• No results found

A critique on the water-scarcity weighted water footprint in LCA

N/A
N/A
Protected

Academic year: 2021

Share "A critique on the water-scarcity weighted water footprint in LCA"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Ecological

Indicators

j ou rn a l h om ep a g e :w w w . e l s e v i e r . c o m / l o c a t e /e c o l i n d

A

critique

on

the

water-scarcity

weighted

water

footprint

in

LCA

Arjen

Y.

Hoekstra

UniversityofTwente,P.O.Box217,7500AEEnschede,Netherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30October2015

Receivedinrevisedform6February2016 Accepted7February2016 Keywords: Waterfootprint Waterscarcity Waterstress Waterdepletion Waterpollution Lifecycleassessment ISO14046

Environmentalimpactassessment

a

b

s

t

r

a

c

t

Thewaterfootprint(WF)hasbeendevelopedwithinthewaterresourcesresearchcommunityasa volu-metricmeasureoffreshwaterappropriation.Theconceptisusedtoassesswaterusealongsupplychains, sustainabilityofwaterusewithinriverbasins,efficiencyofwateruse,equitabilityofwaterallocationand dependencyonwaterinthesupplychain.WiththepurposeofintegratingtheWFinlifecycleassessment ofproducts,LCAscholarshaveproposedtoweighttheoriginalvolumetricWFbythewaterscarcityin thecatchmentwheretheWFislocated,thusobtainingawater-scarcityweightedWFthatreflectsthe potentiallocalenvironmentalimpactofwaterconsumption.Thispaperprovidesanelaboratecritiqueon thisproposal.Themainpointsare:(1)countinglitresofwaterusedifferentlybasedontheleveloflocal waterscarcityobscurestheactualdebateaboutwaterscarcity,whichisaboutallocatingwaterresources tocompetingusesanddepletionataglobalscale;(2)theneglectofgreenwaterconsumptionignores thefactthatgreenwaterisscarceaswell;(3)sincewaterscarcityinacatchmentincreaseswithgrowing overallwaterconsumptioninthecatchment,multiplicationoftheconsumptivewateruseofaspecific processoractivitywithwaterscarcityimpliesthattheresultantweightedWFofaprocessoractivitywill beaffectedbytheWFsofotherprocessesoractivities,whichcannotbethepurposeofanenvironmental performanceindicator;(4)theLCAtreatmentoftheWFisinconsistentwithhowotherenvironmental footprintsaredefined;and(5)theWaterStressIndex,themostcitedwaterscarcitymetricintheLCA community,lacksmeaningfulphysicalinterpretation.Itisproposedtoincorporatethetopicof fresh-waterscarcityinLCAasa“naturalresourcedepletion”category,consideringdepletionfromaglobal perspective.Sinceglobalfreshwaterdemandisgrowingwhileglobalfreshwateravailabilityislimited, itiskeytomeasurethecomparativeclaimofdifferentproductsontheglobe’slimitedaccessibleand usablefreshwaterflows.

©2016TheAuthor.PublishedbyElsevierLtd.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Thewaterfootprint(WF)conceptwasfirstpresentedatan

inter-nationalexpertmeetingonvirtualwatertradeinDecember2002in

Delft,theNetherlands(Hoekstra,2003).Theincreasingamountof

workonwateruseandscarcityinrelationtoconsumptionandtrade

hasledtotheemergenceofthefieldofWaterFootprintAssessment

(WFA).Methodologicaladvancesoverthepastdecadeincludethe

developmentofthefour-stepWFAmethodology(settingscopeof

analysis,accounting,sustainabilityassessmentandresponse

for-mulation;Hoekstraetal.,2009a,2011),thedevelopmentofgrey

WFguidelines(Frankeetal.,2013),theestimationofWFsathigh

spatialandtemporalresolution(MekonnenandHoekstra,2010),

theexplorationoftheevolutionoftheglobalvirtualwatertrade

network(Dalinetal.,2012),thedevelopmentofWFbenchmarks

E-mailaddress:a.y.hoekstra@utwente.nl

forcrops(MekonnenandHoekstra,2014),theestimationofblue

waterscarcityinriverbasinsbasedonblueWFs(Hoekstraetal.,

2012),theassessmentofwaterpollutionlevelsinriverbasinsbased

onnitrogenandphosphorus-related greyWFs(Liuet al.,2012;

MekonnenandHoekstra,2015),studyinginter-annualvariability

ofWFs(Sunetal.,2013),assessingWFuncertainties(Zhuoetal.,

2014),theexplorationoftheuseofremotesensing(Romaguera

etal.,2010)andthedevelopmentoffutureWFscenarios(Ercinand

Hoekstra,2014).ApplicationsoftheWFvarywidely,from

prod-uctassessments(Chapagainetal.,2006),sectorstudies(Mekonnen

etal.,2015),dietassessments(Vanhametal.,2013),national

stud-ies(Ercinetal.,2013),catchmentstudies(Zengetal.,2012)toglobal

assessments(HoekstraandMekonnen,2012a).

Since 2009 the life cycle assessment (LCA) community has

shown interest in the WF concept, because of its relevance in

comparingtheenvironmentalperformance ofproducts.TheWF

as developed and appliedwithin the water resourcesresearch

community has received criticism from the LCA community

for not appropriately accounting for differences in potential

http://dx.doi.org/10.1016/j.ecolind.2016.02.026

(2)

environmentalimpactofwaterusegivenregionaldifferencesin

waterscarcity.Therehasbeensomeexchangeoflettersbetween

bothcommunities (letterfromPfisterand Hellweg,2009; reply

fromHoekstraetal.,2009b;letterfromRidouttandHuang,2012;

replyfromHoekstraandMekonnen,2012b)andtherehavebeen

effortstocometofruitfulexchange(e.g.Boulayetal.,2013),which

howeverhavenotbeenverysuccessfulinbringingthetwo

com-munitiesclosertogether,asapparentforinstancefromtheletterby

PfisterandRidoutt(2014).Theyadvisethewaterresources

com-munityto“update”theWFAmethodologytobringitinlinewith

theirownLCAwork.Theproblem,however,isthattheLCA

commu-nityhastakenitsownpathofdevelopment,inadirectionthatcan

contributelittletoimprovewatermanagementandisthereforenot

veryinterestingforthewaterresourcescommunity.Thereisavast

bodyofliteratureinthefieldofWFA,whichhasevolvedovertime,

butshowsconsistencyandcoherence.Thewaterresources

com-munityhasbeenlittleresponsivetothedemandsfromtheLCA

communitytochangedirectionandadaptmethodstoperceived

LCAneeds.Thereisagoodreasonforthat:theso-called“better”

approachtowaterfootprintingasproposedintheLCAcommunity

isnotbetter.Itisnarrowlyfocussedonassessingpotential

environ-mentalimpactsofproducts,whilethebroaderissueofsustainable,

efficientandequitableallocationoflimitedfreshwaterresources

fromcatchmenttogloballevelremainsoutofscope.Thereisno

reasontochangeaWFAmethodthatisconsistentwithother

envi-ronmentalfootprintmethods(Giljumetal.,2011;Gallietal.,2012;

HoekstraandWiedmann,2014;Fangetal.,2014,2015)andsuitable

toaddressbigquestionsonwaterresourcesallocation(Hoekstra,

2013,2014)merelytofitthespecificgoalofLCA.Itshouldbethe

otherwayaround:theincorporationoffreshwaterintoLCAcould

betterbebasedoninsightsasdevelopedwithinthewaterresources

sciencecommunity.Thecurrentpaperaimstosupplyacritiqueon

thewater-scarcityweightedWFapproach,whichisatthecoreof

whatLCAauthorsproposeandatthebasisofthedisputewiththe

waterresourcesresearchcommunity.Theneedforthiscritiquehas

gainedurgencynowthattheideaofthewater-scarcityweighted

WFhasbeenadoptedinISO’sLCA-basedWFstandard(ISO,2014).

Section2explainstheconceptsanddefinitionsappliedbythe

two communities.Section3 contains theactualcritique onthe

water-scarcityweightedWFapproachaspromotedbyLCAauthors.

Section4concludeswithareflectiononthewayforward.

2. Conceptsanddefinitions

2.1. ThevolumetricWFinwaterresourcesstudies

TheWFisameasureofconsumptiveanddegradativefreshwater

use.TheconsumptiveWFincludesagreencomponent,whichrefers

totheconsumption ofrainwater,anda bluecomponent,which

referstotheconsumption ofsurface-orgroundwater(Hoekstra

etal.,2011).TheinclusionofthegreenWFenablesthebroadening

ofperspectiveonwaterresourcesbeyondthehistoricalfocusof

waterengineersonbluewater(FalkenmarkandRockström,2004).

ThedegradativeWF,theso-calledgreyWF,representsthevolume

ofwaterrequiredtoassimilatepollutantsenteringfreshwater

bod-ies(Hoekstraetal.,2011), anideathatbuildsontheconceptof

dilutionwaterrequirementearlierappliedbyPosteletal.(1996).

TheWFofonesingleprocessstep(aunitprocess)isthebasic

buildingblockofallWFaccounts(Hoekstraetal.,2011).TheWFof

aproductisthesumoftheWFsoftheprocessstepstakento

pro-ducetheproduct.TheWFofabusinessisthesumoftheWFsofthe

finalproductsproducedbythebusiness,whichincludesthe

oper-ationalWFofthebusinessaswellasitssupply-chainWF.TheWF

ofaconsumeristhesumoftheWFsofallproductsconsumed.The

WFofnationalconsumptionisthesumoftheWFsofthecountry’s

inhabitants,whichincludesaninternalcomponent(theWFwithin

the national territory for making products that are consumed

withinthecountry)andanexternalcomponent(theWFinother

countriesformakingproductsimportedbyandconsumedwithin

thecountryconsidered).TheexternalWFofnationalconsumption

ismadepossiblebyimportofwater-intensivecommodities.This

tradeimpliesso-calledvirtualwaterflowsbetweenexportingand

importingcountries(Hoekstra,2003).Finally,thetotalWFwithina

certainarea(e.g.amunicipality,provinceorstate,orahydrological

unitlikeacatchmentarea)issumoftheWFsofallprocessestaking

placewithinthearea.

