• No results found

The impact of venture capital funding on innovation during the period 2004 - 2011

N/A
N/A
Protected

Academic year: 2021

Share "The impact of venture capital funding on innovation during the period 2004 - 2011"

Copied!
28
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

The  impact  of  venture  capital  funding  on  innovation  

during  the  period  2004  –  2011    

     

Amsterdam  Business  School  

   

 

Name       Marcha  van  der  Boon      

Number     10218114  

BSc  in       Economics  and  Business       Specialization   Finance  and  Organization   Field       Finance  

Supervisor     Ilko  Naaborg   Completion     1  July  2014      

 

Abstract  

This   thesis   analyses   the   impact   of   venture   capital   funding   on   innovation   across   20   different   countries   during   the   period  2004-­‐2011.   A   regression   is   used   to   examine   the   impact   of   venture   capital  funding  on  innovation,  where  innovation  is  measured  by  the  yearly  patent  counts  issued   per   country.   The   results   show   a   significant,   positive   relation   between   venture   capital   and   innovation   and   a   significant,   negative   effect   of   the   current   financial   crisis   on   the   number   of   patented   innovations.   This   means   that   venture   capital   funding   has   an   impact   on   patented   innovations  during  the  current  financial  crisis.  These  results  appear  quite  robust.  However,  there   are  concerns  about  a  causality  problem.  Although  most  researchers  suggest  that  venture  capital   stimulates   innovation,   some   researchers   argue   that   innovations   induce   venture   capital   investments.   Future   research   can   investigate   the   impact   of   the   entire   crisis   period   on   venture   capital  as  a  financing  source  for  innovation,  to  look  at  the  total  impact  of  the  crisis.  Or  if  there  is  a   new  parameter  to  measure  innovation,  the  study  can  be  repeated  to  check  whether  the  results  of   this  research  are  robust.    

 

Keywords:  Venture  capital,  investment,  innovation,  R&D  expenditures,  start-­‐up  firms,  financial  crisis      

(2)

Table  of  Contents  

 

1.  Introduction ... 2  

2.  Literature  review ... 4  

3.  Hypothesis,  Methodology  and  Data ... 8  

3.1.  Hypothesis  and  Methodology ... 8  

3.2.  Data  and  descriptive  statistics ... 11  

4.  Empirical  results ... 14  

4.1.  Empirical  Results ... 14  

4.2  Robustness  check ... 19  

5.  Conclusion  and  discussion ... 21  

References ... 23   Appendix  A ... 25   Appendix  B ... 26   Appendix  C ... 27          

 

 

 

(3)

1.  Introduction    

In  the  economy  there  are  several  drivers  of  economic  growth  and  value  creation,   of  which  one  important  determinant  is  innovation  (Schwienbacher,  2008).  A   main  channel  via  which  innovation  is  financed  is  via  venture  capital  funds   (Kortum  and  Lerner,  2000).  Venture  capitalists  invest  in  risky  start-­‐up  firms   which  have  an  uncertain  future.  They  are  an  important  financial  intermediary  for   these  young  and  small  firms,  because  without  the  venture  capital  these  firms   perceive  difficulties  in  gaining  the  necessary  financial  assets  to  develop  and   innovate  (Gompers  and  Lerner,  2001).  Since  these  start-­‐up  firms  are  a  

contributor  to  innovation  and  since  they  are  financed  with  venture  capital,  is   venture  capital  an  important  contributor  to  innovation  (Schwienbacher,  2008).   Venture  capital  funding  contributed  to  the  success  of  many  successful  new  firms,   such  as  Microsoft,  Google,  Dell,  Intel  Computer  and  Apple.  All  these  firms  

received  venture  capital  in  their  first  stage  of  development  (Da  Rin  et  al.,  2006).   Kortum  and  Lerner  (2000)  demonstrate  that  venture  capital  really  has  a  positive   impact  on  innovation.              

  On  15  September  2008  the  collapse  of  Lehman  Brothers  caused  the   current  global  financial  crisis  and  also  had  an  impact  on  the  venture  capital   industry  (Block  et  al.,  2010).  Block  et  al.  (2010)  show  that  the  current  financial   crisis  has  a  negative  impact  on  venture  capital  funding.  There  is  a  dramatic   decline  in  venture  capital  activities.  They  also  show  that  the  effect  differs  across   industries  and  countries.    

