• No results found

Exotic dual of type II double field theory

N/A
N/A
Protected

Academic year: 2021

Share "Exotic dual of type II double field theory"

Copied!
7
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Exotic dual of type II double field theory

Bergshoeff, Eric A.; Hohm, Olaf; Riccioni, Fabio

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2017.01.081

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Bergshoeff, E. A., Hohm, O., & Riccioni, F. (2017). Exotic dual of type II double field theory. Physics Letters

B, 767, 374-379. https://doi.org/10.1016/j.physletb.2017.01.081

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Exotic

dual

of

type

II

double

field

theory

Eric

A. Bergshoeff

a

,

,

Olaf Hohm

b

,

Fabio Riccioni

c

aCentreforTheoreticalPhysics,UniversityofGroningen,Nijenborgh4,9747AGGroningen,TheNetherlands bSimonsCenterforGeometryandPhysics,StonyBrookUniversity,StonyBrook,NY11794-3636,USA

cINFNSezionediRoma,DipartimentodiFisica,UniversitàdiRoma“LaSapienza”,PiazzaleAldoMoro2,00185Roma,Italy

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received18December2016 Accepted3January2017 Availableonline16February2017 Editor:M.Cvetiˇc

WeperformanexoticdualizationoftheRamond–RamondfieldsintypeIIdoublefieldtheory,inwhich theyareencodedinaMajorana–WeylspinorofO(D,D).Startingfromafirst-ordermasteraction,the dualtheoryintermsofatensor–spinorof O(D,D) isdetermined.Thistensor–spinorissubjecttoan exotic version ofthe (self-)duality constraint neededfor ademocraticformulation. We show that in components,reducing O(D,D) toG L(D),one obtainsthe expectedexoticallydualtheoryintermsof mixedYoungtableauxfields.Tothisend,wegeneralizeexoticdualizationstoself-dualfields,suchasthe 4-formintypeIIBstringtheory.

©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Stringtheorycomprisesarichspectrumofstatesorfields.The masslessfieldsincludethemetric,Kalb–Ramond2-formandscalar (dilaton), together withvarious p-forms, depending onthestring theory considered, butthere is also an infinite tower ofmassive ‘higher-spin’ fields, often taking values in mixed Young tableaux representations. Even when restricting to the massless sector, it is sometimes necessary to go beyond the minimal field content in order to couple the various branes present in the full (non-perturbative)stringtheory.Forinstance,inD

=

10 a6-formneeds tobeintroducedastheon-shelldualoftheKalb–Ramond2-form in order to describe the NS5 brane. In recent years it has been argued from different angles that the various dualities of string theory imply also the existence of ‘exotic branes’ [1], which in turncouple tofieldsof a moreexoticnature, typically belonging tomixedYoungtableauxrepresentations[2].

Recently, we showed how to describe, at the linearized level, such exoticdual fieldsin doublefield theory (DFT) [3–5] in a T-duality or O

(

D

,

D

)

covariant way [6]. In DFT the Kalb–Ramond field is unified with the metric into a generalized metric

H

M N, with O

(

D

,

D

)

indices M

,

N

=

1

,

. . . ,

2D. Therefore, dualizing the 2-form requires also dualizing the graviton, which in turn leads toamixedYoungtableauxfield [7,8].Moreover,additionalmixed

*

Correspondingauthor.

E-mailaddresses:e.a.bergshoeff@rug.nl(E.A. Bergshoeff),

ohohm@scgp.stonybrook.edu(O. Hohm),Fabio.Riccioni@roma1.infn.it(F. Riccioni).

Young tableauxfieldsemergethat canbeinterpreted asso-called ‘exotic duals’ of the 2-form, implementing the dualization pro-cedure of [9,10]. Remarkably, in DFT the various mixed Young tableaux representations under G L

(

D

)

organize into completely antisymmetric O

(

D

,

D

)

tensors,includinga4-indextensor DM N K L fortheNSsector.

In this letter, we extend the results of [6] by including the Ramond–Ramond (RR)sector oftype II string theory. The differ-encetotheNSsectoristhatinordertomakeO

(

D

,

D

)

manifestas a locallyrealizedsymmetry itisnecessarytoincludeforeachRR p-formitsdual

(

D

p

2

)

-form,requiringademocratic formula-tion[11].TheRRfieldsthenorganizeintoaMajorana–Weylspinor of O

(

D

,

D

)

, forwhich a completeDFT formulation exists [12,13]

(see [14] formassivedeformations and[15,16] forearlierrelated results). Thus, the RR fieldsand their conventional duals already enter in an O

(

D

,

D

)

complete form, without theneed to invoke exoticdualizations.However,itisneverthelesspossibletoperform anexoticdualizationfortheRRfields,asindeedisnecessaryin or-dertodescribecertainexoticbranes[17]andisalsosuggestedby theKac–Moodyapproachtosupergravity[8].TheexpectedG L

(

D

)

representationsfortheexoticallydualfieldscanbeorganizedinto a simple O

(

D

,

D

)

representation,a tensorspinor EM Nα [17]. We willshowherethatDFTprovidespreciselysuchaformulation.