TheWFconceptintroducedsupply-chainthinkinginthefield

ofwatermanagementandishelpfulinanalysingthelinkbetween

humanconsumptionandtheappropriationoffreshwater(Hoekstra

etal.,2011).Theconceptisusedtoassesswaterusealongsupply

chains,sustainabilityofwaterusewithinriverbasins,efficiencyof

wateruse,equitabilityofwaterallocationandrelianceon

exter-nalwater suppliesordependence onwaterinthesupplychain.

Thesustainabilityofwaterusecanbeevaluatedbycomparingthe

WFwithinanareatothemaximumsustainableWFinthatarea

(Hoekstra,2014).Efficiencyofwaterusecanbeassessedby

com-paringtheWFofaspecificprocessorproducttoaWFbenchmark

forthatprocessorproduct,whichcanbebasedonbestavailable

technologyandpractice(MekonnenandHoekstra,2014;Chukalla

etal.,2015).Equitabilityofwaterusecanbediscussedby

com-paringthe WFsrelated totheconsumption levelsand patterns

ofdifferentcommunities(Seekell,2011;Hoekstra, 2014).Water

dependencyandsecuritycanbeassessedbyanalysingtheextentto

whichcompaniesorcommunitiesdependonunsustainablewater

useintheirsupplychain(Ercinetal.,2013).Commoninthevarious

typesofanalysisisthestudyofhowwatervolumesareallocated

tocompetingdemands.Countingwatervolumesisakeyelement,

whichexplainstheuneaseinthewaterresourcescommunityto

talkintermsof“weightedcubicmetres”ofwater,whichisseenas

keyintheLCAcommunity.

2.2. Thewater-scarcityweightedWFinLCA

CritiqueonthevolumetricWFandtheideatoweightconsumed

water volumes based onlocal water scarcity emerged in 2009

(Ridouttetal.,2009;Pfisteretal.,2009;RidouttandPfister,2010).

TheproposalhadenormoustractionwithintheLCAcommunity,

whichhadjuststartedtoaskhowwaterusecouldbeincorporated

intoLCA(Koehler,2008;MilàiCanalsetal.,2009).Therationale

isstraightforward.ThepurposeofLCAstudiesistoestimatethe

differentsortsofpotentialenvironmentalimpactattributableto

thelifecycleofaproduct,fromcradletograve(HellwegandMilài

Canals,2014).AnLCAisacomparativeanalysisofpotential

environ-mentalimpactsofalternativeprocessesorproducts,forinstance

whenusingalternativematerialsordesigns(Rebitzeretal.,2004).

Alifecycleinventory(LCI),whichcompilesnaturalresourcesuse

and emissionsfor eachprocess inthelifecycleof aproduct,is

followedbyalifecycleimpactassessment(LCIA),whichincludes

aselectionofthe“environmentalimpactcategories”ofinterest,

acalculationof“impactcategoryindicators”basedoninventory

datausing“characterisationfactors”(characterisation)and

option-allyacalculationof“impactcategoryindicatorresults”relativeto

referencevalues(normalisation)andagroupingand/orweighting

oftheresults(Penningtonetal.,2004).

Thecarbonfootprint(CF)isoneofthepopular“impactcategory

indicators”,fortheimpactcategoryofclimatechange.The

emis-sionsofdifferentgreenhousegasesareweightedbasedontheir

“globalwarmingpotential”(GWP)relativetocarbondioxide(e.g.

onekgofmethanehasamuchgreaterGWPthanonekgofcarbon

dioxide).Theweightingistechnicallycalled“characterisation”of

(3)

arethecharacterisationfactors.TheresultantCFisexpressedin

termsoftonnesCO2-equivalents.

Theideatocalculateawater-scarcityweightedWFintheLCIA

stagehasbeeninspiredbythewaytheCFhasbeenincorporated

intoLCAprocedures(PfisterandHellweg,2009;RidouttandPfister,

2010). Animplicit choice made – which is an important point

towhich Iwillcomebackin thenextsection–wasthat water

useitselfisnot interesting,butthatthefocusshouldbeonthe

potentialenvironmentalimpactofwateruse.Giventhatfocus,the

questionwashowto“characterize”waterconsumption,i.e.what

characterizationfactortouse.Thelogicfollowedwasthatonelitre

ofwaterconsumptioninawater-scarcebasinisworsethanthe

samewaterconsumptioninawater-abundantbasin,hencethe

pro-posaltousewaterscarcityasthecharacterizationfactorofwater

consumption.Usingwaterscarcityasacharacterizationfactorfor

waterconsumptionwaspresentedasananalogytousingGWPas

acharacterizationfactorofgreenhousegasemissions–whichisn’t

aproperanalogythough,asIwillshowinthenextsection.

TheabovewasallabouttheblueWF.ThegreenWFwasputaside

asirrelevant,becausethegreenWFdoesn’taffectrunoffand

there-forenot(blue)waterscarcity(PfisterandHellweg,2009;Ridoutt

and Pfister, 2010).Thegrey WF hasreceivedmixed responses,

becauseontheonehandthegreyWFhasbeenregardedasalready

includingpropercharacterization(becauseloadsofdifferent

chem-icalsaremadecomparablebycalculatingthewatervolumeneeded

toassimilatethem based onthedifference betweenmaximum

allowableandnatural concentrationof thechemical), whileon

theotherhandthereissomeuneasewiththegreyWFbecauseit

overlapswithsomeotherexistingenvironmentalimpactcategories

(likeeutrophication).

3. Acritiqueonthewater-scarcityweightedWF

3.1. Historyandbackground

Thepointsofcritiquethatwillbeelaboratedinthenext

sec-tionsfollowfromacoreassumptionmadebyLCAauthorsregarding

whatconstitutestheessenceofthewateruseproblem.TheLCA

method aims to consider both input-related impact categories

(naturalresourcedepletion)andoutput-relatedimpactcategories

(pollution)(UdodeHaes,2002),butrecentLCAliteraturedoesn’t

makethisdistinctionandratherspeaksgenerallyabout

“environ-mentalimpactcategories”(HellwegandMilàiCanals,2014).The

issueofwateruseistreatedasacategoryofenvironmentalimpact,

wherebyinsufficientthoughthasbeenonwhatactuallyisthe

envi-ronmentalissue.Obviously,theissuecoversbothwaterdepletion

andpollution,whichmakesitaheterogeneouscategory.Butthe

LCAcommunityhasprimarilyjumpedontheissueofconsumptive

wateruse(giventhatwaterpollutionisalreadypartiallycovered

throughotherenvironmentalimpactcategorieslike

eutrophica-tion)andtherebyfocussedon“impactofwaterconsumption”.The

latterimpliesthatwater useinitselfisn’tregardedasthe

envi-ronmentalissue,butrather“environmentalimpactofwateruse”.

Theissueofwaterdepletion(whichfractionsoftheavailablegreen

andbluewater resourcesandwhich partoftheavailablewaste

assimilationcapacityarealreadyappropriated)isthusignored.

AlogicconsequencewasthattheLCAcommunitywasn’t

sat-isfiedwithametric ofjustwateruse(thevolumetric greenand

blueWFs)andstartedsearchingforametricthatcanrepresentthe

environmentalimpactofwateruse.Confusingly,LCAscholarstook

theexistingWF,whichhadbeendefinedasawateruseindicator,

andstartedtocriticiseitfornotbeingawateruseimpactindicator.

ThereasoningwasthattheWFconcepthadtobetransformedinto

anothermetric,toservethepurposeofawateruseimpact

indi-cator.Thisdevelopmenthasbeenunfortunate,becauseitwould

havebeenbetterifanothertermhadbeenchosen,e.g.aWFimpact

index,asproposedbytheWaterFootprintNetwork(Hoekstraetal.,

2011).It wouldhavepreventedthecurrentdisputeover

termi-nology.Therewasanimportantreasonfor thewaterresources

researchcommunitytostaywiththeWFasanindicatorofwater

use:theWFhadbeendevelopedandusedtofeeddiscussionsabout

sustainable,efficientandequitableallocationoflimitedfreshwater

resourcesandaboutresourcesecurity,giventhatmanycountries

dependonwaterresourcesoutsidetheirterritory.Theessenceof

allocatinglimitedwaterresourcesisaboutallocatinglitresamong

competinghumanpurposesandaboutallocatingwithin

sustaina-bilitylimits, respecting environmentalwater needs. If properly

allocated,withinsustainability limits,respecting environmental

waterneeds,theenvironmentalimpactswillremainwithin

accept-ablelimits.Theissueofenvironmentalimpactsisthuspartofthe

largerthemeofsustainable,efficientandequitableallocationof

limitedwaterresources.RedefiningtheWFconcepttoreferto

envi-ronmentalimpactofwateruseisnotinstrumentaltothislarger

theme.Allocationisaboutallocating litres,notaboutallocating

scarcity-weightedlitres.

3.2. TheenvironmentalrelevanceofwaterproductivityandWFs

inwater-richareas

Theproponentsofthewater-scarcityweightedapproachhave

persistentlypointedattheneedfor“environmentalrelevance”of

theWFindicator(PfisterandHellweg,2009;RidouttandHuang,

2012;BergerandFinkbeiner,2013).Thishasbeeninterpretedas:it

shouldreflectenvironmentalimpactofwateruse.Bluewater

con-sumptioninawater-scarcecatchmentisregardedtohavepotential

environmentalimpact,becauseitreducesrunoff andmayaffect

downstreamecosystemsandlivelihoods.Asimilaramountofblue

water consumption in a water-rich catchmenthas less impact

andwouldthereforehavesmallerenvironmentalrelevance.Green

waterconsumptiondoeshardlychangerunoff(sinceevaporation

fromafarmlandorproductionforestisinthesameorderof

magni-tudeasevaporationfromnaturalvegetation)andwouldtherefore

havenoenvironmentalrelevanceatall.Theproblemwiththis

rea-soning,however, is that theterm“environmental relevance” is

interpretedinatoonarrowsense.