The  stimulating  effect  of  venture  capital  funding  on  innovation  might  be   disturbed  due  to  the  current  financial  crisis.  This  impact  will  be  stronger  the   more  the  venture  capital  industry  is  affected  by  the  crisis.  However,  this  has   never  been  studied  before.  This  thesis  investigates  the  following  research  

question:  ‘Does  venture  capital  funding  have  an  impact  on  the  number  of  patented  

innovations  during  the  current  financial  crisis?’.  Although  most  studies  focus  on  

different  industries  within  a  country,  this  research  focuses  on  20  different   countries.  This  research  is  also  different  compared  to  previous  studies  with   respect  to  the  time  period,  because  it  takes  the  current  financial  crisis  into   account.  This  is  interesting  because  the  crisis  affects  many  countries.  And  as   already  mentioned,  venture  capital  is  a  critical  driver  for  innovation,  whereas  

(4)

innovation  is  important  for  economic  growth.    

  This  thesis  makes  use  of  a  panel  data  analysis  to  test  whether  venture   capital  funding  has  a  significant  impact  on  the  number  of  patented  innovations   during  the  current  financial  crisis.  A  method  for  analysing  panel  data  is  the  ‘fixed   effects  regression’  (Griliches  and  Hausman,  1986).  The  data  are  collected  from   different  databases.  Innovations  are  measured  by  the  total  patent  counts  which   are  collected  from  the  OECD  Patent  Database  (OECD  Patent  Database,  2014).  The   data  on  venture  capital  activities  are  from  the  Thomson  One  database  (Thomson   One,  2014).                  

  This  thesis  is  structured  as  follows.  After  the  initial  introduction  section   the  second  section  discusses  the  literature  review,  it  contains  the  theoretical   background  and  the  empirical  evidence.  The  third  section  presents  the  

methodology  and  the  data  sources,  which  are  required  for  the  regression  and  for   testing  the  hypothesis.  Then,  the  fourth  section  presents  the  empirical  results   and  some  robustness  checks.  Finally,  in  section  five  the  conclusion  is  presented.                                              

(5)

2.  Literature  review  

This  section  includes  the  main  theories  in  the  existing  literature  and  the   empirical  evidence  found  in  line  with  these  theories.  

  First  of  all,  the  theories  about  venture  capital  are  discussed.  Venture   capital  is  a  central  source  of  finance  for  start-­‐ups  in  innovative  industries  and  is   defined  as  equity  or  equity-­‐linked  investments  in  young,  privately  held  

companies  (Nanda  and  Rhodes-­‐Kropf,  2013).  The  investor  is  a  financial   intermediary  and  is  active  as  a  director,  an  advisor  or  a  manager  of  the  firm   (Kortum  and  Lerner,  2000).  The  investor  has  a  close  involvement  with  the  firm,   he  has  a  network  of  contacts  and  also  gives  the  firm  the  right  expertise  and   knowledge  about  markets.  Therefore,  venture  capital  is  used  to  support  

economic  growth  and  the  innovative  activities  of  firms  (Da  Rin  et  al.,  2006).  Zider   (1998)  estimates  that  more  than  80%  of  the  money  invested  by  venture  capital   investors  goes  into  building  the  infrastructure  required  to  grow  the  business  (in   expense  investments  and  the  balance  sheet).  He  states  that  venture  capital  is  a   financing  form  between  sources  of  funds  for  innovation  and  traditional,  lower-­‐ cost  sources  of  capital.  The  main  alternatives  for  venture  capital  financing  are   business  angels  (also  known  as  private  individuals),  banks,  government  and  self-­‐ financing  (Hellman  and  Puri,  2000).  However,  the  reason  why  the  venture  capital   industry  exists  is  by  the  structure  and  rules  of  capital  markets  (Zider,  1998).   Because  start-­‐ups  are  a  highly  risky  target,  banks  will  only  finance  a  new   business  when  there  are  hard  assets  that  secure  the  debt.  The  problem  is  that   many  start-­‐ups  have  few  hard  assets  (Zider,  1998).  Hard  assets  are  physical  or   tangible  assets,  which  carry  intrinsic  value.  Therefore,  innovative  start-­‐ups  suffer   from  credit  constraints  and  this  may  be  overcome  by  venture  capital  funds  (Da   Rin  et  al.,  2006).      

According  to  Zider  (1998)  the  venture  capital  industry  consists  of  four   main  players:  young  entrepreneurs  who  need  funding,  investors  who  want  high   returns,  investment  bankers  who  need  firms  to  sell  and  the  venture  capitalists   who  make  money  for  themselves  by  making  a  market  for  the  other  three.    