This letterisorganized as follows.Insec. 2 webriefly review the exoticdualization procedure, following [10], and discuss the generalization to self-dual fields.Fordefiniteness andinorder to simplifythediscussion,weanalyzeindetailthesimplercaseofa self-dual vector in D

=

4,assuming euclideansignature. Insec. 3

wereviewtypeIIDFT,andinsec.4wepasstoanunconventional http://dx.doi.org/10.1016/j.physletb.2017.01.081

0370-2693/©2017TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

first-ordermasteractioninordertoperformtheexoticdualization. Webriefly discusshow theresulting dualtheory interms ofthe fieldEM Nα reproducesincomponents,breakingO

(

D

,

D

)

toG L

(

D

)

, theexpectedresult. Wecloseinsec. 5withabriefsummary and outlookoffurtherexoticfieldsneededinstringtheory.

2. Exoticdualizationofself-dualfields

We consider here the exotic dualization of fieldsthat are al-ready subject to a self-duality condition, as is the case for the 4-formin type IIB string theory or the 2-formin

(

2

,

0

)

theories inD

=

6.Forsimplicity,weanalyzethecaseofa self-dualvector inD

=

4,whichexistsforeuclideansignature.

Westartbyreviewingtheexoticdualizationoftheconventional Maxwell theory [10]. The action in terms of the field strength Fmn

= ∂

mAn

− ∂

nAmisrewritten,uptoboundaryterms,as

S

= −

14



d4x FmnFmn

=



d4x



12

mAn

mAn

+

12

(∂

mAm

)

2



,

(2.1) andthen promotedtoa first-orderaction,intermsoffields Pm,n andEmn,k

E[mn],k,asfollows: S

=



d4x



12Pm,nPm,n

+

12

(

Pm,m

)

2

Emn,k

mPn,k



.

(2.2) Thefieldequationsfor Pm,n andEmn,k imply,respectively,

kEkm,n

=

Pm,n

η

mnPk,k

,

[mPn],k

=

0

.

(2.3) Solving the second equation by setting Pm,n

= ∂

mAn and re-inserting into the action, we recover Maxwell’s theory. Equiva-lently,actingonthefirstequation with

m andusingthe‘Bianchi identity’

m

kEkm,n

=

0 weget

mPm,n

− ∂

nPm,m

=

0

,

(2.4)

whichforPm,n

= ∂

mAn isequivalenttotheMaxwellequations.On theotherhand,solvingthefirstequationforP ,

Pm,n

= ∂

kEkm,n

13

η

mn

kEkl,l

,

(2.5)

andback-substitutinginto(2.2) oneobtainsasecond-orderaction forE,whosefieldequationsareobtainedbyinserting(2.5)intothe secondequation of(2.3).Notethatthe Maxwellgauge invariance

δ

λAm

= ∂

m

λ

elevatestoagaugeinvarianceofthefirstorderaction givenby

δ

λPm,n

= ∂

m

n

λ ,

δ

λEmn,k

=

2

η

k[m

n]

λ .

(2.6) Thereisalsoanextragaugeinvarianceassociatedto E,

δ

Emn,k

= ∂

l



lmn,k

,

(2.7)

withparameter



mnk,l

≡ 

[mnk],l.

We now investigate the dual theory in terms of E in more detail.Letusfirstdecomposethisfieldintoirreducible representa-tionsas

Emn,k

=

12



mnpqC

pq,k

+

2

δ

k[mBn]

,

C[mn,k]

0

,

(2.8) where the Maxwell gauge invariance (2.6) acts on the new vec-tor Bm,

δ

λBm

= ∂

m

λ

. Inserting thisdecomposition into (2.5), one obtains

Pm,n

= ∂

nBm

31!



mpqkFpqk,n

,

Fmnk,p

3

[mCnk],p

.

(2.9) Thesecond-orderfieldequationfollowingfromthedualactionfor E isequivalentto

[mPn],k

=

0,i.e. to

0

=



mnkl

kPl,p

= ∂

p



Fmn

(

B

)

+ ∂

kFmnk,p

,



Fmn

(

B

)

12



mnklFkl

(

B

) ,

(2.10) whereFmn

(

B

)

2

[mBn].UsingtheBianchiidentity

m



Fmn

(

B

)

=

0, weconcludebytakingthetracethat

kFmnk,m

=

0

,

(2.11)

which is the correct field equation for a

(

2

,

1

)

field describing spin-1 in D

=

4[10].

WenextinvestigatethisexoticdualizationforMaxwell’stheory subjectto aself-duality constraint,assuming euclidean signature. Thus,thefieldstrengthsatisfies

Fmn

=

12



mnklFkl

.

(2.12)

In the first-order formulation, we then haveto impose the con-straint

P[m,n]

=

21



mnklPk,l

,

(2.13)

whichreducesto(2.12)whensolvingtheBianchiidentityforPm,n.

Letusshowthattheintegrabilityconditionsofthisfirst-order re-lationarecompatiblewiththesecond-orderequations.Tothisend weactwith

p on(2.13)andusetheBianchiidentity

[mPn],k

=

0,

pPm,n

− ∂

pPn,m

= ∂

mPp,n

− ∂

nPp,m

=



mnkl

pPk,l

.

