleffectsroundedtothethirddecimalplacefordisplaypurposes.std=standardizedeffectsreported.𝜎2=level1 randomeffect.𝜏00=higherlevelrandomeffect(effectspecifiedbysubscript).ICC=Intraclasscorrelation.N =number ofunitsateachlevel.

3.2.1. Separatingeffectsofageandwave

Next,wefita mixedeffectsmodelwithfixed predictorsof learn-ingrateateachleveltoassesstheseparableeffectsofageandwave onlearningrate.Importantly,waveandageweresufficiently decou-pledinthis model(r =0.397,varianceinflationfactor= 1.19,SE in-flation=1.08times),andallpredictorswerecentered.Inthismodel neithereffectofthewithin-sessionpracticepredictorsweresignificant. Thissuggeststhattherewasnototalsystematicchangeinlearningrate withinascansessionnettheeffectsofwaveandage,norwastherea significantwithin-personeffectofwave.Inotherwords,neither within-sessionpracticeorbetween-sessionexperiencerelatedtoincreased per-formancewhenaccountingfortheage-relatedchange.However, indi-vidualsshowedsignificant linear(𝛽 = 0.250,SE=0.031,p< .001) andquadratic(𝛽 =−0.136,SE= 0.021,p<.001)effects ofage on learningrate.Allresultsarereportedasstandardizedeffects(Table3). Alikelihoodratiotestsuggeststhatthismodeloffersanimprovement overtheunconditionalmodel(ΔAIC=−158.7;𝜒𝑑𝑖𝑓𝑓 2 =168.71,df=5,

p<.001).

3.2.2. Learningrateimprovementsshowinteractionsacrosslevelsoftime

Finally,wetestedtheinteractivemodeloflearninganddevelopment forparticipants’learningrates.Todoso,weaddedtwo-waycross-level interactiontermstothepreviousmodel.Three-wayinteractionswere exploredbutwerenotfoundtobesignificantandsothemodelwith two-wayinteractionswasretained.Allpredictorswerecenteredto cre-ate interactiontermswhich wereuncorrelatedwiththe maineffects andtofacilitatetheinterpretationof maineffectsinthepresenceof interactionterms(AikenandWest,1991).Therewasasignificant posi-tiveinteractionofwaveandthequadraticeffectofageonlearningrate (𝛽 =0.083,SE=0.021,p<.001)suchthatateachlaterwaves,the quadraticdecreaseslessen.Toprobethisinteraction,weplottedmean within-sessionlevelincreasesinlearningrateacrossageforeachwave (Fig.5).Resultssuggestthatwithoutrepeatedexposuretothetask(i.e., experience) therearepredicteddecreasesin learningperformanceat youngerages(redtrajectory),butthatpracticehelpscompensateand causeperformancetoleveloff instead(greenandbluetrajectories).The quadraticeffectwherewaveiscodedaszero(i.e.,wave2)reflectsthe

(8)

Fig. 5.Increased Experience Impacts

Learn-ing Trajectories. Compared with first

expo-sure(red),accumulatingexperience(greenand blue)betweenwavestendedtopredictbetter learningperformanceatlaterages, compensat-ingforexpecteddeclinesinperformance dur-ingyoungadulthood.

Table4

Modeloutputfrominteractionsmodels.

Learning Rate Network Modularity

Predictors Estimates SE P-Value df Estimates SE P-Value df

Intercept 0.935 0.005 < 0.001 768.901 0.997 0.014 < 0.001 513.739 First Half std − 0.007 0.020 0.751 4473.838 0.094 0.017 < 0.001 4495.715 Second Half std 0.021 0.020 0.297 4473.787 0.115 0.017 < 0.001 4495.776 Wave std 0.011 0.031 0.722 3143.488 − 0.044 0.029 0.131 1734.974 Age std 0.160 0.044 < 0.001 650.191 0.327 0.049 < 0.001 471.938 Age 2 std − 0.080 0.042 0.053 615.163 − 0.261 0.047 < 0.001 513.285 First Half ∗ Wave

std − 0.016 0.022 0.469 4484.108 − 0.036 0.019 0.058 4508.580 Second Half ∗ Wave

std − 0.044 0.022 0.048 4484.488 − 0.022 0.019 0.244 4508.591 First Half ∗ Age

std − 0.049 0.022 0.027 4466.136 0.068 0.019 < 0.001 4482.736 Second Half ∗ Age

std 0.025 0.022 0.252 4466.143 − 0.004 0.019 0.818 4482.736 Wave ∗ Age

std − 0.038 0.024 0.111 870.145 0.002 0.026 0.947 648.001 First Half ∗ Age 2

std 0.047 0.024 0.048 4464.637 − 0.027 0.020 0.182 4481.364 Second Half ∗ Age 2

std − 0.025 0.024 0.292 4464.630 − 0.002 0.020 0.906 4481.360 Wave ∗ Age 2 std 0.083 0.021 < 0.001 4746.733 0.057 0.018 0.001 4674.686 Random Effects 𝜎2 0.010 0.051 𝜏00 0.002 ID 0.030 ID ICC 0.19 0.37 N 297 ID 297 ID Observations 4799 4799 Marginal R 2 / Conditional R 2 0.066 / 0.239 0.126 / 0.449

