• No results found

Application of next generation sequencing in clinical microbiology and infection prevention

N/A
N/A
Protected

Academic year: 2021

Share "Application of next generation sequencing in clinical microbiology and infection prevention"

Copied!
10
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Application of next generation sequencing in clinical microbiology and infection prevention

Deurenberg, Ruud H.; Bathoorn, Erik; Chlebowicz, Monika A.; Couto, Natacha; Ferdous,

Mithila; Garcia-Cobos, Silvia; Kooistra-Smid, Anna M. D.; Raangs, Erwin C.; Rosema, Sigrid;

Veloo, Alida C. M.

Published in:

Journal of Biotechnology

DOI:

10.1016/j.jbiotec.2016.12.022

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Deurenberg, R. H., Bathoorn, E., Chlebowicz, M. A., Couto, N., Ferdous, M., Garcia-Cobos, S.,

Kooistra-Smid, A. M. D., Raangs, E. C., Rosema, S., Veloo, A. C. M., Zhou, K., Friedrich, A. W., & Rossen, J. W. A.

(2017). Application of next generation sequencing in clinical microbiology and infection prevention. Journal

of Biotechnology, 243, 16-24. https://doi.org/10.1016/j.jbiotec.2016.12.022

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

JournalofBiotechnology243(2017)16–24

ContentslistsavailableatScienceDirect

Journal

of

Biotechnology

jo u r n al h om ep ag e :w w w . e l s e v i e r . c o m / l o c a t e / j b i o t e c

Application

of

next

generation

sequencing

in

clinical

microbiology

and

infection

prevention

Ruud

H.

Deurenberg

a

,

Erik

Bathoorn

a,1

,

Monika

A.

Chlebowicz

a,1

,

Natacha

Couto

a,1

,

Mithila

Ferdous

a,1

,

Silvia

García-Cobos

a,1

,

Anna

M.D.

Kooistra-Smid

a,b,1

,

Erwin

C.

Raangs

a,1

,

Sigrid

Rosema

a,1

,

Alida

C.M.

Veloo

a,1

,

Kai

Zhou

c,1

,

Alexander

W.

Friedrich

a

,

John

W.A.

Rossen

a,∗

aDepartmentofMedicalMicrobiology,UniversityofGroningen,UniversityMedicalCenterGroningen,TheNetherlands

bCerte,DepartmentofMedicalMicrobiology,Groningen,TheNetherlands

cStateKeyLaboratoryforDiagnosisandTreatmentofInfectiousDiseases,CollaborativeInnovationCenterforDiagnosisandTreatmentofInfectious

Diseases,TheFirstAffiliatedHospitalofMedicineSchool,ZhejiangUniversity,Hangzhou,China

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received31October2016

Receivedinrevisedform

27December2016

Accepted28December2016

Availableonline29December2016

Keywords:

Infectionprevention

IonPGMTM

Clinicalmicrobiology

MiSeq

Nextgenerationsequencing

Wholegenomesequencing

a

b

s

t

r

a

c

t

Currentmoleculardiagnosticsofhumanpathogensprovidelimitedinformationthatisoftennot suffi-cientforoutbreakandtransmissioninvestigation.Nextgenerationsequencing(NGS)determinestheDNA sequenceofacompletebacterialgenomeinasinglesequencerun,andfromthesedata,informationon resistanceandvirulence,aswellasinformationfortypingisobtained,usefulforoutbreakinvestigation. Theobtainedgenomedatacanbefurtherusedforthedevelopmentofanoutbreak-specificscreening test.Inthisreview,ageneralintroductiontoNGSispresented,includingthelibrarypreparationandthe majorcharacteristicsofthemostcommonNGSplatforms,suchastheMiSeq(Illumina)andtheIonPGMTM (ThermoFisher).AnoverviewofthesoftwareusedforNGSdataanalysesusedatthemedicalmicrobiology diagnosticlaboratoryintheUniversityMedicalCenterGroningeninTheNetherlandsisgiven. Further-more,applicationsofNGSintheclinicalsettingaredescribed,suchasoutbreakmanagement,molecular casefinding,characterizationandsurveillanceofpathogens,rapididentificationofbacteriausingthe 16S-23SrRNAregion,taxonomy,metagenomicsapproachesonclinicalsamples,andthedetermination ofthetransmissionofzoonoticmicro-organismsfromanimalstohumans.Finally,weshareourvision ontheuseofNGSinpersonalisedmicrobiologyinthenearfuture,pointingoutspecificrequirements.

©2016TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Identification and characterization of micro-organisms that causeinfectionsarecrucialforsuccessfultreatment,recoveryand safetyofpatients.However,noteverybacterialspeciescanbe suc-cessfullyculturedinthediagnosticlaboratory, andtheavailable moleculartestsareunabletodetectemerginggeneticfeaturesin successfullyevolvingpathogens thatspreadinhumans,animals andtheenvironment. Unrecognizedpathogens caneasilycause hospitaloutbreaks,puttingpatientsatriskduringtheirhospital admissions.

During the last two decades, molecular diagnostic methods haveexperiencedarapiddevelopmentandplayedanincreasingly

∗ Correspondingauthor.

E-mailaddress:j.w.a.rossen@rug.nl(J.W.A.Rossen).

1 Theseauthorshavecontributedequallytothiswork.

importantroleinmedicalmicrobiologylaboratories(Buchanand Ledeboer,2014).Thesemethodshavereducedtheturnaroundtime fromreceivingthesampletothefinalresult,andmadeitpossible todetectnon-cultivablepathogens.However,molecularmethods needaprioriknowledgeofthelikelypathogenicspeciesthatcould bepresent in thesample. One of the molecularmethods used inmedicalmicrobiologylaboratoriesisthesequenceanalysesof genesorthewholegenomeofpathogens.

Sequenceanalysescanbeusedtoanswerdifferentdiagnostic questions,suchas thegeneticrelationshipofeither bacteriaor viruses,thedetectionofmutationsinviralorbacterialgenomes leadingtoresistanceagainstantiviralsorantibiotics,identification offungithroughsequenceanalysesofthe18Sribosomal deoxyri-bonucleicacid(rDNA)oftheinternaltranscribedspacer(ITS)region and identificationof bacteriathrough sequence analysesofthe 16SrDNA (Bush,2013; Deurenbergand Stobberingh,2008; Liu etal.,2012;Reissetal.,2000).In general,Sangersequencingis

http://dx.doi.org/10.1016/j.jbiotec.2016.12.022

(3)

Fig.1. AschematicoverviewofthegeneralworkflowofdiagnosticproceduresincludingNGSinourlaboratory.

usedforthis,precededbyamplificationofeachgeneorgenomic regionusingspecificprimers.Thesame methodcan beapplied fortheidentificationofpathogensinclinicalmaterial.However, thisapproachbecomesproblematicwhenclinicalmaterialismore complexandcontainsmultiplespecies,suchasfaecalsamples.In suchcases,resultsobtainedbySangersequencingarenotreliable andmakeithardorevenimpossibletoidentifyspecificpathogens. Furthermore,thecostofSangersequencingforthesetasksishigh, andtheturnaroundtimeislong.

TheUniversityMedicalCenterGroningen(UMCG)isoneofthe largestuniversityhospitalsinTheNetherlandswith1339bedsand morethan12,000employees.Theclinicalmicrobiology diagnos-ticlaboratoryattheUMCGreceivesaround5750samplesperyear fordetailedmolecularanalysis,ofwhichapproximately1500are subjectedtonextgenerationsequencing(NGS)usingtwoIllumina MiSeqandoneLifeTechnologiesIonPGMTMsequencers.NGSwas

introducedfor routinediagnostics in 2014,andthemajority of indicationsare outbreakinvestigationand genotypingofhighly resistant micro-organisms.NGS is requested by clinical micro-biologistsor infectious disease specialistsin collaboration with molecularmicrobiologistsandinfectioncontrolpractioners.