(2.14) Contractingthisnowwith

η

mp,weget

mPm,n

− ∂

nPm,m

=



mnkl

mPk,l

=

0

,

(2.15) usingagaintheBianchiidentityinthe laststep.Thisagrees with the second-order equations (2.4). It is instructive to write the (self-)duality constraint explicitly in terms of the decomposition

(2.8).Wecomputefrom(2.9)

2P[m,n]

= −

Fmn

(

B

)

12



mnpqFpqk,k

,

(2.16) wherewe used the Schoutenidentity 0

=



[mpqkFpqk,n].The con-straint(2.13)thenimplies

Fmn

(

B

)

− 

Fmn

(

B

)

=

Fmnp,p

12



mnklFklp,p

.

(2.17)

Thus,theanti-self-dualpartofthefieldstrengthofthevector Bm isequaltotheanti-self-dualpartofthetraceofthe‘fieldstrength’ of theexotically dualfield Cmn,k. In particular, we donot obtain

a first-orderconstraint forthisfield alone. Therefore,there is no formulationforonlya(irreducible)mixed-Young-tableauxfield in D

=

4 that describesthedegreesoffreedomofaself-dualvector, notevenon-shell.Extrafieldslikethenewvector Bmareneeded. This canbe understood by notingthat forthe gauge symmetries

(2.7)thereisnoinvariant first-orderfield strengthforthe mixed-Young-tableauxfieldCmn,k,andhencetherecannotbeafirst-order

self-dualitycondition.

Letus finally note that this discussion generalizes straightfor-wardly to self-dual fields in other dimensions. For instance, for theself-dual 4-formCmnkl in typeIIBstringtheory onepromotes its derivative to a field Pm,klpq and imposes a Bianchi identity

[mPn],klpq

=

0 withaLagrangemultiplierfield Emn,klpq,which en-codesthemixedYoungtableauxfieldinthedualformulation.

3. Ramond–RamondfieldsintypeIIdoublefieldtheory

In this section we briefly review the Ramond–Ramond (RR) fields of type II double field theory, which are encoded in a Majorana–Weylspinorof O

(

D

,

D

)

. Ourspinorconventionsfollow

(4)

{

M

,

N

} =

2

η

M N

,

η

M N

=



0 1 1 0



,

(3.1)

isrealizedintermsoffermionicoscillators

ψ

i,

ψ

i,with

i

)

= ψ

i, as

i

=

2

ψ

i,

i

=

2

ψ

i,satisfying

i

, ψ

j

} = {ψ

i

, ψ

j

} =

0

,

i

, ψ

j

} = δ

ij

.

(3.2) WedefinetheDiracoperatorwitharelativefactorforlater conve-nience,

/

√1 2

M

M

= ψ

i

i

+ ψ

i

˜∂

i

,

(3.3)

where

˜∂

i denotes the derivative withrespect tothe dual coordi-nate.We recall the strong constraint

η

M N

M

N

=

0, whichholds actingon arbitrary objects, andwhich impliestogether withthe Cliffordalgebrathat

/

2

=

0.

Wealsoneedthe chargeconjugation matrixC ,whose explicit expression can be found in [11,13]. For our purposes here it is sufficienttorecallthat C

=

C−1 and

C

ψ

iC−1

= ψ

i

,

C

ψ

iC−1

= ψ

i

,

(3.4)

whichimpliesfortheGammamatrices

C

MC−1

= (

M

)

,

C−1

MC

= (

M

)

.

(3.5) ThespinorrepresentationisconstructedfromtheCliffordvacuum

|

0



satisfying

ψ

i

|

0

 =

0

i

.

(3.6)

By taking the conjugate of this equation we also conclude that



0

i

=

0 foralli.Ageneralstateisthengivenby

χ

=

D



p=0 1 p

!

Ci1...ip

ψ

i1

· · · ψ

ip

|

0

 ,

(3.7)

which encodes the RR p-forms C(p). States including only even formsareofpositivechiralityandstatesincludingonlyoddforms areofnegativechirality.Wealsousethecommonnotation

¯

χ

χ

C

=

D



p=0 1 p

!

Ci1...ip



0

ip

· · · ψ

i1C

.

(3.8) ThegroupsPin

(

D

,

D

)

andSpin

(

D

,

D

)

arethetwo-foldcovering groupsofO

(

D

,

D

)

andS O

(

D

,

D

)

,respectively.Foragivenelement ofthe covering group S

Pin

(

D

,

D

)

, thereis a corresponding el-ement h

ρ

(

S

)

O

(

D

,

D

)

, where

ρ

:

Pin

(

D

,

D

)

O

(

D

,

D

)

is a grouphomomorphism,definedimplicitlyby

S

MS−1

= (

h−1

)

MN

N

.