     

(6)

Figure  1:  The  venture  capital  cycle  

  Source:  Zider,  1998  

 

The  venture  capital  cycle  is  important  for  understanding  the  venture  capital   industry  (Gompers  and  Lerner,  2001).  In  the  first  stage  of  the  cycle  a  capitalist   raises  a  venture  fund.  Second,  the  fund  proceeds  through  investing,  monitoring   and  adding  value  to  the  firms.  Then  the  venture  capital  firm  has  to  make  

successful  deals  and  returns  capital  to  the  investors.  Finally  it  renews  itself  by   raising  additional  funds  (Gompers  and  Lerner,  2001).  Block  and  Sandner  (2009)   explain  that  venture  capital  is  particularly  important  in  the  early  periods  of  a   firm’s  life.  At  this  point  in  time  the  firm  begins  to  exploit  innovative  activities.           Venture  capitalists  provide  capital  to  typically  small  and  young  firms,  with   high  levels  of  uncertainty  and  high  information  asymmetry  (Schwienbacher,   2008).  Since  these  start-­‐up  firms  are  a  contributor  to  innovation  and  since  they   are  financed  with  venture  capital,  is  venture  capital  an  important  contributor  to   innovation  (Schwienbacher,  2008).  Also  the  OECD  (1996)  argues  that  venture   capital  is  crucial  for  innovation.  Particularly  for  start-­‐up  firms  it  is  hard  to   undertake  high-­‐risk  innovative  activities  (OECD,  1996).  Venture  capitalists  are   willing  and  able  to  provide  capital  to  these  firms.  They  show  that  this  is  

confirmed  by  empirical  evidence  of  technological  revolutions,  which  have  been   led  by  venture  capital-­‐backed  firms.  It  is  also  important  to  mention  that  

innovation  is  a  critical  driver  of  economic  growth  and  value  creation  (Rosenberg,   2004).  Schumpeter  (1939)  defines  innovation  as  ‘making  something  new’.  He   separates  innovation  from  invention  and  says  that  innovation  is  learning   something  new  with  respect  to  theoretical  or  practical  knowledge,  while   invention  does  not  necessarily  induce  innovation.      

(7)

However,  although  venture  capital  is  a  main  source  for  the  financing  of   innovation,  Gompers  and  Lerner  (2001)  explain  four  challenges  with  respect  to   an  investor’s  willingness  to  invest  in  innovative  activities.  First  of  all,  the  high   uncertainty  about  the  future.  There  is  not  only  uncertainty  in  a  firm’s  

development  possibilities,  but  also  in  the  industry  and  in  the  whole  market   (Gompers  and  Lerner,  2001).  Second  they  cite  information  asymmetry.  This  is  a   situation  where  the  various  players  in  the  venture  capital  cycle  have  differences   in  knowledge  with  respect  to  their  information  inside  and  outside  the  firm.  The   third  challenge  is  about  the  soft  assets,  such  as  patents.  These  assets  cannot   serve  as  collateral  in  the  case  a  firm  goes  bankrupt,  because  they  provide  too   little  value  (Gompers  and  Lerner,  2001).    And  the  fourth  challenge  is  the   volatility  of  market  conditions.  Venture  capitalists  have  to  choose  the  best   moment  to  invest  in  order  to  minimise  the  total  risk,  therefore  market  timing  is   important  for  investors  (Gompers  and  Lerner,  2001).  According  to  Gompers  et  al.   (2008)  venture  capitalist  are  actually  good  at  timing  market  conditions,  they   have  to  invest  at  the  right  time.      

  Another  challenge  that  became  visible  was  the  financial  crisis  (Block  and   Sandner,  2009).  On  15  September  2008  the  bankruptcy  of  Lehman  Brothers  was   announced,  which  caused  the  great  recession.  Many  financial  institutions  were   affected  and  lost  value.  The  only  way  to  save  these  institutions  from  bankruptcy   was  by  government  funds  (Block  and  Sandner,  2009).    

  In  the  second  part  of  this  section,  the  empirical  evidence  with  regard  to   the  venture  capital  industry  is  discussed.  It  is  argued  that  venture  capital   financing  spurs  innovation  (Hellman  and  Puri,  2000).  Hellman  and  Puri  (2000)   provide  evidence  that  venture  capital  financing  can  have  an  impact  on  the   development  path  of  a  start-­‐up  firm.  Their  sample  consists  of  173  start-­‐up  firms   that  are  located  in  California’s  Silicon  Valley  chosen  independently  of  financing,   so  that  they  have  both  venture  and  non-­‐venture  capital-­‐backed  firms.  Using  a   duration  model  with  time-­‐varying  covariates  they  show  that  there  is  a  significant   reduction  in  the  time  to  bring  a  product  to  the  market.  Kortum  and  Lerner  

(2000)  also  find  a  positive  relation  between  venture  capital  funding  and   innovation.  They  investigate  this  relation  in  reduced-­‐form  regressions  across   twenty  industries  in  the  U.S.  manufacturing  sector  over  a  three-­‐decade  period,  

