• No results found

The synthesis and reactivity of triangular phosphido-bridged rhodium and iridium clusters

N/A
N/A
Protected

Academic year: 2021

Share "The synthesis and reactivity of triangular phosphido-bridged rhodium and iridium clusters"

Copied!
220
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

R h o d i u m and Iridium Clusters b y

Fathi M. As s e i d

B.Sc., Brock University, 1989 M.Sc., B r ock University, 1991

A D i s s e r t a t i o n Submitted in Partial Fulfilment of the Requirement for the Degree of

D O C T O R OF PHILOSOPHY

in the Department of Chemistry

We accept this dissertation as conforming to the reauired standard

Dr. 'K.Jl^--8ixon

Stobart

Dr. G.W. Bushnell

Dr.il Ct.B. Tatum

Dr.IM. Cowie, External E x a m i n e r

® Fathi M Asseid 1995

U n i v e r s i t y of V i ctoria

All rights reserved. This dissertation m a y not be rep r o d u c e d in w hole or in part, b y p h o t o copying or o t h e r means, without

(2)

ii

A bstract

Supervisor: K.R. D ixon

R e a c t i o n of [Ir2 (cyclooctene) 4 (/x-Cl) 2] w i t h CO, H N E t 2, and H P P h2 p r ovides a synthetic route to the trinuclear, phosphido-bridged, iridium clusters; [Ir3 (/.'.-PPh2) 3 (CO) 3 (L2) ] , L = CO, or P P h 3, or L2 = DPPM, and [Ir3 (/i-PPn2) 3 (CO) 4 (BufcNC) 3] . The 4 6 - e l e c t r o n cluster, [Ir3 (/x-PPh2) 3 (CO) 3 (dppm) ] involves one formal 1 6 -electron m etal centre and two 1 8 -electron metal centres, wi t h Ir-Ir bonds average 2.805 A. In carbon m o n o x i d e atmosphere, the cluster undergoes (reversible) CO addition, to result in the 4 8-electron der i v a t i v e [Ir3 (/x- PPh2) 3 (CO) 4 (dppm)] , wi t h Ir-Ir bonds average 2.989 A. The 5 0 - e l e c t r o n cluster [Ir3 (/x-PPh2) 3 (CO) s (Bu^C) 2] involves one 1 8 - e l e c t r o n centre and two 16-electron centres, w i t h Ir-Ir bonds a v e rage 3.188 A. Comparison of the c o r r e s p o n d i n g dista n c e s , show a regular increase in Ir-Ir length 2.805, 2.989, 3.188 A, as the e l ectron count changes from 46 to 48 to 50 electrons.

Ox i d a t i v e add i t i o n to the 46 and 50 e l e c t r o n clusters [Ir3 (/i-PPh2) 3 (CO) 3 (dppm) ] , and (Ir3 (/x-PPh2) 3 (CO) 4 (Bu^C) 3] , in bo t h cases gives reaction at a single, f o r m a l l y 1 6 -electron i r i dium center. The products are [Ir3 (/x-PPh2), (CO) 3

(dppm) (X) (Y)] , X = I, Y = I or OH; X = H, Y = C l ; X = H g C l , Y = Cl, and [Ir3 (/z-PPh2) 3 (CO) 4 (Bu^C) 3 (R) ] X, R X = Mel, B z B r , I2, HC1, H g C l 2, H g B r 2, or A u P P h3Cl, respectively. The latter c o m p l e x c o n tain unusual complex cations, [Ir3 (/*-

PPh2) 3 (CO) 4 (BufcNC) 3 (R)]+, in w h ich R+ has a d d e d to a f o rmally 1 6 - e l e c t r o n iridium centre to give 1 6 - e l e c t r o n iridium

cation. T hese m a y be r e garded as arr e s t e d i n t ermediates in the a c c e p t e d m e c h a n i s m of oxidative a d d i t i o n at Ir(I), and in the p r e s e n t complex, X- remains uncoordinated.

(3)

R e a c t i o n s of the halogens Cl2, B r 2, I2, the

mercuric(II)halides, and mercu r i c ( I I ) a c e t a t e s H g R2 (R = 02CCF3, or 02C C H 3) w i t h [Rh3 (/i-PPh2) 3 (CO) 3 (La) ] , L = CO, or PPh3, o r L2 = DPPM, results in [Rh3 (/n-PPha) 3 (/n-CO) (CO)2 (/x- X )2 (L)]. A 50-electron cluster wi t h all metal - m e t a l d istances cor r e s p o n d wi t h those no r m a l l y a s s o c i a t e d w i t h formal m e tal-metal bonds.

In the last part, the synthesis and c h a r a c t e r i z a t i o n of the n ovel p h o s p h i d o - b r i d g e d trinuclear m i x e d i r i d i u m / r h o d i u m clusters is described. [IrRh2 (/.t-PPh2) 3 (CO) s] , and [Rhlr2 (^~ PPh2)3 (CO)5] react with DPPM, PPh3, B u fcNC, and P( O M e ) 3, and a fford the derivatives of these ligands. W i t h the aid of various spectroscop.i c techniques such as ID- and 2D-NMR spectroscopy, FAB-mass spectrometry, and X -ray

c r y s t a l l o g r a p h y the cluster derivatives have b e e n s t r u c t u r a l l y characterized. E x a m m i n e r s : Dr. S.R. Stobart Dr. G.W. Bushnell ^r. J.$. Tatum Dr. M. Cowie, External Ex a m i n e r

(4)

iv T A BLE OF CONTENTS Page T i t l e P a g e ... i A b s t r a c t ... ii T a b l e of C o n t e n t s ... iv List of T a b l e s ... vii L i s t of F i g u r e s ... x List of A b b r e v i a t i o n s ... xiii L i s t of C o m p l e x e s ... xiv A c k n o w l e d g e m e n t s ... xv C h a p t e r One: General I n t r o d u c t i o n ... 1

C h a p t e r Two: Synthesis of the clusters M3 (jit-PPh2) (CO)5, (M = Ir o r R h ) , and their r e a ctivity to w a r d CO, P P h 3, DPPM, B u fcNC, and P(OMe)3... 10

2.1. I n t r o d u c t i o n ... 12

2.2. R e s u l t s ... 16

2.2.1. Synthesis of M3 (/i-PPh2) 3 (CO) 5, (M = Ir or R h ) ... 16

2.2.2. C r y s t a l l o g r a p h i c A n a l y s i s ... 17

2.2.3. Spectr o s c o p i c A n a l y s i s ... 21

2.3.1. CO and B u fcNC A d d i t i o n to M3 (/i-PPh2) 3 (CO) 5, (M = Ir or Rh) . . . ... 24 2.3.2. C r y s t a l l o g r a p h i c A n a l y s i s ... 26 2.3.3. Spectr o s c o p i c A n a l y s i s ... 3 0 2.4.1. Reactions of M3 (/x-PPh2) (CO) 5, (M = Ir or Rh) w i t h DPPM, P P h 3, and P ( O M e) 3 ... 34 2.4.2. C r y s t a l l o g r a p h i c A n a l y s i s ... 3 8 2.4.3. S p e c t r o s c o p i c A n a l y s i s ... 40

(5)

2.5. D i s c u s s i o n ... 48 C h a p t e r Three: Selective oxidative a d dition at a single

centre in [Ir3 (/x-PPh2) 3 (CO) 4 (BufcNC) 3] , [Ir3 (/x-PPh2) 3 (CO) 3 (dppm) ] , and [M3(/x-PPh2) 3 (CO)3 (L)2], M = Ir or Rh, L = CO, or P P h 3. . . 53 3.1. I n t r o d u c t i o n ... 54 3.2. R e s u l t s ... 57 3.2.1. One-centre oxidative addition

reactions to

[Ir3 (/x-PPh2) 3 (CO) 4 (Bu'NC) 3] ... 57 3.2.2. Spectroscopic analysis.. ... 59 3.2.3 Crystallographic a n a l y s i s ... 62 3.3.1 Oxidative a ddition reactions to

[Ir3 (/x-PPh2) 3 (CO) 3 (dppm) ] ... 73 3.3.2. Spectroscopic a n a l y s i s ... 73 3.3.3 Crystallographic a n a l y s i s ... 75 3.4.1 Two-centre oxidative a d dition r e a c tions to

[Ir3 (/x-PPhj) 3 (CO) 4 (Bu^C) 3]

80 3.4.2. Spectroscopic a n a l y s i s ... 84 3.5.1 Reactions of [Rh3 (/x-PPh2) 3 (CO) 3 (L2) ] , (L = CO or PPh3, L2=dppm) w i t h I2, H g X2 (X=I, B r , C l , 02CCF3, and 02C C H 3) ... 8 9 3.5.2. Spectroscopic a n a l y s i s ... 94 3.5.3 Crystallographic a n a l y s i s ... 102 3.6. D i s c u s s i o n ... 108 C h a p t e r Four: Synthesis and r e a ctivity of p h o s

phido-b r i d g e d mixed iridium and r h o d i u m ... 119 4.1. I n t r o d u c t i o n ... 119 4.2.1. Synthesis of M M' 2 (/x-PPh2) 3 (CO) 5 a n d

M' M2 (/x-PPh2) 3 (CO) 5 (M=Rh, M ' = I r ) ... 122 4.3.1. Reactions of M M' 2 (/x-PPh2) 3 (CO) 5 and

(6)

vi M ' M2 (/x-PPh2) 3 (CO) 5 (M=Rh, M'=Ir) w i t h

PPh3... 123

4.3.2. Spectroscopic a n a l y s i s ... 125

4.3.3 Crys t a l l o g r a p h i c a n a l y s i s ... 133

4.4.1. Reactions of M M' 2 (/x-PPh2) 3 (CO) 5and M ' M2 (/x-PPh2) 3 (CO) 5 (M=Rh, M'=Ir) w i t h D P P M ... 13 0 4.4.2. S p e ctroscopic a n a l y s i s ... 135