Note: Alleffectsroundedtothethirddecimalplacefordisplaypurposes.std=standardizedeffectsreported.𝜎2=level1 randomeffect.𝜏00=higherlevelrandomeffect(effectspecifiedbysubscript).ICC=Intraclasscorrelation.N =number ofunitsateachlevel.

effectsseenintheage-onlymodelandisconsistentwithpriorresearch (Petersetal.,2016;PetersandCrone,2017),however,byincluding in-teractionswithexperience,weshowhowthattotaleffectisinfluenced byrepeatedexposuretothetask(seeTable4 forfulldetails).A likeli-hoodratiotestsuggeststhatthismodeloffersanimprovementoverthe main-effectsonlymodel(ΔAIC=−22;𝜒𝑑𝑖𝑓𝑓 2 =38.03,df=8,p<.001). Inafollow-upsensitivityanalysis,wefoundthatthispatternofeffects heldwhenincludingIQasacovariate.

3.3. Changesinnetworkmodularity

Similartothebehavioralanalysis,wefirstfitanunconditional ran-domeffectsANOVAmodeltoparticipants’neuralnetworkmodularity data.Themajorityofvarianceinnetworkmodularitywasbetweentrials withinthesamescansession(51.4%),relativelyless(15.6%)ofthe

vari-ancewasbetweenscansessionswithinthesameindividual(i.e.,change acrosswaves),withtheremainder(33.0%)accountedforby between-individualdifferencesinnetworkmodularity(Table2).

3.3.1. Separatingeffectsofageandwave

Next,wefitamain-effectsonlymodelwithpredictorsincludingtask block,wave,andage.Therewerelinear(𝛽 =0.285,SE=0.0.39,p<

.001)andquadratic(𝛽 =−0.136,SE=0.021,p<.001)effectsofage, suchthatnetworkmodularitytendedtoincreaseearlyinadolescence andlevel off and decrease acrosslateadolescence andyoung adult-hood. Additionally,modularityincreasedacross blockswithin waves (i.e., practice) across both halves of the task (first half:𝛽 = 0.088,

SE=0.013,p<.001;secondhalf:𝛽 =0.121,SE=0.013,p<.001). Therewasnoindependenteffectofwaveonnetworkmodularity.This suggeststhatwhilemodularitytendstoincreasewithin-sessionacross

(9)

Fig.6. ExperienceandAgeImpactBrainNetworkOrganization.A)Accumulatingexperience(greenandblue)acrosswavespredictsincreasednetworkmodularity comparedwithfirstexposure(red),howeverthesedifferencesonlyemergeduringthetransitionfromadolescencetoyoungadulthood.B)Increasedagepredicts greaterpositivegainsinnetworkmodularityacrossblocksinthefirsthalfofthetask.

thetaskandwitholderindividuals,thereisnoindependenteffectof repeatedexposuretothesametaskenvironment(Table3).Asexpected, thismodelofferedimprovementsovertherandomeffectsANOVAmodel (ΔAIC=−476.3;𝜒𝑑𝑖𝑓𝑓 2 =486.3,df=5,p<.001).

3.3.2. Networkmodularityshowsinteractionsacrosslevelsoftime

Wenextfittheinteractivemodelof development tothenetwork modularitydata.Similartothemodelwithlearningperformance,there wasasignificantinteractionofwaveandthequadraticeffectofageon networkmodularity(𝛽 =0.057,SE=0.018,p=.001;Table4).When probed(Fig.6A),therewasasimilarcompensatorypatterntotheone seeninlearningperformance,suchthatexperienceacrosswaves(green andblue)predictedpositiveshiftsinmodularityatlateragescompared withthefirstexposuretothetask(red).Interestingly,thesedifferences appeartoonlyemergeduringthetransitionfromadolescencetoyoung adulthood,whereasincreasedexperiencedoesnotimpactmodularityat youngerages.Furthermore,therewasasignificantpositiveinteraction ofageandpracticeinthefirsthalfofthetask(𝛽 =0.068,SE=0.019,p <.001),suchthatolderindividualsshowedmorerapidgainsin modu-larityacrossthefirsthalfofthetask(Fig.6B).Thismodeloffered con-tinuedimprovementsoverthemaineffectsonlymodel(ΔAIC=−18.18;

𝜒2

𝑑𝑖𝑓𝑓 =34.18,df=8,p<.001).

3.3.3. Predictinglearningwithnetworkmodularity

Finally,wetestedwhethernetworkmodularitypredictslearning per-formanceaboveandbeyondtheeffectsoftime.Todoso,weentered net-workmodularityandinteractiontermsbetweenmodularityandthetime predictorsintothemodel.Inadditiontosimilareffectsofthetime pre-dictors,thismodelrevealedasignificantpositiveinteractionbetween networkmodularityandage(𝛽 =0.062,SE=0.023,p=.007;Table5). Probingthisinteraction(Fig.7),weplottedthemodel-implied trajec-toryoflearningrateacrossageforindividualswhoshowedrelatively low(−1SD),mean,andrelativelyhigh(+1SD)networkmodularity. Thisshowedthatindividualswhoevincedrelativelyhighnetwork mod-ularity(bluetrajectory)tendedtoshowhigherlearningrates,butonly afterthetransitionfromadolescencetoyoungadulthood(seeregion ofsignificance analysisinSupplementfordetails).Alikelihoodratio

testsuggeststhatincludingthebrainasapredictorincreasedmodelfit (ΔAIC=−4.1;𝜒𝑑𝑖𝑓𝑓 2 =20.10,df=8,p=.010).