Asubstantialcomponentofthesolutiontooverexploitationof

bluewaterresourcesinwater-scarceregionsistouse(greenand

blue)water resources inwater-rich regions more productively,

becauseproducing morewater-intensiveproductswhere water

is sufficient takesaway theneed toproduce those productsin

placeswherewaterisscarce.Improvinglandandwater

produc-tivityinrain-fedagricultureinallthoseregionswithsufficientrain

wouldreducetheneedforirrigatedagricultureinregionsthatare

basicallyunsuitableforcropproductiongiventhelimited

availabil-ityofwater(Rockströmetal.,2009).Byfocussingonbluewater

consumptioninwater-scarcebasins,oneoverlookstwoimportant

featuresofwater:(1)waterisaglobalresource:water-intensive

commoditiescanbetradedfromwater-richtowater-poorriver

basins,whichmeansthatwhereintheworldwaterisbeingused

andhowmuchispartlysubjecttotheworkingoftheglobal

econ-omy (Hoekstraand Hung, 2005; Hoff,2009; Vörösmartyet al.,

2015);and(2)bluewaterusecannotbeconsideredindependently

from green water use. Since water is a global resource, water

depletionhasaglobalcharacteraswell.Globalwater

availabil-ityisthesumofthewateravailabilityinthevariousbasinsinthe

world;someofthemcontributealottooverallavailability,others

onlyalittle.Everylitreofwaterconsumption–whetherit’sina

water-richorwater-poorriverbasinandwhetherit’sgreenorblue

water–willreducethewatervolumeremainingforotheruses

andthushasequalenvironmentalrelevance.Thefactthatgreen

(4)

inefficientlyused(i.e.lowwaterproductivityintermsof

produc-tionunitsperm3orlargeWFintermsofm3perproductionunit),is

highlyenvironmentallyrelevant,becausehereliespartofthe

solu-tiontotheproblemsinwater-poorareas:producingmorecrops

withthewaterinwater-richbasinsreducestheneedtoproducein

water-poorbasinsandthushelpstoreducethewaterconsumption

andscarcityinthosewater-poorbasins.Lookingatthecontribution

ofaproducttolocalwaterdepletionshouldn’tbethemerefocusin

aproduct-LCA.Comparingtheenvironmentalperformanceoftwo

cottonshirts,forinstance,requirestolookatboththetotal(green

andblue)waterconsumptionunderlyingeachshirtandthefraction

ofthetotaltakingplaceinriverbasinswhereoverallwater

con-sumptionlevelsaresohighthatminimumenvironmentalwater

needsarenolongermet.

Thethemeofwaterconsumptioncanbecomparedtothatof

landuse.Theenvironmentalissuearoundlanduseistwofoldas

well.Thefirstconcernisthatoveralllandusekeepsonrising,

caus-inggloballandscarcity;remindthe1.5Earthsweneedtosustain

ourcurrentglobaleconomy(Boruckeetal.,2013).Thesecond

con-cernisthatsomeformsoflanduse(e.g.urbanland)havelarge

localenvironmentalimpact(largerthanotherformsoflanduse,

likee.g.productionforest).Theissueofdifferentlocal

environmen-talimpactsofdifferentformsoflanduseisnoreasontoignorethe

concernoftotallanduse.Aproductwithlargerlandrequirement

toproduceitisofgreaterenvironmentalconcernthanasimilar

productwithsmallerlandrequirement.Thesameistrueforwater:

aproductwithlarger(volumetric)greenandblueWFtoproduce

itisofgreaterenvironmentalconcernthanasimilarproductwith

smallerWF.

Iwill illustrate theinsufficiency of thegeographic focus on

water-scarcebasinswithasimpleexample.Supposethe

hypothet-icalcaseoftworiverbasins,withthesamesurface(Table1).BasinA

isrelativelydry,withawateravailabilityof50waterunitsperyear.

Farmersinthebasinconsume100waterunitsperyeartoproduce

100cropunits.TheWF(100)thusexceedsthemaximum

sustain-ablelevel(50).BasinBhasmorewater:250waterunitsperyear.

Farmersinthisbasinconsume200waterunitsperyear,toproduce

100cropunits,thesameamountasinbasinA,butusingtwotimes

morewaterpercropunit.InbasinB,theWF(200)remainsbelow

themaximumlevel(250),sothisissustainable.Accordingtothe

logicofLCAauthors,theenvironmentalperformanceisgoodfor

thecropsoriginatingfrombasinBandbadforthosefrombasinA.

Fromageographicperspective,thisistrue:theWFofcrop

produc-tioninbasinAneedstobereduced,thatseemstobethecrux.From

aproductperspective,however,weobservethattheWFpercrop

unitinbasinBistwotimeslargerthaninbasinA.Ifthefarmers

inbasinBwouldachievethesamewaterproductivityasinbasin

A,theywouldproducetwiceasmanycropswithoutincreasingthe

totalWFinthebasin.IffarmersinbasinAcannoteasilyfurther

increasetheirwaterproductivity,theonlysolution–inorderto

maintainglobalproduction–istobringdowntheWFinbasinAto

asustainablelevelbycuttingproductionbyhalf,whileenlarging

productioninbasinBbyincreasingthewaterproductivity.When

inbasinBthesamewaterproductivityisachievedasinbasinA,

globalproductionwould increasewhilehalving thetotal WFin

basinAandkeepingitatthesamelevelinbasinB.Thefactthat

cropsinbasinBhadavolumetricWFoftwicethatinbasinAwas

thushighlyenvironmentallyrelevantinformation.

3.3. Theneglectofgreenwateruse

TheLCAcommunityhasthusfarneglectedgreen water

con-sumptionasarelevantresourceusemetric.AccordingtoPfister

andHellweg(2009),greenwaterconsumptioninagricultural

pro-ductioncanbeneglectedifgreenwaterconsumptioninthecrop

fieldiscomparabletothatbytheoriginalnaturalvegetation,which

isgenerallythecase.RidouttandPfister(2010)arguethatgreen

waterconsumptiondoesn’tcontributetowaterscarcityandthat,

duetotheinseparabilityofgreenwaterandland,the

consump-tionofgreenwaterisbetterconsideredinthecontextoflanduse

impacts.This,however,reflectsalimitedviewontheissueof

sus-tainablewaterresourcesuse.Itistruethatrunoff(bluewater)will

notchangesignificantlyasaresultofgreenwaterconsumptionand

thatgreenwaterresourcesareinseparablylinkedtoland.Itisnot

right,though,tosaythatgreenwaterresourcesarenotscarce.Itis

verycommonthatfarmersstructurallysufferfromshortageofrain.

Conflictsoverbluewaterallocationamongfarmersoccurprecisely

forthereasonthatgreenwaterresourcesareinsufficient.Green

watershortageinagricultureisinfactthereasonforagriculture’s

bluewaterdemandandthereforethedriverofbluewaterscarcity.

Muchofthetroublearoundbluewaterscarcityrelatestothe

historical focus of engineers and policy makers on blue water

resources exploitation and theneglectof green water use. The

insightthatgreenandbluewaterresourcesuseshouldbe

consid-eredincombinationemergedinthewaterresourcescommunity

in the second half of the 1990s (Falkenmark, 1997) and has

receivedincreasingattentionsince (Falkenmark andRockström,

2004,2006).Whenemphasizingthatgreenwaterconsumptioncan

beignoredinanLCAbecauseitcannotbeconsideredasan

addi-tionallosstothewatershed,PfisterandHellweg(2009)actually

arguethatgreenwaterconsumptionisnotbluewater

consump-tion,whichisrightofcourse,butwhichbetraystheirpreoccupation

withtheidea thatbluewaterconsumption istheonlyrelevant

thing.RidouttandPfister(2010)areexplicitinthisrespectby

argu-ingthatgreenwaterresourcesconsumptionisnotrelevantbecause

itdoesn’tcontributetobluewaterscarcity.

Green water resources are often not perceived as scarce,

becauseraincomesforfree,butactuallytheyare(Savenije,2000;

Falkenmark,2013).Therearealternativecompetingusesforgreen

water(e.g.productionoffoodcrops,feedforanimals,energycrops,

fibrecropsortreesfortimberandpaper)andthereisaconflict

between appropriatinggreen water resourcesfor the economy

versusleavingthemfornaturalvegetation(Schynsetal.,2015).

Competingdemandsfora limitedresourcedefinestheresource

asscarce.Whenallavailablegreenwaterresourcesarefullyused

wecansaythattheresourceisdepleted.Thisisthecaseinmany

regionsoftheworld,wherehardlyanylandandassociatedgreen

waterisleftfornaturalvegetation.It’snotsufficienttofocusonland

Table1

Exampleofhowoverexploitationinawater-stressedriverbasin(A)canbesolvedbyincreasingwaterproductivityinawater-abundantbasin(B).

Parameter Unit Currentsituation Possiblesolution

BasinA BasinB BasinA BasinB

MaximumsustainableWF Waterunitsperunitoftime 50 250 50 250

(Volumetric)WF Waterunitsperunitoftime 100 200 50 200

Production Productunitsperunitoftime 100 100 50 200

WFperproductunit Waterunitsperproductunit 1 2 1 1

Waterproductivity Productunitsperwaterunit 1 0.5 1 1

(5)

appropriationandneglectgreenwaterconsumptionasproposed byRidouttandPfister(2010),becausewecannotdisconnectgreen

andbluewaterresources,ignoretheformerandfocusonthelatter.