4.5.1. React i o n s of MM' 2 (/x-PPh2) 3 (CO) 5and M ' M2 (/z-PPh2) 3 (CO) 5 (M=Rh, M'=Ir) w i t h B u tN C ... 144

4.5.2. Spectr o s c o p i c a n a l y s i s ... 145

4.6.1. Reactions of R h l r2 (/i-PPh2) 3 (CO) 5 and R h l r2 (/x-PPh2) 3 (CO) 5 (PPh3) 2‘ w i t h P (OMe) 3...."... 149

4.6.2. S p e ctroscopic a n a l y s i s ... 150

4.7. D i s c u s s i o n ... 152

Chap t e r Five: Conclusions and recomme n d a t i o n s for future w o r k ... 161

Chapter Six: E x p e r i m e n t a l ... 165

6.1. General p r o c e d u r e ... 166

6.2. Synthesis of c o m p o u n d s ... 167

(7)

LIST OF TABLES

Table Page

2 .1 3 1p {1H} N M R chemical shifts and c o upling constants of R h3 (/x-PPh2)3 (CO)s (2.3),

Ir, (^x-PPh,) , (CO) E (2.5a), and

Ir3 (/z-PPh2) 3 (CO) 6 (2 . 5 b )... 23

2.2 C r y s t a l l o g r a p h i c parameters for

Ir3 (/x-PPh2)3 (CO)5 (ButN C) 2 ... . 28

2.3 S e l e c t e d b o n d lengths and angles for

Ir3 (/i-PPh2) 3 (CO) 5 (BufcNC) 2 (2.7) ... 29

2.4 3 1p {1H} N M R chemical shifts and coupling constants of Ir3 (/i-PPh2)3 (CO)5 (ButN C) 2 (2.7),

Ir3 (/i-PPh2) 3 (CO) 4 (Bu,:NC) 3 (2.8), and

R h3 (M-PPh2)3 (CO)4 (ButN C) 3 (2.9)... 31

2.5 Positive ion FAB-MS of

Ir3 (/x-PPh2) 3 (CO) s (BubNC) 2 (2.7)

Ir3 (/i-PPh2) 3 (CO) 4 (BufcNC) 3 (2.8' ... 35

2.6 C r y s t a l l o g r a p h i c parameters for

R h3 (/j,-PPh2) 3 (CO) 2{P (OMe) 3 } 3 ... . 42

2 . 7 S e l e c t e d b o n d lengths and angles for

R h3 (/i-PPh2) 3 (CO) 2{P (OMe) 3 } 3 ... . , 43

3 .1 31P {1H} N M R c h emical shifts and coupling

c onst a n t s f o r (3.2-3.8 )... 61

3.2 P ositive ion FAB-MS of

[lr3 (^-PPh2) 3 (C0)4 (Bu'NC) 3 (CH3) ] +I‘ (3 .7)

[lr3 in-P P h 2) 3 (CO) 4 (BufcNC) 3 (PhCH2) ] +Br' ( 3 .8)... , 64

3.3 Infrared stretchincr frequencies for (3.2 - 3.8).... 65 3.4 C r y s t a l l o g r a p h i c parameters for

[lr3 (/x-PPh2) 3(CO) 4 (BufcNC) 3 (CH3) ] +I' (3 ._7)... . 68

3.5 S e l e c t e d b o n d lengths and angles for

rir3 (/i-PPh,) ? (CO) 4 (Bu^tfC) 3 (CH3) 1 +I" (3 . 7 )... 69

3 . 6 C r y s t a l l o g r a p h i c parameters for

[lr3 ( f i -PPh2) 3 (CO) 4 (BufcNC) 3 (PhCH2) ] +Br" (3.8)... . . 71

3 . 7 S e l e c t e d b o n d lengths and angles for

rir3 (/i-PPh,) 3 (CO) 4 (BufcNC) 3 (PhCH,) 1 +B r ‘ (3 . 8 ) ... , . 72 3 . 8 3 1p{1H} N M R c hemical shifts and c oupling constants

(8)

-viii for (3.9 - 3 . 1 3 ) ...

3 . 9 In f r a r e d stretchinq frequencies for (3.9 - 3.13). ... 19 3 .10 C r y s t a l l o g r a p h i c parameters for

[Ir, (u-PPh,), (CO), (doom) (OH) (1)1 (3.11)... 3 .11 S e l e c t e d bond lengths and angles for

d r , (u-PPh,), (CO), (dppm) (OH) (1)1 (3.11)... 3 .12 3 1P {1H} N M R chemical shifts and c o upling constants

for (3.14 - 3 . 2 0 ) ...

3 .13 I n f r a r e d stretchinq frequencies for (3.14 - 3.20) ... 90 3 .14 P o sitive ion FAB-MS of

[Ir3 (^-PPh2) 3 (CO) 4 (B^NC) 3 (CH3) (H) ] 2+ (3 .14)

rir3 (/i-PPh,), (CO) ,, (ButN C ) , (AuPPh-,) 21 2+ (3 . 1 9 ) ... ... 91 3 .15 3 1P{1H} N M R chemical shifts and coupling const a n t s

for [Rh, (u-PPh,),(CO), (u-CO) (u-I) 2 (doom) 1 (3.29) . . . . , 96 3 .16 3 1p(1H} N M R chemical shifts and coupling constants

for 3.22, 3.23a, 3.24a. 3.25, 3.26, a n d 3 . 3 4 .... 10 0 3 .17 3 1p {1H} N M R chemical shifts and c o upling constants

for [Rh, (u-PPh,), (CO), (fx-CO) (u-Br) 2 (PPh,) 21 (3.24b) . ... 104 3 .18 3 1p {1H} N M R chemical shifts and coupling c o n s tants

for 3.30, 3.31, 3.32, and 3 . 3 3 ... 107 3 .19 I n f r a r e d stretchinq frequencies for (3.22 - 3.33) .... 109 3 .20 P o sitive ion FAB-MS of

3.22, 3.24b. 3.29, and 3 . 3 3 ... , , 11 0 3 .21 C r y s t a l l o g r a p h i c parameters for

[Rh, (u-PPh,), (CO), (u-CO) (u-I) 2 (PPh3)1 ( 3 . 2 2 ) ... , , 113 3 .22 S e l e c t e d b o n d lengths and angles for

[Rh, (u-PPh,), (CO), (u-CO) (u-I) 2 (PPh3) 1 ( 3 . 2 2 ) ... 1 14 4.1 3 1P {1H} N M R chemical shifts and coupling const a n t s

[Tr Rh2 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4 .11)

[Rhlr, (jx-PPh,) 3 (CO) 3 (PPh3) ,1 (4.12)... for

. . . 127 4.2 P ositive ion FAB-MS of

[IrRh2 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4 .11)

[Rhlr, (^x-PPh,) 3 (CO) 3 (PPh3) ,1 (4.12)... 129 4.3 C r y s t a l l o g r a p h i c parameters for

(9)

4.4 S e l e c t e d bo n d lengths and angles for

[Rhlr2 (n-PPh2) 3 (CO) 3 (PPh3) 2] (4 . 1 2 ) ... 133 4.5 ^ P ^ H } N M R chemical shifts and c o upling constants for

[IrRh2 (/x-PPh2) 3 (CO) 3 (dppm) ] (4 . 1 5 )

[Rhlr2 (/i-PPh2) 3 (CO) 3 (dppm) ] (4 . 1 6 ) ... 138 4.6 P o sitive ion FAB-MS of

[IrRh2 (/i-PPh2) 3 (CO) 3 (dppm) ] (4 . 1 5 )

[Rhlr2 (/i-PPh2) 3 (CO) 3 (dppm) ] (4 . 1 6 ) ... 141 4.7 Uv / v i s and infrared da t a for

(4.13 - 4 . 1 6 ) ... 141 4.8 3 1P {1H} N M R chemical shifts and coupling constants for

[IrRh2 (M-PPh2) 3 (CO) 4 (ButNC) 3] (4 . 1 9 )

[Rhlr2 (^-PPh2) 3 (CO) 3 (BufcNC) 3) ] (4 . 2 0 )... 148 4.9 3 1P {1H} N M R chemical shifts and coupling constants for

[Rhlr2 (/x-PPh2) 3 (CO) 2{ (P (O M e ) 3) }3] (4 . 2 1 )

[Rhlr2 (/i-PPh2) 3(CO) 2 (PPh3) 2{P (OMe) 3}] (4 . 2 2 )... 155 4.10 Positive ion FAB-MS of

[Rhlr2 (/i-PPh2) 3 (CO) 2{ (P(OMe)3) }3] (4 . 2 1 )

(10)

X LI S T OF FIGURES F igur Page 2.1 3 1P {1H} N M R s p ectrum of Ir3 (/z-PPh2) 3 (CO) 5 (2 . 5 a ) . and Ir3 (/x-PPh2) 3 (CO) 6 (2 . 5 b ) ... 22 2.2 The m o l e c u l a r structutre of Ir3 (/x-PPh2) 3 (CO) s (BufcNC) 2 ... 27 2.3 3 1P { XH} N M R spectra of Ir3 (/x-PPh2) 3 (CO) 5 (B^NC) 2 (2/7) , and

Ir3 (/x-PPh2) 3 (CO) „ (BufcNC) 3 (2_a_8)... 32 2.4 3 1P {1H} N M R spectrum of

R h3 (/x-PPh2) 3 (CO) 4 (BufcNC) 3 (2^9.)... 33 2 . 5 Infrared spectra of

lr3 (/x-PPh2) 3 (CO) 5 (BusNC) 2 (2/7) , Ir3 (^-PPh2) 3 (CO) 4 (BufcNC) 3 (2^_8) , and

R h3 (/x-PPh2) 3 (CO) 4 (BufcNC) 3 (2 . 9 ) ... 36 2.6 Positive ion FAB-mass spectrum of