4. Discussion

Thecontributionsofexperienceversusdevelopmentcanbedifficult toteaseapart,especiallywithinalongitudinalsample(JollesandCrone, 2012; Telzeret al.,2018) becauseage,experience, andpractice are confounded.Totestaninteractionmodelofexperienceand develop-ment,weutilizedanovellongitudinalapproachtoseparateout vari-ability in learningperformanceandbrainnetworkmodularityalong different timescales:1)within-sessionpracticeacrossblocksof learn-ing,2)within-person,across-waves,and3)acrossage.Briefly,wefound thatlearningperformancetendstoimprovethroughoutadolescenceand leveloff intoadulthood.Incontrast,networkmodularityappearstopeak aroundmiddleadolescenceandthenshowsdeclinesacrossyoung adult-hood.However,bothoftheseeffectsaremoderatedbytheamountof experienceindividualshaveaccumulatedacrosswaves,withmore ex-periencerelatingtohigherperformanceandnetworkmodularity dur-inglearning.Whenconsideringthebrain-behaviorrelationships, rela-tivelyhighermodularitypredictsbetterlearningperformancebutonly atolderages,suggestingthattheimportanceofindividualdifferences arounddevelopmentaltrendsfordeterminingbehavioraloutcomesmay dependontimingindevelopment.Wediscusseachofthesefindingsin greaterdetailbelow.

4.1. Multi-Levelchangesinlearningrateandbrainnetworks

Evenwithoutprobingcross-levelinteractions,amajoradvantageof themodelsemployedhereistheseparationofvarianceintheoutcome acrosslevelsoftime.Inthecurrentstudy,wefoundthatbehavioral im-provementsinlearningoccuracrossage,butdonotchange systemati-callyacrosswavesorblockswithinthetask.Incontrast,network mod-ularityshowedsystematicwithin-sessionincreasesaswellaspositive ageeffects,whileshowingnosystematicchangesacrosswaves.While these totaleffectsshouldbe interpretedwithcaution giventhe pres-enceofhigher-orderinteractioneffects,theyneverthelesshighlightan

(10)

Fig.7. DifferentialImpactsofNetwork Modu-larityonLearningRateByAge.Atearlierages, increasedmodularitydidnotpredictincreased learning,butthisrelationshipemerges follow-ingadolescence.

Table5

Modeloutputfrombrainaspredictoroflearningperformancemodel. Learning Rate

Predictors Estimates SE P-Value df

Intercept 0.935 0.005 < 0.001 794.679 First Half std − 0.003 0.021 0.886 4476.805 Second Half std 0.006 0.021 0.775 4482.941 Wave std − 0.056 0.067 0.401 4670.922 Age std 0.174 0.045 < 0.001 718.911 Age 2 std − 0.086 0.043 0.046 679.282

First Half ∗ Wave

std − 0.018 0.022 0.415 4481.722 Second Half ∗ Wave

std − 0.040 0.022 0.072 4485.072 First Half ∗ Age

std − 0.054 0.023 0.018 4472.145 Second Half ∗ Age

std 0.005 0.023 0.822 4502.070 Wave ∗ Age

std − 0.034 0.025 0.172 987.428

First Half ∗ Age 2std 0.044 0.025 0.073 4469.835

Second Half ∗ Age 2std − 0.013 0.025 0.604 4483.426

Wave ∗ Age 2std 0.076 0.022 0.001 4754.347

Modularity std − 0.014 0.029 0.627 4764.879 Modularity ∗ First Half

std 0.006 0.021 0.786 4532.995 Modularity ∗ Second Half

std 0.044 0.021 0.044 4545.020 Modularity ∗ Wave std 0.061 0.061 0.317 4774.206 Modularity ∗ Age std 0.062 0.023 0.007 4222.697 Modularity ∗ Age 2 std − 0.004 0.025 0.888 4389.408 Modularity ∗ Wave ∗ Age

std 0.035 0.021 0.093 4776.952 Modularity ∗ Wave ∗ Age 2

std − 0.043 0.021 0.041 4724.872 Random Effects 𝜎2 0.010 𝜏00ID 0.002 ICC 0.19 N ID 297 Observations 4799 Marginal R 2 / Conditional R 2 0.071 / 0.243

Note: Alleffectsroundedtothethirddecimalplacefordisplaypurposes. std=standardizedeffectsreported.𝜎2=level1randomeffect.𝜏

00=higher levelrandomeffect(effectspecifiedbysubscript).ICC=Intraclass correla-tion.N =numberofunitsateachlevel.

advantageofthegrowthmodelemployedhere(McCormick,preprint). Controllingfortheeffectsofrepeatedexposuretothetaskenvironment allowustobemoreconfidentthattheeffectsofagearedueto matura-tionalforcesratherthancomfortorfamiliaritywiththetaskorscanner environment(Bell,1953;JollesandCrone,2012).Eveniftheseeffects arenotsignificant,asisthecasehere,thesemodelsallowustocheck ourassumptionsabouttheprocessesunderlyinglongitudinalchange.