(8)

controlling  for  R&D  expenditures.  They  find  that  venture  capital  funding  is   accompanied  with  an  increase  in  innovation.  Venture  capital  accounted  for  14%   of  innovations  (Kortum  and  Lerner,  2000).  Nanda  and  Rhodes-­‐Kropf  (2013)   show  that  increased  venture  capital  ensures  that  investments  shift  to  more   innovative  start-­‐ups  by  lowering  the  cost  of  experimentation  and  allowing  them   to  make  riskier,  more  novel  investments.  They  use  a  sample  of  12.285  US-­‐based   start-­‐ups  that  received  their  first  venture  capital  funds  between  1985-­‐2004,  but   follow  these  firms  until  the  end  of  2010.  Using  multivariate  analysis  they  find   their  results.              

The  collapse  of  Lehman  Brothers  caused  the  current  global  financial  crisis   and  also  had  an  effect  on  the  venture  capital  industry  (Block  et  al.,  2010).  Block   and  Sandner  (2009)  analyse  the  effect  of  the  current  financial  crisis  on  venture   capital  investments  in  US  Internet  firms.  Using  regression  analysis  they  find  that   the  financial  crisis  is  accompanied  with  a  20%  decrease  in  the  venture  capital   disbursements.  They  show  that  firms  in  later  stages  of  the  venture  capital  cycle   are  more  negatively  affected.  Also  Block  et  al.  (2010)  show  that  the  current   financial  crisis  has  a  negative  impact  on  venture  capital  funding.  They  argue  that   both  firms  in  early-­‐  and  later  stages  of  the  venture  capital  cycle  are  negatively   affected.  However,  they  say  that  the  effect  differs  across  industries  and  countries.          

Theory  and  empirical  evidence  suggest  that  venture  capital  stimulates   innovation  (Kortum  and  Lerner,  2000)  and  that  venture  capital  funding  

decreases  due  to  the  current  financial  crisis  (Block  et  al.,  2010).  The  research  in   this  thesis  relates  to  the  existing  literature  because  the  stimulating  effect  of   venture  capital  funding  on  innovation  might  be  disturbed  due  to  the  current   financial  crisis.  The  research  by  Kortum  and  Lerner  (2000)  focuses  only  on  the   United  States  in  a  period  before  the  crisis.  However,  the  financial  crisis  affects   many  countries.  Because  Block  et  al.  (2010)  show  that  this  effect  differs  across   countries;  the  research  in  this  thesis  focuses  on  the  relation  between  venture   capital  funding  and  innovation  during  the  financial  crisis,  but  takes  several   countries  into  account.  Based  on  the  previous  theories,  it  is  expected  that  

venture  capital  funding  has  a  smaller  impact  on  patented  innovations  during  the   current  financial  crisis.            

(9)

Hirukawa  and  Ueda  (2011)  argue  that  because  of  causality  the  relation  between   venture  capital  and  innovation  should  be  interpreted  carefully.  There  are  two   possible  hypotheses,  the  ‘venture  capital-­‐first  hypothesis’  and  the  ‘innovation-­‐ first  hypothesis’  (Hirukawa  and  Ueda,  2011).  The  venture  capital-­‐first  

hypothesis  means  that  venture  capital  investments  stimulate  innovation.   However,  the  innovation-­‐first  hypothesis  shows  a  reversed  causality  that  

innovations  induce  venture  capital  investments.  The  demand  for  venture  capital   increases  through  the  entry  of  new  technology  (Hirukawa  and  Ueda,  2011).   Although  Hirukawa  and  Ueda  (2011)  find  evidence  supporting  the  innovation-­‐ first  hypothesis,  Trajtenberg  (1990)  find  supportive  evidence  for  the  

attractiveness  of  patents  as  an  indicator  for  innovation.  His  research  supports   the  venture  capital-­‐first  hypothesis.  Though,  Lerner  (2002)  states  that  both   venture  capital  funding  and  innovations  could  be  positively  related  to  the  arrival   of  technological  opportunities.  This  means  that  on  the  one  hand  venture  capital   could  spur  innovation,  but  on  the  other  hand  there  is  a  possibility  that  

innovation  increases  because  venture  capital  reacted  to  a  technological  shock   which  lead  to  more  innovation  (Lerner,  2002).  Kortum  and  Lerner  (2000)   address  these  causality  concerns  and  show  that  venture  funding  has  a  strong   positive  impact  on  innovation.  These  results  support  the  venture  capital-­‐first   hypothesis.  Therefore,  as  seen  from  the  literature  the  most  empirical  evidence  is   found  for  the  venture  capital-­‐first  hypothesis.  