Thebiggerissueisfreshwaterscarcityingeneral,i.e.competition

overprecipitation,theundifferentiatedformoffreshwater,which

willpartitioninagreenflow(evaporation)andblueflow

(ground-waterrecharge/surfacerunoff)(FalkenmarkandRockström,2006).

Theworld’slargestconsumerofbluewater,i.e.irrigated

agricul-ture,usesalotofgreenwateraswell.Greenandbluewaterscarcity

and depletionin a catchment arestrongly connected. The

rea-sonwhycropsareirrigatedisthattherainisinsufficienttogive

agoodcropyield.Inallcatchmentswithsignificantbluewater

scarcityasaresultofbluewaterconsumptionin irrigated

agri-culture,greenwaterresourcesarescarceaswell,otherwisethere

hadn’tbeenthedemandforirrigation.Onecannotgetagood

pic-tureofwaterscarcityifthefocusisonbluewaterresourcesalone.

Ifrain-fedagricultureproducesmore(closingtheso-calledyield

gapandincreasinggreenwaterproductivity),thereislessneedfor

irrigatedagriculture,thusreducingbluewaterscarcity.Anessential

componentinsolvingtheoverconsumptionofbluewaterresources

andassociatedenvironmentalimpactsinwater-scarceareasisto

usegreenwaterresourcesmoreproductivelyinwaterabundant

areas,becauseifwater-intensiveproductsareproducedinareas

wheresufficientwaterisavailable,thereisnofurtherneedto

pro-ducethoseproductsinareaswhereinsufficientwaterisavailable

(Hoekstra,2014).AlargegreenWFofacrop(inlitre/kg)

repre-sentslowgreenwaterproductivity(kg/litre)andshouldtherefore

becountedinLCAasworsethanasmallgreenWF.Ignoringthis

aspectmeansthatanessentialelementin(indirect)environmental

impactisoverlooked.

3.4. Squaringthefootprintandbeingchargedforthefootprintof

others

Theideaofawater-scarcityweightedWFleadstothesurprising

andundesirablesituationinwhichtheWFofaspecificwater

con-sumerorcompanywillinherentlybeafunctionoftheWFofothers.

Wewillthusfacetheconfusingsituationinwhichanincreasingor

decreasingWFofa specificactivity,product,consumeror

com-panymaytelllittleaboutthechangedenvironmentalperformance

ofthatactivity,product,consumerorcompanybutratheraboutthe

changedenvironmentalperformanceofothers.Thisstrange

impli-cationofthewater-scarcityweightedWFcaneasilybeillustrated.

Thewater-scarcityweightedWFofanactivityorproduction

processiinacertaincatchment(WF∗

i)canbecalculatedby

mul-tiplyingthevolumetricWFofthatactivityorproductionprocess

(WFi)bythewaterscarcity(WS)inthecatchment:

WF∗

i =WFi×WS=WFi×WFWAt =WFi×



n

i=1WFi

WA

wherebyWSis theratioof thetotal volumetricwater footprint

(WFt)inthecatchmenttothewateravailability(WA).WFtisequal

totheaggregatevolumetricWFsofallactivitiesninthecatchment.

Thisapproach hastwooddimplications.Thefirstisthatthe

overallWS-weightedwaterfootprintinacatchment(WF∗

t)willbe definedas: WF∗ t =WFt×WS=WFt×WFWAt =(WFt) 2 WA

ThereisnologicindefiningtheWFwithinacatchmentasthe

squareofthetotalwaterconsumptioninthecatchmentdividedby

wateravailability.Ifthis footprint-squareapproachwerecopied

tothecarbonfootprint(CF)conceptwewouldgetaCFdefined

as something that increases withthe square of the volume of

greenhousegasemissions,whichisobviouslyanoddapproach.It’s

equallyoddtodothisforwater.

Thesecondoddimplicationisthat,whenWS-weighted,theWF

ofaconsumerorcompanywillnotonlygoupifaconsumeror

companyincreasesitsownwaterconsumption,butalsoifother

consumersorcompaniesincreasetheirwaterconsumption.

Imag-ineananalogousCFdefinitionwherebytheCFofacompanygoesup

whilethecompanyfactuallyreducesitsgreenhousegasemissions

becausetheincreasinggreenhousegasemissionsofotherscountin

theCFofthiscompanyaswell.ThiswouldmaketheCFuselessfor

thecompanyasanindicatorofitscontributiontoglobalwarming.

Exactlythesameisthecaseforwater:theWFbecomesuselessfor

acompanyasanindicatorofitscontributiontoWSifthe

indica-torisaffectedbythecontributionsofotherstoWS.Nonetheless,

theISOstandard forWFprescribescompaniestocalculatetheir

WFbasedonaWS-weightedapproach(ISO,2014).Wethushave

gotastandardwherebytheWFofanactivityinacatchmentwill

dependontheWFofotheractivitiesinthecatchment.Ironically,the

WFofacompanywillinevitablyincreaseiftheWFsofother

compa-niesincrease,punishedforthebadenvironmentalperformanceof

others.

Ifwewantaproxyforpotentialenvironmentalimpactofwater

consumptiononrunoffinacatchment,waterscarcity(or“relative

water scarcity” ifWS metricsfor differentcatchments are

nor-malizedbasedontheWSinonespecificriverbasinorcountryas

proposedbyPfisterandHellweg,2009)isnotaproper

character-izationfactor.The“runoffimpactpotential”ofonelitreofwater

consumptionislargerinacatchmentwithrelativelysmallnatural

wateravailability(WA)thaninacatchmentwithrelativelylarge

naturalWA.Therefore,“relativewateravailability”isabetter

met-ricfor“runoffimpactpotential”than“relativewaterscarcity”.In

LCAterminology:ifvolumetricWFsaretobeinterpretedinterms

oftheirpotentiallocalenvironmentalimpact,thentheybetterbe

multipliedwithacharacterizationfactorthatreflectsrelativeWA

thanwithafactorthatreflectsWSorrelativeWS.

Itisproposedheretoabandontheideaofweightingbasedon

WSasproposedbyRidouttandPfister(2010)andotherLCAauthors

andasprescribedbyISO(2014),becausetheideaisbasedona

fun-damentalerrorinlogic.WeightingvolumetricWFsmoreheavily

ifWS increasesis similartofollowinga logicof weightingone

tonneofgreenhousegasemissionsmoreheavilyifglobal

warm-ingprogressesorweightingonehectareoflandusemoreheavily

iflandbecomesscarcer.Amoresoundwayofgettingaproxyfor

potentialenvironmentalimpactofwaterconsumptionindifferent

catchmentsistoweightvolumetricWFsbydividingthemby

rela-tiveWAinthecatchmentsconsidered(insteadofmultiplyingthem

withrelativeWS).

Thewater-availabilityweightedwaterfootprint (WF∗∗

i )ofan

activityiinacatchmentcanbedefinedas:

WF∗∗

i =WA/WAWFi

ref

wherebyWArepresentsthewateravailabilityinthecatchmentand

WArefthewateravailabilityinareferencecatchment.Dividingby

WArefisdoneinordertonormalizethevalueofWA.

The water-availability weighted WF of all water-consuming

activitiesinacatchmentis:

WF∗∗

t =WA/WAWFt

ref

Thedifferencesbetweenthevolumetric,WS-weightedand

WA-weightedWFsareillustratedinTable2,whichincludescalculation

examplesforthreebasins,XtoZ,attwopointsintime.We

con-sideronespecificactivityA,takingplaceineachbasin,everywhere

withavolumetricWFof1waterunitperunitoftime.Inallthree

basins,thevolumetricWFofactivityAisassumedtodecreaseby

10%fromttot+1.WealsoconsiderthetotalWFofallactivities

(6)

Table2

Calculationofthevolumetric,water-scarcityweightedandwater-availabilityweightedblueWFinthreehypotheticriverbasinsattwopointsintime.

BasinX BasinX BasinY BasinY BasinZ BasinZ

Timet Timet+1 Timet Timet+1 Timet Timet+1

Wateravailability Wateravailability(WA) 100 100 100 100 200 200

RelativeWAa 1 1 1 1 2 2

Waterscarcity Waterscarcity(WS) 0.5 0.6 0.25 0.3 0.25 0.3

RelativeWSa 1 1.2 0.5 0.6 0.5 0.6

WFofactivityA VolumetricWF 1 0.9 1 0.9 1 0.9

WS-weightedWFb 1 1.08 0.5 0.54 0.5 0.54

WA-weightedWFb 1 0.9 1 0.9 0.5 0.45

TotalWFinthebasin VolumetricWF 50 60 25 30 50 60

WS-weightedWFb 50 72 12.5 18 25 36

WA-weightedWFb 50 60 25 30 25 30

aWAandWSinbasinXattimetarechosenasthereference. bExpressedintermsofBasinXwaterequivalentsasattimet.

basinisassumedtoincreaseby20%fromttot+1.Wecanmakefour

observationsfromthenumericalexamplesinthetable. First,in

allthreebasinstheWS-weightedWFofactivityAincreasesover

timewhileactualwaterconsumptionofactivityAdecreases,which

illustratestheinappropriatenessofthemetric asanindicatorof

theindividualcontributionofanactivitytopotential

environmen-talimpact.Second,inallthreebasinsthetotalWS-weightedWF

doesn’tincreaselinearlywithincreasingwaterconsumptioninthe

basin(factor1.2)butexponentially(factor1.44),whichlacksany

logic.Third,ifwecomparebasinsXandY,whicharesimilarbasins

butonlydifferintermsofthefractionoftheavailablewateralready

consumed(thetotalvolumetricWFinbasinXistwotimesbigger

thaninbasinY),weseethattheWS-weighted WFofactivityA

inbasinYishalfofthatinbasinX,whilewetalkaboutthesame

activitywiththesamewaterconsumptionintwobasinsnaturally

endowedwiththesameamountsofwater.Morelogically,the

WA-weightedWFofactivityAisthesameinbothbasins.Finally,when

comparingbasinsXandZweseethatwateravailabilityinZistwo

timesthewateravailabilityinX,whilethetotalvolumetricWFsin

bothbasinsarethesameandincreasingovertimeatthesamerate.