4.2. Cross-levelinteractionsbetweengrowthatdifferentscales

Moreinterestingly,thereweresignificantcross-levelinteractions be-tweentimepredictorsinthemodelsforbothbehaviorandbrain tra-jectories.Forbothoutcomesofinterest,resultssupportedtheideaof aninteractivemodelofdevelopment,wheretheimpactsofexperience changeacrossage.Forlearningrate,themodelrecapitulatedprevious findings in thistask (Peters andCrone,2017) showingthat learning ratereachespeaklevelsaroundlateadolescence,andisconsistentwith other findingsshowing improvements inlearningacross adolescence (vanDuijvenvoordeetal.,2008; Petersetal.,2016;McCormick and Telzer,2017a).This highlightsthatthemodelwithgrowthat multi-plelevelsaccommodatesthesameinferencesmadewiththeage-only models.Inthisway,adoptingthecurrentapproachoffersadvantages withoutlimitingtheinferencesmadeaboutdevelopmentaltrajectories. Indeed,theinteractionofwaveandthequadraticeffectofageon learn-ingperformancerevealsthatchangesinbehavioraredrivenbycomplex interplays betweendevelopmentandexperience,withexperience ap-pearingtoplaydifferentrolesinsupportingoverallperformanceacross adolescenceandyoungadulthood.Specifically,probingtheinteraction showsthatincreasedexperiencecompensatesforthemaineffectofage, boostingbehavioralperformancegainsfurtherintotoyoungadulthood. Extensive experience(blue trajectoryinFig.5)bluntsotherwise pre-dicteddeclinesandstabilizesperformanceatthepeakachievedduring middletolateadolescence.However,thisexperience-related improve-mentisnotuniversal acrossthedevelopmentalperiodconsidered,as mid-adolescentperformanceisheightenedevenatfirstwave.Thismight suggestthatduringadolescence,learningisuniversallyimproved,and thenindividualdifferencesbecomemorerelevantasindividuals tran-sition out ofthis period(see Pattwellet al.,2011 forasimilar idea in theareaofcontextualfearduringadolescence).Noneof the mod-els testedshowed within-sessioneffectson learningperformance, al-thoughwemayhavebeenunder-poweredtodetectsucheffectsgiven therestraintsof thetask (i.e.,therewasamaximumof12 trialsper blockregardlessoflearning).Overall,theseresultsareapowerful val-idation ofthemodel,convergingwithpreviousfindings onthesame datawhilesimultaneouslyallowingfortheadditionofmorecomplex time-dependentrelationships.

Findings withthebrainshowedadistinct patternof effectsfrom growthinlearningperformance.Previousworkinthisareahasshown developmental changes duringlearningin regional activation ofthe fronto-parietal (Peters et al., 2016) and striatal regions (Peters and

(11)

Crone,2017;McCormickandTelzer,2017a),aswellasseed-based con-nectivitywiththeorbitofrontalcortex(McCormickandTelzer,2017a). Inthe current study, we insteadexamine changes in brainnetwork organizationduringlearning.Learningovershortperiodsoftimehas beenshowntoalterneuralnetworkorganization(Bassettetal.,2011; Telesfordetal.,2017;Gerratyetal.,2018),buttheseprocesseshavenot beencomparedwithlong-termchangesduetomaturationpreviously. Inthecurrentstudy,weshowchangesinnetworkmodularitybothat theshort-termwithin-sessionandlong-termdevelopmentallevel.Inthe shortterm,playing repeatedblocks within-sessionis associatedwith heightenedmodularitybetween brainnetworksinvolvedin learning, andthiseffectacrossthefirsthalfofthetaskincreaseswithage.This suggeststhatolderindividualsareabletosegregate(i.e.,high within-networkandlowbetween-networkconnectivity)therelevantnetworks ofregionstoagreaterextentthanyoungerparticipants.Thequadratic totaleffectofagesuggeststhatratherthanalinearincreasein modu-larityacrossexperienceacrosswavesandmaturation,network modu-larityinsteaddecreasesatlaterages(Fig.6A),withlateadolescentsand youngadultsshowingdecreasinglymodularnetworkscomparedwith middle-adolescents(alsoconsistentwiththeage-onlymodel(Fig.4D). Thispatternofnetworkconnectivityevolvessimilarlyacross develop-menttostriatalactivationduringlearningversusapplication(Petersand Crone,2017).However,theinteractionof this ageeffect withwave showsananalogouseffectasseeninlearningperformance,where ex-perienceappearstobluntexpecteddecreasesinnetworkmodularityin youngadulthood.Whilethiscompensatoryeffectdoesnotcounteract theoveralldecreasesasseeninthebehavioralresults,itdoesserveto shiftnetworkorganizationtowardamoreadolescent-typicalphenotype. Forbothbehavioralperformanceandnetworkmodularity,thepattern ofresultsseenhereclearlysupportaninteractiveviewofexperience anddevelopment,wherematurationconstrainstheeffectofexperience ratherthansimplyservingasaformofextendedpractice.