2. Nextgenerationsequencing

NGS allows sequencing of the whole genome of numerous pathogens in one sequence run, either from bacterial isolates of (different) patients, or from multiple species present in patient materialfrom one individual(metagenomics). Boththe investment-andtherunningcostsofNGShavedecreased dramat-icallyduringthelastdecade(Dark,2013;Sboneretal.,2011).A greatadvantageofNGSisthat,incontrasttoSangersequencing,a singleprotocolcanbeusedforallpathogensforbothidentification andtypingapplications.Therefore,thistechnologyhasbeenproven tobeusefulinmedicalmicrobiologylaboratoriesandforinfection preventionmeasures(Zhouetal.,2016).Aschematicoverviewof

thegeneralworkflowusedforNGSanalysesattheUMCGisshown inFig.1.

ForNGS,thereisnoneedfortargetspecificprimers,whichare neededforSangersequencing.Inasinglerun,thewholegenomeof apathogenissequencedatrandom.Beforesequencing, fragmen-tationofthegenomeisperformed,sincethemaximumlengtha benchtopsequencer cansequencevariesbetween100and1000 bases and thus the genome cannot be sequenced in one part (Junemannetal.,2013;Lomanetal.,2012).Anexceptiontothis arethethirdgenerationofsequencers,suchastheMinION(Oxford Nanopore)andtheSequel(PacificBiosciences),whichcangenerate largerfragments(morethan200kb).However,thesesequencers arenotyetusedintheclinicalmicrobiologylaboratory,duetotheir lackofaffordability, thelowerqualityofthesequences,andthe lowthroughput.Therefore,NGSstillrequiresthepreparationof libraries,inwhichfragmentsofDNAorRNAarefusedtoadapters andbarcodestodistinguishtheDNAofthesequencedisolatesafter sequencing,followedbyaclonalamplification,normalizationand sequencing.Forthis,arobustpreparationofthelibraries,which containsarepresentativesourceoftheDNAorRNAofthegenome underinvestigation,isneeded(Headetal.,2014).

Fragmentation can be performed in several ways, either mechanical,using,e.g.,theAdaptiveFocusedAcoustics(AFA) tech-nologyfromCovaris,followedbyadaptorligation,orenzymatic, suchaswithtransposonsasusedintheNexteraXTLibrary Prepa-ration kit from Illumina. This method has the advantage that fragmentationandfusionoftheadaptorstotheDNAorRNA frag-mentsareperformedinonestep,whichmakesiteasiertoautomate it.Besidesthat,lessinputDNAisneeded.Mechanicalfragmentation hastheadvantagethatthegenerationoftheappropriatefragment lengthislessinfluencedbyfactorspresentinthesamplethatinhibit theenzymesusedduringthelibrarypreparation,andistherefore verysuitableforlibrarypreparationsofdirectsamplematerial,such asbiopsiesandfaecessamples(Headetal.,2014).

NGSlibrariesmaycontainerrorsthatdecreasethedataquality, andthuscandisruptthedatainterpretation.Detailedknowledgeof

(4)

18 R.H.Deurenbergetal./JournalofBiotechnology243(2017)16–24

Table1

PropertiesofcurrentNGSplatforms.

Company Equipment Output/run(Gb) Maximumreadlength(bp) Reads(x106) Runningtime

Illumina MiniSeq 0.6–7.5 2×150 25 4–24h

Illumina Miseq 0.3–15 2×300 25 5–55h

Illumina NextSeq 20–120 2×150 130/400 12–30h

Illumina HiSeq3000 125–700 2×150 2500 <1–3.5days

ThermoFisher IonPGMTM 0.03–2 200–400 0.4–5.5 2–7h

ThermoFisher Ion5STM 0.6–15 200–400 3–80 2.5–4h

ThermoFisher Ion5STMXL 0.6–15 200–400 3–80 <24h

OxfordNanopore MinION 21–42 230,000–300,000 2.2–4.4 1min–48h

PacificBiosciencesa Sequel 0.75–1.25 >20,000 370,000 30min–6h

PacificBiosciencesa RSII 0.5–1 >20,000 55,000 30min–4h

aThePacificBiosciencesdataarepersmartcell;boththeSequelandtheRSIIcanrun1–16smartcellsinonerun.

thekindoferrorsisimportanttofindwaystoavoidthe introduc-tionofsucherrorsandforthecorrectinterpretationoftheNGSdata. Almostallseparatestepsinthesequenceprocedurecanintroduce errors.ThisisespeciallytruewithRNAsequencingthatis techni-callymorechallengingcomparedtoDNAsequencing(Junemann etal.,2013;Lomanetal.,2012).

Atthemoment,anumberofNGSplatformsareavailable.The mostimportantpropertiesofseveralNGSplatforms,suchas out-putand fragmentlength,arepresentedin Table1(Bertelli and Greub,2013;Dark,2013;Junemannetal.,2013;Lomanetal.,2012). ThedifferentNGSplatformsusedifferentsequencingtechnologies. Illuminasequencersusesequencingbysynthesis offluorescent, reversibleterminators,and ThermoFisher sequencersuse semi-conductorsequencing that measurea change inpH duringthe incorporationof nucleotides. PacificBiosciencesusefluorescent nucleotidesintheirsinglemoleculereal-time(SMRT)technology, andOxfordNanoporeplatformsuseioniccurrentsensing,inwhich DNAisguidedthroughnano-pores,therebychangingthecurrentin awaythatisspecificforthetypeofnucleotide.Extensive informa-tiononthedifferentNGSplatformsandtheirmethodofsequencing areavailableonthecompanies’websites.Duetothetechnological developments,thecostofNGSdecreasedbetween2001and2015, whilethespeedofsequencinghasincreased(Dark,2013;Sboner etal.,2011).

3. Softwarefordataanalyses

ThebiggestchallengeconcerningtheintroductionofNGS in theclinicalmicrobiologylaboratoryisthedataanalyses. Nonethe-less,even withlittleknowledgeof bioinformatics,it ispossible toperformNGSdataanalysesfordiagnosticpurposes,usingthe numerous user-friendly software packages available (Edwards andHolt,2013).However,formore in-depthanalysis,scientific knowledgeisrequiredonthegenomicfeaturesandthebiological backgroundofthemicro-organismunderinvestigation.

Aftersequencing,thesequencedfragments(reads)canbede novoassembled(genomeassembly).Hereby,thereadsarealigned againsteachotherwithouttheuseofareferenceorganism.In gen-eral,thelargerthefragments,theeasierand moreaccuratethe genomeassembly willbe.Softwarepackages(Table2), suchas CLCGenomicWorkbench(Qiagen),SPAdesandVelvet,areusedin ourlaboratorytoassemblethegenomes.Thegeneticrelationship betweenisolatescanbeinvestigatedbyusingagene-by-gene com-parisonusingamulti-locussequencingtyping(MLST)approach, eitherbystudyingtheconserved coregenome(cgMLST),orthe wholegenome(wgMLST),whichincludesasetofvariable acces-sorygenes.Severalsoftwarepackages,suchasSeqSphere(Ridom) and BioNumerics (Applied Maths, Biomérieux), or online tools, suchasEnteroBaseandBIGSdb(BacterialIsolateGenomeSequence Database)(JolleyandMaiden,2010),canbeusedforthisapproach.