Overtime,therelativeWAinZ(comparedtoX)remainsconstant,

whiletherelativeWSinZincreases.Asaresult,theWS-weighted

WFofactivityAinZincreaseseventhoughtheactualwater

con-sumptionofactivityAdecreases.TheWA-weightedWFofactivity

AinbasinZdecreaseswiththesamerateasthevolumetricwater

consumptionoftheactivity.IntheWA-weightedcase,1unitof

waterconsumptioninZisequivalenttohalfaunitofwater

con-sumptioninX,becausewateravailabilityinZistwotimesbigger

thaninX.

ItshouldbenotedherethattheLCAliteraturereferstovarious

alternativeWSindicatorsthatcouldbeusedtoweightconsumed

watervolumes(JeswaniandAzapagic,2011;Kouninaetal.,2013;

Boulayetal.,2015a,2015b,2015d).Theaboveargumenthasbeen

builtontheassumptionthatWSisdefinedasthetotal

volumet-ricWFdividedbythewateravailabilityinthecatchment.Many

WSindicatorsthathavebeenproposedwithintheLCAcommunity

lookdifferent,includingforinstancetheWaterStressIndex(WSI)

ofPfisteretal.(2009)ortherecentlyproposedinverseofthe

Avail-ableWaterRemaining(AWaRe)perm2,withtheavailablewater

remainingbeingmeasuredasthetotalwateravailabilityina

catch-mentminusthehumanandenvironmentalwaterdemands(Boulay

etal.,2015d).Onemaywonderwhethertheargumentagainstthe

WS-weightedWFholds ifthesevariousotherdefinitions ofWS

areapplied.Thisiscertainlythecase,sinceanymetricofWSwill

increaseifthevolumetricWFinabasinincreases.Thisisalsothe

caseforPfister’sWSI,althoughtheeffecthereisobscuredbythe

complexityofthatindex(seeSection3.6),orBoulay’sinverseof

AWaReperm2.WhateverWSindicatorisused,itwillpositively

relatetothevolumetricWFinthecatchment,withtheinevitable

effectthattheWS-weightedWFofaspecificactivityorprocesswill

increaseifotheractivitiesorprocessesconsumemorewater.

Anothernoteistobemadeonthemeasurementofwater

avail-ability (WA). One can measure total runoff (Vörösmartyet al.,

2000)ornaturalrunoffminusenvironmentalflowrequirements

(Hoekstraetal.,2011,2012),wherebythelatterisbetterbut

requir-ingmoredata.Allvariables–WA,WFandWS–canbemeasuredon

annualormonthlybasis.Obviously,measurementpermonthwill

capturetheintra-annualvariabilityinthethreevariables,which

willbelostincase ofmeasurement onannual basis.Therefore,

boththewaterresources(Hoekstraetal.,2011,2012;Wadaetal.,

2011)and LCAcommunity (Pfisterand Bayer, 2014)will easily

agreethatmonthlymeasurementistobepreferredoverannual

measurement.

3.5. Inconsistencywithotherfootprintdefinitions

SeveralLCAscholarshavepointedattheneedtoweightwater

consumption basedonlocalWS withtheargumentthatthis is

consistentwithcarbonfootprint(CF)accounting,whereemissions

ofgreenhousegasesareweightedbasedontheirglobalwarming

potential(Pfisterand Hellweg,2009; RidouttandPfister, 2010;

Kouninaetal., 2013;Boulayetal., 2015b).By multiplyingeach

consumedlitreofwaterbyalocalWSfactorbetweenzeroand1,

waterconsumptioncanbeexpressedinlitresofH2O-equivalents

(Boulayetal.,2015b).Onelitreofwaterconsumedinanareawith

aWaterStressIndexof0.5,whichreferstothethresholdbetween

‘moderate’and‘severe’waterstress,wouldthuscountas0.5litre

ofH2O-eq.ApartfromthefactthattheseH2O-equivalentshave

nomeaningfulphysicalinterpretation(unlikeCO2-equivalentsthat

dohaveameaning)andthefactthattheuseofdifferent,

alterna-tiveWSindicatorsleadstodifferentweightingsandthusdifferent

andincomparablesortsofH2O-equivalents(Boulayetal.,2015a),

thereisafundamentalerrorinreasoninghere.Thewater-scarcity

weightedWFisnotconsistentwiththegeneralfootprintconcept

atall.

Common to all environmental footprintsis that they

quan-tifythehumanappropriationof naturalcapitalasasourceora

sink(HoekstraandWiedmann,2014).Thefootprintthatwasfirst

introducedistheecologicalfootprintandmeasuresthe

appropri-ationoflandasaresourceandthelandneededforwasteuptake

(CO2absorption)(WackernagelandRees,1996).The(volumetric)

WFmeasuresboththeconsumptionoffreshwaterasaresource

(the green andblue WF)and theuseof freshwater to

assimi-latewaste(thegreyWF)(HoekstraandMekonnen,2012a).TheCF

measures emission of greenhouse gases to the atmosphere

(7)

materialextraction(Wiedmannetal.,2015).Inallcases,footprints

measurethevolumeofresourceuseand/oravolumeofemission,

andassuchrepresentacertainpressureexertedbyhumansonthe

environment.Innoneofthecasesthefootprintstellsomething

abouttheresultantimpact.Footprintsbecomemeaningfulwhen

evaluatedagainstmaximumsustainablelevels,whichrelatetothe

carryingorassimilationcapacityoftheenvironment.

TheCFhasbeenadoptedinLCAstudiesasaproxyforimpact

(asamid-pointimpactindicator),whichhasbeenamajorsource

ofconfusion,sincemanyscholarshavestartedtoconsiderCFas

anindicatorofimpactandexpecttheWFtofulfilthatroleaswell

(PfisterandHellweg,2009;RidouttandPfister,2010).However,the

CFcanonlybeinterpretedasapressureindicator,becauseitsimply

measuresgreenhousegasemissions–indeedinCO2-equivalentsto

bringthedifferenttypesofemissionunderonecommon

denom-inator –and tells nothingabout theresultantimpacts, suchas

changingspatial patternsof temperature, evaporationand

pre-cipitationoraboutmeltingglaciersandicecapsorsealevelrise,

letalonesomethingaboutfinalimpactsonhumanwell-beingor

ecosystemintegrity.TheideaofCFasanimpactindicator,

how-ever,hastakenholdandhasledtotheclaimthatWFshouldshow

impactaswell.Thesteptowardsweightingwaterconsumption

basedonlocalWSthenseemedalogicalstep.Asaconsequence,

however,theWFwouldbecomeinconsistentwiththegeneralidea

offootprintsasmeasuresofresourceuseand/orwastegeneration.

Comparingthefootprintsof two alternativeproductsmakes

alwayssense,becausethesizeofafootprinttellstheamountof

resourcesuseoremissionperunitofproduct.Fromaglobalpoint

ofview,onecanalwayssaythatthesmallerthefootprintthe

bet-ter(undertheconditionofothercircumstancesremainingequal;

ifthatisnotthecase,inevitabletrade-offsmaybeinvolved).This

istruefortheamountoflandusebehindaproduct,theamountof

greenhousegasemissions,andalsoforthevolumeofgreenenblue

waterconsumptionandthesizeofthegreyWF.Footprints

repre-senttheoverallpressureontheglobalenvironment.Impactswill

becomemanifestlocallyandmaydifferacrossregions.Alargeland

footprintperunitofaproductinabig,thinlypopulatedcountry

maymatterlittlefromalocalenvironmentalperspective.Similarly

alargeWFperunitofproductinawater-abundantcatchmentmay

matterlittlefromalocalpointofview.Onemayevenaskwhether

aCFandtheresultantglobalwarmingmattersalotforaregion

thathappenstobebetteroffthroughclimatechangeinsteadof

worse.Theissueisthatweneedtodifferentiatebetweenglobaland

localenvironmentalrelevance.LCAauthorshavemadetheimplicit

choiceinthecaseofwaterusetofullyignoretheglobalpressure

exercisedbyincreasingvolumetricwaterdemands.Inthisway,for

example,biofuelsproducedinwater-abundantareascompletely

disappearfromtheradarofenvironmentalconcern,while

actu-allythequicklyincreasingdemandforbiofuelsmaybeoneofthe

mostimportantdriversofwatershortagesinthefuture(

Gerbens-Leenesetal.,2012).Thesamecanbesaidfortheproductionof

animalproductsinwater-abundantareasorinregionswhere

live-stockmainlydependsonrain-fedgrassorfeedcrops.Thequickly

increasingdemandformeatanddairypercapitaisasignificant

driverbehindtheincreasingWFofhumanity(Liu andSavenije,

2008;ErcinandHoekstra,2014),withvariouslocalizedproblems

asaresult.ItisamajorerrorinLCAtoomitthevolumetricWF

ofproducts,becauseitwhitewashesproductsthatarecausingan

increasingpressureontheworld’sscarcefreshwaterresourcesand

shouldbeamajorenvironmentalconcern.

