• No results found

Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants

N/A
N/A
Protected

Academic year: 2021

Share "Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material for the implants"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone material

for the implants

Lett, J. Anita; Sagadevan, Suresh; Paiman, Suriati; Mohammad, Faruq; Schirhagl, Romana;

Leonard, Estelle; Alshahateet, Solhe F.; Oh, Won-Chun

Published in:

Journal of Materials Research and Technology

DOI:

10.1016/j.jmrt.2020.09.037

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2020

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Lett, J. A., Sagadevan, S., Paiman, S., Mohammad, F., Schirhagl, R., Leonard, E., Alshahateet, S. F., &

Oh, W-C. (2020). Exploring the thumbprints of Ag-hydroxyapatite composite as a surface coating bone

material for the implants. Journal of Materials Research and Technology, 9(6), 12824-12833.

https://doi.org/10.1016/j.jmrt.2020.09.037

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

https://www.journals.elsevier.com/journal-of-materials-research-and-technology

Availableonlineatwww.sciencedirect.com

Original

Article

Exploring

the

thumbprints

of

Ag-hydroxyapatite

composite

as

a

surface

coating

bone

material

for

the

implants

J.

Anita

Lett

a,∗

,

Suresh

Sagadevan

b,∗

,

Suriati

Paiman

c

,

Faruq

Mohammad

d

,

Romana

Schirhagl

e

,

Estelle

Léonard

f

,

Solhe

F.

Alshahateet

g

,

Won-Chun

Oh

h,∗ aDepartmentofPhysics,SathyabamaInstituteofScienceandTechnology,Chennai,TamilNadu,India

bNanotechnology&CatalysisResearchCentre,UniversityofMalaya,KualaLumpur50603,Malaysia cDepartmentofPhysics,FacultyofScience,UniversitiPutraMalaysia,43400Serdang,Selangor,Malaysia

dSurfactantResearchChair,DepartmentofChemistry,CollegeofScience,KingSaudUniversity,P.O.Box2455,Riyadh,KingdomofSaudi

Arabia11451

eGroningenUniversity,UniversityMedicalCenterGroningen,AntoniusDeusinglaan1,9713AWGroningen,Netherlands fESCOM,UTC,EATIMR4297,1alléeduRéseauJean-MarieBuckmaster,60200Compiègne,France

gDepartmentofChemistry,MutahUniversity,P.O.BOX7,Mutah,61710Karak,Jordan

hDepartmentofAdvancedMaterialsScienceandEngineering,HanseoUniversity,Seosan-si,Chungnam356-706,RepublicofKorea

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received30June2020 Accepted7September2020 Availableonline21September2020

Keywords:

Polylacticacidscaffolds Silverdopedhydroxyapatite Fuseddepositionmethod Antibacterialstudies Hemocompatibility Hardnessstudy

a

b

s

t

r

a

c

t

Polylacticacid(PLA),althoughhasmanyinterestingphysicochemicalcharacteristics,the stronghydrophobicityandalackofantibacterialactivityrestrictingitswidespread appli-cationinthemedicalsector.InaviewofaddressingsomeofthelimitationsofPLA,the currentstudyaimedtotesttheantibacterialefficacyofactivemetal-dopedbioceramic/PLA compositeformedbythefuseddepositionmanufacturing(FDM)technique.Forthetesting, wepreparedpolyvinylalcohol(PVA)boundsilver-hydroxyapatite(Ag-HAp)compositeand furtherappliedasalow-temperaturecoatingontothePLAscaffolddesignedforthe appro-priatecelldevelopment,differentiation,andbio-mineralestablishment.Fromtheanalysis, werevealedthatthelargersurfaceareaofthree-dimensional(3D)printedcomposite mate-rialhavingthematrixporositymakesitaperfectbiocompatiblematerialwithnolosstoits mechanicalpotency.TheHAp/PLAandAg-HAp/PLAcompositesweretestedforthe hemo-compatibility,andantibacterialactivity(gram-positiveandgram-negativebacteria).Further, themechanicalpropertyoftheAg-HAp/PLAscaffoldwastested.Theresultsdemonstrated thattheAg-HAp/PLAcompositeoffersthebiocompatibilityandantibacterialabilityand thereforecanserveasthepotentialboneimplantmaterial.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Correspondingauthors.

E-mails:anitalett2014@gmail.com(J.A.Lett),drsureshnano@gmail.com(S.Sagadevan),wcoh@hanseo.ac.kr(W.Oh). https://doi.org/10.1016/j.jmrt.2020.09.037

2238-7854/©2020The Author(s). PublishedbyElsevier B.V.Thisis anopen accessarticleunderthe CC BY-NC-NDlicense (http:// creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

1.

Introduction

Additive manufacturing (AM), commonly known as three-dimensional (3D) printing offers a range of fascinating pathwaysforthefabricationofcompositematerialsoverother monolithicprototyping.Thus,bymakinguseofthisAM tech-nique,several biomaterialsare being fabricated like tissue engineering[1,2],softcomposites[3],ceramics[4],magnetic materials[5],anddirectbiologicalmaterialprintings[6].Based ontheapplication,thistechniquecanparticularlybehelpful inthebiomedicalsectorfortheregenerationofdefectivebone tissuescaused becauseofaccidentsorsurgicalamputation oftumors[7].Sincetheusageofsyntheticmaterialsforthe developmentofboneimplantshelpstoreconstructthebone tissueswithstrongstructuralsupportandnolosstothe inter-ferencesofbiologicaltissue[8,9].Toserveforsuchbehavior, thebiodegradablematricesareindicatedtoprovide momen-taryscaffoldswithinwhichthebonetissuescanregenerate. Amongmanydifferentpolymers,polylacticacid(PLA)offers excellentbiocompatibility,biodegradability,non-toxicity,and mechanicalstrengthandhencefindsitsusageinmany differ-entclinicalapplicationslikedrugdeliverysystems,surgical stitches,medicalimplantabledevicesetc.[10].