3.  Hypothesis,  Methodology  and  Data     3.1.  Hypothesis  and  Methodology  

This  section  discusses  the  hypothesis  and  the  model.    

A  regression  will  be  used  to  test  whether  venture  capital  funding  has  a   significant  impact  on  the  number  of  patented  innovations  during  the  current   financial  crisis.    The  following  model  is  used  to  analyse  this:    

 

𝐼𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛!,! = 𝛽!+ 𝛽!∗ 𝑉𝑒𝑛𝑡𝑢𝑟𝑒  𝐶𝑎𝑝𝑖𝑡𝑎𝑙  𝐷𝑒𝑎𝑙𝑠!,!+ 𝛽!∗ 𝑉𝑒𝑛𝑡𝑢𝑟𝑒  𝐶𝑎𝑝𝑖𝑡𝑎𝑙  𝐸𝑥𝑝𝑒𝑛𝑠𝑒𝑠!,! + 𝛽!∗ 𝑅&𝐷  𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒𝑠!,!+ 𝛽!∗ 𝑆𝑡𝑎𝑟𝑡𝑢𝑝  𝑓𝑖𝑟𝑚𝑠!,!+ 𝛽!∗ 𝐶𝑟𝑖𝑠𝑖𝑠!+ 𝑢!,!    

(10)

where  𝑢!,! = 𝛼! + 𝜀!,!,  i  is  the  country  and  t  is  the  time  period.  The  dependent  

variable  in  the  regression  is  innovation.  Innovation  is  measured  by  the  yearly   patent  counts  issued  per  country  (Hagedoorn  and  Cloodt,  2003).  Two  different   variables  will  be  used  to  measure  venture  capital  funding.  The  first  independent   variable  is  a  country’s  yearly  total  venture  capital  expenditures.  The  second   independent  variable  is  a  country’s  yearly  total  number  of  completed  venture   capital  deals  (Kortum  and  Lerner,  2000).    

Kortum  and  Lerner  (2000)  state  that  venture  capital  funding  and   patenting  could  be  related  to  the  arrival  of  technological  opportunities.  

Therefore,  the  variable  ‘R&D  expenditures’  is  used  in  the  model  to  control  for  the   technological  opportunities.  However,  there  could  be  another  relation  with   respect  to  innovation.  Baumol  (2002)  predicts  that  there  is  a  positive  relation   between  the  number  of  entrepreneurs  and  the  amount  of  patents  applied  within   a  country  and  Almeida  and  Kogut  (1997)  state  that  start-­‐up  firms  discover  new   technological  areas  by  innovating  in  less  busy  areas.  Therefore,  a  country  with  a   higher  number  of  start-­‐up  firms  could  have  more  patented  innovations.  The   variable  ‘start-­‐up  firms’  controls  for  this.    

Quantitative  data  of  20  countries  are  collected,  which  are  based  on  the   size  of  venture  capital  activity.  The  period  that  will  be  analysed  is  2004  –  2011.   This  period  includes  the  current  financial  crisis  during  the  period  2008  –  2011.   The  dummy  variable  ‘crisis’  is  added  to  the  model  to  determine  the  impact  of  the   financial  crisis.  The  dummy  variable  is  equal  to  one  if  the  time  period  ‘t’  is  during   the  financial  crisis  (2008  –  2011)  and  zero  otherwise.          

       

Table  1:  Selected  countries    

Australia                                        Ireland   Norway   Singapore     Sweden  

China   Israel   Poland   South  Africa   Turkey  

France   Italy   Portugal   South  Korea   United  Kingdom  

Germany   Japan   Russia   Spain   United  States  

 

The  data  is  collected  for  20  different  countries  observed  at  8  different  time   periods  and  is  called  longitudinal  data  or  panel  data  (Stock  and  Watson,  2012,  p.   390).  A  method  for  analysing  panel  data  is  the  ‘fixed  effects  regression’  (Griliches   and  Hausman,  1986).  There  are  four  assumptions  for  the  fixed  effects  regression  

(11)

(Stock  and  Watson,  2012,  pp.  404-­‐405).  The  first  assumption  is  that  ui,t  has  

conditional  mean  zero.  The  second  assumption  which  Stock  and  Watson  (2012,   p.  404)  make,  is  that  the  variables  for  one  entity  are  distributed  identically  to,   but  independently  of,  the  variables  for  another  entity.  The  third  assumption  they   mention  is  that  large  outliers  are  unlikely  and  the  fourth  assumption  states  that   there  is  no  perfect  multicollinearity.  Fixed  effects  regression  is  a  method  for   controlling  for  omitted  variables  in  panel  data,  since  the  omitted  variables  vary   across  the  different  countries  but  do  not  change  over  time  (Stock  and  Watson,   2012,  p.  396).  The  model  decomposes  the  error  term,  ui,t,  into  a  unit-­‐specific  and  

time-­‐invariant  component,  αi,  and  an  observation-­‐specific  error,  εi,t  (Stock  and  