(3.9)

Note that

+

S and

S project to the same O

(

D

,

D

)

element h. A particular Spin

(

D

,

D

)

element that will be useful belowis

K

, whichisthespinorrepresentativeofthegeneralizedmetric

H

M

N withoneindexraised:

ρ

(

K

)

=

H

=



bg−1 g

bg−1b g−1

g−1b



O

(

D

,

D

) ,

(3.10) where g and b arethe metric andKalb–Ramond 2-form. Denot-ingthespin representativeoftheoriginalgeneralizedmetric

H

•• by

S

andusingthatthechargeconjugationmatrix C under

ρ

ac-tuallyprojectstothe O

(

D

,

D

)

metric

η

M N (viewedasamatrixin O

(

D

,

D

)

),wehave

K

=

C−1

S .

(3.11)

Theconstraintson

H

,whichread

(H

)

2

=

1 and

H

••

=

H

t

••,

cor-respondtothefollowingconstraintson

S

orequivalently

K

,1

S

= S ,

K

2

=

1

K

−1

=

K

.

(3.12)

Wecanthinkof

S

asbeingconstructedfrom

H

,inwhichcasewe write

S

=

SH,butitwasarguedin[12,13]thatamoreuseful per-spectiveistotreat

S

asthefundamentalfield,satisfyingtheabove constraints.Ausefulrelationfollowsbyspecializing(3.9) to

K

,

K

M

=

H

MN

N

K

.

(3.13)

We arenow readytodefine theRR action,forwhichwe take theNSsectortobe fixed,givenby aconstantbutotherwise arbi-trarybackground

H

.Theactionreads

SRR

=

14



d2DX

(/

χ

)

S /∂

χ

=

1 8



d2DX

M

χ

¯

M

K

N

N

χ

,

(3.14) wherethesecondformfollowswitheqs.(3.5) and(3.8).Wehave to subjectthe action to (self-)dualityrelations, since we are us-ingademocraticformulation.Thesecanbewritteninan O

(

D

,

D

)

covariantformas[15]

(

1

+

K

)/

χ

=

0

.

(3.15)

Theactionanddualityrelationsaremanifestlyinvariantunderthe gaugetransformations

δ

λ

χ

= /∂λ ,

(3.16)

due to

/

2

=

0. The gauge parameter here is a Majorana–Weyl spinorwiththechiralitytheoppositetothatof

χ

.

It was shown in [13] how to evaluate the above action in components,after solvingthe strongconstraintby setting

˜∂

i

=

0, which we briefly reviewin thefollowing.To thisendone hasto use an explicit parametrizationof the generalizedmetric and its spinrepresentative,

S =

SH

=

SbSg1Sb

,

(3.17) where Sb

=

e− 1 2bi jψiψj

,

Sg1

ψ

i1

· · · ψ

ip

|

0

 =

σ

g gi1j1

· · ·

gipjp

ψ

j1

· · · ψ

jp

|

0

 ,

(3.18) where

σ

= −

1 forLorentzian signatureand

σ

= +

1 foreuclidean signature.Herewe havegivenonlytheactionof Sg onoscillators actingonthevacuum,whichissufficientforourpurposesbelow. Wefirstobservethatthenaiveabelianfieldstrengthsareencoded asfollows, F

√1 2

M

M

χ

˜∂= 0

= ψ

i

i

χ

F

=

dC

,

(3.19)

using the familiar notation in which forms of different rank are combined into a single object C . It is now easy to see, using eq. (3.18), that in the RRLagrangian the action of Sb inside SH changesthistotheeffectivefieldstrength

F

=

eb2

F

,

(3.20)

which is the gauge invariant field strength, given that the RR fields transform under the b-field gauge symmetry. Using again

1 IngeneraldimensionK2= ±1,butconsistencyoftheself-dualityconstraintto

beintroducedbelowrequiresK2=1.Inthefollowingweassumethatwearein

(5)

eq.(3.18),itistheneasytocheckthattheRRLagrangianreduces to

L

RR

˜∂=0

= −

14

g D



p=1 1 p

!

g i1j1

· · ·

gipjp

F i1...ip

Fj1...jp

,

(3.21) whichisthe standardaction fortheRRpotentials.Similarly, itis straightforwardtoverifythateq.(3.15)reducestotheconventional dualityrelationsfor

˜∂

i

=

0.

4. First-orderactionandexoticdual

Wenow turnto a first-orderformof theRRaction discussed intheprevioussectioninordertodefinetheexoticdual.Westart fromtheexpression(3.14) andintegrateby partstwice,toobtain theequivalentLagrangian

L

RR

=

18

N

χ

¯

M

K

N

M

χ

,

(4.1)

usingthat

K

isconstant.Notethatinthisformtheactionisonly gaugeinvariant up to boundaryterms. Nextwe promote

M

χ

to anindependent‘vector–spinor’field PM ofthesamechiralityas

χ

andaddaLagrangemultiplierterm,

L

1st

=

18P

¯

N

M

K

NPM

+

12

MP

¯

NEM N

,

(4.2) whereEM N

=

E[M N] is atensor–spinorofthesamechiralityas P

forevenD andtheoppositechiralityforoddD.Asforthe second-orderformulation, we have to subject the field equations to the (self-)dualityconstraint,nowwrittenintermsof P :

(

1

+

K

) /

P

=

0

,

(4.3)

where

/

P

=

MPM.Varyingthefirst-orderactionw.r.t. EM Nwe ob-taintheconstraint

[MPN]

=

0

.