Fuseddeposition manufacturing (FDM) isthe most fre-quentlyusedpracticefortheconstructionofpureplasticparts withlowcosts,negligiblewastes,andsimplicitywith mate-rial switching [11,12]. PLA isone of the most encouraging syntheticpolymers thatcan be usedas asource biomate-rialintheFDMtechniqueandisduetothefactthatitcan undergo degradation in the aqueous medium and is bio-compatibleinthebiologicalsurrounding[12].Ingeneral,the mechanicalpropertiesofpurePLAscaffoldsarecomparable with the natural bone and so, it can be used for cranio-facialbonerestorationand cranial defects[10]. Conversely, thePLA hasstronghydrophobicitythat limitsitsextensive application in medicine and so there is astrong need for theidealbioimplantablescaffoldmaterialthatcanfacilitate the growth and activity of cells like cell adhesion, prolif-eration, and functional differentiation [13]. Besides that, it mustbebioactiveorbioresorbablewithadequate mechani-calpropertytoendurestressstatesthatmightappearatthe implantedsite.Inthatway,theimplantablescaffoldcanact asextracellularmatrix(ECM)fortissuerejuvenation.Inrecent worksbyAlvarez-Barretoetal.[14]fabricated Arg––Gly–Asp-modifiedPLAscaffoldstoregulatethecellcharacteristicsand progresstissuefunctioningforabetterandwell-organized tis-sueengineeringapproaches.ThedepositedCaPceramicover PLAnanofibrousscaffoldswascomparabletotheconstituents ofnaturalbone,butnotabletoachievethedesired osteoin-duction[15].Bearinginmindthatthemainconstituentsof natural bone are collagen fibers and hydroxyapatite (HAp) crystals,andinthatway,thenano-HAphasexcellent prop-ertiessuchasbiocompatibilityandbioactivitythatarecrucial forcelldevelopment[9].Consequently,theinorganic/organic compositematerialsencloseagreaterpotentialforbone tis-sueengineeringapplications.Numerousscaffoldshavebeen fabricatedbydirectlymixingthecompositeactiveadditives butleadstouncontrolledhomogeneityinthepolymermatrix [12].

Inourdaytodaylifedealswithvariousviruses,fungi,and bacteriaandthus,themanufacturedHApimplantable mate-rialshouldnotallowanyofthesemicroorganismstogrowon itssurface.ThesyntheticHApdoesnotexhibitany antibac-terialpropertyandthusitbecomesimportanttomodifyits surface with activebacteriostaticelements like Ag,Sr, Zn, Ce,Ti,etc[16,17].Asanexample,thepresenceofAgmetal withactiveantibacterialpropertycaneasilydamagethe bac-terialcellwall,aswellasbindtotheDNAandRNAofbacteria andtherebypreventingthegrowththatfinallyresultsin bac-terial annihilation [18]. Besides, the radius of Ag+ atomis

0.126nmwhichisalmostthesameastheradiusofCa2+atom (0.100nm),thereforeundersomeconditions,theAgionscan bereplacedbytheCaionsintheHApcrystallattice. There-fore,toadvancethe biomedicalandclinicaluses ofHAp,it isveryessentialtoincorporateAgionsintotheHAp’scrystal latticeandinthatview,someoftheresearchershavefocused ondevelopingHAp-basedcompositecoatings[19,20].

BytakingadvantageofthebioceramicpropertiesofHApto serveasanaturalboneandAg’santibacterialproperties,we haveincorporatedAg+ionsintotheHApcrystalstoform

Ag-HApandfurthersurfacemodifiedwithPLA scaffoldsusing PVA(polyvinylalcohol)tofinallygenerateAg-HAp/PLA scaf-fold. Thehighlightsofthe study reportedhere includethe fabricationofrequiredinterconnectedporousPLA scaffolds bytheFDMtechniqueusingappropriateCADdesign.Thus, thepreparedHAP/PLA,Ag-HAp/PLAcompositesandscaffold werecharacterizedforthemicro-structure,crystallinity, ele-mentalcomposition,mechanicalproperties,biocompatibility, andantibacterialefficacy.

2.

Materials

and

methods

2.1. 3DprintingofPLAframeworks

TheCADmodelsforthePLAscaffoldsweredesignedusing CatiadesignsoftwareandfabricatedbyaCrealityEnder-3 pro-HighPrecision3DprinterbyShapetool3DTechnologyFSD machine.BeforetheFDMprocess,theSTL(Standard Tessella-tionLanguage)filecreatedbytheCADsoftwareisfragmented into thin horizontalslicesand the widthofeach layercan bedrivenaspertherequirement[21].Fig.1showstheFDM printer,printingprocess,andtheformedmaterial.