Furthermore,theuseofanestablishedcgMLSTschemeallowsthe introductionof a commonnomenclaturefor genetically related strains(deBeenetal.,2015; Kohletal.,2014;Ruppitsch etal., 2015).Atthemoment,itisnotclearhowmanyallelestwogenomes maydiffertocallthem(closetobeing)identical.Thesame prob-lemapplieswhencomparingtwogenomesusingsingle-nucleotide polymorphisms(SNP)typing(Maidenetal.,2013).However,the termgeneticdistance(theproportionofdifferentalleles,calculated bydividingthenumberofalleledifferencesbythetotalnumber ofgenessharedbytwosequences)hasbeenrecentlyintroduced, andenablesunbiasedcomparisonsfordifferentcgMLSTorwgMLST schemesaswellasthedefinitionofthresholdsbystudying col-lectionsof epidemiologically and non-epidemiologically related strains(Kluytmans-vandenBerghetal.,2016b).Anadvantageof cgMLSTandwgMLSTisthatthereiscompatibilitybetweencgMLST, wgMLSTandoldertypingmethods,sincebothBioNumericsand SeqSpheregivethesequencetype(ST)asdeterminedby conven-tionalMLSTandthespatype(incaseofStaphylococcusaureus).

SeveralpossibilitiestoanalyseNGSdatacanbefoundonthe websiteoftheCenterforGenomicEpidemiology.Forthedetection ofvirulence-andresistancegenes,VirulenceFinderandResFinder, canbeused. Alternatively,theComprehensive Antibiotic Resis-tanceDatabase(CARD)andtheVirulenceFactorDatabase(VFDB) canbeusedtoobtaindataonresistanceandvirulencegenes.With theseonlinetools,boththenon-assembledsequencedataandthe assembledgenomecanbeuploaded.However,theresultsobtained throughthesewebsitesneedsconfirmationusingothermethods. IncaseofS.aureus,ithasbeenreportedthatthereisagood corre-lationbetweenthepresenceofresistancegenesanditsphenotypic resistancepattern(Aanensenetal.,2016).

FurthercomparativegenomestudiesarepossibleusingArtemis ComparisonTool(ACT)(Carveretal.,2005),Artemis(Carveretal., 2012),andDNAplotter(Carveretal.,2009)fromtheSanger Insti-tute.

SpecificresearchquestionsrequireknowledgeofUnix-systems andtohandlethelargediversityofbioinformaticssoftware pack-ages available for it. Furthermore, software for the analysesof metagenomicsdataisavailable,suchastheMEGANAlignmentTool (Husonetal.,2007).Incontrasttothedecreasedsequencingcosts, thecostsfordatastorageanddataanalyseshaveincreasedduethe generationoflargeamountsofdata,andthecomplexityofit.

4. NGSinclinicalmicrobiology

NGSisalreadyappliedinseveralmedicalmicrobiology labo-ratories,includingourlaboratoryattheUMCG,whereitisused foroutbreakmanagement,molecularcasefinding,characterization andsurveillanceofpathogens,rapididentificationofbacteriausing the16S-23SrRNA region,taxonomy, metagenomicsapproaches

(5)

Table2

SoftwarepackagesfrequentlyusedforNGSdataanalysesinourlaboratory.

Application Software Link Note

Annotation Prokka www.vicbioinformatics.com

RAST http://rast.nmpdr.org

Assembly BioNumerics www.applied-maths.com Commercialsoftware

CLCGenomicWorkbench www.clcbio.com Commercialsoftware

SeqSphere www.ridom.de Commercialsoftware

SPAdes http://bioinf.spbau.ru/spades Unix-based

Velvet www.ebi.ac.uk/∼zerbino/velvet Unix-based

Dataqualitycheck BaseSpace https://basespace.illumina.com Commercialsoftware

BioNumerics www.applied-maths.com Commercialsoftware

CLCGenomicWorkbench www.clcbio.com Commercialsoftware

FastQC www.bioinformatics.babraham.ac.uk

Identification K-merFinder www.genomicepidemiology.org

NCBIBLAST www.ncbi.nlm.nih.gov/blast

Metagenomics MEGAN http://ab.inf.uni-tuebingen.de/software/malt

Phylogeny FastTree www.microbesonline.org/fasttree

RAxML http://sco.h-its.org/exelixis/software.html

SeqSphere www.ridom.de Commercialsoftware

SNPTree www.genomicepidemiology.org

Resistance ARDB https://ardb.cbcb.umd.edu

CARD https://card.mcmaster.ca

ResFinder www.genomicepidemiology.org

SNPcalling BioNumerics www.applied-maths.com Commercialsoftware

CLCGenomicWorkbench www.clcbio.com Commercialsoftware

Samtools www.htslib.org

SeqSphere www.ridom.de Commercialsoftware

Typing(wgMLST) BIGSdb http://bigsdb.readthedocs.io

BioNumerics www.applied-maths.com Commercialsoftware

CLCGenomicWorkbench www.clcbio.com Commercialsoftware

EnteroBase https://enterobase.warwick.ac.uk

SeqSpere www.ridom.de Commercialsoftware

Virulence VFDB www.mgc.ac.cn/VFs

VirulenceFinder www.genomicepidemiology.org

Visualisation& ACT www.sanger.ac.uk/science/tools

comparativestudy Artemis www.sanger.ac.uk/science/tools

BRIG https://sourceforge.net/projects/brig/

ClustalW www.genome.jp/tools/clustalw

DNAplotter www.sanger.ac.uk/science/tools

WebACT www.webact.org

onclinicalsamples,andthedeterminationofthetransmissionof zoonoticmicro-organismsfromanimalstohumans.

4.1. Outbreakmanagement

The advantages of using whole genome sequencing (WGS)-based typing is promoting the implementation of NGS for epidemiologicalstudiesandpublichealthinvestigations.Itis espe-ciallyimportantandhelpfulinoutbreakdetectionandmonitoring the evolution and dynamics of multi-drug resistant pathogens (ECDC,2016).Severalstudiesillustratedtheusefulnessof WGS-based typing for disclosing and tracing the dissemination of emergingpathogens.Indeed,itwasusedinourhospitalto charac-terizeanewlyemergingCTX-M-15producingK.pneumoniaeclone withsequencetype(ST)1427(Zhouetal.,2015b).Inaddition,the transmissionofaCTX-M-15-producingST15Klebsiellapneumoniae betweenpatientstreated ina singlecentreand thesubsequent inter-institutionalspread bypatientreferralhasbeentracedby genomicphylogeneticanalysis(Fig.2).Theinvestigationallowed theearlydetectionofaK.pneumoniaehigh-risk-clone(HiRiC)with prolongedcirculationintheregionalpatientpopulation(Zhouetal., 2016).Furthermore,thisstudyshowedtheusefulnessofaunique markerapproach, inwhich a clone-specificPCR wasdeveloped toinvestigatethedisseminationoftheHiRiCbetweenhealthcare centres.

In additiontooutbreaktracingand characterization,theuse of WGSalsoallows theimplementationofcontrol measuresto avoid thespread ofresistant bacterialclones.An outbreakof a colistin-resistantcarbapenemase-producingK.pneumoniae(KPC) withinter-institutionalspreadinTheNetherlands,wascontrolled bytransferringallpositive residentstoaseparatelocation out-sidetheinstitution,whereadedicatedteamcaredforthepatients (Weteringsetal.,2015).