(4.4)

ThisimpliesPM

= ∂

M

χ

,anduponre-insertioninto(4.2)and(4.3) we recoverthe RR action inthe form(4.1) andthe duality rela-tions,respectively.Ontheotherhand,varyingw.r.t. P oneobtains

1 2

M

K

NP

M

= ∂

MEM N

,

(4.5)

whicharethe ‘exotic’ dualityrelations.Actingwith

N andusing theBianchiidentity

M

NEM N

=

0 weobtaintheintegrability con-dition

M

K

/

PM

=

0

,

(4.6)

whichbyuseof(4.4),writingPM

= ∂

M

χ

,isequivalenttothe orig-inalfieldequationfor

χ

.Inthefollowingwewillbeinterestedin thetheory fortheexoticdualfield EM N,obtainedby eliminating P usingeq.(4.5).

Letusinvestigate the gauge symmetriesof the first-order ac-tioncorrespondingto(4.2).First,theactionisinvariant,uptototal derivatives,underthenewgaugesymmetry

δ

EM N

= ∂

K



M N K

,

(4.7)

with



M N K

= 

[M N K]. Second, theaction is alsoinvariant under the original RR gauge symmetry (3.16), which acts in the first-orderformulationas

δ

λPM

= ∂

M

∂λ ,

/

δ

λEM N

=

[M

K

N]

∂λ .

/

(4.8) Inordertoprovethisgaugeinvariance,wefirstconsiderthe vari-ationofthefirst-orderform(4.2)oftheRRterm,2

2 HereweusedthatthevariationofbothP factorsgivesthesamecontribution,

uptototalderivatives,whichcanbeverifiedincomponentform.

δ

λ

L

RR

=

14P

¯

N

M

K

N

M

∂λ

/

=

1 2P

¯

N

[ M

K

N]

M

∂λ

/

+

14P

¯

N

N

K

M

M

∂λ

/

= −

1 2

MP

¯

N

[ M

K

N]

∂λ .

/

(4.9)

Here weused

/

2

=

0 andintegratedby partswith

M inthelast step. We then observe that the termin the last line isprecisely canceled bythevariationofEM Ninthesecondtermof(4.2),while the

λ

gauge variation of P in that term drops out by the anti-symmetry ofEM N.Thisproves thegauge invarianceoftheaction correspondingto(4.2).

Letusnowreturntothefieldequations(4.5)inordertosolve for P in terms of E. We first rewrite the left-hand side, using eq.(3.13),andbringtheresulting

H

totheothersideofthe equa-tion:

1 2

M

K

K

P

M

=

H

KN

MEM N

.

(4.10)

Next, we contract this equation with

K and use

K

M

K

=

2

(

D

1

)

M,toobtain

M

K

PM

= −

1 D

1

H

K N

K

MEM N

.

(4.11)

Returning to (4.10) we use the Clifford algebra andcompute for theleft-handside

1 2

M

K

K

PM

=

12

{

M

,

K

}

K

PM

12

K

M

K

PM

=

K

PK

+

1 2

(

D

1

)

H

P Q

K

P

LEL Q

,

(4.12)

wherewe insertedeq.(4.11) inthesecond line.Sincethisequals theright-handsideof(4.10),wecansolvefor

K

PM intermsofE,

K

PM

=

H

M N

KEK N

1 2

(

D

1

)

H

K L

M

L

NEN K

.

(4.13) Using

K

2

=

1 wecanfinallysolveforPM,obtainingtheresult

PM

=

QM

(

H

,

E

) ,

(4.14) wherewedefined QM

H

MN

K

KEK N

1 2

(

D

1

)

H

K L

K

M

K

NEN L

.

(4.15) Amorecompactformofthisexpressionisobtainedbyintroducing the



gaugeinvariant‘fieldstrength’

G

M

K

NEN M

,

(4.16)

satisfying theBianchi identity

M

G

M

=

0. Using eq. (3.13) in the secondtermof(4.15)twice,weobtain

QM

=

H

M N

G

N

1 2

(

D

1

)

N

K

G

K

.

(4.17)

Back-substitution of (4.14) into the Lagrangian (4.2) gives the second-orderactionforthedualfield EM N.Itsfield equationsare equivalentto

[MQN]

=

0 andthusfollowfromthedualityrelation

(4.14) andthe Bianchi identity (4.4). Conversely, we can use the dualityrelation(4.14)toderivethesecond-orderequationsforthe originalfields.Tothisend,weneedtheBianchiidentityofthe QM definedin(4.15)whichreads

M

K

/

QM

0

.

(4.18)

Thiscanbe verifiedbya directcomputation,usingeq.(3.13) and the Clifford algebra together with the Bianchi identity

M

NEM N

=

0. The duality relation (4.14) then immediately im-plies the original second order equation (4.6) in terms of P . As

(6)

usual, the duality transformations thereforeswap field equations andBianchiidentities.