Regardlessoftheeffectsofexperience(i.e.,wave),thereappearto bemoresubstantialdecreasesinmodularitycomparedwithbehavioral performance.Inthecontextoflearninganddevelopment,thispattern oflong-termchangeinneuralnetworksmighthavetwopotential ex-planations.First,itmightbethatbrainnetworksshowthegreatest ca-pacityfor modularityduring adolescence,andthis capacitysupports theheightenedflexiblelearning(JohnsonandWilbrecht,2011;Casey, 2015)andfeedbacksensitivity(Petersetal.,2016;vanDuijvenvoorde etal.,2014;McCormickandTelzer,2017a;b;2018b)thatcharacterize thisdevelopmentalperiodregardlessofpracticeorexposureeffects. Al-ternatively,thesechangesmightreflectdifferencesinhowthebrain per-formssimilaractionsacrossdevelopment.Forinstance,highmodularity mightbenecessaryforadolescentstoachievehighperformance,while adultsmightnotrequirethistothesamedegree.Forinstance, stabiliz-inglearningperformancewithexperienceisstillassociatedwithoverall (albeitblunted)decreasesinmodularityduringyoungadulthood.This mightalsobeconsistentwithanexpansion-normalizationtheoryof de-velopmentandlearning(Wengeretal.,2017)wherebrainsshowinitial changesinstructureandfunction(e.g.,increasedsynapticformation, in-creasedactivation)thatthenreturntobaselinewithoutcompromising behavioralperformance.Thesehypothesesarenotmutuallyexclusive, andtheeffectsprobedheremightsuggestboththatadolescentbrains supportimprovedperformanceregardlessofotherinfluences(e.g., ex-perience)andthatreturnstonetworkphenotypesseeninyounger ado-lescentsdoesnotleadtoacompletecollapseofbehavioralperformance.

4.3. Changingbrain-behaviorrelationships

Whilecharacterizingtrajectoriesofbrainandbehaviorseparatelyis informative,wealsoexamined whetherindividualdifferencesin net-workorganizationmightpredictlearningperformanceaboveand be-yonddevelopmental(PetersandCrone,2017)andexperientialeffects, aswellas whetherthat relationshipchangedacross time.Consistent withtheinteractionviewofdevelopmentandexperience,significant

in-teractionsbetweennetworkmodularityandtimepredictorsinthemodel revealedasignificantmoderationofbrain-behaviorrelationshipsacross age.Thismeansthatinearlyadolescence,thereisnoeffectofincreased modularityonlearningperformance,butthatincreasedmodularity pre-dictsenhancedlearningratesforolderindividuals.Thesefindingsare consistentwithpreviousworkinyoungadultsshowingpositive associa-tionsbetweennetworkmodularityandsuccessfullearning(Bassettetal., 2011;Ellefsenetal.,2015)andhigher-ordercognitiveprocessing gener-ally(Kitzbichleretal.,2011;Braunetal.,2015).However,thesepositive associationsatlateragesareparticularlyinterestinginthecontextof thedevelopmentaltrendsdetected,whereolderindividualsonaverage showdecreasedmodularityacrosswaves.Despitenormativedecreases innetworkmodularityduringlateadolescenceandyoungadulthood, individualswithhighermodularityshowgreaterlearningperformance. Thismightlendsupporttothefirstexplanationoftheinteraction ef-fectofageandwave– thatadolescent-typicalneuralphenotypesoffer advantagesinperformance(e.g.,JohnsonandWilbrecht,2011;Jones etal.,2014;vanvanDuijvenvoordeetal.,2016).Ifyoungadultssimply didnotneedhighlymodularnetworkstoperformwhatisarelatively easytaskforthem(i.e.,theexpansion-renormalizationhypothesis),then wewouldexpectthattherelationshipbetweenmodularityandlearning performancewoulddecrease.However,thepositiveinteractioneffect (Fig.7)suggeststhatolderindividualsshowanevengreaterdependence onhighmodularityforsuccessfullearningperformancecomparedwith youngerparticipants.Thispatternofresultspresentsacompellingcase foradolescent-specificadvantagesinlearning.Forolderindividuals, re-taining“immature,” butapparentlymore-optimal,network configura-tionshelpsboostbehavioralperformance.

4.4. Conclusions

Insummary, wetook anovelmodelingapproachtodisaggregate change in learning and neuralnetworks across different timescales. Whilewefocusonlearninghere,theseresultshighlightthepotential flexibilityofmixed-effectsmodelsforprobingcomplexdevelopmental trajectories in otherdomains.Wefoundnonlinearpatternsof devel-opment for both behaviorandbrain, which were moderatedby ex-perience. Specifically,greater experience withthetask across waves supportedincreasedlearningandnetworkmodularityrelativeto com-paratively naïvesubjectsat laterages,highlightingthattheseeffects canpotentiallybiasage-relatedinferencesunlessexplicitlyincludedin longitudinalmodels.Futureresearchusingacceleratedlongitudinal de-signs(orseeMcCormick,preprint foralternatives)shouldtakecareto model practice/exposure-relatedeffectstoremove this confound. Fi-nally,weshowedchangingbrain-behaviorrelationshipsacross adoles-cence, wherehigher networkmodularitypredicts increased learning performanceonlyfollowingthetransitionintoyoung-adulthood.These results presentcompellingsupport foraninteractiveview of experi-ence anddevelopment,wherechanges in thebrainimpact behavior in context-specific fashionbased ondevelopmentalgoals (Crone and Dahl,2012;Romeretal.,2017).