2.2. SynthesisofAg-dopedHAp

For the formationofAg-Happarticles, theprecursors used includetheanalyticalreagentgradecalciumnitrate tetrahy-drate; Ca(NO3)2·4H2O, ammonium dihydrogen phosphate;

(NH4)H2PO4, and silver nitrate; AgNO3 (Merck, Mumbai,

Maharashtra, India). During the synthesis, we first formed nano-HAp bysimplydissolvingthe calciumand phosphate solutionsabovepH10toundergotheprecipitationprocess.In thisprocess,thecommonpracticerequirestheuseofa stoi-chiometricratioofCa:Ptobe1.67andinvolvesthedropwise additionofonereagenttotheotherwithcontinuousstirring underaninertatmosphere.Thisresultsinthegenerationofa suspensionunderatmospherictemperature,whichon wash-ing,drying,andsmashingformsthenano-powderofHAp.

(4)

Fig.1–SchematicrepresentationoftheFDMprintingprocessfortheformationofPLAporousscaffolds.

For the synthesis of Ag-doped HAp, 0.45M of Ca(NO3)2·4H2O along with 0.05M of AgNO3 was first

dis-solved in distilled water and adjusted to a total volume of 250mL and kept in a conical flask. Similarly, a 250mL volumeof0.3Mof(NH4)H2PO4waspreparedseparatelyusing

distilled water and transferred toa burette. On mixing of bothsolutionsataflowrateof3mL/min,roomtemperature, andstirringfor3hresultsintheformationofamilkywhite solution(havingthestoichiometricratioof1.67).Thewhole process pH was maintained at 11 (>10) by the dropwise addition of ammonia to Ca(NO3)2·4H2O+AgNO3 solution.

Thewhite colouredsolutionwaskeptatroomtemperature overnight,followed by washing thrice with distilled water, subjectedtocalcinationat100◦Cfor3h,andfinallysintered at500◦CtoobtainAg-HApcomposite.

2.3. IncorporationofAg-HApcompositeontothe3D PLAframeworks

For the surface modification ofAg-HAp composite at low-temperatureconditions,wehaveusedPLAscaffoldsandfor effectivebonding,polyvinylalcohol(PVA)wasemployedasthe bindingagent.Forthesurfacemodificationreaction,about1g ofPVA(analyticalgrade)wasmixedto50mLofdistilledwater, stirredusingamagneticstirrerat50◦Ctoformahomogenous solution. Now,the Ag-HAp compositedispersedinethanol was added to the PVA solution, whilestirring for another 2h,andaftertheperiod,theFDMprintedPLAscaffoldswere immersedandkeptinthePVAsolutionfor24h.Attheendof theincubationperiod,boththepartswereremoved,allowedto drip-dry,andthenplacedinanairdryermaintainedat50◦Cfor oneweektoobtainthefinalproductofAg-HAp/PLAscaffold.

3.

Characteristic

techniques

3.1. Morphologicalandstructuralcharacterization Themorphologicalorganizationandsurfacenatureof sam-pleswereobservedusingthefieldemissionscanningelectron microscopy (FESEM; JMS7500F; JEOL, Tokyo, Japan) and high-resolution transmission electron microscopy (HRTEM: FEI-TECNAI G2-200kV TWIN). The energy-dispersive X-ray (EDX:X-Max,USA)analysiswitharegularunit(Oxford

Instru-ments,UK)connectedtotheFESEMinstrumentwasemployed fortheelementalmappingandcompositionofelementsinthe composite.Forthesampling,thetestingmaterialswerefirst dispersedinethanol,sonicated,andthenplacedadropof sus-pensionontothecleanedaluminumfoil,driedatatmospheric air,andwassputter-coatedwithgold(EdwardsSputterCoater S150B,London,UK).Similarly, thepowder X-raydiffraction (XRD)analysis(Bruker-D8powderdiffractometer,BrukerAXS GmbH,Karlsruhe,Germany),Fouriertransforminfrared(FTIR) spectroscopy (from Agilent Cary 630, Agilent Technologies, SantaClara,CA,USA),andX-rayphotoelectronspectroscopy (XPS;SSX-100spectrometer)havingmonochromatizedX-ray beamAlK␣radiation(operatingat1486.6eV)wereemployed fortheothercharacterizations.

3.2. Biocompatibilitystudies

3.2.1. MeasurementofFBSadsorptionontotheHAp samples

ThebiocompatibilityofHApandAg-HAp/PLAcompositewas assessedbytheproteinadsorptionassayandforthe analy-sis, thetesting pellets(atadimension10×1mmdia) were engrossedintrisbufferatpH7.4fora20hperiod.Then,the scaffoldswereincubatedinMinimumEssentialMedium (␣-MEM)containing10%FetalBovineSerum(FBS;syntheticcell culturemedia)for4h.Attheendoftheincubationperiod, thescaffoldswerefirstrinsedthoroughlywithanisotonictris buffer solution, and thenthe surfacewasexposed toa2% sodiumdodecyl sulfate(SDS)solutionfor24htoelude any adsorbedproteins.Thetotalcapacityofadsorbedproteinwas investigatedusingtheBCAproteinassayequipmenthaving themicroplatereader(MolecularDevicesLLC,Sunnyvale,CA, USA).