Apartfrommultidrug-resistantbacteria,WGSisalsousefuland applicabletocharacterizehighly-virulentbacteria,suchasshiga toxin-producingEscherichiacoli(STEC)O104:H4.Thisbacterium hasemergedasanimportantpathogenandhasbeenresponsiblefor largeoutbreaks.However,therehasbeenlittleinformationabout theevolutionaryhistoryandgenomicdiversityofit.Phylogenetic analysisofoutbreakandnon-outbreakrelatedisolatesusingWGS provided an evolutionarycontext and revealed lineage-specific markers, indicative for selective pressure and niche adaptation (Zhouetal.,2015a).Inaddition,core-genomephylogenetic analy-sisofshigatoxin-producingEnteroaggregativeE.coli(EAECStx2a+) O104:H4showeddifferentclusteringanddifferentresistanceand virulence patternsdepending onthetime ofisolation (Ferdous etal.,2015).ThesestudiesreflecttheimportanceofNGSasahigh discriminatory powertool todifferentiate betweenclones with specificpropertiesandtousetheobtainedknowledgeforpatient management,infectionpreventionandevolutionarystudies.

(6)

20 R.H.Deurenbergetal./JournalofBiotechnology243(2017)16–24

Fig.2.Thetransmissionroutewasreconstructedbyepidemiologicalandgenomicdata.Eachnoderepresentsapatient,andanarrowindicatesapossibletransmission

eventfromonepatienttoanother.Thebluearrowwithsolidlinerepresentsadirecttransmissioneventsupportedbybothepidemiologicaldataandgeneticdata,theblue

arrowwithdashlinerepresentsanindirecttransmission(e.g.viaenvironment)supportedbyepidemiologicaldata,andtheredarrowindicatestheequallyparsimonious

transmissionlinkwhichcannotberesolvedbyneitherepidemiologicaldatanorgeneticdata.Theinter-institutionaltransferofthepatientisshownbydashlines,onwhich

thedistancebetweeninstitutionsisindicated.Theredstarrepresentsanoutbreakatasecondaryhospital,buttheisolateswereunavailableforfurtherresearch(Zhouetal.,

2016).(Forinterpretationofthereferencestocolorinthisfigurelegend,thereaderisreferredtothewebversionofthisarticle.)

4.2. Molecularcasefinding

Molecularcasedefinitionsofoutbreakisolatesarecommonly usedinoutbreakinvestigations.NGSdatabasescanretrospectively besearchedforcasesincomplexandcomprehensiveoutbreaks. Thismayresultindetectionofcasesthatwouldnothavebeenfound bytraditionalepidemiologicalinvestigation.Inastudy,aNewDelhi Metallo-ß-lactamase-5 (NDM-5)-producing K. pneumoniae ST16 strainwasisolated froma Dutchpatientfroma long-termcare facilitywithoutarecenthistoryoftravelabroad.Molecularcase findingshowedthattheDutchstrainwasclonallyrelatedtostrains isolatedfromfourpatientsinDenmarkin2014(Bathoornetal., 2015),buttherewerenoobviousepidemiologicallinksbetween thecasesintheDanishand Dutchhospitals.Europeannational surveillancecentreswerecontactedformolecularcasefindingin theirNGSdatabases,butnoadditionalcasesweredetected.

Otherexamplesof molecular case findingin NGS databases havebeenreportedafterthediscoveryoftheplasmidresistance genemcr-1, responsiblefor colistinresistance, in life-stock and hospitalisedpatients.ItsintroductioninEuropeancountrieswas investigatedusingaretrospectivelysearchforthemcr-1genein NGSdatabases.ThisresultedinthedetectionofcasesinDenmark, Germany,andTheNetherlands(Falgenhaueretal.,2016;Hasman et al., 2015; Kluytmans-van den Bergh et al., 2016a). In The Netherlands, more than 2000Dutch Enterobacteriaceae isolates werescreenedwithinafewhourstorevealthepresenceofthe mcr-1gene(Kluytmans-vandenBerghetal.,2016a).So,NGSdata already presentcan beusedtoscreen for thepresence ofnew (antibioticresistance)genes(insilicoscreening).

4.3. Characterizationandsurveillanceofpathogens

Thecurrentroutineprocedureforpathogencharacterizationis basedonalargevarietyofbacteriological,biochemicaland molec-ularmethods,makingthisprocedurelaborious,time-consuming, andexpensive.NGSmayserveasaperfectone-steptooltostudy abroadrangeofpathogencharacteristicsandisapplicableona widerangeofpathogens (Aanensenetal.,2016;Fournieretal.,

2014;Hasmanetal.,2014).Knowledgeofthevirulenceprofileofa pathogeniscrucialtopredictthediseaseseverity,outcomeofthe infectionandtoallowriskassessmentduringtheearlyonsetofthe disease.WGShasthepotentialtomakeasubstantialcontribution todeterminethepresenceofvirulencefactorsusingseveralonline tools,sinceitisnotrestrictedtoaspecificgene(Franzetal.,2014; Laabeietal.,2014).

Inalargecohortstudy,WGSwasusedformolecular charac-terizationofSTEC, resultingin aclearunderstandingaboutthe populationstructureandgenomicplasticityofSTECintheregions aroundthecities Groningenand Rotterdamin TheNetherlands (Ferdousetal.,2016).Allrelevantinformationcouldbeextractedin silicofromthesequencedata,includinggenotype,serotype,MLST profile,virulenceandantibioticresistanceprofiles,andthe phylo-geneticbackgroundtoobtaintheoverallmolecularfeatureswith ahighdiscriminationamongcloselyrelatedstrains.NGSallowed tocharacterizeandcomparemanystrainsindetailwithina rela-tivelyshorttimespan.Thus,forarapidandimprovedmolecular epidemiologicalsurveillanceofpathogensatregionalandnational scale,theroleofWGSisundeniable.

NGS isalsohelpfulindetection ofnovelresistancegenesin bacteria,bothincurrentaswellasinhistoricalstraincollections. Novelvariantsofantibioticresistancegenes(ARG)canbeidentified usingNGS,andfurtherexperimentscanbeperformedtodetermine ifthesegenesareindeedresponsiblefortheobservedantibiotic resistancepattern(Nijhuisetal.,2015).

4.4. TargetedNGSofthe16S-23SrRNAclusterregionforrapid bacterialidentificationinclinicalspecimen

NGSallowsculture-freedetectionofatheoreticallyunlimited numberofpathogensandthusprovidesinsightinthefull micro-biome.Metagenomicswillbetheultimateapproachindetectingall micro-organisms(e.g.bacteria,viruses,fungi)inaclinicalsample (Hasmanetal.,2014).However,analysisoflargedatasetsrequires acombinationofbioinformaticsskillsandcomputationalresources thatisnowadaysmostlyabsentindiagnosticmedical microbiolog-icallaboratories.Furthermore,metagenomicsapproachesaretime

(7)

consumingastheturnaroundtimeisapproximatelyfourtofive days.

Tofillthegapbetweentheconventionalmethods(cultureand PCR)andmetagenomics,aculture-free approachusingtargeted NGSappearstobeanexcellentapproachtodetectand identify bacterialspecies.Comparedtometagenomics,itisfaster,less com-plicatedandcheaper,andthereforemorelikelytogetimplemented indiagnosticlaboratorieswithinashorttimeframe.The16SrRNA genesequencehasbeenproventobeareliablegeneticmarkeras itispresentinallbacteria,andthefunctionhasnotchangedover time(Patel,2001).Itcanbeapplieddirectlyonclinicalmaterials andhasproventobeavaluablesupplementarytestindailyclinical practice(Schuurmanetal.,2004;Srinivasanetal.,2012).However, highsequencesimilaritiesinthisgenebetweencertainbacterial speciesdonotalwaysleadtoanunequivocalidentification(Kalia etal.,2016).