Ir3 (/x-PPh2) 3 (CO) 4 (Bu’ISFC) 3 (2^8)... 37 2.7 The m o l e c u l a r structutre of R h3 (/x - P P h 2) t (C O ) 2 {P (O M e ) 3 } 3 (2 . 1 3 ) ... 41 2.8 V.T. 3 1P{1H} N M R spectra of R h3 (/x - P P h 2) 3 (C O ) 2 {P ( O M e ) 3 } 3 (2 . 1 3 ) ... 46 2.9 V.T. 1H N M R spectra of R h3 (/x-PPh2) 3 (CO) 2{P (OMe) 3 } 3 (2 . 1 3 ) ... 50 2.10 3 1P{1H} N M R sp e c t r u m of Ir3 (/x-PPh2) 3 (CO) 2{P (OMe) 3 } 3..(2 . 1 4 ) ... 51 3.1 3 1P {1H} N M R s p e ctra of Ir3 (/x-PPh2) 3 (CO) 4 (BufcNC) 3 (PhCHz) ] +B r ‘ (3^8) Ir3 (/x-PPha) 3 (CO) 4 (Bu'NC) 3 (CH3) ] +I' (3/7)

Ir3 (/x-PPh2) 3 (CO) 4 (BufcN C ) , (H) ] +C1" (3^3)... 60 3.2 Positvie ion F A B-mass spectrum of

Ir3 (/x-PPh2) 3 (CO) 4 (Bu'TOC) 3 (PhCH2) ] +Br" ( 3 /9) ... 63 3.3 The m o l e c u l a r structure of

Ir3 (/x-PPh2) 3 (CO) 4(BufcNC) 3 (CH3) ] +I' ( £ / 7 )... 67 3.4 The m o l e c u l a r structure of

(11)

3.5 1P {1H} N M R spectrum of

Ir3 (,u-PPh2) 3 (CO) 3 (dppm) (H) (Cl) (3 . 1 2 ) ... 76 3.6 XH N M R s pectrum of

Ir3 (/x-PPh2) 3 (CO) 3 (dppm) (H) (Cl) (3..12) ... 77 3 .7 T h e molec u l a r structure of

Ir3 (/x-PPh2) 3 (CO), (dppm) (OH) (I) (3 . 1 1 ) ... 81 3.8 3 1P {1H} N M R spectra of

Ir3 ill-P P h 2) 3 (CO) 4 (Bu6NC) 3 (CH3) ] 2+r B F 4- (3 . 1 4 ) lr3 (^-PPha) s (CO) 4 (BufcNC) 3 (PhCH2) ] 2+br'BF4- (3 . 1 5 )

Ir3 (/x-PPh2) 3 (CO) 4 (Bu'ttC) 3 (H) (H) ] [BF4] ' 2 (3 ^ 1 6 )... 87 3.9 1P {1H} N M R spectrum of

R h3 (fi - P P h 2) 3 (C O ) 2 (/x - C O ) (/x-I)2 (dppm) (2u29_) ... 95 3.10 3 1P {1ri} N M R spectrum of

F*h,(^PPh2)3(CO)2 (/i-CO) (/i-I)2 (PPh3) ( 3 ^ 2 2 ) ... 98 3.11 3 1P {1H} N M R soectrum of

Ir3 (/x-PPh2) 3 (CO) 2 (fX-CO) (//-I) 2 (PPh3) (3^34.)... 99 3.12 3 1P {1H} N M R spe c t r u m of

R h3 (/x-PPh2) 3 (CO) 2 (/x-CO) (fi-Br) 2 (PPh3) 2 (3 .2_4bJ... 103 3.13 (a) 3iP{1H} N M R s p ectrum of

P h3 (pi-PPh2) 3 (CO) 3 (/x-CO) (/x-I) 2 (.3^30)... 105 3.13 (b) 3 1P {1H} N M R s p ectrum of

R h3 (jx-PPh2) 3 (CO) 3 (/x-CO) (/X-02C C F 3) 2 (3 . 3 33,)... 106 3.14 The molec u l a r structure of

R h3 (/x-PPh2) 3 (CO) 2 (/x-CO) (/X-l)2 (PPh3) (3 ^ 2 2 ) ... 112 4.1 3 1P{1H} COSY N M R s pectrum of [Rh3 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4.9) [Ir3 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4.1,0) [IrRh2 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4 .11) [Rhlr2 (/x-PPh2) 3 (CO) 3 (?Ph3) 2] (4 .12) ... 124 4.2 3 1P {1H} N M R spectra of [Rh3 (/i-PPh,) 3 (CO) 3 (PPh3) 2] (4^9.) [Xr3 (/x-PPh2) 3 (CO) 3 (PPh3) a] (4 . 1 0 ) [IrRh2 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4 . 1 1 ) [Rhlr2 (/x- PPh2) 3 (CO) 3 (PPh3) z] (4 . 1 2 ) ... ... 126 4.3 T h e molec u l a r structure of [Rhlr2 (/x-PPh2) 3 (CO) 3 (PPh3) 2] (4 .12) ... 131 4.4 3 1P{*-H} COSY N M R s p ectrum of [Rh3 (/X-PPh2) 3 (CO) 3 (dppm) ] (4 . 1 3 )

(12)

xii Tlr3 (/i-PPh,), (CO), (dppm) ] (4.14) TlrRh, (/i-PPh.,), (CO), (dppm) ] (4 .15) TRhlr, (/i-PPh, ) 3 (CO) (dppm) ] (4.16)... .... 13 7 4.5 3 1P {1H} N M R spectra of TRh3 (/(.-PPh,) 3 (CO), (dppm) ] (4.13) Tlr3 (/i-PPh?) 3 (CO), (dppm) ] (4.14) rRh, (/x-PPh,), (CO), (dppm) 1 (4 .15) TRhlr, (/i-PPh,) 3 (CO) 3 (dppm) 1 (4.16)... ... 139 4 . 6 Positive ion FAB-mass s p ectrum of

TRh3 (/i-PPh,), (CO), (dppm) ] (4.13) rir3 (/i-PPh,), (CO), (dppm) ] (4.14) TlrRh, (/i-PPh,), (CO), (dppm) 1 (4 .15)

TRhlr, (fi-PPh7) 3 (CO) 3 (dppm) 1 (4 . 1 6 ) .... ... ... 142 4 . 7 (a) Uv/vis spectra, and

(b) Infrared spectra of

TRh3 (/i-PPh,) 3 (CO) , (dppm) ] (4.13) rir3 (/i-PPh,) 3 (CO), (dppm) ] (4.14) TlrRh, (/i-PPh,), (CO), (dppm) 1 (4.15)

TRhlr, (/i-PPh,) 3 (CO) 3 (dppm) 1 (4.16) ... ... 143 4 . 8 3 1P { xH} C O S Y N M R s pectrum of

[Ir3 (/i-PPh2) 3 (CO) 5 (ButNC) 2] (4 .17) [Ir3 (/i-PPh2) 3 (CO) 3 (BufcNC) 3) ] (4.18) [IrRh? (/i-PPh2) 3 (CO) 4 (ButNC) 3] (4.19)

TRhlr, (/i-PPh,) 3 (CO) 3 (BufcNC) 3) 1 (4.20)... ... 146 4 . 9 3 1p{xH} N M R spectra of

[Ir3 (/i-PPh2) 3 (CO) 5 (ButNC) 2] (4 .17) [Ir3 (/i-PPh2) 3 (CO) 3 (Bu^C) 3) ] (4 .18) [IrRh2 (/i-PPh2) 3 (CO) 4 (ButNC) 3J (4.19)

TRhlr, (/i-PPh,) 3 (CO) 3 (B^NC) 3) 1 (4.20) ... ... 147 4 .10 3 1P{ XH} N M R spectrum of

[Rhlr2 (/i-PPh2) 3 (CO) 2{ (P(OMe)3) }3] (4.21)... ... 153 4 .11 3 1P{ xH} N M R s p ectrum of

(13)

B u fc L I S T OF A B B R E V I A T I O N S tertiary-butyl B u bNC tertiary-butyl isocyanide Bz benzyl COD cyclooctadiene COE cyclooctene

COSY c o rrelation s p e c troscopy

DPPM b i s ( d i p h e n y l p h o s p h i n o ) m e t h a n e DPPE bis ( d i p h e n y l p h o s p h i n o ) e t h a n e

Et ethyl

. FAB-MS fast at o m b o m b ardment-mass s p e c t r o m e t e r y

I .R. infrared

L ligand

M metal

Me methyl

N M R n u c lear magnetic resonance

Ph phenyl

Pr1 isopropyl

R alkyl or aryl

THF tertahydrofuran

(14)

xiv L I S T OF COMPLEXES 2.1 R h 3 ix- PPh2 3 CO 3(dppm) 2.2 Ir3 M - P P h 2 3 CO 3(dppm) 2.3 R h 3 /i- PPh2 3 CO 5 2.4 R h 3 ix- PPh2 3 CO 3 (PPh3) 2 2 . 5a lr3 /x-PPh2 3 CO 5 2 .5b Ir3 ^x-PPh2 3 CO 6 2.6 lr3 \x-PP h 2 3 CO 3 (PPh3) 2 2.7 Ir3 ^ - P P h 2 3 CO 5 (BufcNC) 2 2.8 lr3 /x-PPh2 3 CO 4 (ButNC) 3 2.9 R h 3 ix- PPh 2 3 CO 4 (ButNC) 3 2 .10 R h 3 /x-PPh2 3 CO 7 2 .11 R h 3 M - P P h 2 3 CO s (HPPh2) 2 .12 lr3 /x-PPh2 3 CO 2 (P (OMe) 3)3 2 .13 R h 3 ^ - P P h 2 3 CO 2 (P (OMe) 3) 3 3.1 = 2.8