3.2.2. Hemolyticstudies

ThehemocompatibilityofHApandAg-HAp/PLAcomposite wasexamined aspertheearlierproceduredescribed byLv et al. [22]. Briefly, about 1.25mLof sterile saline was first combinedwith1mgoftestingsample(HAporAg-HAp/PLA composite powder)andinaseparatetube, 4mLvolumeof blood collected from the healthy human was dilutedwith thatof5mLsterilesalinesolution.Fromthis,20␮Lofdiluted blood solutionwascollectedandmixedwiththatofa test-ingsamplecontainingtubeandfurtherincubatedat37◦Cfor

(5)

30minandthenall thetubeswere incubatedfor60minat 37◦Cinashakingwaterbath.Thereleaseofhemoglobinwas determined aftercentrifugationbyphotometricanalysis of thesupernatantat540nmusingtheUVspectrophotometer (ShimadzuUV2450)andfurtherthehemolyticrate(HR)was calculatedfromtheEq.(1),

HR= [(Dt−Dnc)/(Dpc−Dnc)]×100% (1)

whereDt,Dnc,andDpccorrespondstotheabsorbancesofthe

testingsample,negativecontrol,andpositivecontrol, respec-tively.

3.3. Antibacterialstudies

Forthetesting,thesamplesweremadeintopelletsof10mm diameterand2mmthickness.Toaccomplishthestudy, ster-ilePetri-dishes(90mmdiameter)comprisingsterilenutrient agarmedium(15mL)weretaken.After24hofbacterial cul-ture,thejustpreparedbacterialinoculumswerespreadover theentiresurfaceofagarmediumthriceusingasterile cot-tonswab,tomakesurethatthebacterialcultureisthoroughly andevenlydistributedonthesurfaceofplates.Thetest sam-pleswereboredinthemediumineachplateandtheplates werepreservedatnormalroomtemperaturefor45minand furtherincubatedat37◦Cfor24h.Finally,thediameterofthe zoneofinhibition(mm)wasmeasuredat3-equidistantplaces takenfromthecenteroftheinhibitionzone,andtheaverage ofthesethreevalueswastakenasthefinal.Allprocedures wereinco-operatedintriplicate.

3.4. Hardnessstudy

For this, the compressive tests were carried out on a 10×10mmdimensionofPLA-coated HApand Ag-HAp/PLA scaffold by making use of the Universal testing machine (INSTRON5566,Germany)withamaximumcompressionload cellof10kNandacross-headspeedof1.0mm/min.

4.

Results

and

discussion

ThemineralizedAg-HAp/PLAporous scaffoldsinthis work usedalow-temperatureprocess tomodifythe PLAsurface ascomparedtotheplasma-sprayedcoatingthatrequires ele-vated temperatures. The use ofmineralized Ag-HAp along withPVA asa biocompatible binder onthe surface ofPLA porous scaffolds under physiological conditions in a more rapidand simplemethodtoemerge exquisitecrystal mor-phologyforcellgrowth.Fig.2showsthecomparisonofthe powderXRDpatternofpureHApandAg-HApcomposite,and fromthefigure,theremarkablepeaksidentifiedatthe2␪of 31.74,32.18, and32.89canbeindexed tothe HApmaterial and alsomatcheswell withthe JCPDScard #89-6495. The veryfeeblepeakforsilverassociatedat2 of38.1 and44.2 (JCPDScard No.4–783) are alsofound. Thesharp peaks of theHApsampleindicateitshighlycrystallinenature(5.16%); whereas,theAg-dopedsilverHAppeaksarebroadsignifying thechange(decrease)incrystallitesize(34.8nm)andhence thecrystallinity(1.95%)ofthedopedsample[23].Theaddition

Fig.2–ComparisonofthepowderXRDpatternofHApand Ag-HApnanopowder.

Table1–Comparisonofthecrystallinitydataforthe

HapbeforeandafterdopingwithAgmetal.

Sample Thecrystallitesize(nm) Crystallinity(%)

HAp 71 5.16

Ag-HAp 34.8 1.95

ofsilvernitrate(0.05Mofsilvernitratesolutionsintocalcium nitratesolution)resultsinthereplacementofCainHApwith AgionsandthusleadstothedistortionofHAplatticeresulting intheformationofamorphousnature.Weobserved signifi-cantlynodifferencefromtheXRDpattern,anditcoulddue tothepreferredorientationofdopedelements(Ag) concen-trationaslow[24];thetracequantityofmetalnitridedopant couldnotbeabletoproduceaconsiderableimpactintheXRD pattern.Sincethedopantconcentrationislow,theimpactof thepeaksintheXRDpatternisveryfeebleandhardlydetected duetothelowerinstrumentaldetectionlimit(Table1).

TheanalysisofcompositesbytheXPStechniqueis com-monly used for the surface analysis and to detect trace elements(excepthydrogen)alongwiththeiroxidationstates inanunknownmaterial.Fig.3representstheXPSsurveyand the Agelemental spectrum ofthe Ag-HAp composite.The surveyspectrumpredictsthepresenceofmajorconstituents fortheelementsofCa,P,Ag,C,and OofAg-HAp compos-ite.Fromthespectra,weobservedthepeaksatthebinding energypositionsof348eVand351eVthatcanbeattributedto theCa2p3/2andCa2p1/2,respectively[25].Similarly,theother

peaksobservedcorrespondingtothebindingenergiesof190 eV,531eV,and532.2eVcorrespondstoP2s,O1selementsof theoxygenatomsassociatedwiththephosphategroupand adsorbedwaterrespectivelyinAg-HAp [26]. Theminuscule peakfoundobviouslyat368.2and374.3eVcorrespondstoAg 3d3/2andAg3d5/2agreeswiththeliterature[23].Althoughthe

concentrationofdopantissmall,thischaracterizationgives additionalevidenceforthesuccessfuldopingofAg+intothe

HAplattices.