Credit authorship contribution statement

Ethan M. McCormick: Conceptualization, Methodology, Formal analysis, Writing - original draft, Visualization. Sabine Peters: In-vestigation, Data curation, Writing - review & editing, Supervision. Eveline A. Crone: Investigation,Datacuration,Writing-review& edit-ing, Supervision,Project administration,Funding acquisition. Eva H. Telzer: Conceptualization,Writing-review&editing,Supervision. Acknowledgments

AuthorContributions:S.P.andE.A.C.designedresearch,and per-formedresearch;E.M.M.,analyzeddata;E.M.M.,S.P.,E.A.C.&E.H.T. wrotethepaper.

(12)

Thisresearchwasfundedbyastartinggrantof theEuropean Re-searchCouncil(ERC-2010-StG-263234awardedtoE.A.C.)andagrant fromtheNetherlandsOrganizationforScientificResearch(NWO-VICI 453–14–001awardedtoE.A.C.).WewouldliketothankLauravander Aar,SibelAltikulaç,NeeltjeBlankenstein,BarbaraBraams,Suzannevan deGroep,JulietteCassé,DiannevanderHeide,JorienvanHoorn, Cé-dricKoolschijn,BabetteLangeveld,KyraLubbers,BatshevaMannheim, MaravanderMeulen,RosaMeuwese,SandyOvergaauw,JiskaPeper, Elisabeth Schreuders,Merel Schrijver,JochemSpaans, MarijeStolte, ErikdeWater,andBiancaWesthoff fortheirhelpwithdatacollection.. Finallywewouldliketothankallparticipantsandtheirparentsfortheir collaboration.

E.M.M.wassupportedinthisresearchbygrantsfromtheNational InstitutesofHealth(R01DA039923,R01EB022904awardedtoE.H.T.) andgenerousfundsfromtheUniversityofNorthCarolinaatChapelHill.

Theauthorsdeclarenocompetingfinancialinterests. Data and code availability

ProcessedbehavioralandfMRIdata,aswellasallcodeusedinthe analysessupportingtheprimaryfindingsofthisstudyareavailableat OpenScienceFramework;projecthttps://osf.io/62gwz/.Investigators interestedin obtainingrawbehavioralandfMRIdatashouldcontact E.A.C..

Supplementary materials

Supplementarymaterialassociatedwiththisarticlecanbefound,in theonlineversion,atdoi:10.1016/j.neuroimage.2021.117784. References

Aiken, L.S. , West, S.G. , 1991. Multiple Regression: Testing and Interpreting Interactions. Sage Publications, Inc .

Bassett, D.S. , Wymbsb, N.F. , Porterc, M.A. , Muchae, P.J. , Carlsona, J.M. , Graftonb, S.T. , 2011. Dynamic reconfiguration of human brain networks during learning. Proc. Natl. Acad. Sci. 108 (18), 7641–7646 .

Bassett, D.S. , Yang, M. , Wymbs, N.F. , Grafton, S.T. , 2015. Learning-induced autonomy of sensorimotor systems. Nat. Neurosci. 18 (5), 744–751 .

Bates, D. , Mächler, M. , Bolker, B. , Walker, S. , 2015. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67 (1), 1–48 .

Bell, R.Q. , 1953. Convergence: an accelerated longitudinal approach. Child Dev. 145–152 . Blakemore, S.J. , Mills, K.L. , 2014. Is adolescence a sensitive period for sociocultural pro-

cessing? Annu. Rev. Psychol. 65, 187–207 .

Braun, U. , Schäfer, A. , Walter, H. , Erk, S. , Romanczuk-Seiferth, N. , Haddad, L. , Meyer-Lin- denberg, A. , 2015. Dynamic reconfiguration of frontal brain networks during execu- tive cognition in humans. Proc. Natl. Acad. Sci. 112 (37), 11678–11683 .

Bullmore, E.T. , Bassett, D.S. , 2011. Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology 7, 113–140 .

Casey, B.J. , 2015. Beyond simple models of self-control to circuit-based accounts of ado- lescent behavior. Annual Review of Psychology 66, 295–319 .

Casey, B.J. , Jones, R.M. , Hare, T.A. , 2008. The adolescent brain. Ann. N. Y. Acad. Sci. 1124 (1), 111–126 .

Casey, B.J. , Tottenham, N. , Liston, C. , Durston, S. , 2005. Imaging the developing brain: what have we learned about cognitive development? Trends Cognit. Sci. 9 (3), 104–110 .

Ciric, R. , Wolf, D.H. , Power, J.D. , Roalf, D.R. , Baum, G.L. , Ruparel, K. , Gur, R.C. , 2017. Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity. Neuroimage 154, 174–187 . Cohen, J.R. , D’Esposito, M. , 2016. The segregation and integration of distinct brain

networks and their relationship to cognition. Journal of Neuroscience 36 (48), 12083–12094 .

Crone, E.A. , Dahl, R.E. , 2012. Understanding adolescence as a period of social–affective engagement and goal flexibility. Nat. Rev. Neurosci. 13 (9), 636–650 .

Crone, E.A. , Steinbeis, N. , 2017. Neural perspectives on cognitive control development during childhood and adolescence. Trends in Cognitive Sciences 21 (3), 205–215 . Dale, A.M. , 1999. Optimal experimental design for event-related fMRI. Hum. Brain Mapp.