Recently, we developed an innovative culture-free 16S-23S rRNANGSapproachforthedetectionandidentificationof bacte-rialspeciesinclinicalsamples.Themethodprovedtobesuperior toothercommonlyusedidentificationmethodsandcorrectly iden-tifiedpathogensinurinesamplesthatwerealsoidentifiedasthe causeforurinarytractinfectionswithconventionalculture(Sabat etal.,2016).Furthermore,themethodallowssimultaneous iden-tificationofseveralpathogensinclinicalmaterialsthatpreviously wouldhaveremainedunculturedandPCRnegative.Clearly,this willhaveanenormousclinicalimpactandwillhaveconsequences for patient treatment, including improvedantibiotic treatment. Finally,thismethodwillallowclinicalmicrobiologylaboratoriesto implementNGSintheirroutinediagnosticlaboratoryandtokeep upwithtechnologicalandbioinformaticsdevelopmentsrequired tobeabletoimplementmetagenomicsindiagnosticsinthefuture. 4.5. WGSandtaxonomy

Intheeighteenthcentury,Linnaeus(Linnaeus,1735)provided guidelinesforclassificationoflivingcreaturesbasedontheir phe-notypicfeatures.Acenturylater,Darwinaddedthephylogenetic component to thetaxonomy (Darwin, 1859).The taxonomy of bacterialspecieschangeddramaticallybytheintroductionof16S rRNAgenesequencing.Nowadays,WGSisalsousedtoidentifyand describenewspecies.Bycomparingthewholegenomesequences ofdifferentspecieswitheachother,thelimitedtaxonomic reso-lutionofonlythe16SrRNAgenecanbeovercome(Tindalletal., 2010).AnotherchangeintaxonomymaybeexpectedwhenWGS isusedforrevealingthetaxonomyofbacteria.

Indeed,usingWGSfor taxonomypurposesallowstoinclude more genes to delineate between species than the classical DNA–DNAhybridizationor16SrRNAsequencingmethodsthereby improvingtheresolution. Furthermore,as WGScan beusedto calculatetaxonomictreesbasedonthewholegenome-sequence alignment ofallthegenes presentin thecoregenome,a more robusttreewillbeobtained(Daubinetal.,2001).Ithasalready beenproposedthatdescriptionsofnewtaxashouldalsoincludea draftgenomesequence,withatleast20timescoverage(Thompson etal.,2013).

4.6. Metagenomicsinclinicalmicrobiology

Asalreadymentioned,NGScanbeapplieddirectlytoclinical specimens.NotonlybyusingatargetedNGSapproach,butalso bysequencingtheDNAorRNAfrompatientsamplesbyshotgun metagenomicssequencing(Fig.3).Usingthismethod,itis possi-bletoinvestigatethepresenceofpathogensandthepresenceof virulenceand/orresistancegenesinonesequencerun.

A recentstudy compared thedetection ofviruses inknown respiratory virus-positive samples and not previously analysed

nasopharyngealswabsbyanRNAsequencing-basedmetagenomics approachwithamoreconventionalmolecularmethod.The data-analyseswasperformedusingTaxonomer,arapidandinteractive, web-basedmetagenomicsdata-analysestool(Flygareetal.,2016). Overall,themetagenomicsapproachhadahighagreementwith themolecularmethod,detectedvirusesnottargetedbythe molec-ularmethod,andyieldedepidemiologicallyandclinicallyrelevant sequenceinformation(Grafetal.,2016).

Apartfromidentifyingpathogens,a metagenomicsapproach canalsobeusedtostudytheresistome.Thegutisaknownreservoir forantibioticresistancegenes(ARG),andtreatmentwith antibi-oticshasanimpactontheintestinalresistome,whichcanleadto horizontalgenetransferandtheselectionofresistantbacteria.A studyattheUniversityofTübingeninvestigatedthepresenceof ARGsinthegutoverasix-dayperiodofciprofloxacintreatmentin twoindividualsusingmetagenomics.Furthermore,thisstudy pre-sentedanovelmethodforanalysingthedeterminationofantibiotic selectionpressure,whichcanbeusedinhospitalstocompare ther-apeuticregimensandtheireffectontheintestinalresistome.This informationisimportantforclinicianstochooseantibiotictherapy withalowselectiveantibioticpressureonthepatient’sbacteriain thegut,possiblyresultinginadecreaseddisseminationofantibiotic resistantbacteria(Willmannetal.,2015).

4.7. Determiningthetransmissionofzoonoticmicro-organisms fromanimalstohumans

NGSwillalsorevealmoreknowledgeonzoonotictransmission ofmicro-organisms.Thefirststudiesonthistopicwerebasedon low discriminatorymethods,suchasserotyping(Tenoveretal., 1997).Morerecently, studiesusinghigher discriminatory tech-niques, such as pulsed-field gel electrophoresis or multi-locus variablenumbertandemrepeatanalysis,wereusedtodetect spe-cificbacterialclonesinanimalsandhumans(Sabatetal.,2013). However, much remains to be understood, especially when it comes to the frequency of transmission (e.g. single contact or repeatedcontact withanimalsor animalproducts), risk factors associatedwiththeacquisitionofazoonoticmicroorganism(e.g. riskconducts,suchasanimalkissingincompanionanimals,orstool handlinginfarmanimals)andhowtheuseofantibioticsinanimals affectsthetransferofpathogenicbacteriatohumans.

NGSbringsanewperspectivetothesetopics.Ahigher discrimi-natorypowerwillrevealdifferencesinpreviouslyindistinguishable animalandhumanbacterialstrains.Thistogetherwith epidemi-ological information allowssourcetracing ofpotentialzoonotic infections(Harrisonetal.,2013).Inaddition,NGSallowsa com-prehensive analysis of how antibioticuse manipulates specific microbiotaandtheconsequencesforinterspeciestransmissionand willincreasetheknowledgeonmicrobial evolutionthroughthe analysisofbacterialgenomes,namelythevariableregions,which usuallydeterminehost-adaptationandthepotentialofspreadto differenthosts(Harrisonetal.,2014;Priceetal.,2012).

Asthepatients’safetyisdependingonitsenvironment, includ-ing their contact with food and animals, research projects are currently performedin the UMCGto understandthedynamics of transmission of bacteria between humans, animals and the environment.Thesestudiesareperformedincollaborationwith veterinaryresearchgroupsandfocusonanti-microbialresistant bacteria.Inonesuchstudy,themcr-1genewasdetectedbyWGS tobepresentinthreeE.colistrainsisolatedfromretailchicken meat.Althoughnoneofthehumanstrainscarriedthisgene,two ofthethreestrainsbelongedtoST117,acommoncloneinboth poultryandhumans,representingapotentialpublichealthconcern (Kluytmans-vandenBerghetal.,2016a).

(8)

22 R.H.Deurenbergetal./JournalofBiotechnology243(2017)16–24

Fig.3. Anexampleofanoutputofametagenomicsapproachofafaecalsample.Thedifferentcoloursrepresentdifferentbacterialfamilies.