Watson,  2012,  pp.  396-­‐370).  Stock  and  Watson  (2012,  p.  396)  state  that  the  fixed   effects  regression  has  for  each  country  a  different  intercept,  which  absorb  the   influences  of  all  omitted  variables  that  differ  from  one  country  to  the  next  but  are   constant  over  time.  These  are  all  the  variables,  which  determine  innovation  in   the  ith  country,  but  do  not  change  over  time.  An  example  of  such  a  variable  is  the  

several  policies  used  in  each  country  (Da  Rin  et  al.,  2006).  Therefore,  with  the   fixed  effects  model  the  effects  of  the  independent  variables  on  the  dependent   variable  can  be  estimated  using  the  changes  in  the  variables  during  the  selected   period  (Griliches  and  Hausman,  1986).  With  an  OLS  regression  there  will  be   omitted  variable  bias  because  of  the  correlation  between  the  unobservable   factors  and  the  variables  in  the  regression  (Stock  and  Watson,  2012,  p.  221).      

However,  if  some  omitted  variables  are  constant  over  time  but  vary   across  countries  while  others  are  constant  across  states  but  vary  over  time,  then   the  alternative  for  the  fixed  effects  model  can  be  used.  This  is  the  ‘random  effects   model’  (Stock  and  Watson,  2012,  p.  402).    

  To  test  whether  the  fixed  effects  model  is  more  efficient  than  the  random   effects  model,  it  is  appropriate  to  run  a  Hausman  test.  The  Hausman  test  tests  a   more  efficient  model  against  a  less  efficient,  but  consistent  model,  to  ensure  that   the  more  efficient  model  also  has  consistent  results  (Stock  and  Watson,  2012,  pp.   402-­‐403).  The  null  hypothesis  is  that  the  coefficients  estimated  by  the  efficient   random  effects  estimator  are  the  same  as  the  coefficients  estimated  by  the  

consistent  fixed  effects  estimator.  When  the  p-­‐value  is  significant  the  fixed  effects   model  is  used.    

(12)

The  hypothesis  of  this  research  is  that  venture  capital  funding  has  a  smaller   impact  on  the  number  of  patented  innovations  during  the  current  financial  crisis   (in  the  period  2008  –  2011).  The  number  of  patented  innovations  decreases.   Kortum  and  Lerner  (2000)  show  that  increases  in  venture  capital  are  associated   with  higher  innovation.  Their  estimates  suggest  that  venture  capital  may  have   accounted  for  14%  of  innovations.  However,  Block  and  Sandner  (2009)  analyse   the  effect  of  the  current  financial  crisis  on  venture  capital  and  show  that  there  is   a  decrease  of  20%  in  venture  capital  due  to  the  financial  crisis.  Therefore,  when   there  is  a  decrease  in  venture  capital,  the  number  of  innovations  will  also   decrease,  whereby  venture  capital  funding  contributes  less  to  innovation  in   times  of  crisis.  It  is  expected  that  the  coefficient  on  the  dummy  variable  ‘crisis’  is   negative  and  the  coefficients  on  the  venture  capital  measures  will  be  lower   during  the  financial  crisis  than  before  the  financial  crisis,  but  these  coefficients   remain  positive.  The  hypothesis  tests  if  the  impact  of  venture  capital  funding  on   the  number  of  patented  innovations  is  smaller  during  the  crisis  than  before  the   crisis,  which  is  indicated  by  a  negative  sign  of  the  crisis  dummy.  

3.2.  Data  and  descriptive  statistics  

This  section  lists  the  data  sources.    

First  of  all,  the  dependent  variable  will  be  discussed.  The  dependent   variable  is  innovation  and  is  measured  by  the  total  yearly  patent  counts  issued   per  country  (Hagedoorn  and  Cloodt,  2003).  The  data  on  patent  counts  is   collected  from  the  OECD  (Organization  for  Economic  Co-­‐Operation  and   Development)  Patent  Database  (OECD  Patent  Database,  2014).  This  database   supplies  patent  indicators  that  are  appropriate  for  statistical  analysis  and  covers   data  on  patent  applications  to  the  US  Patent  and  Trademark  Office  (USPTO).  The   data  comes  primarily  from  the  latest  version  of  the  EPO’s  Worldwide  Patent   Statistical  Database  (PATSTAT).    