3.2 Ir3 ix- PPh 2 3 CO 4(ButN C ) 3(1 )]+I' 3.3 lr3 /i-PPh2 3 CO 4 (ButN C ) 3(H) ]+Cl-3.4 lr3 ji-PPh2 3 CO 4 (Bi^NC) 3 (HgCl) ] +C1-3.5 lr3 M - P P h 2 3 CO 4(ButN C ) 3(HgBr)]+Br' 3.6 lr3 M-PP h 2 3 CO 4 (Bi^NC) 3 (AuPPh3) ] +C1 3.7 Ir3 /x-PPh2 3 CO 4(ButN C ) 3(Me)]+I' 3.8 lr3 M -PPh2 3 CO 4 (ButN C )3 (CH2Ph) ] +B r ’ 3.9 = 2.2

(15)

3.11 lr3 (/x-PPh2)3 (CO) 3 dppm)(I)(OH) 3.12 lr3 (/x-PPh2)3 (CO) 3 dppm)(H)(Cl) 3 .13 lr3 (/x-PPh2)3 (CO) 3 dppm)(HgCl)(Cl) 3.14 lr3 (/x-PPh2)3 (co) 4 B u tN C )3 (CH3) ]2 +I-BF4-3 .15 lr3 (/x-PPh2)3 (co) 4 Bi^NC) 3 (PhCH2) ] 2+Br"BF4" 3.16 lr3 (/x-PPh2)3 (CO) 4 B u tN C )3 (H) (H)]2+ [BF4 ] - 2 3.17 Ir3 (/x-PPh2)3 (co) 4 B u tN C )3 (HgCl2) (HgCl,) ] 3 .18 lr3(/x-PPh2)3 (co) 4 B u ^ C ) , (HgBr2) (HgBr2) ] 3.19 l r3 (/x-PPh2)3 (co) 4 Bu fcNC) 3 (AuPPh3) 2] 2+2Cl' 3 .20 Ir3 (/x-PPh2)3 (co) 4 Bu tN C) 3 (I) 2] 2+2 I' 3.21 = 2.4 3 .22 R h3 (/x-PPh2)3 (CO)2 /x-CO) (/x-1) 2 (PPh3) 3.23a R h3 (/x-PPh2)3 (CO) (/x-CO) (/x-Cl) 2 (PPh3) 2 3 .23b R h3 (/x-PPh2)3 (C0) 2 /x-CO) (/X-Cl) 2 (PPh3) 3 .24a R h3 (/x-PPh2)3 (CO) (/x-CO) (/x-Br) 2 (PPh3) 2 3.24b R h3 (/x-PPh2)3 (CO) 2 /x-CO) (/x-Br) 2 (PPh3) 3.25 R h3 (/x-PPh2)3 (CO) 2 /x-CO) (/x-02C C F 3) 2 (PPh3) 3.26 R h3 (/x-PPh2)3 (CO) 2 /x-CO) (/x-02C C H 3) 2 (PPh3) 3.27 1^3 (/x-PPh2)3 (CO) 2 /X-CO) (/x-I) 2 (PPh3) 3.28 = 2.1

3.29 = 3 .22

3.30 R h3 (/x- P P h 2)3 (CO)3 /X-CO) (/x-I) 2 3 .31 R h3 (u-PPh2)3 (CO)3 /x-CO) (/x-Br) 2 3 .32 R h3 (/x-PPh2)3 (CO) 3 /x-CO) (/x-Cl) a 3 .33 R h3 (/x- P P h 2)3(CO)3 /x-CO) (/x-0 2C C F3 ) 2 3.34 = 3 .27

(16)

4.5 IrRh2 (/x-PPh2) 3 (CO) 5 xvi 4.6 Ir2R h (jx-PPh2) 3 (CO) s 4.7 R h3 (^-PPh2)3 (CO)5 4.8 Ir3 (/x-PPh2) 3 (CO) 5 4.9 IrRh2 (/x-PPh2) 3 (CO) 3 (PPh3) 2 4.10 Ir2Rh(/x-PPh2) 3 (CO) 3 (PPh3 ) 2 4.11 R h3 (/x-PPh2) 3 (CO) 3 (PPh3) 2 4.12 Ir3 (/x-PPh2) 3 (CO) 3 (PPh3) 2 4.13 R h3 (/z-PPh2) 3 (CO) 3 (dppm) 4.14 Ir3 (/z-PPh2) 3 (CO) 3 (dppm) 4.15 IrRh2 (/x-PPh2) 3 (CO) 3 (dppm) 4.16 Ir2Rh (/x-PPh2) 3 (CO) 3 (dppm) 4.17 Ir3 {[I-PPh2) 3 (CO) 5 (BufcNC) 2 4.18 Ir3 (/x-PPhj) 3 (CO) 4 (Bi^NC) 3 4.19 R h 2Ir (/x-PPh2) 3 (CO) 4 (BufcNC) 3 4.20 R h l r2 (/x-PPh2) 3 (CO) 4 (BufcNC) 3 4.21 Ir2Rh (/i-PPh2) 3 (CO) 2 (P (OMe) 3) 3

(17)

A C K N O W L E D G E M E N T S

I w o u l d like to thank m y supervisor, Professor K.R. D i x o n for his advice and support du r i n g m y s t u d i e s .

I w o uld also like to thank m y co-workers Dr. N.J. Meanwell, Dr. D.E. B e r r y for all their invaluable help and advice throughout my y ears at U V i c .

I am v e r y grateful to Dr. J. Br o w n i n g for her wo r k on the x - r a y c r y s t a l l o g r a p h y of all of the complexes p r e s e n t e d in this work.

Finally, I w o u l d like to t hank all the members of m y family for t h eir support and encour a g e m e n t throughout m y years at U V i c .

(18)

GENERAL INTRODUCTION:

Several different d e f i n i t i o n s of metal clusters are possible, but for the p u r p o s e of this w o r k a metal

c l u s t e r is d e f i n e d as a dis c r e t e unit c o n taining at least t h ree metal atoms w h i c h are m u t u a l l y bo n d e d [1]. Interest in metal-metal b o n d e d c l usters of the t r a nsition metals has f o c used in the past two d e c a d e s o n the e l u c i d a t i o n of their structures, bonding, and spectr o s c o p i c p r o perties [2,3,4]. Of par t i c u l a r note are the efforts devoted toward their role as homogeneous and h e t e r o g e n e o u s catalysts [1,5-7]. In general metal clusters were s h own to be go o d models for surface catalysis and for u n d e r s t a n d i n g what h a p pens on m e tal surfaces dur i n g h e t e r o g e n e o u s catalysis [8,9]. The r elev a n c e of cluster c h e m i s t r y to homogeneous and

hetero g e n e o u s catalysis has b e e n e x amined and d i s c u s s e d in recent re v i e w articles [ 9 b , 9 c ] . O n l y a few examples will be c i t e d b e l o w w h i c h illustrate the g r o w i n g importance that m i x e d metal clusters sh o u l d p l a y in heterogeneous catalysis.

R e c e n t l y Puddephatt and c o - w o r k e r s [10-12] have shown that a c o o r d i n a t i v e l y u n s a t u r a t e d m etal cluster such as

[Pt3{Re (CO) 3 (P (OPh) 3) } (/i-dppm) 3] + c a n act as a model for

hetero g e n e o u s surface catalysts. This cluster was also shown t o be an intere s t i n g model for p o ssible Pt-Re b o n d i n g and metal support interactions in the important h e t e rogeneous b i m e t a l l i c Pt - R e / A l203 catalysts.

S t e a d y g r o w t h in the n u m b e r of known metal clusters has b e e n rep o r t e d in the past few years. Considerable p r ogress has been made, e s p e c i a l l y in dev e l o p i n g the systematic

a s s e m b l y of o r g a n o m e t a l l i c b u i l d i n g blocks to synthesize m e tal clusters, in p a r t i c u l a r those containing different metals, a n d in the s tudy of the relationships b e t w e e n their str u c t u r e s and p r o p e r t i e s [13-17]. Por example, synthetic s t r a tegies such as isolobal relati o n s h i p s [18,19] have p r o v e d s u c cessful in p l a n n i n g syntheses of m a n y metal clusters. S tone and c o - w o r k e r s [20] e m ployed isolobal

(19)

re l ationships to synthesize a series of d i r h o d i u m p l a t i n u m [2 0 ] a n d dirhodium and iron clusters [2 1 ] and, in a similar manner, D'Alfonso and co-workers s ynthesized m i x e d r h e n i u m p l a t i n u m clusters [22], and rhenium iridium clusters [23]. More usually, methods of preparing metal c l usters involve p y r o l y s i s of transition metal complexes u n d e r extreme

c o n ditions where there is no control over the c l u ster formed [24-28]. M a n y of the advances could not have been made

without the development of spectroscopic meth o d s and more e f f e c t i v e means of structure determination. Despite these developments, the p r e p a r a t i o n of metal clusters remains almost en t i r e l y an accidental affair.

M e tal clusters u s u ally contain single b r i d g i n g atoms or b r i d g i n g groups, w h ich g e n e rally stabilize clusters and

assist in b i n d i n g metal centres together. It is also hoped that b y mainta i n i n g metal centres in proximity, bridges can assist m o l e c u l a r rearrangements and reactions involving two or more metal centres. This thesis will co n s i d e r only

s e l e c t e d systems in which the bridging m o i ties contain p h o s p h o r u s . A m o n g the systems in w h ich pho s p h o r u s is part of a b r i d g i n g group is the phosphido ligand /i-PR2, w h i c h is found in a considerable number of dinuc l e a r and cluster

compl e x e s w h i c h may contain one, two, or three such br Ldging ligands, as i l lustrated in structures (1 . 1 -1 . 3 ). Different s ynthetic methods have been employed in w h i c h a w i d e range of m etal fragments m a y be found [31-33].