Figs. 4 and 5 show the SEM, TEM, elemental mapping, EDX,andSAEDpatternofthepureHAppowderandAg-HAp

(6)

Fig.3–XPSspectrumofAg-HApcompositeandAg’selementalspectrum.

compositerespectively.TheSEMimageprovidesinformation abouttheparticlesizeandtypicalshapefortheas-prepared samples(Fig.4).Itcanbeobservedfromthefiguresofboththe samples,dopedaswellaspureHApexhibitsagglomeration, andcanbeseenthatthedopingofAg+ metalhas

consider-ableinfluenceonthemorphologyofHAppowder.Wenoted fromthe morphologythatthe HApsamplespreparedfrom theAg-dopinghavemuchsmallerparticlesizeasagainstthe pureHApones.Further,theEDXspectraandtheelemental mappingconfirmsfortheuniformdistributionofAginthe

Ag-HApsamplealongwithelementsofCa,P,andO,andthereby confirmingforthesuccessfulformationofAg-HApcomposite. TheTEMmicrographofpureHAp(Fig.4)showstheparticles ofnon-uniformsizedistributionwithelongatedrod-like mor-phologywithasphericallumpofaround50nmsize,whilethe Ag-HApparticles(Fig.5)exhibitsimplesmallrod-shaped mor-phology. Thelengthofthe nanorodsvariedfrom20−30nm andthediameterwasbetween5−10nmandthedoped Ag-HApsampleisamorphousasseenintheSAEDpatternand the brightspotsdiffusetoformrings.Inoneofthesimilar

(7)

Fig.5–SEM,elementalmapping,EDX,TEM,andSAEDpatternofsynthesizedAg-HApnanopowder.

study,Chungetal.(2006)reportedforthepresenceof crys-tallinephaseofAg2OalongwiththeHApandnitratephases

andisstronglyinfluencedbyAg’sdegreeofsubstitutionandin this,theformationofAg2Onucleididnotseemtobedetected

[26].

Fig. 6 displays the stereo zoom optical images ofpure HApandAg-HAp/PLAscaffoldalong withitsEDX andSEM at different magnifications. From the figure (Fig. 6e), the scaffold-coatedHApsampleseemstobeexhibitingthehighly open-porousstructure,wherethe largeporesare intercon-nectedwitheachother.Thesizeofmacroporesdependson thePLAframework,anditiseasytocustomizethescaffolds ofdesiredshapeandsizeasitisparticularlyrequiredforsome needs.Besides,theEDXprovidedelementalanalysis(Fig.6b,f) indicatesthepresenceofallelementslikeCa,P,C,O,andan additionalelementAgforthedopedHApandthereby confirm-ingforthesuccessfulformationofAg-HAp/PLAscaffold.Also, theSEMprovidedmorphologies(Fig.6g–h)showedthatallthe coatingsarecompact,even,andcontainaggregatedgranules atthesurface,ascomparedagainstthepureHAp(Fig.6c–d). TheformationofsuchporousscaffoldsbytheHApcomposite isthemostpromisingmaterialinparticularforbonedefects, repair,andtissueregeneration.Someoftheearlierresearches onscaffoldmaterialshaveconfirmedthesamethattheporous structuresareessentialcriteriafortheconductionofessential nutrientstohelpwiththetissuegrowth[27].

Itiswellrecognizedthatuponimplantation,the adsorp-tion ofessentialnutrients and proteinstakes place onthe biomaterial’sexteriorsurfaceandthisoccursbythe regula-tionofdiversebiologicalproceedingslikebiocompatibility,cell adhesion,immuneresponses,andassociatedblood coagula-tion [28]. Sincethe proteinadsorptionis avibrant process

and is also strongly influenced by the nature of the pro-teinlayersavailableatthesurfaceofbiomaterial,inaddition tothetopographical/textural/pore-sizecharacteristicsofthe biomaterial. The mentioned biomaterial characteristics, in general,decideswhichproteinsarecapabletobindoverthe material[29].Italsoassiststherestriction/adsorptionof cer-tainproteinswithinthedeformitiesofmaterial’ssurfaceand observedthatthetypeofadsorbedproteinatthesurfaceis simplyaffectedbythecharacteristicsoftheunderlying mate-rial,forexample,theporousscaffold’sphysicalandchemical propertiesrestrictitsadsorptioncapacity[30].Takinginto con-sideration these facts, the ␣-MEM with 10% FBS was used to assess the adsorptioncapacityofprotein ontothe pure HApandAg-HAp/PLAcomposites.AsshowninFig.7,thetotal amountofproteinthatgotadsorbedontothesurfacesofthe twomaterialsaredifferentandisattributedtothechanges inthemorphologiesandconstituents.TheAg-HAp/PLA sam-plesupportedthesignificantlyhighproteinadsorptionthan thatofcorrespondingpureHApduetotheavailabilityof addi-tionalAgconstituentand PLAscaffolds thatinfluencesthe crystallinityandporosity.Also,thesurfaceoftheAg-HAp/PLA sampleisunevenandimpregnatedwiththeactiveelement thatsupportsmoreproteinadsorption.However,weseethat the pure HAp materialhas protein adsorption capacity to some extent,but this can bedraggedtoa significant level bymeansofincorporatingtheAgmetalandwithscaffolds, andtherebyshiftingtothepromisinglevels.Furtherstudies havetobeperformedtoenlightenitsbiocompatibilityasa promisingscaffoldingbiomaterial.