Patents  are  defined  as  a  method  to  protect  an  innovators  idea  (OECD,   2010).  Therefore,  the  numbers  of  patent  applications  is  used  as  an  indicator  of   the  amount  of  new  ideas  being  produced  and  patents  are  therefore  an  indicator   for  innovation  (Kortum  and  Lerner,  2000).  Trajtenberg’s  (1990)  findings  

indicate  that  patents  are  a  good  indicator  of  innovation.  He  declares  that  patents   are  the  only  manifestation  of  innovation  activities  covering  every  field  of  

(13)

innovation  in  several  countries  and  over  long  time  periods.  It  is  a  measure  for   innovation  performance.  Griliches  (1998)  states  that  a  patent  is  issued  by  an   authorized  public  institution.  It  is  a  document  that  grants  the  right  to  exclude   anyone  else  from  the  production  or  use  of  a  specific  new  device,  apparatus,  or   process  for  a  stated  number  of  years.  The  aim  of  the  patent  system  is  to   encourage  innovation  and  technological  progress  (Griliches,  1998).        

 

Secondly,  the  two  independent  variables  ‘venture  capital  deals’  and  ‘venture   capital  expenses’  are  discussed.  These  two  variables  are  used  as  a  measurement   for  venture  capital  (Kortum  and  Lerner,  2000).  The  data  on  these  variables  are   collected  from  the  Thomson  One  database  (Thomson  One,  2014).  Thomson  One   supplies  data  on  a  broad  range  of  financial  content  including  venture  capital   information.  

  The  variable  ‘venture  capital  deals’  is  defined  as  the  total  number  of   completed  venture  capital  deals  per  country  per  year.  These  deals  are  financed   with  venture  capital.  The  variable  ‘venture  capital  expenses’  is  the  total  venture   capital  expenditures  per  country  per  year.  These  expenditures  are  expressed  in   millions.            

 

Thirdly,  the  control  variable  ‘R&D  expenditures’  is  discussed.  The  data  on  this   variable  is  collected  from  the  OECD  Database  Research  and  Development  

Statistics  (RDS)  (OECD  Database  R&D  Statistics,  2014).  This  database  provides  a   range  of  recent  data  on  the  resources  devoted  to  R&D  and  is  based  on  the  data   reported  to  OECD  and  Eurostat.      

  R&D  expenditures  affect,  besides  venture  capital,  innovation  activities   (Kortum  and  Lerner,  2000).  Brown  et  al.  (2009)  state  that  financing  of  R&D  is  a   critical  input  to  innovation  and  economic  growth.  Therefore  the  control  variable   ‘R&D  expenditures’  is  used  to  control  for  this.  The  R&D  expenditures  are  in   millions  of  national  currency,  also  per  country  and  per  year.        

 

Finally,  the  other  control  variable  ‘number  of  start-­‐up  firms’  is  discussed.  This  is   the  total  number  of  start-­‐up  firms  per  year  per  country.  These  data  is  collected  

(14)

from  the  database  Orbis  (Orbis,  2014).  Orbis  supplies  company  information   across  the  globe.    

  The  total  number  of  start-­‐up  firms  contains  both  small-­‐  and  large  start-­‐up   firms  in  each  country.  Although  large  start-­‐up  firms  have  more  patents  in  well-­‐ established  areas,  small  start-­‐up  firms  have  more  patents  in  smaller,  less  known   areas.  And  because  all  these  start-­‐up  firms  affect  innovation  activities,  the   variable  ‘number  of  start-­‐up  firms’  controls  for  this  effect  (OECD,  2010).      

In  table  2  are  the  descriptive  statistics  and  in  table  3  are  the  cross-­‐correlations  of   the  several  variables.  Appendix  A  contains  the  detailed  descriptive  statistics,   where  ‘between’  and  ‘within’  indicate  the  descriptive  statistics  for  ‘between   countries’  and  ‘within  periods’  respectively.  ‘Overall’  shows  the  same  results  as   table  2.  Appendix  B  shows  the  total  yearly  patent  counts  issued  per  country.  It   shows  that  for  most  countries  the  total  patent  counts  increases  a  little  before  the   crisis,  but  that  the  total  patent  counts  decreases  during  the  crisis.  Appendix  C   also  shows  this  observation,  where  the  total  yearly  patent  counts  issued  per   country  are  summed  in  each  period.                  