M- M M- M M . M

(20)

3 The interest in the c h e m i s t r y of t r a n sition metal

c l usters wi t h p h o s p h i d o - b r i d g e d ligands (//-PR2) is l a r gely due to their e l e c t r o n i c pro p e r t i e s as three e l e c t r o n donors, a n d their g e o m e t r i c a l flexibility. This flexi b i l i t y is e v i d e n c e d b y the e x i s t e n c e of a wide range of M- (fi-PR2) -M angles, from ca. 70° to 138° , depending on w h e t h e r metal- metal bonds are p r e s e n t o r not [34-35]. A n example of the fl e x i b i l i t y of the f o r m a l l y three electron d o n o r /x-PPh2 is p r o v i d e d b y [Fez (/i-PPh2) 2 (CO) 6] , where the Fe-P-Fe angle is 7 2 “wi t h an Fe-Fe b o n d dis t a n c e of 2.62A. U p o n o x i d a t i o n to

[Fe2(/x-PPh2)2 (CO)6]2+, the Fe-P-Fe angle increases to 105.5° w i t h an Fe-Fe b o n d d i s t a n c e of 3.63A [30]. In this case, the f l e x i b i l i t y of the p h o s p h i d o bridges allows for the forma t i o n and b r e a k i n g of metal-metal bonds without c o m p l e x fragmentation. B e l l o n et.al. [36] pr e p a r e d the novel

p h o s p h i d o - b r i d g e d d i i r i d i u m complex [{ir(CO) (PPh3) (fi-PPh2) }2] 'from the two d i f f e r e n t irid i u m hydride complexes IrH3 (PPh3 ) 3

a n d I r ( C O ) ( H ) ( P P h3 ) 3 in b o i l i n g DMF (dimethylformamide) u n d e r n i t r o g e n for three h o u r s . The two metals of

[{ir(CO) (PPh3) (fi-PPh2) }2] are connected b y a formal double b o n d 2.55lA long, an d b r i d g e d b y two PPh2 ligands. In a re l ated s tudy G e o f f r o y a n d co-workers [37] r e ported

b i n u c l e a r o x i d a t i v e a d d i t i o n to p h o s p h i d o - b r i d g e d d i r h o d i u m compl e x e s to i n v e s t i g a t e the stability of the brid g e s and changes in m e t a l - m e t a l bonds. D i p h e n y l p h o s p h i d o - b r i d g e d d i r h o d i u m compl e x e s have b e e n studied e x t e n s i v e l y b y Me e k a n d his group [38,40] . T h e y investigated the catalytic a c t i v i t y of these complexes, the stability of the p h o s p h i d o bridges b e t w e e n t r a n s i t i o n metals, and the use of 31P N M R for c h a r a c t e r i z a t i o n a n d structure elucidation.

(21)

Phosphido-b r i d g e d dim e t a l l i c complexes are of high interest Phosphido-b e c a u s e of their p o t e n t i a l to induce catalytic and stoichio m e t r i c

t r a n s f o r m a t i o n as a result of cooperative interactions b e t w e e n adjacent metals [41-47]. G eoffroy a n d co-workers

[41] e x a m i n e d the interconversion of a series of Ph2P- b r i d g e d cobalt carbonyl complexes, some of w h i c h ha v e b e e n

found to f u nction as hydroformulation catalysts or catalyst precursors. Jones and co-workers [42] also studied R2P- b r i d g e d compl e x e s focusing on the steric effects of the R g roup of R2P - . T h e y initially investigated the use of di-

t e r t - b u t ylphosphine (Bu2P) ligand, and c o n c luded that the substantial steric bu l k of the t-butyl g roup tends to limit the c o o r d i n a t i o n of other ligands to a metal centre. This m a y be the re a s o n for the difference b e t w e e n o ther

p h o s p h i d o - b r i d g e d complexes such as those of PPh2P- and those of B u ‘2P- [42b] .

A wide range of ph o s p h i d o - b r i d g e d clusters has b e e n

r e p o r t e d in recent y e a r s . Th e y v a r y in n u c l e a r i t y a n d metal combinations. Haines and co-workers have s y n t h e s i z e d and c h a r a c t e r i z e d the t e t r a nuclear clusters [Rh4 (/i-PPh2) 2 (/i- Cl) 2 (CO) 4 (PPh2H) 2] [48], and [Rh4 (/i-PPh2) 4 (/x-CO) 2 (CO) 4] [49] as part of an investigative s tudy of the potential of the d i p h e n y l p h o s p h i d o ligand, PPh2~, for stabilizing homo- and h e t e r o n u c l e a r clusters of unusual geometry and

s t e r e o c h e m i s t r y [50-52]. P h o s p h i d o - b r i d g e d t r i nuclear clusters a t t r a c t e d a nu m b e r of r e search groups in the past two decades. In 1975 Carty and co-workers r e p o r t e d the first e x a mple of the p h o s p h i d o - b r i d g e d t r i p l a t i n u m c l u ster Pt3 (/x-PPh2) 3 (PPh3) 2 (Ph) (1 . 4 ) [53], a cluster of significant importance from a synthetic and c h a r a c t e r i z a t i o n viewpoint. S y n t h e t i c a l l y the cluster is made by reflu x i n g [Pt(PPh3)4] in b e n z e n e for several days to form at first the d i m e r [Pt{/x- PPh2)2(PPh3)2] a n d later the t r i p l a t i n u m cluster. T h e c l u s t e r

(22)

c o ntains two types of bridges, one w h ere a Pt-Pt bo n d is p r e sent and one where the b o n d is absent. The cluster was later inve s t i g a t e d b y B r a u n s t e i n et a l . [35], who found it to adopt different structures in the s o lid state (1 .4 a ) or

(1 .4b) d e p e n d i n g on the solvent u s e d for crystallization. The. structural differences b e t w e e n these isomers c o n cern the m e t a l - m e t a l bonding. These 4 4 -electron clusters formally c o n tain two Pt(I) centres a n d one Pt(II) centre. 1.4 is the o n l y example of a p l a t i n u m c l u s t e r to d i s p l a y easy skeletal isomerization, a feature of great interest but rarely

e n c o u n t e r e d in clus er chemistry.

The immediate b a c k g r o u n d to this thesis begins w i t h the r e c e n t l y r eported rep r e s e n t a t i v e examples of triangular

p h o s p h i d o b r i d g e d clusters. D i x o n and R a t t r a y reported that reflux of [PdCl (PPh3) 3] [BF4] in THF (tetrahydrofuran) at

125°C led to the formation of the t r i p a l l a d i u m cluster ' [Pd3 (^-PPh2)2 (/x-Cl) (PPh3)3] [BF4] (1 . 5 ) [54]. The cluster was

fully c h a r a c t e r i z e d b y 3 1P {1H} N M R s p e c t r o s c o p y and X -ray crystallography. The p l a t i n u m t riangle is almost equatorial w i t h the C l - bridged Pd-Pd distance, 2.89

A

and the o ther two P d -Pd d i s t a n c e s equal at 2.93

A.

In a different study

D ixon a n d co-workers [76] r e p o r t e d that in p resence of p- toluidine (as HCl scavenger) r e a c t i o n b e t w e e n HPPh2 and

[Pd3 (/x-PPh2) 2 (/x-Cl) (PEt3) 3] [BF4] is almost instantanous at 25°C to result in the formation of the clus t e r [Pd3 (/z-PPh2) 3

(PEt3)3] [BF4] (1 . 6 ) in high yield. In 1985 D i x o n and c o ­ workers [55] re p o r t e d the synthesis and rea c t i v i t y of a n e w class of m i x e d p a l l a d i u m a n d p l a t i n u m clusters (1 . 7 ) . The study of these clusters b y 31P N M R has shown the u s e fulness of the techn i q u e in wo r k i n v o l v i n g p r e v i o u s l y difficult to char a c t e r i z e clusters. In a r e l ated s tudy Jones and c o ­ w o r k e r s [77] showed that the rea c t i o n of [Pd(CO)Cl]n w i t h L i - P B u2 at -78 °C affords the c l u s t e r [Pd3 (/x-PBu‘2) 3 (Cl) (CO) 2]

(23)

w i t h an average Pd-Pd distance of 2.980

A.

A lthough it is a neutral cluster it m a y be regarded as essentially

isoelectronic with the cationic clusters such as [Pd3 (/i- PPh2) 3 (PEt3) 3] [BF4] (1 . 6 ) described by Dixon and co-workers

[76] . Dh Ph Ph2P' 2 .7 5 8 A Ph, - 3.586A _)pi 2 .9 5 6 A P P h2 'P P h , Ph3P ^ " Pt ■Pt-P h , ■-P-P h , 'PPh-, 1 . 4 a fro m C H2C I2/p e n ta n e 1 . 4 b fr o m t o lu e n e /p e n ta n e

The extension of these clusters to cobalt, rhodium, and iridium metals was a step taken by a few groups during the 1980's. Haines and his group reacted [ (Rh (/x-Cl) (CO) 2}2] wi t h PPh2H in the presence of a base to afford the cluster Rh3 (/x- P P h2)3(CO) 5 [56,57], ha v i n g interesting chemical properties. It involves one formal 16 e l ectron metal centre and two 18 ele c t r o n centres. There are 46 cluster .axence electrons and the Rh-Rh bonds average 2.77

A.

In a carbon monoxide atmosphere this cluster can be converted to an unstable 50 el e c t r o n derivative R h3 (/i-PPhJ 3 (CO) 7, in which there are f o rmally two 16 e l ectron centres and one 18 electron centre, and in which R h - R h distances average 3.15

A.