Hemolysisisavitalaspecttoevaluatethe biocompatibil-ity ofmaterialand the hemolyticassaysare carriedout to investigate the interaction ofnanoparticles withthe outer

(8)

Fig.6–(a,e)Opticalimages,(b,f)EDXspectrums,SEMimagesat100␮m(c,g),and5␮m(d,h)ofpureHApandAg-HAp/PLA scaffoldrespectively.

Fig.7–FBSadsorptionontothesurfacesofpureHApand Ag-HAp/PLAcomposite.

membranesoftheredbloodcellbyaccessingthedischarged hemoglobin [31]. Since the HAp particles interrelate with manycopiouscellularsystemsinourbody,whilstafewof these interactions can perhapslead to defective cells and kindleplateletactivation,coagulation,andthrombus devel-opment[32,33].Fig.8showsthehemolyticassaycomparison ofHApandAg-HAp/PLAcomposite.AspertheASTMF 756-00guidelines,anysamplewithhemolysisratelessthan2% isconsideredtobenon-hemolytic,andbasedonthis,bothof ourHApcontainingsamplesareconsideredtobethesuitable materialsforbiomedicalapplications. Fromthe testing,we foundthatthehemolysisrateofAg-HAp/PLAcompositefound tobe0.8%greaterthanpureHAp,andstillbeconsideredas non-hemolyticasbothofthesample’svaluesarelessthan2%. Itcanalsobeseenthatthehemolysisratioisstronglyaffected

Fig.8–HemolyticassaycomparisonofpureHApand Ag-HAp/PLAcomposite.

bytheconcentrationofdopantanditsdegreeofcrystallinity, withthe latterhavingamoredominatingrole towardsthe hemolysis[34].

The antimicrobial activity tests were conducted for the pure HAp and Ag-HAp/PLAcomposite against the bacteria E. coli (gram-negative) and S. aureus(gram-positive), where theanalysisofresultsindicatedtheAg-dopedcompositehas higherinhibitionofbacterialgrowthasagainsttheun-doped ones.Also,withintheAg-dopedcomposite,E.colidisplayed more zone ofinhibition (3mm) in comparisonwith gram-positivebacteria(2mm)andthereby signifyingthestronger abilityofS.aureusbacteriatofightagainstthetoxicresponses ofthecomposite(Fig.9).Also,theobservationofno antibacte-rialactivityforthepureHApsampleandisduetotheabsence ofstrongerantibacterialagentAginthesample.However,the observeddifferenceofactivityfortheAg-HAp/PLAcomposite amongE.coliandS.aureusmaybeduetothedifferencesin thecellwallresponsesagainsttheAgmetal.SinceE.colihasa

(9)

Fig.9–AntibacterialassayofpureHApandAg-HAp/PLAcompositeagainstGram-positivebacteria(S.aureus)and Gram-negative(E.coli).

comparativelythinnercellwall(itsassociatedcharacteristics) andtheantioxidantenzymes(catalase)ofS.aureusprovided thesensitivityandstrongeroxidantresistance(respectively) againstthetestedAg-HAp/PLAcomposite[19].

Boneformsthe skeletonsystemofthebody andsoany basic biomechanical requirements of the implanted scaf-foldingbiomaterialincludeadequate bending,compression strength,appropriatetoequalizethestrengthofaparticular implantsite.Themechanicalcharacteristicsofnaturalboneto alargerdegreeofextentfluctuateconcerningage.Numerous researchershavereportedthatthereactionofthehosttothe implantedmaterialismainlydrivenbythemechanicalaswell asbiologicalcharacteristics[35].Researchershaveconducted studiesbycombiningpolymerswithceramicstoovercomethe restrictionsofpolymerstoimproveitshydrophobicbehavior aswellascell adhesionproperties.Inthat view,the incor-poration of PLA polymer for the implant applications has theadditionaladvantageofdecomposingthepolymeritself intocarbon dioxide,water,etcandinthatway,thereisno needtoremovefrom thebody [36]. Thestress-strain anal-ysisofthe fabricated PLAscaffold (Fig. 10) byFDMproved

Fig.10–Thestress-strainanalysisofAg-HAp/PLAscaffold.

tohaveabendingstrengthofapproximately125MPa, com-parable to the strength of cortical bone and so, it can be used for the load-bearing applications. The coating of the scaffold withbiocompatible materialimproves its biocom-patibility as demonstrated byhemolytic assay and protein adsorptionstudies.Therefore,thecustom-madescaffoldsto meettherequirementsofindividualswithdesiredshapescan bepreparedbytheFDMtechniquewithceramicpolymer com-positecoatingtomeetthestrengthcompatiblewiththatof corticalbone.

5.