3.6. ThelackofphysicalinterpretationoftheWaterStressIndex

Whereastheprevioussectionsincludefundamentalcritiqueon

theweightingofWFs,therearealsosomeproblemsaroundthe

practicalproposalsthathavebeenmadeonwhichweightingfactor

touse, i.e.howtomeasurewaterscarcity(WS).Themostcited

methodtoestimateWSinLCAistheWaterStressIndex(WSI)by

Pfisteretal.(2009).TheydefineWSIpercatchmentasfollows:

WSI= 1

1+e−6.4×VFp×WTA×(1/0.011)

in which WTA representsthe annual withdrawal-to-availability

ratiointhecatchment(calculatedasthetotalannualgrosswater

withdrawal dividedbytheannual freshwater availability),VFa

fixedvariationfactorreflectingmonthlyandannualtemporal

vari-abilityofwateravailabilityinordertoaccountforincreasedscarcity

inwatershedswithirregularwateravailability,andpanexponent

equalling0.5forcatchmentswithstronglyregulatedflowsand1

forcatchmentswithoutstronglyregulatedflows.ThefactorVFis

definedasfollows: VF=



n i=1e



ln(s∗ m,i) 2 +ln(s∗ y,i) 2 ×Pi



n i=1Pi

whereby Pi represents mean annual precipitation in grid cell i

withinthecatchment (whichis supposedlyschematized inton

gridcells), s∗

m,i thestandard deviationof monthlyprecipitation

ingridcelli,ands∗

y,i thestandarddeviationofannual

precipita-tionovera30-yrperiodingridcelli.Thismaylookimpressive

andadvanced,butinessencetheWSIisametricwithout

possi-blemeaningfulinterpretation.Thefactthattheargumentofthe

exponentialfunctionisnotdimensionlessinhibitsaphysical

inter-pretationoftheconstruct.Inaddition,thetwostandarddeviations

havedifferentunits:oneisinmm/month,whereastheotherisin

mm/year.It’simpossibletomeaningfullyaddthem.Somehowthe

metriccapturestheeffectoftemporalvariability,whichhasbeen

usedasanargumentthatWSIisabetterscarcityindicatorthan

theannualwithdrawal-to-availabilityratio(WTA),whichhasbeen

widelyusedasaWSindicatorinwaterresourcesliterature(e.g.

Vörösmartyetal.,2000).Ontheotherhand,theWSIequationis

calibratedsuchthataWSIof0.5isobtainedforaWTAratioof0.4,

whichhasinthepastoftenbeen(arbitrarily)usedasthethreshold

betweenmoderateandseverewaterstressinacatchment.Through

itsdefinition,WSIwillliebetween0.01and1.

TheWSIhasbeenembracedbytheLCAcommunityasauseful

metrictobeusedasaweightingfactorinthecalculationof

water-scarcityweightedWFs.Recently,PfisterandBayer(2014)published

animprovedversionoftheWSI,whichhoweverissimilarasthe

aboveone,thoughcalculatednowonamonthlyratherthanannual

basis,withthesuggestionthatitthuscapturesWSevenbetter.It

isdifficulttocriticizetheWSIbecauseithasnopretendedphysical

meaning,sothereisnowayofcheckingwhetheritmakessense.Itis

difficult,though,toseewhywewouldrelyonametricthatis

essen-tiallyameaninglessconstruct.ItwouldbemoreusefuliftheLCA

communitywouldrelyonadvancedwaterstressandWS

indica-torsbeingdevelopedwithinthewaterresourcescommunity.Wada

etal.(2011),forinstance,computedwaterstressatahighspatial

resolutiononamonthlybasisaswaterconsumptionoverwater

availability.Hoekstraetal.(2012)tookasimilarapproach,butalso

accountedforenvironmentalflowrequirementswhenestimating

wateravailability.

Ridoutt and Pfister (2013) presented a new WF calculation

methodintegratingconsumptiveanddegradativewateruseintoa

singlestand-aloneweightedindicatorthatmakesthingsevenmore

obscurethantheWSI.Inthenewmethodtheyproposedto

calcu-lateconsumptivewaterusebymultiplyingwaterconsumptionby

WSI(witharesultinH2Oequivalents),computedegradativewater

usebyconverting“ReCiPepoints”earnedbasedonemissionsto

waterintoH2Oequivalents,andtofinallyaddthetwo

(8)

equivalents).Thisallisproblematicparticularlybecausethereis

nowaytovalidatewhethertheresultingfigurecorrectly

repre-sents“potentialenvironmentalimpact”.Sincethemetriccannot

beinterpretedinanyphysicalwayandsincetheoutcomescannot

beempiricallytested,nothingelseremainsthanameaningless

con-struct.AsimilarcritiqueholdsfortheWaterImpactIndexbyBayart

etal.(2014),anotherefforttoexpresstheenvironmentalimpactof

consumptiveanddegradativewateruseinasinglemetric.

Thefactthattheresulting“impactcategoryindicators”from

Pfisteretal.(2009),RidouttandPfister(2013)andothershaveno

empiricalinterpretationbecomesevenworsegiventheambition

oftheLCAcommunitytotranslatetheH2OequivalentWFintoits

impactonhumanhealth(consideringdisabilityadjustedlifeyears)

andbiodiversityorecosystemquality(Pfisteretal.,2009;Bayart

etal.,2010;BergerandFinkbeiner,2010).Itisalreadyimpossible

toknowhowreducedgroundwaterlevelsand riverflowsaffect

humansandecosystems,giventhemultitudeof contextual

fac-torsthatplayarole,itiscompletemadnesstoestablisharelation

betweenthemeaninglessH2OequivalentWFinacatchmentand

itsimpactsonhumanhealthandbiodiversity.Andthis,though,is

preciselywhatseveralLCAauthorsproposetodo(Boulayetal.,

2011,2015a,2015b).Thepretentionistoassessthecostofwater

consumptionintermsofdisabilityadjustedlifeyearsperunitof

H2Oequivalentspercatchment.Thismakesnosenseatall,because

itisimpossibletoisolatetheimpactoflocalwaterdepletionon

localhumanhealth(givene.g.copingcapacity,thepossibilityto

import), let alone that one can establish a relation using

non-empiricalmetrics.Therehasbeennostudyevershowingempirical

evidenceof somegeneralizedrelationbetweenWS and human

healthincatchments,whichistobeexpected,becausedrinking

waterrequirementsaregenerallyrelativelysmallandthus

diffi-culttobeaffectedbylocalWS.EveniflocalWSaffectspublicwater

supplies,peoplemaystillbeabletocopeiftheycanaffordtobuy

importedwater.Furthermore,eventhoughWSinacatchmentcan

easilyaffectfoodharvests,thisdoesn’tnecessarilyleadto

malnu-tritionoflocalpopulations,sincepeoplemaystillbeabletoget

foodfromelsewhere.TherearetoomanypathwaysbetweenWS

andhumanhealth,withtoomanyothervariablesinbetween,to

findasingleequationthatrelatesbothfactors.

WhereastheLCAcommunitytriestobuildconsensusonthe

development of a stress-based indicator for LCA-based impact

assessmentofwaterconsumption(Boulayetal.,2015c),itis

proba-blybettertotakeastepback,soastofirstthoroughlyreconsiderthe

soundnessoftheideaofawater-scarcityweightedWFindicator,

andtoassessthefeasibilitytodevelopgeneralizedrelationships

betweenwateruse,WSandwaterpollutionversushumanhealth

andecosystemqualitythatcanbeempiricallytested.Onemust

admitthatexpressingtheenvironmentalimpactof productsin

termsofhumanhealthdamageandecosystemdegradationinthe

formofsinglemetricsasaimedforintheLCAmethodologymay

runagainstthelimitsofwhatispossible,giventhecomplexityof

thesocio-ecologicalsystem.

4. Thewayforward

Thefactthatwaterscarcityisamajorenvironmentalconcern

isareasontogetthewaterscarcityissuewellintoLCA.AsIhave

argued,the(volumetric)green,blueandgreyWFsareallequally

relevantfromanallocationanddepletionpointofview.Onelitre

ofgreenorbluewaterallocatedforconsumptionforonepurpose

isnotavailableforacompetingpurpose,andonelitreofgreenor

bluewaterallocatedtohumanuseisnotavailablefornature.Green

andblueWFsthussubtractfromthesupplycapacityleft.Similarly,

ifoneactivityhasagreyWFofonelitreandthusconsumespart

ofthetotalassimilationcapacityofawaterstream,thissubtracts

fromtheassimilationcapacityleftfor otherpollutingactivities.

Sincewaterisaglobalresource,everylitreofwaterconsumption

orpollutioncounts.TheessenceofgrowingWSisnot

environmen-talimpact,butincreasingglobalresourceusegivenlimitedglobal

resourceavailability,withheterogeneouslyspreadlocal

environ-mentalimpactsasaby-productinplaceswherelocalresourceuse

exceedslocalmaximumsustainablelevels.Whenconsideringthe

contributiontowaterscarcityorwaterdepletion,itiskeyto

con-siderhowmuchwaterunitsareusedperproduct,whereverthat

happens.Ifonly100unitsofgreenandbluewateraresustainably

available,80maybeavailableinwater-abundantareasand20in

water-poorareas.Thereisnoreasontonotcountcertaintypesof

wateruse(likegreenwater)orcountcertaintypesofwateruse

less(likebluewaterinwater-abundantareas).Onlybyconsidering

allformsofwateruseandallformsofwateravailability,itwillbe

possibletogetapictureofdepletion.

Itwouldbeusefultoincorporatethetopicoffreshwaterscarcity

inLCAasa“naturalresourcedepletion”category.Thisisan

unex-ploreddirectionasyet,seeforinstancethetreatmentoffreshwater

depletionin thereview by Klinglmairet al. (2014).Freshwater

depletionshouldbeconsideredfromaglobalperspective,since

freshwateris aglobalresource, withgrowingglobalfreshwater

demandwhileglobalfreshwateravailabilityislimited.This

limi-tationisdeterminedbythelimitedglobalfreshwaterrenewalrate

(precipitationoverland),theunevenspatialandtemporal

distribu-tionofwateravailability,thelimitedtransportandstorage

possibil-ities,theneedtoletpartofthenaturalwaterflowsuntouched,and

theimpossibilitytousepartofthenaturalflows(e.g.astheyflow

inunaccessibleareasorintimeswherethereistoomuchrather

thantoolittlewater).Giventhelimitedaccessiblefreshwaterflows

globallyavailableforproductiveuses,itisimportanttomeasure

(volumetric)WFsofproducts,tomeasurethecomparativeclaimof

differentproductsonthoselimitedfreshwaterflows.