In 1983 G eoffroy and co-workers [41a] reported that the h e a ting of Co2(C0)g with HP P h2 in toluene afford,; the cluster Co3(/i- PPh2)3(CO) 6 (1 . 9 ) . This cluster was synthesized

(24)

7 differently b y H u n t s m a n and Dahl [78], who isolated it from the re a c t i o n of Co2(CO)g w i t h P2Ph4 and characterized it b y an X-ray d i f f r a c t i o n study. A few years later, Geoffroy and co-workers [58] i n v e s t i g a t e d the stability of the phosphido- bridges of the cluster Co3 (/z-PPh2) 3 (CO) 6 (1 . 9 ) . and its

fragmentation du r i n g ma s s spectrometry. A similar cluster with bri d g i n g ji-PMe2 l i g ands has been described by

Vahrenkamp and co- w o r k e r s [79]. A series of novel

d i methylphosphido b r i d g e d clusters, Fe3 (//-PMe2) 3 (NO) 3 (CO) 4 (1 . 1 0 ) , CoFe2 (/i-PMe2)3 (NO)2 (CO) 5 (1 . 1 1 ) . and Co3 (/x-PMe2)3(CO) 6 (1 .1 2 ) were rep o r t e d to have unusual structural and d y n amic properties, that were c o n f i r m e d by crystallographic a n d N M R spectroscopic studies [79]. Jones and co-workers [65]

isolated and c h a r a c t e r i z e d the cluster [Rh3 (/x-P‘Bu2) 3 (CO) 3] (1 . 1 3 ) whose structure as r e v e a l e d by X-ray cr y s t a l l a g r o p h y has two features that make it notably different from the other Ph2P - b r idged t r i m e r s .

The

central Rh3P3 core is virtually planar, and the r h o d i u m atoms are all

coordinatively u n s a t u r a t e d since each Rh has only one terminal CO b o n d e d to it. In an independent study, Jones and co-workers T75] r e p o r t e d the iridium analogue [Ir3 (/z- PlBu2) 3 (CO)5] (1 . 1 4 ) . In Some respects, the structure of 1.14 is similar to that of [Rh3 (/z-PlBu2) 3 (CO) 3] (1 . 1 3 ) descr i b e d b y Haines and E n g l i s h [57]. Recently, Dixon and his group

[59,60] pre p a r e d i r i dium analogues of some of these Rh clusters, notably, [lr3 (/.t-PPh2) 3 (CO) 5] , a cluster of higher stability c o m p a r e d to the r h o d i u m cluster.

00 00

B u 2 Bu 2

(25)

The follo w i n g chapters of this work will focus on the c h e m i s t r y of the clusters [M3 (/x-PPh2) 3 (CO) nL2] (n = 3,L --- CO or PPh3, L 2 = dppm; n = 5, L = B u ‘NC) , (M = Rh or Ir) . The

i n v e s t i g a t i o n of the reactivity of these clu s t e r s is d i v i d e d into r e a c t i o n types such as, ligand addition, ligand

substitution, and oxidative addition where applicable. The st udy is c o n c e n t r a t e d on the formation and the structural p r o p e r t i e s of the complexes produced.

Ch a p t e r two will deal w i t h different synthetic

ap p r o a c h e s to the pa r e n t clusters M3 (/i-PPh2) 3 (CO) 5, (M=Rh or Ir) w i t h more emphasis on the c h a racterization and the str u c t u r a l features of these clusters. These are

c o o r d i n a t i v e l y unsatu r a t e d clusters (46 v a l e n c e electrons) a n d are e x p e c t e d to undergo addition reactions w i t h ligands su c h as CO a n d BulWC. This addition results in structural ch a nges to the core of the cluster (i.e. b r e a k i n g of M-M bo nds a n d c h anging the degree of coordinative unsatxiration a r o u n d the m e tal c e n t r e s ) . These clusters also u n d ergo li g a n d substitution reactions. Since ligands such as dp p m

(b i s ( d i p h e n y l p h o s p h i n o ) m e t h a n e , PPh3

( t r i p h e n y l p h o s p h i n e ) ,and P ( O M e) 3 (trimethylphosphite) can ea s i l y r e p l a c e carbonyl ligands on thes^ clusters to afford h i g h l y stable clusters of significantly d i f f e r e n t chemistry.

C h a p t e r three of this thesis will be d e v o t e d entirely to the o x i d a t i v e addition chemistry of two class-s of

clusters: [M3 (/i-PPh2) 3 (CO) 4 (Bu'NC) 3] , (M=Rh or Ir) w i t h 50 v a l e n c e electrons, in w h ich there are two f o r m a l l y 16- e l e c t r o n centx~es and one 1 8 -electron centre; and [M3(-

PP h 2) 3 (CO) 3 (pt-dppm) ] , w i t h 46 valence electrons, one formally 1 6 -electron centre and two 1 8 -electron centres. Comparing the r e a c t i v i t y of these two classes of clu s t e r s towards o x i d a t i v e add i t i o n reagents such as Mel and Bz B r u n d e r mi l d

(26)

9 c o n d i t i o n s raises questions about the effect of geo m e t r y a r o u n d the metal centres involved. The c l u ster [M3(/i- P P h 2) (CO) 4 (Bu'NC) 3] (M=Rh or Ir) w i t h two f o r m a l l y 16- e l e c t r o n centres is subject to double o x i d a t i v e addition re a c t i o n s w h i c h are d e s c r i b e d in chapter three. Mild

r e a g e n t s such as Mel and BzBr react w i t h o n l y one formally 1 6 -electron centre of the cluster; however, more v i gorous r e a g e n t s such as kCl, I2, and HgX2 (X = Cl, Br, I) have the a b i l i t y to react wi t h b o t h c o o r d i n a t i v e l y u n s a t u r a t e d

c e n t r e s .

Chapter three also deals w i t h reactions of the halogens Cl 2, Br2/ and I2, the m e rcuric halides H g X2 {X=C1, Br, I) , and the m ercuric acetates HgR2 (R=02CCH3, or 02CCF3) w i t h the

c l u s t e r s [M3 (/x-PPh2) 3 (CO) nL2] (n=3,L=C0 or PPh3, L2=dppm) .

T h e p r o d u c e d clusters are stru c t u r a l l y d i f f e r e n t from those e x p e c t e d from oxidative a d dition reactions.

Finally, in chapter four, I d escribe a synthetic a p p r o a c h to ma k i n g p h o s p h i d o - b r i d g e d m i x e d i r i dium and r h o d i u m clusters w h i c h is an important step in studying p h o s p h i d o - b r i d g e d clusters in general. M i x e d metal clusters s h o w the effect of one metal centre over the other, and aid w i t h the c h a r a c t e r i z a t i o n of p h o s p h i d o - b r i d g e d cluster

systems as a whole. R e a c t i v i t y of m i x e d metal clusters d i f fers to some extent from those of the h o m o n u c l e a r clusters. W i t h the a i d of 31P N M R (ID and 2D) and FAB-MS c h a r a c t e r i z a t i o n and i d e n t i fication of two m i x e d metal cl u s t e r s is accomplished.

(27)

C H A P T E R TWO

Synthesis of the Clusters M 3 (f*-PPh2) 3 (CO) s, (M=Rh or Ir) , a n d T h eir R e a c t i v i t y T o w a r d CO, PPh3, DPPM, B:ilNC, and P ( O M e ) 3

(28)

11 2.1. I n t r o d u c t i o n

In principle, the p h osphido-bridges are able to p r e s e r v e the i n t e g r i t y of the cluster while p e r m i t t i n g the b r e a k i n g and m a k i n g of the metal-metal bonds. A wide range of clusters c o n t a i n i n g these b r i d g i n g groups have been

reported, and e x amples include, [Co3 (/^-PPh2) 2 (fi-CO) (CO) 6] [63], [Co3 (^3-PPh) (C0)9] [64], [Rh3 (/i-PBul2) 3 (CO) 3] [65,66], [Ir3(/x-PBut2)3 (CO)6] [67], [Ir3 (/x-PBul2) 3 (CO) 5] [6 8 ], [Pd3 (/x-PB u l2)3 (Cl) (C0)2] [69], [Pd3 (/x-PPh2) 3 (/i-Cl) (PPh3)3] [BF4] [54,55],

[Pt3 (/z-PPh2) 3 (Ph) (PPh3) 2] [53] , [Pt3 (/x-PPh2) 2 (/x-H) (PPh3)3] [BF4] [70], [Rh3 (/i-PPh2) 3 (CO) 5] [56], [Ir3 (/x-PPh2) 3 (CO) 5] [54], and [Co3 (/i-PPh2) 3 (CO) 5] [58] . All of the above examples of t r i n u c l e a r clusters share the similar characteristic of

ha v i n g p h o s p h i d o bridges that are flexible and contribute to the stability of the clusters u n d e r different reaction

conditions. R e a c t i v i t y of some of these clusters is ‘d e t a i l e d in the next few p a r a g r a p h s .

P h o s p h i d o - b r i d g e d trinuclear clusters are known to

u n d e r g o several types of reactions. Ligand addition, li g a n d substitution, and o x i d a t i v e add i t i o n reactions are among r e a c t i o n types that are k nown to dominate in cluster

chemistry. Ha i n e s a n d Steen [56] have s y nthesized the 46- e l e c t r o n c l u ster [Rh3 (/x-PPh2) 3 (CO) 5] wi t h average R h -Rh bonds of 2.77 A by r e a c t i n g [Rh2 (/i-Cl) 2 (CO) 4] wi t h PPh2H irj( the

/

p r e s e n c e of a base. Th e y also inv e s t i g a t e d its rea c t i v i t y w i t h CO (carbon monoxide) and PPh2H ( d i p h e n y l p h o s p h i n e ) . S a t u r a t i o n of the c l u s t e r w i t h CO converts it to [Rh3 (/x- PP h 2) 3 (CO) 9] , w h i c h de g r a d e s q u i c k l y to the unstable 50

e l e c t r o n c l u ster [Rh3 (//-PPh2) 3 (CO) 7] with average R h-Rh bonds of 3.15 A. This e x p a n s i o n from b o n d i n g to non b o n d i n g metal- metal d i s t a n c e s is a l s o present in the cluster [Rh3 (/x-

PPh2) 3 (CO) 6 (PPh2H) ] w i t h average R h - R h bonds of 3.17 A. The neutral ligand PPh3 (triphenylphosphine) substitutes CO ligands i n s t e a d of a d d i n g to [Rh3 (/x-PPh2) 3 (CO) 5] . Bi l l i g and

(29)

co- w o r k e r s [61] thermally dec o m p o s e d Rh(H) (CO) (PPh3 ) 3 to a f f o r d the clus t e r [Rh3 (^-PPh2) 3 (CO) 3 (PPh3) 2] w i t h average Rh- R h b onds of 2.78

A,

and similar structural features to these o b s e r v e d for [Rh3 (//-PPn2) 3 (CO) 5] .