5. Conclusionandoutlook

ForgeneratingNGSdatafromsamplesoriginatingfromhumans, animals,foodandtheenvironment, thesamelaboratory proto-colforlibrarypreparationcanbeused,and,afterdataanalyses, informationonthepresenceofspecificantibioticresistanceand virulencegenesisobtained.Furthermore,NGSmakesitpossible tostandardisetypingmethodsforpathogens(“onetestfitsall”). TheroleofNGSinmedicalmicrobiologylaboratorieswillincrease duringthenextyears,not onlyfor research,butalso,andmore importantly,formoleculardiagnostics,infectionprevention,the investigationofoutbreaksbytheuseofauniqueoutbreakmarker approach,thecharacterizationandsurveillanceofpathogens,the

detectionofnovelresistancegenesand fortheapplicationof a metagenomicsapproachonclinicalsamples.

However,furtherstudiesarerequired toimprovethe work-flowfor NGS,in particularshortentheturnaroundtimeforthe librarypreparation and therunsonthe NGSplatforms, and, at thesametime,furtherreducingcosts.Next,automaticpipelines fordata-analysesandeasy-to-usesoftwareformetagenomicshave tobedeveloped. Additionally,moreestablishedtypingschemes forpathogens andcut-offvalues forthesetypingschemeshave to be established, leading to reference databases with genetic andmetadata,and(inter)regionalandinternationalcollaborations. Importantly,externalqualitycontrolsforproficiencytestinghave tobedeveloped.Onlythenwillpatientguidanceandinfection con-trolmanagementatlocal,(inter)regionalandinternationallevel,

(9)

aswellastargetedantibiotictherapy usingNGSdatabecomea possibility,leadingtopersonalisedmicrobiology.

Conflictofinterest

Theauthorsdeclarethattheyhavenoconflictofinterest.

Fundingsources

Forthewritingofthis reviewnospecificgrantfromfunding agenciesinthepublic,commercial,ornot-for-profitsectorswas received.

References

Aanensen,D.M.,Feil,E.J.,Holden,M.T.,Dordel,J.,Yeats,C.A.,Fedosejev,A.,Goater,

R.,Castillo-Ramirez,S.,Corander,J.,Colijn,C.,Chlebowicz,M.A.,Schouls,L.,

Heck,M.,Pluister,G.,Ruimy,R.,Kahlmeter,G.,Ahman,J.,Matuschek,E.,

Friedrich,A.W.,Parkhill,J.,Bentley,S.D.,Spratt,B.G.,Grundmann,H.,European,

S.R.L.W.G.,2016.Whole-genomesequencingforroutinepathogensurveillance

inpublichealth:apopulationsnapshotofinvasiveStaphylococcusaureusin Europe.MBio7,e00444-16.

Bathoorn,E.,Rossen,J.W.,Lokate,M.,Friedrich,A.W.,Hammerum,A.M.,2015.

IsolationofanNDM-5-producingST16KlebsiellapneumoniaefromaDutch patientwithouttravelhistoryabroad,August2015.EuroSurveil.20,30040.

Bertelli,C.,Greub,G.,2013.Rapidbacterialgenomesequencing:methodsand

applicationsinclinicalmicrobiology.Clin.Microbiol.Infect.19,803–813.

Buchan,B.W.,Ledeboer,N.A.,2014.Emergingtechnologiesfortheclinical

microbiologylaboratory.Clin.Microbiol.Rev.27,783–822.

Bush,K.,2013.Proliferationandsignificanceofclinicallyrelevantbeta-lactamases.

Ann.N.Y.Acad.Sci.1277,84–90.

Carver,T.J.,Rutherford,K.M.,Berriman,M.,Rajandream,M.A.,Barrell,B.G.,Parkhill,

J.,2005.ACT:theartemiscomparisontool.Bioinformatics21,3422–3423.

Carver,T.,Thomson,N.,Bleasby,A.,Berriman,M.,Parkhill,J.,2009.DNAPlotter:

circularandlinearinteractivegenomevisualization.Bioinformatics25, 119–120.

Carver,T.,Harris,S.R.,Berriman,M.,Parkhill,J.,McQuillan,J.A.,2012.Artemis:an

integratedplatformforvisualizationandanalysisofhigh-throughput sequence-basedexperimentaldata.Bioinformatics28,464–469.

deBeen,M.,Pinholt,M.,Top,J.,Bletz,S.,Mellmann,A.,vanSchaik,W.,Brouwer,E.,

Rogers,M.,Kraat,Y.,Bonten,M.,Corander,J.,Westh,H.,Harmsen,D.,Willems,

R.J.,2015.Coregenomemultilocussequencetypingschemeforhigh-resolution

typingofEnterococcusfaecium.J.Clin.Microbiol.53,3788–3797.

Dark,M.J.,2013.Whole-genomesequencinginbacteriology:stateoftheart.Infect.

DrugResist.6,115–123.

Darwin,C.,1859.OntheOriginofSpeciesbyMeansofNaturalSelection,orthe

PreservationofRacesintheStruggleforLife.JohnMurray,London.

Daubin,V.,Gouy,M.,Perriere,G.,2001.Bacterialmolecularphylogenyusing

supertreeapproach.GenomeInform.12,155–164.

Deurenberg,R.H.,Stobberingh,E.E.,2008.TheevolutionofStaphylococcusaureus.

Infect.Genet.Evol.8,747–763.

ECDC,2016.ExpertOpiniononWholeGenomeSequencingforPublicHealth

Surveillance.

Edwards,D.J.,Holt,K.E.,2013.Beginner’sguidetocomparativebacterialgenome

analysisusingnext-generationsequencedata.Microb.Inform.Exp.3,2.

Falgenhauer,L.,Waezsada,S.E.,Yao,Y.,Imirzalioglu,C.,Kasbohrer,A.,Roesler,U.,

Michael,G.B.,Schwarz,S.,Werner,G.,Kreienbrock,L.,Chakraborty,T.,2016.

Colistinresistancegenemcr-1inextended-spectrum

beta-lactamase-producingandcarbapenemase-producingGram-negative bacteriainGermany.LancetInfect.Dis.16,282–283.

Ferdous,M.,Zhou,K.,deBoer,R.F.,Friedrich,A.W.,Kooistra-Smid,A.M.,Rossen,

J.W.,2015.ComprehensivecharacterizationofEscherichiacoliO104:H4

isolatedfrompatientsintheNetherlands.Front.Microbiol.6,1348.

Ferdous,M.,Friedrich,A.W.,Grundmann,H.,deBoer,R.F.,Croughs,P.D.,Islam,

M.A.,Kluytmans-vandenBergh,M.F.,Kooistra-Smid,A.M.,Rossen,J.W.,2016.

MolecularcharacterizationandphylogenyofShigatoxin-producing EscherichiacoliisolatesobtainedfromtwoDutchregionsusingwholegenome sequencing.Clin.Microbiol.Infect.22,642.e1–642.e9.

Flygare,S.,Simmon,K.,Miller,C.,Qiao,Y.,Kennedy,B.,DiSera,T.,Graf,E.H.,Tardif,

K.D.,Kapusta,A.,Rynearson,S.,Stockmann,C.,Queen,K.,Tong,S.,Voelkerding,

K.V.,Blaschke,A.,Byington,C.L.,Jain,S.,Pavia,A.,Ampofo,K.,Eilbeck,K.,Marth,

G.,Yandell,M.,Schlaberg,R.,2016.Taxonomer:aninteractivemetagenomics

analysisportalforuniversalpathogendetectionandhostmRNAexpression profiling.GenomeBiol.17,111.

Fournier,P.E.,Dubourg,G.,Raoult,D.,2014.Clinicaldetectionandcharacterization

ofbacterialpathogensinthegenomicsera.GenomeMed.6,114.