Whenlooking at thepotentiallocal environmental impactof

wateruseinthefulllifecycleofaproduct,itmakessensetofocus

ontheblueandgreyWF,becausetheformermayleadto

ecosys-temimpactsasaresultofrunoffmodificationandthelattermay

impactonecosystemsifpollutionlevelsgettoohigh.Ridouttand

Pfister(2010)arerightintheirargumentthattheenvironmental

impactofthegreenWFcanaswellbeconsideredinthecontext

ofthelanduseimpactcategory.Theimpactindicator

represent-ingthelocalenvironmentalimpactofablueWFcouldbebasedon

theideaofwater-availabilityweightingasproposedinthispaper.

Inotherwords,theblueWFpercatchmentisweightedbasedon

thecarryingcapacitypercatchment,whichdependsonbluewater

availability(runoffminusenvironmentalflowrequirements).The

impactindicatorrepresentingthelocalenvironmentalimpactof

agrey WFcouldbebasedona similarapproach, e.g.weighting

thegrey WF per catchmentbased onassimilationcapacity per

catchment,whichdependsontheamountofrunofftoassimilate

agreyWF.

Ihavearguedthatweightingwaterconsumptionbasedon

rel-ative WAper catchmentgives a betterproxy ofpotential local

environmentalimpactofwaterconsumptionthanweightingbased

onrelativeWSpercatchment,butonemayretaindoubtsaboutthe

usefulnessofweightedmetricsaltogether,giventhelackof

physi-calmeaningofsuchconstructs.ThedifficultyremainsthatLCAaims

tocomparedifferentsortsofpotentialenvironmentalimpacts–

indeedcomparingapplesandpears,liketheimpactofwaterusein

onebasintotheimpactofwateruseinanotherbasin,ortheimpact

ofwaterconsumptiontotheimpactofwaterpollution.Weighted

metricsmayhavetheirspecificusewithinaproductLCA,butone

shouldbeextremelycarefulinapplyingsuchmetricsoutsidethat

context.

The critique in this paper does not concern LCA in itself,

(9)

consumptionandwaterscarcitywithinanLCA.WaterFootprint

Assessment(WFA)andLCAservedifferentpurposesandemploy

differentmethods,butbothcanusetheWFconcept.Itis

confus-ingifthefieldsemploydifferentdefinitionsoftheconcept,and

asarguedhere,theoriginalvolumetricdefinitionis mostuseful

andtheonlyoneconsistentwiththeecological(land)andcarbon

footprintconcepts.

Acknowledgement

ThisresearchhasbeenfundedbytheUniversityofTwente.

References

Bayart,J.B.,etal.,2010.Aframeworkforassessingoff-streamfreshwateruseinLCA. Int.J.LifeCycleAssess.15,439–453.

Bayart,J.B.,etal.,2014.TheWaterImpactIndex:asimplifiedsingle-indicator approachforwaterfootprinting.Int.J.LifeCycleAssess.19(6),1336–1344.

Berger,M.,Finkbeiner,M.,2010.Waterfootprinting:howtoaddresswaterusein lifecycleassessment?Sustainability2(4),919–944.

Berger,M.,Finkbeiner,M.,2013.Methodological challengesinvolumetricand impactorientedwaterfootprints.J.Ind.Ecol.17(1),79–89.

Borucke,M.,etal.,2013.Accountingfordemandandsupplyofthebiosphere’s regen-erativecapacity:theNationalFootprintAccounts’underlyingmethodologyand framework.Ecol.Indic.24,518–533.

Boulay,A.M.,etal.,2011.RegionalcharacterizationoffreshwateruseinLCA: model-ingdirectimpactsonhumanhealth.Environ.Sci.Technol.45(20),8948–8957.

Boulay,A.M.,Hoekstra,A.Y.,Vionnet,S.,2013.Complementaritiesofwater-focused LifeCycleAssessmentandWaterFootprintAssessment.Environ.Sci.Technol. 47(21),11926–11927.

Boulay,A.M.,etal.,2015a.Analysisofwateruseimpactassessmentmethods(part B):applicabilityforwaterfootprintinganddecisionmakingwithalaundrycase study.Int.J.LifeCycleAssess.20(6),865–879.

Boulay,A.M.,etal.,2015b.Analysisofwateruseimpactassessmentmethods(part A):evaluationofmodeling choicesbasedonaquantitativecomparisonof scarcityandhumanhealthindicators.Int.J.LifeCycleAssess.20(1),139–160.

Boulay,A.M.,etal.,2015c.Consensusbuildingonthedevelopmentofastress-based indicatorforLCA-basedimpactassessmentofwaterconsumption:outcomeof theexpertworkshops.Int.J.LifeCycleAssess.20(5),577–583.

Boulay,A.M.,etal.,2015d.NewscarcityindicatorfromWULCA:consensustoassess potentialuserdeprivation.In:LCAXVConference,Vancouver,7October2015.

Chapagain,A.K.,etal.,2006.Thewaterfootprintofcottonconsumption:an assess-mentoftheimpactofworldwideconsumptionofcottonproductsonthewater resourcesinthecottonproducingcountries.Ecol.Econ.60(1),186–203.

Chukalla,A.D.,Krol,M.S.,Hoekstra,A.Y.,2015.Greenandbluewaterfootprint reduc-tioninirrigatedagriculture:effectofirrigationtechniques,irrigationstrategies andmulching.Hydrol.EarthSyst.Sci.19(12),4877–4891.

Dalin,C.,etal.,2012.Evolutionoftheglobalvirtualwatertradenetwork.Proc.Natl. Acad.Sci.U.S.A.109(16),5989–5994.

Ercin,A.E.,Hoekstra,A.Y.,2014.Waterfootprintscenariosfor2050:aglobalanalysis. Environ.Int.64,71–82.

Ercin,A.E.,Mekonnen,M.M.,Hoekstra,A.Y.,2013.Sustainabilityofnational con-sumptionfromawaterresourcesperspective:thecasestudyforFrance.Ecol. Econ.88,133–147.

Falkenmark,M.,1997.Meetingwaterrequirementsofanexpandingworld popula-tion.Philos.Trans.R.Soc.Lond.SerB:Biol.Sci.352(1356),929–936.

Falkenmark,M.,2013.Growingwaterscarcityinagriculture:futurechallengeto globalwatersecurity.Philos.Trans.R.Soc.A371,20120410.

Falkenmark,M.,Rockström,J.,2004.BalancingWaterforHumansandNature:The NewApproachinEcohydrology.Earthscan,London,UK.

Falkenmark,M.,Rockström,J.,2006.Thenewblueandgreenwaterparadigm: break-ingnewgroundforwaterresourcesplanningandmanagement.J.WaterResour. Plann.Manage.132(3),129–132.

Fang,K.,Heijungs,R.,DeSnoo,G.R.,2014.Theoreticalexplorationforthe combi-nationoftheecological,energy,carbon,andwaterfootprints:overviewofa footprintfamily.Ecol.Indic.36,508–518.

Fang,K.,etal.,2015.Theenvironmentalsustainabilityofnations:benchmarking thecarbon,waterandlandfootprintsagainstallocatedplanetaryboundaries. Sustainability7(8),11285–11305.

Franke,N.A.,Boyacioglu,H.,Hoekstra,A.Y.,2013.GreyWaterFootprintAccounting: Tier1SupportingGuidelines,ValueofWaterResearchReportSeriesNo.65. UNESCO-IHE,Delft,theNetherlands.

Galli,A.,etal.,2012.Integratingecological,carbonandwaterfootprintintoa foot-printfamilyofindicators:definitionandroleintrackinghumanpressureonthe planet.Ecol.Indic.16,100–112.

Gerbens-Leenes,P.W.,etal.,2012.Biofuelscenariosinawaterperspective:the globalblueandgreenwaterfootprintofroadtransportin2030.GlobalEnviron. Change22(3),764–775.

Giljum,S.,etal.,2011.Acomprehensivesetofresourceuseindicatorsfromthemicro tothemacrolevel.Resour.Conserv.Recycl.55(3),300–308.

Hellweg,S.,MilàiCanals,L.,2014.Emergingapproaches,challengesand opportu-nitiesinlifecycleassessment.Science344(6188),1109–1113.

Hertwich,E.G.,Peters,G.P.,2009.Carbonfootprintofnations:aglobal,trade-linked analysis.Environ.Sci.Technol.43(16),6414–6420.

Hoekstra,A.Y.(Ed.),2003.VirtualWaterTrade:ProceedingsoftheInternational ExpertMeetingonVirtualWaterTrade.Delft,TheNetherlands,12–13December 2002.ValueofWaterResearchReportSeriesNo.12.IHE,Delft,theNetherlands.

Hoekstra,A.Y.,2013.TheWaterFootprintofModernConsumerSociety.Routledge, London,UK.

Hoekstra,A.Y.,2014.Sustainable,efficientandequitablewateruse:thethreepillars underwisefreshwaterallocation.WIREsWater1(1),31–40.

Hoekstra,A.Y.,etal.,2009a.WaterFootprintManual:StateoftheArt2009.Water FootprintNetwork,Enschede,theNetherlands.

Hoekstra,A.Y.,etal.,2011.TheWaterFootprintAssessmentManual:Settingthe GlobalStandard.Earthscan,London,UK.