8 (2–3), 109–114 .

Daw, N.D. , O’doherty, J.P. , Dayan, P. , Seymour, B. , Dolan, R.J. , 2006. Cortical substrates for exploratory decisions in humans. Nature 441 (7095), 876–879 .

Daw, N.D. , Shohamy, D. , 2008. The cognitive neuroscience of motivation and learning. Social Cognition 26 (5), 593–620 .

Ellefsen, K.O. , Mouret, J.B. , Clune, J. , 2015. Neural modularity helps organisms evolve to learn new skills without forgetting old skills. PLoS Comput. Biol. 11 (4), e1004128 . Flora, D.B. , 2008. Specifying piecewise latent trajectory models for longitudinal data.

Struct. Equ. Model. 15 (3), 513–533 .

Galván, A. , 2010. Neural plasticity of development and learning. Hum. Brain Mapp. 31 (6), 879–890 .

Gerraty, R.T. , Davidow, J.Y. , Foerde, K. , Galvan, A. , Bassett, D.S. , Shohamy, D. , 2018. Dy- namic flexibility in striatal-cortical circuits supports reinforcement learning. J. Neu- rosci. 2017–2084 .

Gerraty, R.T. , Davidow, J.Y. , Wimmer, G.E. , Kahn, I. , Shohamy, D. , 2014. Transfer of learning relates to intrinsic connectivity between hippocampus, ventromedial pre- frontal cortex, and large-scale networks. J. Neurosci. 34 (34), 11297–11303 . Gonzalez-Castillo, J. , Hoy, C.W. , Handwerker, D.A. , Robinson, M.E. , Buchanan, L.C. ,

Saad, Z.S. , Bandettini, P.A. , 2015. Tracking ongoing cognition in individuals using brief, whole-brain functional connectivity patterns. Proc. Natl. Acad. Sci. 112 (28), 8762–8767 .

Johnson, C. , Wilbrecht, L. , 2011. Juvenile mice show greater flexibility in multiple choice reversal learning than adults. Dev. Cognit. Neurosci. 1 (4), 540–551 .

Jolles, D. , Crone, E.A. , 2012. Training the developing brain: a neurocognitive perspective. Frontiers in Human Neuroscience 6, 76 .

Jones, R.M. , Somerville, L.H. , Li, J. , Ruberry, E.J. , Powers, A. , Mehta, N. , ... , Casey, B.J. , 2014. Adolescent-specific patterns of behavior and neural activity during social rein- forcement learning. Cognitive, Affective, & Behavioral Neuroscience 14 (2), 683–697 . Kitzbichler, M.G. , Henson, R.N. , Smith, M.L. , Nathan, P.J. , Bullmore, E.T. , 2011. Cog- nitive effort drives workspace configuration of human brain functional networks. J. Neurosci. 31 (22), 8259–8270 .

Li, F. , Duncan, T.E. , Duncan, S.C. , Hops, H. , 2001. Piecewise growth mixture modeling of adolescent alcohol use data. Struct. Equ. Model. 8 (2), 175–204 .

Luna, B. , Padmanabhan, A. , O’Hearn, K. , 2010. What has fMRI told us about the develop- ment of cognitive control through adolescence? Brain Cognit. 72 (1), 101–113 . McCormick, E.M. , Telzer, E.H. , 2017a. Adaptive adolescent flexibility: neurodevelop-

mental of decision-making and learning in a risky context. J. Cognit. Neurosci. 29, 413–423 .

McCormick, E.M. , Telzer, E.H. , 2017b. Failure to retreat: blunted sensitivity to negative feedback supports risky behavior in adolescents. Neuroimage 147, 381–389 . McCormick, E.M. , Telzer, E.H. , 2018. Not doomed to repeat: enhanced medial prefrontal

cortex tracking of errors promotes adaptive behavior during adolescence. J. Cognit. Neurosci. 30 (3), 281–289 .

McCormick, E.M. , Gates, K.M. , Telzer, E.H. , 2019. Model-based network discovery of de- velopmental and performance-related differences during risky decision-making. Neu- roImage 188, 456–464 .

McCormick, E.M. ( preprint ). Multi-Level Multi-Growth Models: New Opportu- nities for Addressing Developmental Theory Using Longitudinal Designs. 10.1101/2020.10.21.349274

Mehta, P.D. , West, S.G. , 2000. Putting the individual back into individual growth curves. Psychol. Methods 5 (1), 23 .

Pattwell, S.S. , Bath, K.G. , Casey, B.J. , Ninan, I. , Lee, F.S. , 2011. Selective early-acquired fear memories undergo temporary suppression during adolescence. Proceedings of the National Academy of Sciences 108 (3), 1182–1187 .

Peters, S. , Crone, E.A. , 2017. Increased striatal activity in adolescence benefits learning. Nat. Commun. 8 (1), 1983 .

Peters, S. , Braams, B.R. , Raijmakers, M.E. , Koolschijn, P.C.M. , Crone, E.A , 2014. The neu- ral coding of feedback learning across child and adolescent development. J. Cognit. Neurosci. 26 (8), 1705–1720 .

Peters, S. , Van Duijvenvoorde, A.C. , Koolschijn, P.C.M. , Crone, E.A , 2016. Longitudi- nal development of frontoparietal activity during feedback learning: contributions of age, performance, working memory and cortical thickness. Dev. Cognit. Neurosci. 19, 211–222 .