Franz,E.,Delaquis,P.,Morabito,S.,Beutin,L.,Gobius,K.,Rasko,D.A.,Bono,J.,

French,N.,Osek,J.,Lindstedt,B.A.,Muniesa,M.,Manning,S.,LeJeune,J.,

Callaway,T.,Beatson,S.,Eppinger,M.,Dallman,T.,Forbes,K.J.,Aarts,H.,Pearl,

D.L.,Gannon,V.P.,Laing,C.R.,Strachan,N.J.,2014.Exploitingtheexplosionof

informationassociatedwithwholegenomesequencingtotackleShiga

toxin-producingEscherichiacoli(STEC)inglobalfoodproductionsystems.Int. J.FoodMicrobiol.187,57–72.

Graf,E.H.,Simmon,K.E.,Tardif,K.D.,Hymas,W.,Flygare,S.,Eilbeck,K.,Yandell,M.,

Schlaberg,R.,2016.UnbiaseddetectionofrespiratoryvirusesbyuseofRNA

sequencing-basedmetagenomics:asystematiccomparisontoacommercial PCRpanel.J.Clin.Microbiol.54,1000–1007.

Harrison,E.M.,Paterson,G.K.,Holden,M.T.,Larsen,J.,Stegger,M.,Larsen,A.R.,

Petersen,A.,Skov,R.L.,Christensen,J.M.,BakZeuthen,A.,Heltberg,O.,Harris,

S.R.,Zadoks,R.N.,Parkhill,J.,Peacock,S.J.,Holmes,M.A.,2013.Wholegenome

sequencingidentifieszoonotictransmissionofMRSAisolateswiththenovel mecAhomologuemecC.EMBOMol.Med.5,509–515.

Harrison,E.M.,Weinert,L.A.,Holden,M.T.,Welch,J.J.,Wilson,K.,Morgan,F.J.,

Harris,S.R.,Loeffler,A.,Boag,A.K.,Peacock,S.J.,Paterson,G.K.,Waller,A.S.,

Parkhill,J.,Holmes,M.A.,2014.Asharedpopulationofepidemic

methicillin-resistantStaphylococcusaureus15circulatesinhumansand companionanimals.MBio5,e00985–00913.

Hasman,H.,Saputra,D.,Sicheritz-Ponten,T.,Lund,O.,Svendsen,C.A.,

Frimodt-Moller,N.,Aarestrup,F.M.,2014.Rapidwhole-genomesequencingfor

detectionandcharacterizationofmicroorganismsdirectlyfromclinical samples.J.Clin.Microbiol.52,139–146.

Hasman,H.,Hammerum,A.M.,Hansen,F.,Hendriksen,R.S.,Olesen,B.,Agerso,Y.,

Zankari,E.,Leekitcharoenphon,P.,Stegger,M.,Kaas,R.S.,Cavaco,L.M.,Hansen,

D.S.,Aarestrup,F.M.,Skov,R.L.,2015.Detectionofmcr-1encoding

plasmid-mediatedcolistin-resistantEscherichiacoliisolatesfromhuman bloodstreaminfectionandimportedchickenmeat,Denmark2015.Euro Surveil.20,30085.

Head,S.R.,Komori,H.K.,LaMere,S.A.,Whisenant,T.,VanNieuwerburgh,F.,

Salomon,D.R.,Ordoukhanian,P.,2014.Libraryconstructionfor

next-generationsequencing:overviewsandchallenges.Biotechniques56, 61–64.

Huson,D.H.,Auch,A.F.,Qi,J.,Schuster,S.C.,2007.MEGANanalysisofmetagenomic

data.GenomeRes.17,377–386.

Jolley,K.A.,Maiden,M.C.,2010.BIGSdb:scalableanalysisofbacterialgenome

variationatthepopulationlevel.BMCBioinform.11,595.

Junemann,S.,Sedlazeck,F.J.,Prior,K.,Albersmeier,A.,John,U.,Kalinowski,J.,

Mellmann,A.,Goesmann,A.,vonHaeseler,A.,Stoye,J.,Harmsen,D.,2013.

Updatingbenchtopsequencingperformancecomparison.Nat.Biotechnol.31, 294–296.

Kalia,V.C.,Kumar,R.,Kumar,P.,Koul,S.,2016.Agenome-wideprofilingstrategyas

anaidforsearchinguniqueidentificationbiomarkersforStreptococcus.Indian J.Microbiol.56,46–58.

Kluytmans-vandenBergh,M.F.,Huizinga,P.,Bonten,M.J.,Bos,M.,DeBruyne,K.,

Friedrich,A.W.,Rossen,J.W.,Savelkoul,P.H.,Kluytmans,J.A.,2016a.Presence

ofmcr-1-positiveEnterobacteriaceaeinretailchickenmeatbutnotinhumans intheNetherlandssince2009.EuroSurveill.21,30149.

Kluytmans-vandenBergh,M.F.,Rossen,J.W.,Bruijning-Verhagen,P.C.,Bonten,

M.J.,Friedrich,A.W.,Vandenbroucke-Grauls,C.M.,Willems,R.J.,Kluytmans,

J.A.,2016b.Wholegenomemultilocussequencetypingofextended-spectrum

beta-lactamase-producingEnterobacteriaceae.J.Clin.Microbiol.54,2919–2927.

Kohl,T.A.,Diel,R.,Harmsen,D.,Rothganger,J.,Walter,K.M.,Merker,M.,Weniger,

T.,Niemann,S.,2014.Whole-genome-basedMycobacteriumtuberculosis

surveillance:astandardized,portable,andexpandableapproach.J.Clin. Microbiol.52,2479–2486.

Laabei,M.,Recker,M.,Rudkin,J.K.,Aldeljawi,M.,Gulay,Z.,Sloan,T.J.,Williams,P.,

Endres,J.L.,Bayles,K.W.,Fey,P.D.,Yajjala,V.K.,Widhelm,T.,Hawkins,E.,Lewis,

K.,Parfett,S.,Scowen,L.,Peacock,S.J.,Holden,M.,Wilson,D.,Read,T.D.,van

denElsen,J.,Priest,N.K.,Feil,E.J.,Hurst,L.D.,Josefsson,E.,Massey,R.C.,2014.

PredictingthevirulenceofMRSAfromitsgenomesequence.GenomeRes.24, 839–849.

Linnaeus,C.,1735.SystemaNaturæ,SiveRegnaTriaNaturæSystematiceProposita

PerClasses,Ordines,Genera,&Species.ApudTheodorumHaak,Leiden.

Liu,W.,Li,L.,Khan,M.A.,Zhu,F.,2012.Popularmolecularmarkersinbacteria.Mol.

Gen.Mikrobiol.Virusol.,14–17.

Loman,N.J.,Misra,R.V.,Dallman,T.J.,Constantinidou,C.,Gharbia,S.E.,Wain,J.,

Pallen,M.J.,2012.Performancecomparisonofbenchtophigh-throughput

sequencingplatforms.Nat.Biotechnol.30,434–439.

Maiden,M.C.,JansenvanRensburg,M.J.,Bray,J.E.,Earle,S.G.,Ford,S.A.,Jolley,K.A.,

McCarthy,N.D.,2013.MLSTrevisited:thegene-by-geneapproachtobacterial

genomics.Nat.Rev.Microbiol.11,728–736.

Nijhuis,R.H.,Oueslati,S.,Zhou,K.,Bosboom,R.W.,Rossen,J.W.,Naas,T.,2015.