WerecallthattheequationsforthedualfieldsE arestill sub-jecttothefirst-orderconstraint(4.3),upon eliminating P accord-ingto (4.14),i.e.

(

1

+

K) /

Q

=

0.It isinstructivetoverifythatthe integrabilityconditionsofthis(self-)dualityconstraintare compat-ible with the second-order equations obtainedfrom the pseudo-action,eitherintermsoftheoriginalfieldsorthedualfieldsEM N. Tothisend,weactwith

M on(4.3)toobtain

(

1

+

K

)

N

MPN

=

0

⇒ (

1

+

K

)/

PM

=

0

,

(4.19) usingtheBianchiidentity(4.4) inthelaststep.Actingwith

M

K

on the second equation, using

K

2

=

1 and the Bianchi identity again,weobtain

0

=

M

K

/

PM

+

√12

M

N

NPM

=

M

K

/

PM

+

√12

MPM

.

(4.20) Duetothe Bianchiidentity PM

= ∂

M

χ

,thelast termvanishes by thestrongconstraint,andindeedwerecovertheexpectedeq.(4.6). We close this section by verifying that in components, upon solving the strong constraint and thereby breaking O

(

D

,

D

)

to G L

(

D

)

, we recover the expected exotic dualizations. In order to simplifythe presentation we will focus on a vector, subjectto a self-dualityconstraintinfoureuclideandimensions,andmatchthe resultswiththoseinsec.2.WethusassumethatthefieldsPM and EM Nhaveonlythenon-vanishingcomponents

Pm

=

Pm,n

ψ

n

|

0

 ,

Emn

=

Emn,k

ψ

kC−1

|

0

 ,

(4.21) where thefactor of C is necessary inorder for E to lead tothe sametensorstructureasusedinsec. 2.3 Letusverifythat E has therightchirality.Toseethisnotethatwiththe‘numberoperator’ NF

k

ψ

k

ψ

kaquickcomputationyieldsfortheaboveansatz

NFPm

=

Pm

⇒ (−

1

)

NFPm

= −

Pm

,

(4.23)

showing that Pm has negative chirality, as it should be since it correspondstoan oddform(1-form).Thus,in D

=

4, Emn should alsohavenegativechiralityand, indeed,astraightforward compu-tationgives for the above ansatz NFEmn

= (

D

1

)

Emn andthus

(

1

)

NFEmn

= −

Emn,asrequired.Thefirst-orderform(4.2) ofthe RRkinetictermsthenreducesto

L

RR

=

14

(

Pn

)

C

ψ

m

K

ψ

nPm

=

1 4Pn,kPm,l



0

kC

ψ

mC−1S H

ψ

n

ψ

l

|

0



=

1 4

g Pn,kPm,lgnpglq



0

k

ψ

m

ψ

p

ψ

q

|

0



=

1 4

g



Pm,nPm,n

− (

Pn,n

)

2



,

(4.24)

whereweused(3.18)andthattheCliffordrelations(3.2)and(3.6)

imply



0

k

ψ

m

ψ

p

ψ

q

|

0

 = δ

mp

δ

kq

− δ

mq

δ

kp

.

(4.25) WeinferthatthisreducespreciselytotheP2 termsinthemaster

action(2.2),up toan irrelevantpre-factor.Similarly, theLagrange multipliertermin(4.2)reducesas

3 Equivalently,wecouldwrite Emn=Emn k1...kD−1ψ

k1. . . ψkD−1|0,inwhichcase

thetermintheLagrangianwouldbeproportionalto

L ∝k1...kDEmn

,k1...kD−1∂mPn,kD, (4.22)

cf. thediscussioninsec. 5.1.3in[13].Thedefinitionin(4.21)avoidstheexplicit epsilontensor. 1 2

MP

¯

NE M N

=

1 2

mPn,kEmn,l



0

| ψ

kC

ψ

lC−1

|

0



=

1 2

mPn,kEmn,k

,

(4.26)

whereweused(3.4),givingthesametermasintheMaxwell mas-ter action(2.2). Wethus recover the master actionthat was the starting point for the exotic dualization in sec. 2. Moreover, the dualityconstraint(4.3)yieldsincomponentsthesameself-duality constraint (2.13) as forthe self-dual vector (cf. the discussion in sec. 5.1.3in[13]).Wethereforehaveshownthattheresultsofthis section provide the proper O

(

D

,

D

)

covariant exotic dualizations oftheRRfieldsinDFT.

5. Conclusionsandoutlook

Inthisletterwehaveappliedtheexoticdualizationprocedure of[10]totheRRfieldsindoublefieldtheory.Thisgeneralizesthe analysisof[6],whereitwasshownthatthedualizationofthe gen-eralized metricnaturally yields, together withthe standardduals ofthe2-formandthegraviton,alsotheexoticdualofthe2-form. The differencebetweentheresultsof[6]andtheanalysiscarried out in thisletteristhat in thecaseof theRRfields the dualiza-tionprocedureisalreadyexoticinthedoubledspace,whileinthe caseofthegeneralizedmetriconeperformsastandarddualization inthedoubledspace,whichincludestheexoticdualizationofthe 2-formwhenwrittenincomponents.