A d d i t i o n of CO ligands to the cluster [Rh3 (/z-

PtBu2)3(CO)3] was investigated b y Jones and Wright [73] . This a d d i t i o n resulted in the cluster [Rh3 (/x-P‘B u 2) 3 (/i-CO) (CO) 4]

(scheme 2.1). It was also shown to be a facile and re v e r s i b l e addition, an interesting p h e n o m e n o n that is r e levant to m a n y h o mogeneous and hetero g e n e o u s catalytic r e a c t i o n s [74]. In m a n y cases CO a d dition to transition metal clusters results in cleavage of m etal-metal bonds

[74] . In this case the Rh3 framework expands significantly, but the R h - R h bonds do not b reak completely. X-ray

c r y s t a l l o g r a p h i c studies on the product c l u s t e r revealed that the unique b r i d g i n g CO unit is well out of the Rh3

■plane, and c o o r d i n a t i o n about the unique R h centre wi t h the a d d i t i o n a l CO mo l e c u l e is tetrahedral , w h i c h is a

r e l a t i v e l y rare g e o m e t r y for f o u r - coordinate Rh(I). I n t e r e s t i n g l y the R h - R h bonds not b r i d g e d b y CO have

le n g t h e n e d c o n s i d e r a b l y (3.018

A

average), while the unique R h - R h b o n d b r i d g e d b y CO has l e n gthened o n l y slightly (2.779

A).

T h e m o l e c u l a r g e o m e t r y of the clus t e r [Rh3 (pt-PBu2) 3 (pt-

CO) (CO) 4] is quite different from that of the PPh2-bridged ana l o g u e [Rh3 (/z-PPh2) 3 (CO) s] [56,75]. In the case of [Rh 3 (/x- PPh2 ) 3 (CO)5] , there are no bri d g i n g CO ligands; two Rh atoms e a c h b e a r two CO's and are b r i d g e d b y PPh2 that lies well out of the R h3 plane. The remai n i n g R h b e a r one CO, and the o t h e r pi-PPh2 groups lie in the Rh3 plane. U n f o r t u n a t e l y no fu r ther studies have be e n rep o r t e d on the c l u s t e r [Ir3(/x- P B u ‘2) 3 (CO) 5] , w h i c h in some respects is s t r u c t u r a l l y similar to the clusters [Rh3 (/i-PPh2) 3 (CO) 5] and [Rh3 (/i-

(30)

13

1 atm

S c h e m e 2.1

The c o o r d i natively s a t u r a t e d cluster [Co3 (/z-PPh2) 3 (CO) 6] is therm a l l y stable up to 1 1 0 °C u n d e r an N2 atmosphere.

However w h e n heated u n d e r CO p r e s s u r e it rearranges to give the d i mer [Co2 (/x-PPh2) 2 (CO) 6] in q u a n t i t a t i v e y i e l d [41a].

The cluster was also f o und to react w i t h PPhEt2

(diethylphenylphosphine) to fo r m first a m o n o s u b s t i t u t e d derivative [Co3 (/x-PPh2) 3 (PPhEt2) (CO) 5] , then a d i s ubstituted derivative [Co3 (^-PPh2) 3 (PPhEt2) 2 (CO) 4] , and finally the

trisubst i t u t e d derivative, [Co3 (/x-PPh2) 3 (PPhEt2) 3 (CO) 3] (Scheme 2.2). The severe c r o w d i n g in the t r i s u b s t i t u t e d derivative forces f r a gmentation of the c l u s t e r to p r o duce the dimer

[Co2 (fi-PPh2) 2 (PPhEt2) 2 (CO) 2] , w h i c h s u r p r i s i n g l y was found to easily reform the c l u s t e r [Co3 (//-PPh2) 3 (CO) 6] upon exposure to 1 atm of CO at 25°C.

(31)

PhJ?' OC— C o ; oc/ OC \ Z 0 .P E t2Ph PhjP PPtij .P E t2Ph --- C o -- CO -p-^” ^-CO P h , ac—C o— ■— oc/ -p Ph, ; C o — P E tjP ti '''-CO OC^ ^PEtjPh P tv ,P ‘ P P h j ac ♦ P E t2Ph yEl2Ph PhD' PPhj O C Co-ac/ --- C o — PC t2Ph -p^ — v'-c o P h , P h2 E«2PhP^ _ ^ P" C o = oc/ ^ P " P h , = C o E l2PhP C o ---oc/ 'P* P h , - C o — P E l,P h "''-C O "PEt2Pli Scheme 2.2

Dixon a n d co-workers [54] reacted [Rh3 (/z-PPh2) 3 (CO) 5] (2 .3 ), with the chelating ligand dppm

(bis(diphenylphosphino)methane) to obtain the highly stable derivative, [Rh3 (/i-PPh2) 3 (CO) 3 (/i-dppm) ] (2_il) . They also

s u c c essfully s ynthesized the iridium analogue of [Rh3(^- PPh2) 3 (CO) 5] (2 . 3 ) . In an atmosphere of CO, the cluster

(32)

15 w h e r e a s r e action w i t h dp p m o r PPh3 results in replacement of C O to afford [Ir3 (/x-PPh2) 3 (CO) 3 (L2) ] , (L = PPh3 o r L2 = dppm) . A d d i t i o n of CO to [Ir3 (/i-PPh2) 3 (CO) 3 (/z-dppm) ] af f o r d e d the

i n t e r e s t i n g c l u s t e r [Ir3 (/z-PPh2) 3 (CO) 4 (/x-dppm) ] . The CO l i g a n d is added to the u n i q u e Ir centre l e a ding to an e x p a n s i o n of the Ir3 core, a n d r e s u l t i n g in tetrahedral g e o m e t r y around the unique Ir(I). The o b s e r v e d lengthening o f Ir-Ir bonds resembles that se e n for the c l u s t e r [Rh3 (/i- P‘B u 2) 3 (/i-CO) (CO) 4] . A l t h o u g h the Ir-Ir b o n d d i s t ances have l e n g t h e n e d s i g n i f i c a n t l y (2.99 A from 2.80

A

), th e y are still wi t h i n the u p p e r limits of the range c o n s i d e r e d typical of Ir-Ir single b o nds [60].

C O PPh O C — M M — C O1 Ph, •PPh, Ph, (2.1) M=Rh (2.2) M =Ir C O I PPh M — C O O C — M Ph, (2.3) M=Rh. L=CO (2.4) M=Rh. L= PP'n3 (2.5) M =Ir, L=CO (2.6) M =Ir, L=PPh3 D i x o n a n d co-workers [54,55] also i n v e s t i g a t e d ad d i t i o n of B u ‘N C (tert-butylisocyanide) to the c l u s t e r [M3 (/z-

P P h 2) 3 (CO) 5] , M = R h or Ir. The Bu'NC li g a n d yi e l d s a d dition p r o d u c t [M3 (/x-PPh2) 3 (CO) j (BulNC) 3] , M = Rh o r Ir, w i t h

(33)

B ulNC L B u ‘NC ph2p PPho O C — M M — C O o q/ ^ c o Ph2 (2.7) M=Ir, L=CO (2.8) M =ir. L=t-BuNC (2.9) M=Rh, L=t-BuNC 2.2. Results:

This c h a pter describes the synthesis of the cluster [Ir3 (/x-PPh2) 3 (CO) 5] (2 . 5 ) . a n d a n e w route to m a k i n g the c l u s t e r [Rh3 (/i-PPh2) 3 (CO) 5] (2 . 3 ) . In a d d i t i o n it discusses the r e a c t i v i t y of these clusters wi t h dppm, B u ‘NC, CO, and P (O M e )3

.

2.2.1- S y n t h e s e s of [M3(/x-PPh2)3(CO)s] , M=Rh(2.3) or Ir(2.5) .

T h e wo r k r e ported in this section includes a synthetic r oute to the cluster [Rh3 (/x-PPh2) 3 (CO) s] (2 . 3 ) that was

d e v i s e d b y Haines and co-workers [56]. It m a i n l y involves the r e a c t i o n of the dimer [Rh(/i-Cl) (CO) 2 ] 2 w i t h two

e q u i v a l e n t s of PPh2H in b e n zene in the p r e s e n c e of a base s u c h as HN E t2 (diethylamine) at room t e m p e r a t u r e (scheme 2.3). A so l u t i o n of [Rh3 (/i-PPh2) 3 (CO) s] (2 . 3 ) in benzene g r a d u a l l y turns b r own over a p e r i o d of 6- 8 hours r e s u lting

(34)

(pi-17 C O )2 (CO)4] [49] . The conversion, w h i c h was mo r e r a p i d in p o l a r solvents such as CH2C12 (dichlo r o m e t h a n e ) , is

i r r e v e r s i b l e and no evidence c ould be o b t a i n e d for the

f o r m a t i o n of [Rh3 (^i-PPh2)3 (CO)5] (2 . 3 ) . In the absence of the H N E t2 base, [{Rh(/x-Cl) (CO)2}2] reacts w i t h two equiva l e n t s of P P h 2H in b e n zene at room temperature to a f f o r d the 50-

e l e c t r o n cluster, [Rh3 (/x-PPh2) 3 (/i-CO) (/x-Cl) 2 (CO) 3] [62]. This c l e a r l y indicates that the cluster, [Rh3 (/x-PPh2) 3 (CO) 5] (2 . 3 ) is s u sceptible to electrophilic attack b y halogens. The s t r u c t u r a l l y similar derivative [Rh3 (/i-PPh2) 3 (CO) 3 (PPh3) 2]

(2 . 4 ) , is p r e p a r e d b y thermal d e c o m p o s i t i o n of [Rh (CO) (H) (PPh3) 3] in nonane at 120°C.