OXY-2-15,anovelvariantshowingincreasedceftazidimehydrolyticactivity.J. Antimicrob.Chemother.70,1429–1433.

Patel,J.B.,2001.16SrRNAgenesequencingforbacterialpathogenidentificationin

theclinicallaboratory.Mol.Diagn.6,313–321.

Price,L.B.,Stegger,M.,Hasman,H.,Aziz,M.,Larsen,J.,Andersen,P.S.,Pearson,T.,

Waters,A.E.,Foster,J.T.,Schupp,J.,Gillece,J.,Driebe,E.,Liu,C.M.,Springer,B.,

Zdovc,I.,Battisti,A.,Franco,A.,Zmudzki,J.,Schwarz,S.,Butaye,P.,Jouy,E.,

Pomba,C.,Porrero,M.C.,Ruimy,R.,Smith,T.C.,Robinson,D.A.,Weese,J.S.,

Arriola,C.S.,Yu,F.,Laurent,F.,Keim,P.,Skov,R.,Aarestrup,F.M.,2012.

StaphylococcusaureusCC398:hostadaptationandemergenceofmethicillin resistanceinlivestock.MBio3,e00305–00311.

Reiss,E.,Obayashi,T.,Orle,K.,Yoshida,M.,Zancope-Oliveira,R.M.,2000.

Non-culturebaseddiagnostictestsformycoticinfections.Med.Mycol.38 (Suppl.1),147–159.

Ruppitsch,W.,Pietzka,A.,Prior,K.,Bletz,S.,Fernandez,H.L.,Allerberger,F.,

(10)

24 R.H.Deurenbergetal./JournalofBiotechnology243(2017)16–24

multilocussequencetypingschemeforwhole-genomesequence-basedtyping ofListeriamonocytogenes.J.Clin.Microbiol.53,2869–2876.

Sabat,A.J.,Budimir,A.,Nashev,D.,Sa-Leao,R.,vanDijl,J.,Laurent,F.,Grundmann,

H.,Friedrich,A.W.,2013.Overviewofmoleculartypingmethodsforoutbreak

detectionandepidemiologicalsurveillance.EuroSurveil.18,20380.

Sabat,A.J.,Zantenvan,E.,Akkerboom,V.,Wisselink,G.,Slochterenvan,K.,Boerde,

R.F.,Friedrich,A.W.,Rossen,J.W.A.,Kooistra-Smid,A.M.D.,2016.Targeted

amplificationforbacterialidentificationatthespecies-levelusing next-generationsequencing—increaseddiscriminationofcloselyrelated species.ECCMID,E-posterEP0219.

Sboner,A.,Mu,X.J.,Greenbaum,D.,Auerbach,R.K.,Gerstein,M.B.,2011.Thereal

costofsequencing:higherthanyouthink!GenomeBiol.12,125.

Schuurman,T.,deBoer,R.F.,Kooistra-Smid,A.M.,vanZwet,A.A.,2004.Prospective

studyofuseofPCRamplificationandsequencingof16SribosomalDNAfrom cerebrospinalfluidfordiagnosisofbacterialmeningitisinaclinicalsetting.J. Clin.Microbiol.42,734–740.

Srinivasan,L.,Pisapia,J.M.,Shah,S.S.,Halpern,C.H.,Harris,M.C.,2012.Can

broad-range16Sribosomalribonucleicacidgenepolymerasechainreactions improvethediagnosisofbacterialmeningitis?Asystematicreviewand meta-analysis.Ann.Emerg.Med.60,609–620.

Tenover,F.C.,Arbeit,R.D.,Goering,R.V.,1997.Howtoselectandinterpret

molecularstraintypingmethodsforepidemiologicalstudiesofbacterial infections:areviewforhealthcareepidemiologists.MolecularTypingWorking GroupoftheSocietyforHealthcareEpidemiologyofAmerica.Infect.Control Hosp.Epidemiol.18,426–439.

Thompson,C.C.,Chimetto,L.,Edwards,R.A.,Swings,J.,Stackebrandt,E.,Thompson,

F.L.,2013.Microbialgenomictaxonomy.BMCGenom.14,913.

Tindall,B.J.,Rossello-Mora,R.,Busse,H.J.,Ludwig,W.,Kampfer,P.,2010.Noteson

thecharacterizationofprokaryotestrainsfortaxonomicpurposes.Int.J.Syst. Evol.Microbiol.60,249–266.

Weterings,V.,Zhou,K.,Rossen,J.W.,vanStenis,D.,Thewessen,E.,Kluytmans,J.,

Veenemans,J.,2015.Anoutbreakofcolistin-resistantKlebsiellapneumoniae

carbapenemase-producingKlebsiellapneumoniaeintheNetherlands (July–December2013),withinter-institutionalspread.Eur.J.Clin.Microbiol. Infect.Dis.34,1647–1655.

Willmann,M.,El-Hadidi,M.,Huson,D.H.,Schutz,M.,Weidenmaier,C.,Autenrieth,

I.B.,Peter,S.,2015.Antibioticselectionpressuredeterminationthrough

sequence-basedmetagenomics.Antimicrob.AgentsChemother.59, 7335–7345.

Zhou,K.,Ferdous,M.,deBoer,R.F.,Kooistra-Smid,A.M.,Grundmann,H.,Friedrich,

A.W.,Rossen,J.W.,2015a.Themosaicgenomestructureandphylogenyof

Shigatoxin-producingEscherichiacoliO104:H4isdrivenbyshort-term adaptation.Clin.Microbiol.Infect.21(468),e467–418.

Zhou,K.,Lokate,M.,Deurenberg,R.H.,Arends,J.,Lo-TenFoe,J.,Grundmann,H.,

Rossen,J.W.,Friedrich,A.W.,2015b.CharacterizationofaCTX-M-15producing

KlebsiellapneumoniaeoutbreakstrainassignedtoanovelSequenceType (1427).Front.Microbiol.6,1250.

Zhou,K.,Lokate,M.,Deurenberg,R.H.,Tepper,M.,Arends,J.P.,Raangs,E.G.,

Lo-Ten-Foe,J.,Grundmann,H.,Rossen,J.W.,Friedrich,A.W.,2016.Useof

whole-genomesequencingtotrace,controlandcharacterizetheregional expansionofextended-spectrumbeta-lactamaseproducingST15Klebsiella pneumoniae.Sci.Rep.6,20840.

Referenties

GERELATEERDE DOCUMENTEN

Second, it was found that companies which rank the highest in PageRank, (and thus draw a lot of traffic), also were companies with above levels of technical skill (measured in

Die bcrekening van die foute wat dour middol van hierdie 1:11etode moon tlj.k gemo.nl-c word, laat die ui tskakeling van voort- durende verskille tussen die

Governance structures are likely to be successful if the decision- making rules are precisely defined, if there are sufficient monitoring capacities, and if the

Archive for Contemporary Affairs University of the Free State

De Nederlandse primaire sector moet bij een voldoende vertrouwen in markt en ketenpart- ners in staat worden geacht aan een beheerst toenemende vraag naar biologische producten

In Figuur 6 wordt het rendement voor PM2,5 op de verschillende meetdagen voor alle bemeten stallen met luchtwassystemen weergegeven. Uit deze figuur blijkt dat het rendement voor

VELTAS is a triage and acuity scale dedicated to the care of patients with acute and chronic venous and lymphatic disorders or vascular anomalies. The scale aims to standardise

Sociology should thus focus on two matters: the nature and development of “innate human social potential”, pointing to the significance of individual factors as integral to