Conclusion

Thismanuscriptemphasizesasimpleandeffectivewayto amendthesyntheticbio-inertPLApolymerscaffold(prepared byFDMtechnique)toabiocompatiblescaffoldbysuccessfully coatingthesurfacebyAg-HAp/PLAscaffoldbysimpledip coat-ing.TheXRDdiffractogramrevealsthatthereisanincrease incrystallinitywithareductionincrystallitesizeasHApis dopedwithsilver.TheXPSstudiesonAg-HApconfirmedthe incorporationofAgonthecrystalstructureHAp,eventhough theconcentrationofAgdidnotproducevisiblediffractgram producedbyXRD.Thesuccessfulformationofthe compos-itewasconfirmedbytheEDXanalysis,whilethemorphology studies providedthe shapesandsizesoftheparticles.The antibacterialactivityofthecompositepowdershowedgreater inhibitionefficiencytowardsE.colibetterthanS.aureus organ-isms.TheinvitrohemocompatibilitytestoftheAg-HAp/PLA compositeshowedlessthan2%ofhemolyticactivityand con-sideredtobegoodcompatibilitywithhumanblood.Theinvitro proteinadsorptiontestoftheAg-HAp/PLAcompositeshowed moderateadsorptionofFBSonthesurfacenecessaryfor vari-ousnutrientstransport.Finally,thehardnesstestconfirmsthe scaffoldbendingstrengthiscompatiblewiththecorticalbone. Overall,basedonthecumulativeanalysisofinvitro biologi-calandhardnesstests,itcanbesuggestedthatthefabricated nanocompositecoatedAg-HAp/PLAscaffoldmay serveasa potentialpolymericbiomaterialforbonetissueregeneration applications.

(10)

Conflict

of

interest

Theauthorsdeclarenoconflictsofinterest.

Acknowledgments

This work was financially supported by the University of MalayaResearchGrant(RU001-2019,RU001-2020). TheKing SaudUniversityauthorisgratefultotheDeanshipof Scien-tificResearch,KingSaudUniversityforfundingthroughthe ViceDeanshipofScientificResearchChairs..

r

e

f

e

r

e

n

c

e

s

[1] LeeM,DunnJCY,WuBM.Scaffoldfabricationbyindirect three-dimensionalprinting.Biomaterials2005;26:4281–9. [2] ShenH,NiuY,HuX,YangF,WangS,WuD.Abiomimetic3D

microtubule-orientatedpoly(lactide-co-glycolide)scaffold withinterconnectedporesfortissueengineering.JMater ChemB2015;3:4417–25.

[3] FrølichS,WeaverJC,DeanMN,BirkedalH.Uncovering nature’sdesignstrategiesthroughparametricmodelling, multi-material3Dprinting,andmechanicaltesting.AdvEng Mater2017;19:1600848,8pp.

[4] PredoiD,IconaruSL,PredoiMV,Motelica-HeinoM,Guegan R,ButonN.Evaluationofantibacterialactivityofzinc-doped hydroxyapatitecolloidsanddispersionstabilityusing ultrasounds.Nanomaterials2019;9:515,22pp.

[5] ZhuW,LiJ,LeongYJ,RozenI,QuX,DongR,etal.3D-printed artificialmicrofish.AdvMater2015;27:4411–7.

[6] MironovV,PrestwichG,ForgacsG,etal.Tissueengineering byself-assemblyandbioprintingoflivingcells.

Biofabrication2010;2:022001.

[7] BrydoneAS,MeekD,MaclaineS.Bonegrafting,orthopaedic biomaterials,andtheclinicalneedforboneengineering. ProcInstMechEngH2010;224:1329–43.

[8] IconaruSL,ProdanAM,ButonN,PredoiD.Structural characterizationandantifungalstudiesofzinc-doped hydroxyapatitecoatings.Molecules2017;22:604,13pp. [9] CiobanuCS,IconaruSL,CoustumerPL,PredoiD.Vibrational

investigationsofsilver-dopedhydroxyapatitewith antibacterialproperties.JSpectrosc2013:471061,5pp. [10]TofailSAM,KoumoulosEP,BandyopadhyayA,BoseS,

O’DonoghueL,CharitidisC.Additivemanufacturing: scientificandtechnologicalchallenges,marketuptakeand opportunities.MaterToday2018;21:22–3.

[11]BoseS,KeD,SahasrabudheH,BandyopadhyayA.Additive manufacturingofbiomaterials.ProgMaterSci

2018;93:45–111.

[12]KalitaSJ,BoseS,HosickHL,BandyopadhyayA.Development ofcontrolledporositypolymer-ceramicscaffoldsviaFDM. MaterSciEngC2003;23:611–20.

[13]LettJA,SundareswariM,RavichandranK.Porous hydroxyapatitescaffoldsfororthopedicanddental applications—theroleofbinders.MaterTodayProc 2016;3(6):1672–7.

[14]Alvarez-BarretoJF,LandyB,VanGordonS,PlaceL,DeAngelis PL,SikavitsasVI.Enhancedosteoblasticdifferentiationof mesenchymalstemcellsseededinRGD-functionalizedPLLA scaffoldsandculturedinaflowperfusionbioreactor.JTissue EngRegenMed2011;5(6):464–75.

[15]HeC,XiaoG,JinX,SunC,MaPX.Electrodepositionon nanofibrouspolymerscaffolds:rapidmineralization,tunable

calciumphosphatecompositionandtopography.AdvFunct Mater2010;20(20):3568–76.

[16]PredoiD,IconaruSL,PredoiMV.Dextran-coatedzinc-doped hydroxyapatiteforbiomedicalapplications.Polymers 2019;11:886,16pp.

[17]YuanQ,WuJ,QinC,XuA,ZhangZ,LinY,etal.One-pot synthesisandcharacterizationofZn-dopedhydroxyapatite nanocomposites.MaterChemPhys2017;199:122–30. [18]JadalannagariS,DeshmukhK,RamananSR,KowshikM.