O u r alternative, route to ma k i n g the c l u s t e r [Rh3 (/x- P P h2)3 (CO)5] (2 . 3 ) involves introducing CO gas to a s o lution of the d i m e r [{Rh(/x-Cl) (COD) }2] , followed b y a d d i t i o n of H N E t2 t h e n f o llowed b y two equivalents of PPh2H to p r o duce a b r i g h t g r e e n sol u t i o n of the desired clus t e r [Rh3 (/i~

P P h2)3 (CO)5] (2 . 3 ) (scheme 2.4).

T he i r i dium analogue of [Rh3 (/x-PPh2) 3 (CO) 5] (2 . 3 ) is p r e p a r e d b y r e a c t i n g [{lr(/x-Cl) (COE)2}2] w i t h PPh2H in

b e n z e n e in pre s e n c e of the base HNEt2 (scheme 2.4) . 31P N M R d a t a in d i c a t e the pr e s e n c e of a mixture of the two clusters

[Ir3 (/i-PPh2) 3 (CO) 5] (2 . 5 a ) , and [Ir3 (/x-PPh2) 3 (CO) 6] (2 . 5 b ) . As t he s o l u t i o n is satur a t e d wi t h CO the h e x a c a r b o n y l [Ir3(^i- P P h2)3 (CO)6] (2. 5 b ) dominates. Subsequent removal of the CO s a t u r a t e d solvent in vacuo converts [Ir3 (/i-PPh2) 3 (CO) 6] (2 . 5 b ) to [Ir3 (/x-PPh2) 3 (CO) 5] (2 . 5 a ) after a p e r i o d of 2-3 hours, s h o w i n g that there is a CO reversible a d d i t i o n b e t w e e n the p e n t a - a n d the h e x a c arbonyl clusters.

2.2.2 C r y s t a l l o g r a p h i c Analysis.

T he X - r a y structure [56] has confi r m e d that [Rh3 (/x- P P h2)3 (CO)5] (2 . 3 ) is indeed the pentac a r b o n y l der i v a t i v e and

(35)

not the suspected h e x a c a r b o n y l derivative [Rh3 (/z-PPh2) 3 (CO) 6] . T h e m o l e c u l a r structure of 2.3 contains a tri a n g u l a r

s k e l e t o n of rhodium a t o m s . There is an almost p l a n a r Rh3P2 core and the third p h o s p h i d o bridge is bent so that Rh(l)- P (3)- R h (3) plane is almost p e r p e n d i c u l a r to the core. Thus P(l) a n d P (2) are o n l y s l i g h t l y out of the R h3 p lane at 0.2 9

A

and -0.29A respectively. The dihedral angle b e t w e e n the pl a n e s P (1)R h (1)R h (3) and R h (1)R h (3)R h (2) b e i n g 97.2°. The R h - R h distances are Rh(l)-Rh(2) 2.793(1)

A,

Rh(l)-Rh(3) 2.698(1)

A,

an d R h (2 ) - R h (3) 2.860(1)

A.

Rh(l) and R h (2 ) have two CO groups terminailly coord i n a t e d to them, and Rh(3) has o n l y one CO group ( G e n e r a l i z e d atom labels for X-ray d i s c u s s i o n is shown on page 2 1 ). CO PPh2H/HNEt. PPh2H in benzene in benzene Rh, R h Ph2P ‘2 OC — R h --- R h — CO O C ^ ' X CG OC — R h R h — CO Ph2 2 . 3 2 . 3 a PPh3(excess) Rh(H)(CO)(PPh3)3 120°C/nonane OC — Rh R h — c o P h 2 S c h e m e ( 2 . 3 )

(36)

19

V

Rh' Rh CO Rh. PPh. OC — R h o cx R h — c o N : o Ph. 2.3 DPPM PPh CO CO Rh. Rh. PPh. PhnP, PPh. h CO Ph. Ph. PPh. 2 .4 2.1 PhoP, Ph, 2 .9 Scheme (2.4)

(37)

CO CO CO

\ /

\ \

PPh, PPh, +CO Ir c o "CO O C — I r 'NsCO Q o S OC — Ir Ph. Ph, 2.5a 2.5b S c h e m e (2.5)

(38)

21 The R h (2) centre adopts a p l a n a r g e o m e t r y w h i c h can be

a t t r i b u t e d to it b e i n g a 1 6 - e l e c t r o n centre. This c oordinative u n s a t u r a t i o n of Rh(2) m a y be due to the

p r e s e n c e of a ph e n y l g r oup o n P(3) blo c k i n g the c o o r d i n a t i o n

In our laboratory, a t t e m p t s have be e n made to obtain crystals of e i t h e r [Ir3 (/z-PPh2) 3 (CO) 5] (2 . 5 a ) . or [Ir3 (/i-PPh2)3 (CO)6] (2 . 5 b ) s u itable for X - r a y crystal l o g r a p h y studies but all of th e m p r o v e d unsuccessful.

2.2.3 S p e c t r o s c o p i c Analysis.

The 3‘p{'H} N M R s p e c t r u m of the the complex [Rh3(/x-

PPh2)3 (CO)s] (2 . 3 ) at a m b ient tempe r a t u r e consists of a b r o a d m u l t i p l e t at 274.0 p p m w h i c h is p r e s u m a b l y due to the two e q u ivalent p h o s p h i d o bridges, a n d a b r o a d singlet at 257.8 p p m a t r i b u t a b l e to the u n i q u e p h o s p h i d o b r i d g e . N o obvious change is o b s e r v e d w h e n the sample is cooled to - 4 0 °C. The s p e c t r u m also e x h i b i t s a t h i r d b r o a d multiplet at 287.9 ppm, w h i c h shifts to 1 1. 6 p p m w h e n the sample is s a t u rated w i t h CO, s u g g e s t i n g p o s s i b l e f o r m a t i o n of the saturated c l u ster

[Rh3(/i-PPh2)3(CO)9] fr o m [Rh3 (/x-PPh2) 3 (CO) 6] . The shift of signal p o s i t i o n to the h i g h f i eld region of the spectrum, c o rresponds to R2P - g r o u p b r i d g i n g n o n - b o n d e d rhodium metals of the c l u s t e r [Rh3 (/i-PPh2) 3 (CO) 9] [80]. 3 1p{'h} N M R spectra of the i r i d i u m ana l o g u e [Ir3 (/x-PPh2) 3 (CO) 5] (2 . 5 a ) and [Ir3 (/i-PPh2)3 (CO)6] (2. 5 b ) a r e s h o w n in figure (2.1). Figure 2.1a also i l l u s t r a t e s the c o e x i s t e n c e of b o t h clusters. The s p e c t r u m of 2 .5 a co n s i s t s of two sets of peaks.

s i t e . co

(39)

Figure (2.1)

3 1P{iH} NMR spectra of the clusters (a) [Ir3 (;x~PPh2) 3 (CO) 5] (2 . 5 a )

(b) [Ir3 (*i-PPh2) 3 (CO) 6] (2 . 5 b )

100

1 5 0 200

2 5 0

(40)

23 T a b l e (2.1)

3 1P { ‘h} N M R Chemical Shifts3(6 ,ppm) and Coupling C onstants (Hz) for the clusters;

[Ir3 (/x-PPh2) 3 (CO) 5] (2 . 5 a ) [Ir3 (^-PPh2)3(CO)6] (2 . 5 b ) [Rh3 (/u-PPh2) 3 (CO) 5] (2^3) ,2 P' 2.3 2 . 5a 2 .5b 6 (1,3) 264 . 0 240 . 5 174 . 8 6 (2 ) 257 . 8 100.5 174 . 8 J (1, 3 ) b 15 b J (1, 2) b J(l,4) b --J (1, 5) b -- --J ( l ,6 ) b --J (2 , 5) 1 b

-3 All coupling constants which are not listed were less than the spectrum resolution' of about 5 Hz

Referenties

GERELATEERDE DOCUMENTEN

Follow-up analyses (eAppendix 5- eAppendix 10) were performed on meta-analysis top-sites (FDR < 0.05), including a comparison of top-sites with all previously reported

Werkgroep voor Tertiaire en Kwartaire Geologie 11-12 september 1999 - Excursie Winterswijk. Landschapsvorming, met daaraan verbonden de nieuwste inzichten over

In een vervolgproject zal het systeem praktijkrijp gemaakt moeten wor- den, zodat loonwerkers en melkveehouders over vijf jaar een systeem kunnen kopen waarmee zij

De productie in de akkerbouwsector bleef dit jaar vrijwel op het niveau van 2004. De ge- lijkblijvende productie is de resultante van enkele uiteenlopende ontwikkelingen. Zo nam

Third, patients can start the trial using any type of frequently prescribed antipsychotic drug at any dose (within safety ranges). Fourth, to prevent the average dose in the

[36] included five patients (seven ulcers) with diabetes type 2 and used LDPI to measure microvascular blood flow before and after two, five, and eight weeks of

Hieruit kan worden gesteld dat de eerder genoemde persoonlijke kenmerken geen significante invloed hebben op culturele waardes van de respondenten en dat stelling

After analyzing two periods, i.e., Financial Crisis period and an extended period, it is apparent that the banking sector was largely exposed to market risk, as the S&P