Power, J.D. , Barnes, K.A. , Snyder, A.Z. , Schlaggar, B.L. , Petersen, S.E. , 2012. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage 59 (3), 2142–2154 .

Romer, D. , Reyna, V.F. , Satterthwaite, T.D. , 2017. Beyond stereotypes of adolescent risk taking: Placing the adolescent brain in developmental context. Developmental Cogni- tive Neuroscience 27, 19–34 .

Rubinov, M. , Sporns, O. , 2011. Weight-conserving characterization of complex functional brain networks. NeuroImage 56 (4), 2068–2079 .

Sadaghiani, S. , D’Esposito, M. , 2015. Functional characterization of the cingulo-opercular network in the maintenance of tonic alertness. Cerebral Cortex 25 (9), 2763–2773 . Seitzman, B.A. , Gratton, C. , Marek, S. , Raut, R.V. , Dosenbach, N.U. , Schlaggar, B.L. , ... ,

Greene, D.J. , 2020. A set of functionally-defined brain regions with improved repre- sentation of the subcortex and cerebellum. NeuroImage 206, 116290 .

Shirer, W.R. , Ryali, S. , Rykhlevskaia, E. , Menon, V. , Greicius, M.D. , 2012. Decoding sub- ject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22 (1), 158–165 .

Shulman, E.P. , Smith, A.R. , Silva, K. , Icenogle, G. , Duell, N. , Chein, J. , Steinberg, L. , 2016. The dual systems model: review, reappraisal, and reaffirmation. Dev. Cognit. Neu- rosci. 17, 103–117 .

Steinberg, L. , Albert, D. , Cauffman, E. , Banich, M. , Graham, S. , Woolard, J. , 2008. Age dif- ferences in sensation seeking and impulsivity as indexed by behavior and self-report: evidence for a dual systems model. Dev. Psychol. 44 (6), 1764 .

Telesford, Q.K. , Ashourvan, A. , Wymbs, N.F. , Grafton, S.T. , Vettel, J.M. , Bassett, D.S. , 2017. Cohesive network reconfiguration accompanies extended training. Hum. Brain Mapp. 38 (9), 4744–4759 .

Telzer, E.H. , McCormick, E.M. , Peters, S. , Cosme, D. , Pfeifer, J.H. , van Duijvenvo- orde, A.C. , 2018. Methodological considerations for developmental longitudinal fMRI research. Dev. Cognit. Neurosci. 33, 149–160 .

van Duijvenvoorde, A.C. , de Macks, Z.A.O. , Overgaauw, S. , Moor, B.G. , Dahl, R.E. , Crone, E.A. , 2014. A cross-sectional and longitudinal analysis of reward-related brain activation: effects of age, pubertal stage, and reward sensitivity. Brain and Cognition 89, 3–14 .

(13)

van Duijvenvoorde, A.C. , Peters, S. , Braams, B.R. , Crone, E.A. , 2016. What motivates ado- lescents? Neural responses to rewards and their influence on adolescents’ risk taking, learning, and cognitive control. Neuroscience & Biobehavioral Reviews 70, 135–147 . Van Duijvenvoorde, A.C. , Zanolie, K. , Rombouts, S.A. , Raijmakers, M.E. , Crone, E.A. , 2008. Evaluating the negative or valuing the positive? Neural mechanisms supporting feed- back-based learning across development. J. Neurosci. 28 (38), 9495–9503 .

Vigilant, L. , Roy, J. , Bradley, B.J. , Stoneking, C.J. , Robbins, M.M. , Stoinski, T.S. , 2015. Re- productive competition and inbreeding avoidance in a primate species with habitual female dispersal. Behav. Ecol. Sociobiol. 69 (7), 1163–1172 .

Wenger, E. , Brozzoli, C. , Lindenberger, U. , Lövdén, M. , 2017. Expansion and renormal- ization of human brain structure during skill acquisition. Trends Cognit. Sci. 21 (12), 930–939 .

Referenties

GERELATEERDE DOCUMENTEN

Thus, this research includes gender as the controlling variable to enrich the results by considering about the influence of rating valence variance closely from

BCI’s zijn ook omslachtig omdat ze alleen werken als van tevoren is bepaald welke hersenactiviteit gekoppeld kan worden aan het besturen van de computer.. In het fMRI-voorbeeld

Se pensiamo che in un articolo di Giuseppe Mazzocchi (A proposito della nuova gramamtica di Manuel Carrera Diáz, p.115) sulla nuova grammatica spagnola di Manúel

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

- Helaas is niet te overzien of er door huurders voldoende en doelmatig wordt geventileerd; er zal in ieder geval meer dan normaal geventileerd moeten worden, daar de woonkamer een

Hence, the aim of this paper is to derive a black-box Multiple Input Multiple Output (MIMO) model for the column, but we limit ourself to linear parametric models (e.g., ARX, ARMAX,

kijken, nu zo vlakbij is een mooie gelegenheid om er in een beschaafd klimaat eens naar te

Deze duiding sluit aan bij de feitelijke situatie waarbij de radioloog de foto beoordeelt en interpreteert, en lost een aantal praktische knelpunten op.. Omdat de