Hoekstra,A.Y.,Gerbens-Leenes,W.,VanderMeer,T.H.,2009b.ReplytoPfisterand Hellweg:waterfootprintaccounting,impactassessment,andlife-cycle assess-ment.Proc.Natl.Acad.Sci.U.S.A.106(40),E114.

Hoekstra,A.Y.,Hung,P.Q.,2005.Globalisationofwaterresources:international vir-tualwaterflowsinrelationtocroptrade.GlobalEnviron.Change15(1),45–56.

Hoekstra,A.Y.,Mekonnen,M.M.,2012a.Thewaterfootprintofhumanity.Proc.Natl. Acad.Sci.U.S.A.109(9),3232–3237.

Hoekstra,A.Y.,Mekonnen,M.M.,2012b.ReplytoRidouttandHuang:fromwater footprintassessmenttopolicy.Proc.Natl.Acad.Sci.U.S.A.109(22),E1425.

Hoekstra,A.Y.,Mekonnen,M.M.,Chapagain,A.K.,Mathews,R.E.,Richter,B.D.,2012.

Globalmonthlywaterscarcity:bluewaterfootprintsversusbluewater avail-ability.PLoSONE7(2),e32688.

Hoekstra,A.Y.,Wiedmann,T.O.,2014.Humanity’sunsustainableenvironmental footprint.Science344(6188),1114–1117.

Hoff,H.,2009.Globalwaterresourcesandtheirmanagement.Curr.Opin.Environ. Sustain.1(2),141–147.

ISO,2014.ISO14046:EnvironmentalManagement–WaterFootprint–Principles, RequirementsandGuidelines.InternationalOrganizationforStandardization, Geneva,Switzerland.

Jeswani,H.K.,Azapagic,A.,2011.Waterfootprint:methodologiesandacasestudy forassessingtheimpactsofwateruse.J.Clean.Prod.19(12),1288–1299.

Klinglmair,M.,Sala,S.,Brandao,M.,2014.AssessingresourcedepletioninLCA:a reviewofmethodsandmethodologicalissues.Int.J.LifeCycleAssess.19(3), 580–592.

Koehler,A.,2008.WateruseinLCA:managingtheplanet’sfreshwaterresources. Int.J.LifeCycleAssess.13(6),451–455.

Kounina,A.,etal.,2013.Reviewofmethodsaddressingfreshwateruseinlifecycle inventoryandimpactassessment.Int.J.LifeCycleAssess.18(3),707–721.

Liu,C.,etal.,2012.Pastandfuturetrendsingreywaterfootprintsofanthropogenic nitrogenandphosphorusinputstomajorworldrivers.Ecol.Indic.18,42–49.

Liu,J.,Savenije,H.H.G.,2008.Foodconsumptionpatternsandtheireffectonwater requirementinChina.Hydrol.EarthSyst.Sci.12(3),887–898.

Mekonnen,M.M.,Gerbens-Leenes,P.W.,Hoekstra,A.Y.,2015.Theconsumptive waterfootprintofelectricityandheat:aglobalassessment.Environ.Sci.:Water Res.Technol.1(3),285–297.

Mekonnen,M.M.,Hoekstra,A.Y.,2010.Aglobalandhigh-resolutionassessmentof thegreen,blueandgreywaterfootprintofwheat.Hydrol.EarthSyst.Sci.14(7), 1259–1276.

Mekonnen,M.M.,Hoekstra,A.Y.,2014.Waterfootprintbenchmarksforcrop pro-duction:afirstglobalassessment.Ecol.Indic.46,214–223.

Mekonnen,M.M.,Hoekstra,A.Y.,2015.Globalgraywaterfootprintandwater pollu-tionlevelsrelatedtoanthropogenicnitrogenloadstofreshwater.Environ.Sci. Technol.49(21),12860–12868.

MilàiCanals,L.,etal.,2009.AssessingfreshwateruseimpactsinLCA:PartI– Inven-torymodellingandcharacterisationfactorsforthemainimpactpathways.Int. J.LifeCycleAssess.14(1),28–42.

Pennington,D.W.,etal.,2004.Lifecycleassessment:Part2.Currentimpact assess-mentpractice.Environ.Int.30,721–739.

Pfister,S.,Bayer,P.,2014.Monthlywaterstress:spatiallyandtemporallyexplicit consumptivewaterfootprintofglobalcropproduction.J.Clean.Prod.73,52–62.

Pfister,S.,Hellweg,S.,2009.Thewater“shoesize”vs.footprintofbioenergy.Proc. Natl.Acad.Sci.U.S.A.106(35),E93–E94.

Pfister,S.,Koehler,A.,Hellweg,S.,2009.Assessingtheenvironmentalimpactsof freshwaterconsumptioninLCA.Environ.Sci.Technol.43(11),4098–4104.

Pfister,S.,Ridoutt,B.G.,2014.Waterfootprint:pitfallsoncommonground.Environ. Sci.Technol.48(1),4.

Postel,S.L.,Daily,G.C.,Ehrlich,P.R.,1996.Humanappropriationofrenewablefresh water.Science271,785–788.

Rebitzer,G.,etal.,2004.Lifecycleassessment.Part1:Framework,goalandscope definition,inventoryanalysis,andapplications.Environ.Int.30,701–720.

Ridoutt,B.G.,etal.,2009.Waterfootprintingattheproductbrandlevel:casestudy andfuturechallenges.J.Clean.Prod.17(13),1228–1235.

Ridoutt,B.G.,Huang,J.,2012.Environmentalrelevance–thekeytounderstanding waterfootprints.Proc.Natl.Acad.Sci.U.S.A.109(22),E1424.

Ridoutt,B.G.,Pfister,S.,2010.Arevisedapproachtowaterfootprintingtomake transparenttheimpactsofconsumptionandproductiononglobalfreshwater scarcity.GlobalEnviron.Change20,113–120.

Ridoutt,B.G.,Pfister,S.,2013.Anewwaterfootprintcalculationmethod integrat-ingconsumptiveanddegradativewateruseintoasinglestand-aloneweighted indicator.Int.J.LifeCycleAssess.18(1),204–207.

Rockström,J.,etal.,2009.Futurewateravailabilityforglobalfoodproduction:the potentialofgreenwaterforincreasingresiliencetoglobalchange.WaterResour. Res.45,W00A12.

(10)

Romaguera,M.,etal.,2010.Potentialofusingremotesensingtechniquesforglobal assessmentofwaterfootprintofcrops.RemoteSens.2,1177–1196.

Savenije,H.H.G.,2000.Waterscarcityindicators;thedeceptionofthenumbers. Phys.Chem.EarthB25(3),199–204.

Schyns,J.F.,Hoekstra,A.Y.,Booij,M.J.,2015.Reviewandclassificationofindicatorsof greenwateravailabilityandscarcity.Hydrol.EarthSyst.Sci.19(11),4581–4608.

Seekell,D.A.,2011.Doestheglobaltradeofvirtualwaterreduceinequalityin fresh-waterresourceallocation?Soc.Nat.Resour.24,1205–1215.

Sun,S.,etal.,2013.Theimpactsofinterannualclimatevariabilityandagricultural inputsonwaterfootprintofcropproductioninanirrigationdistrictofChina. Sci.TotalEnviron.444,498–507.

UdodeHaes,H.A.,2002.Industrialecologyandlifecycleassessment.In:Ayres,R.U., Ayres,L.W.(Eds.),AHandbookofIndustrialEcology.EdwardElgar,Cheltenham, UK,pp.138–148.

Vanham,D.,Hoekstra,A.Y.,Bidoglio,G.,2013. Potentialwatersavingthrough changesinEuropeandiets.Environ.Int.61,45–56.

Vörösmarty,C.J.,etal.,2000.Globalwaterresources:vulnerabilityfromclimate changeandpopulationgrowth.Science289(5477),284–288.

Vörösmarty, C.J., et al., 2015. Fresh water goes global. Science 349 (6247), 478–479.

Wackernagel,M.,Rees,W.E.,1996.OurEcologicalFootprint:Reducing Human ImpactontheEarthNewSociety,GabriolaIsland,B.C.,Canada.

Wada,Y.,etal.,2011.Globalmonthlywaterstress:2.Waterdemandandseverity ofwaterstress.WaterResour.Res.47,W07518.

Wiedmann,T.O.,etal.,2015.Thematerialfootprintofnations.Proc.Natl.Acad.Sci. U.S.A.112(20),6271–6276.

Zeng,Z.,etal.,2012.Assessingwaterfootprintatriverbasinlevel:acasestudy fortheHeiheRiverBasininnorthwestChina.Hydrol.EarthSyst.Sci.16(8), 2771–2781.

Zhuo,L.,Mekonnen,M.M.,Hoekstra,A.Y.,2014.Sensitivityanduncertaintyincrop waterfootprintaccounting:acasestudyfortheYellowRiverbasin.Hydrol.Earth Syst.Sci.18(6),2219–2234.

Referenties

GERELATEERDE DOCUMENTEN

One element that one can draw from the evaluation of the impact of the social forces is that the economic and political elite in South Africa have promoted a

134 In hoofdstuk 6, hebben we een serie dynamische proteoï des ontworpen en gesynthetiseerd door middel van polycondensatie van verschillende typen van

Daarnaast is gevonden dat het geven van meer dan één vorm van feedback op de korte termijn niet beter is dan het geven van alleen computerfeedback bij de ontwikkeling van

What merits further research then is a social model, one which moves the focus away from the problematizing health related illness critique and sexual violence discourse -

Pfiffner (2004) maintains that the difficulty of performance measurement lies in choosing the correct indicators that validly measure that the project is intended

To determine the incident sound intensity, we assume that, near a sound absorbing surface, the sound field can be approximated by two oppositely di- rected plane waves (local plane

Leveraged buyout funds underperform the S&P 500 during periods when the public stock market generates positive excess returns, while venture capital funds outperform the Nasdaq

Further research about the nature of communication in the South African mining and construction industry was done to ultimately determine how safety information