Anaturalcontinuationofthisworkwouldbetoapply the du-alization procedure discussed in this letter to the field DM N P Q, whichitselfisthedualofthegeneralizedmetric

H

M N.The dual-ization carriedout in [6]givesan action for DM N P Q in termsof its gaugeinvariant field strength.Proceedingasinthisletter,one can writedownaDFT actionforthisfield intermsofthe gauge-dependentquantity

G

M,N1...N4

= ∂

MDN1...N4

,

(5.1)

satisfyingtheBianchiidentity

[M1

G

M2],N1...N4

=

0

.

(5.2)

In a firstorderformulation, the Lagrange multiplier forthis con-straintwouldbethedualpotentialFM1M2,N1...N4.Thisfield decom-posesunderG L

(

10

)

preciselyintothemixed-symmetrypotentials givenintab. 10of[18].Such potentialscan bewrittenina com-pactformas F8+n,6+m,m,n,whereeach entrydenotesa setof

an-tisymmetricindicesinthemixed-symmetryrepresentation,andm andn takeallthepossiblevaluesthatareallowedbythefactthat thenumberofindicesineachsetcanbeatmost10,withthe fur-therrestrictionthateachsethastobegreaterorequaltothenext. Asexpected,oneofthecomponentsisthefield F8,6,whichisthe

exoticdualofD6,thatinturniscontainedinDM N K L.

Onecanalsoapplythedualizationproceduretothefield EM Nα discussedinthisletter,therebywritingtheDFTactionforthisfield intermsof

˜

Q

M,N Pα

= ∂

MEN Pα

,

(5.3)

satisfyingtheBianchiidentity

[M

Q

˜

N],P Qα

=

0

.

(5.4)

The Lagrange multiplier in this case is a field GM N,P Qα . In terms of mixed-symmetry potentials, this field decomposes as G8+m,8+m,2n,m,m inthe IIBcaseandG8+m,8+m,2n+1,m,m inthe IIA case. Inparticular,form

=

n

=

0 thisgivesapotential G8,8 inthe

IIBcasewhichistheexoticdual ofthepotential E8 containedin

(7)

Acknowledgements

Wewouldliketoacknowledgethehospitalityofthe GGI (Flo-rence) and thank the organizers of the workshop “Supergravity: whatnext?”,wherepartofthisworkhasbeencarriedout,for cre-ating a stimulating atmosphere. OH andFR would like to thank theUniversityof Groningenforhospitalityduringthe completion ofthiswork.

References

[1] S.Elitzur,A.Giveon,D.Kutasov,E.Rabinovici,Algebraicaspectsofmatrix the-oryonTd,Nucl.Phys.B509(1998)122,http://dx.doi.org/10.1016/S0550-3213

(97)00622-6,arXiv:hep-th/9707217;

N.A.Obers,B. Pioline,Uduality andMtheory, Phys.Rep.318(1999)113,

http://dx.doi.org/10.1016/S0370-1573(99)00004-6,arXiv:hep-th/9809039; E.Lozano-Tellechea,T.Ortín,7-branesandhigherKaluza–Kleinbranes,Nucl. Phys. B 607 (2001) 213, http://dx.doi.org/10.1016/S0550-3213(01)00177-8, arXiv:hep-th/0012051;

J.deBoer,M.Shigemori,Exoticbranesinstringtheory,Phys.Rep.532(2013) 65,http://dx.doi.org/10.1016/j.physrep.2013.07.003,arXiv:1209.6056[hep-th]. [2] E.A.Bergshoeff,F.Riccioni,StringsolitonsandT-duality,J.HighEnergyPhys.

1105(2011)131,http://dx.doi.org/10.1007/JHEP05(2011)131,arXiv:1102.0934 [hep-th];

E.A.Bergshoeff,F.Riccioni,Branesandwrappingrules,Phys.Lett.B704(2011) 367,http://dx.doi.org/10.1016/j.physletb.2011.09.043,arXiv:1108.5067[hep-th]; E.A.Bergshoeff,A.Marrani,F.Riccioni,Braneorbits,Nucl.Phys.B861(2012) 104, http://dx.doi.org/10.1016/j.nuclphysb.2012.03.014, arXiv:1201.5819 [hep-th].

[3] W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826, http://dx.doi.org/10.1103/PhysRevD.48.2826, arXiv:hep-th/ 9305073;

W.Siegel,Twovierbeinformalismforstringinspiredaxionicgravity,Phys.Rev. D47 (1993) 5453, http://dx.doi.org/10.1103/PhysRevD.47.5453, arXiv:hep-th/ 9302036.

[4] C.Hull,B.Zwiebach,Doublefieldtheory,J.HighEnergyPhys.0909(2009)099,

http://dx.doi.org/10.1088/1126-6708/2009/09/099,arXiv:0904.4664[hep-th]; O. Hohm, C. Hull,B. Zwiebach, Background independentaction for double fieldtheory,J.HighEnergyPhys.1007(2010)016,http://dx.doi.org/10.1007/ JHEP07(2010)016,arXiv:1003.5027[hep-th].