Antimicrobialactivityofhemocompatiblesilverdoped hydroxyapatitenanoparticlessynthesizedbymodified sol-geltechnique.ApplNanosci2014;4:133–41.

[19]FieldingGA,RoyM,BandyopadhyayA,BoseS.Antibacterial andbiologicalcharacteristicsofsilvercontainingand strontiumdopedplasmasprayedhydroxyapatitecoatings. ActaBiomater2012;8:3144–52.

[20]RoyM,FieldingGA,BeyenalH,BandyopadhyayA,BoseS. Mechanical,invitroantimicrobial,andbiologicalproperties ofplasma-sprayedsilver-dopedhydroxyapatitecoating.ACS ApplMaterInterf2012;4:1341–9.

[21]GibsonI,RosenDW,StuckerB.Additivemanufacturing technologies:rapidprototypingtodirectdigital manufacturing.2nded.NewYork:Springer;2010.

[22]LvY,ChenX,WangQ,etal.Synthesisandcharacterization ofchitosan-basedbiomaterialsmodifiedwithdifferent activegroupsandtheirrelationshipwithcytotoxicity.J WuhanUnivTechnolMaterSciEdit2007;22:

695–700.

[23]WilliamsonGK,HallWH.X-raylinebroadeningfromfiled aluminiumandwolfram.ActaMetall1953;1:22–31.

[24]CiobanuCS,IconaruSL,ChisriucSC,CostescuA,Coustumer PL,PredoiD.Synthesisandantimicrobialactivityof silver-dopedhydroxyapatitenanoparticles.BiomedResInt 2013;2013:916218,10pp.

[25]GeM,GeK,GaoF,etal.Biomimeticmineralized strontium-dopedhydroxyapatiteonporouspoly(l-lactic acid)scaffoldsforbonedefectrepair.IntJNanomed Nanosurg2018;13:1707–21.

[26]ChungRJ,MingFH,HuangCW,PerngLH,WenHW,ChinTS. Antimicrobialeffectsandhumangingivalbiocompatibility ofhydroxyapatitesol-gelcoatings.JBiomedMaterResB ApplBiomater2006;76:169–78.

[27]StanicV,JanackovicD,DimitrijevicS,etal.Synthesisof antimicrobialmonophasesilver-dopedhydroxyapatite nanopowdersforbonetissueengineering.ApplSurfSci 2011;257:4510–8.

[28]TanJ,SaltzmanWM.Biomaterialswithhierarchically definedmicro-andnanoscalestructure.Biomaterials 2004;25(17):3593–601.

[29]HorbettTA.Biomaterials:interfacialphenomenaand applications.In:CooperSL,PeppasNA,HoffmanAS,Ratner BD,editors.Advancesinchemistryseries.WashingtonDC: AmericanChemicalSociety;1982.

[30]VromanL,AdamsAL,FischerGC,MunozPC,StandfordM. In:CooperSL,PeppasNA,HoffmanAS,RatnerBD,editors. Biomaterials:interfacialphenomenaandapplications. WashingtonDC:AmericanChemicalSociety;1982. [31]LordMS,FossM,BesenbacherF.Influenceofnanoscale

surfacetopographyonproteinadsorptionandcellular response.NanoToday2010;5:66–78.

[32]XiaW,LiJ,WangL,HuangD,ZuoY,YubaoL.Therelease propertiesofsilverionsfromAg-nHA/TiO2/PA66 antimicrobialcompositescaffolds.BiomedMater 2010;5:044105.

[33]QuanR,YangD,WuX,WangH,MiaoX,LiW.Invitro biocompatibilityofgradedhydroxyapatite-zirconia compositebioceramic.JMaterSciMaterMed2008;19: 183–7.

(11)

[34]WiessnerJ,MandelG,HalversonP,MandelN.Theeffectof hydroxyapatitecrystallinityonhemolysis.CalcifTissueInt 1988;42:210–9.

[35]ZhangT,ZhouS,GaoX,YangZ,SunL,ZhangD.A multi-scalemethodformodellingdegradationof

bioresorbablepolyesters.ActaBiomater2017;50: 462–75.

[36]GibsonLJ,AshbyMF,HarleyBA.Cellularmaterialsinnature andmedicine.Cambridge,UK:CambridgeUniversityPress; 2010.

Referenties

GERELATEERDE DOCUMENTEN

Bovendien kan door re- gionale clustering de markt voor biologische streekproducten, in Nederland 5 tot 20% van de omzet in biologische AGF en zuivel, beter worden bediend met

In de tabel zijn de rassen van de Aanbevelende Rassenlijst Korrelmais en Corn Cob Mix (CCM) 2008 opgenomen, aangevuld met rassen die drie jaar onderzocht (maar

In the next part testing of all four panels is described, explicating remarkable aspects and showing failure modes, load distribution during the test, horizontal deflections

However, for the recon- structed surface, the signal will be strongly reduced along the [011] exit direction (see Fig. 2); here, strong additional blocking occurs because

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

In werkput 7 zijn drie kuilen aanwezig met een homogene grijze (S2 en S17) tot grijsgele gevlekte (S16) vulling.. S2 kan gedateerd worden in de

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

C is een buigpunt: de daling gaat van toenemend over in afnemend (minimale helling) en punt E is ook een buigpunt: de stijging gaat over van toenemend in afnemend.. De helling