[5] O.Hohm,C.Hull,B.Zwiebach,Generalizedmetricformulationofdoublefield theory,J.HighEnergyPhys.1008(2010)008,http://dx.doi.org/10.1007/JHEP08 (2010)008,arXiv:1006.4823[hep-th];

O.Hohm,S.K.Kwak,Frame-likegeometryofdoublefieldtheory,J.Phys.A44 (2011) 085404, http://dx.doi.org/10.1088/1751-8113/44/8/085404, arXiv:1011. 4101[hep-th].

[6] E.A.Bergshoeff, O. Hohm, V.A.Penas, F. Riccioni,Dual double fieldtheory, J.HighEnergyPhys.1606(2016)026,http://dx.doi.org/10.1007/JHEP06(2016) 026,arXiv:1603.07380[hep-th].

[7] C.M.Hull,Stronglycoupledgravityandduality,Nucl.Phys.B583(2000)237,

http://dx.doi.org/10.1016/S0550-3213(00)00323-0,arXiv:hep-th/0004195. [8] P.C.West,E11andMtheory,Class.QuantumGravity18(2001)4443,http://dx.

doi.org/10.1088/0264-9381/18/21/305,arXiv:hep-th/0104081.

[9] N.Boulanger,P.P.Cook,D.Ponomarev,Off-shellHodgedualitiesinlinearised gravity and E11, J. High Energy Phys. 1209 (2012) 089, http://dx.doi.org/ 10.1007/JHEP09(2012)089,arXiv:1205.2277[hep-th].

[10] N.Boulanger,P.Sundell,P.West,Gaugefieldsandinfinitechainsofdualities, J.HighEnergyPhys.1509(2015)192,http://dx.doi.org/10.1007/JHEP09(2015) 192,arXiv:1502.07909[hep-th].

[11] M.Fukuma,T.Oota,H.Tanaka,CommentsonTdualitiesofRamond–Ramond potentialsontori,Prog.Theor.Phys.103(2000)425,http://dx.doi.org/10.1143/ PTP.103.425,arXiv:hep-th/9907132.

[12] O.Hohm,S.K.Kwak,B.Zwiebach,UnificationoftypeIIstringsandT-duality, Phys. Rev.Lett.107(2011)171603,http://dx.doi.org/10.1103/PhysRevLett.107. 171603,arXiv:1106.5452[hep-th].

[13] O.Hohm,S.K.Kwak,B.Zwiebach,DoublefieldtheoryoftypeIIstrings,J.High Energy Phys. 1109 (2011) 013, http://dx.doi.org/10.1007/JHEP09(2011)013, arXiv:1107.0008[hep-th].

[14] O.Hohm,S.K.Kwak,MassivetypeIIindoublefieldtheory,J.HighEnergyPhys. 1111(2011)086,http://dx.doi.org/10.1007/JHEP11(2011)086,arXiv:1108.4937 [hep-th].

[15]A. Rocen, P. West, E11, generalised space-time and IIA string theory: the RR sector, arXiv:1012.2744 [hep-th].

[16] D.C. Thompson, Duality invariance: from M-theory to double field the-ory, J. HighEnergy Phys. 1108(2011) 125,http://dx.doi.org/10.1007/JHEP08 (2011)125,arXiv:1106.4036[hep-th].

[17] E.A. Bergshoeff,V.A. Penas, F.Riccioni, S. Risoli, Non-geometric fluxesand mixed-symmetrypotentials,J.HighEnergyPhys.1511(2015)020,http://dx. doi.org/10.1007/JHEP11(2015)020,arXiv:1508.00780[hep-th].

[18] E.A.Bergshoeff,F.Riccioni,Heteroticwrappingrules,J.HighEnergyPhys.1301 (2013)005,http://dx.doi.org/10.1007/JHEP01(2013)005,arXiv:1210.1422 [hep-th].

Referenties

GERELATEERDE DOCUMENTEN

The multi-level perspective gives insight in what kind of actors are interesting for this the- sis, namely regime level actors: involved in tactical governance

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:.. • A submitted manuscript is

Table S1 Scenarios of land cover and climate change used to quantify changes to flood, drought, wildfire and storm-wave hazards, together with the associated data used in

We have proposed a recursive algorithm for the online output-only identification of the vibro-acoustic behavior of airplanes, based on the classical stochastic realization algorithm

Teken zo nauwkeurig mogelijk de raaklijn aan de grafiek in het punt (40, 18) en bepaal de helling van deze raaklijn: ongeveer 0,3 km/min.. Na ongeveer 75 minuten haalt de renner

The existence of winding modes in string theory and the T-duality that con- nects winding to momentum leads to suggest that in the fundamental geometry of space time should be

The Aedes mosquito species are shown to be capable of transmitting tropical arbo- viruses including Zika, Dengue, Yellow Fever and the Chikungunya virus.. Globalization

Independently of the CE formalism and tele- scope/spectrograph configuration, Table 2 also shows that the number of identified SNIa progenitors is very low as compared to the