 

Table  2:  Descriptive  statistics    

Variables   Obs.   Minimum   Maximum     Mean   Standard  deviation   Variance  

Country   160   1   20   10.5   5.784386   33.45912  

Period   160   2004   2011   2007.5   2.298482   5.283019  

Patent   160   50.3635   149826.4   13728.71   32031.29   1.03E+09  

VCD   160   1   5937   418.4063   1099.382   1208640  

VCE   160   0.33   105992.1   3497.838   11139.26   1.24E+08  

R&D  exp.   160   295.848   3.82E+07   1925479   6225654   3.88E+13  

Start-­‐up   160   19   2612220   153739.3   283360.5   8.03E+10  

Crisis   160   0   1   0.5   0.5015699   0.2515723  

Notes:  VCD  refers  to  the  total  number  of  completed  venture  capital  deals,  VCE  refers  to  the     total  venture  capital  expenses,  start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and     R&D  exp.  refers  to  the  total  R&D  expenditures.  

 

The  mean  of  the  variables,  reported  in  the  5th  column  of  table  2,  varies  between  

0.5  and  1925479,  and  the  variation  in  the  various  variables  can  be  seen  from  the   standard  deviation,  reported  in  the  6th  column,  which  varies  between  0.5015699  

(15)

variable  and  the  3rd  and  4th  columns  present  the  smallest  and  largest  

observations  per  variable,  indicated  by  the  minimum  and  maximum.                

Table  3:  Cross-­‐correlations  

  Country   Period   Patent   VCD   VCE   R&D  exp.   Start-­‐up   Crisis  

Country   1.0000                 Period   0.0000   1.0000               Patent   -­‐0.5104   ***   -­‐0.0142     1.0000               VCD   -­‐0.4791   ***   0.0068     0.8952  ***   1.0000             VCE   -­‐0.3536   ***   -­‐0.0196     0.7329  ***   0.7799  ***   1.0000           R&D  exp.   -­‐0.1694   **   0.0553     0.1720  **   -­‐0.0519     -­‐0.0537     1.0000         Start-­‐up     -­‐0.3743   ***   0.0947     0.6767  ***   0.7801  ***   0.5316  ***   -­‐0.1083     1.0000       Crisis   0.0000     0.8729  ***   -­‐0.0155     -­‐0.0030     -­‐0.0658     0.0460     0.0803     1.0000    

Notes:  VCD  refers  to  the  total  number  of  completed  venture  capital  deals,  VCE  refers  to  the     total  venture  capital  expenses,  start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and     R&D  exp.  refers  to  the  total  R&D  expenditures.  **  and  ***  indicate  significance  at  5%  and     1%  respectively.      

 

Table  3  presents  the  correlations  between  the  several  variables.  The  smallest   correlation  is  between  the  variables  ‘crisis’  and  ‘VCE’,  this  correlation  is  negative   and  is  -­‐00658.  This  indicates  a  strong  negative  relation.  The  largest  correlation  is   between  the  variables  ‘VCD’  and  ‘patent’,  this  correlation  is  positive  and  is  

0.8952.  This  indicates  a  strong  positive  relation.  The  correlations  between   ‘patent’  and  the  two  venture  capital  variables  are  significant  at  the  1%  level.  

4.  Empirical  results   4.1.  Empirical  Results  

This  section  presents  the  main  results.    

First  of  all,  both  the  fixed  effects  regression  and  the  random  effects   regression  are  done  in  order  to  test  the  hypothesis  of  the  Hausman  test.  The   Hausman  test  tests  the  more  efficient  model  (the  random  effects  model)  against   the  less  efficient,  but  consistent  model  (the  fixed  effects  model),  to  ensure  that   the  more  efficient  model  also  has  consistent  results.  The  null  hypothesis  is  that   the  coefficients  estimated  by  the  efficient  random  effects  estimator  are  the  same   as  the  coefficients  estimated  by  the  consistent  fixed  effects  estimator.  Table  4  

(16)

presents  the  results  of  the  Hausman  test.  The  p-­‐value  of  the  test  is  significant  at   the  1%  level.  This  means  that  the  null  hypothesis  is  rejected.  Therefore,  it  is   appropriate  to  use  the  fixed  effects  model  instead  of  the  random  effects  model.            

 

Table  4:  The  Hausman  test  and  regressions      

    Dependent  variable:  Patent                      

  FE    

regression               regression  RE            

    (1)   t-­‐value   p-­‐value       (2)   z-­‐value   p-­‐value  

VCD       2.760804***  (.9332649)   2.96     0.004             6.131728***  (1.148741)   5.34     0.000     VCE       .1006053***  (.0226214)   4.45     0.000             .0902458***  (.0297052)   3.04     0.002     R&D  exp.       .0002333**  (.0001)   2.33     0.021             .0003228**  (.0001274)   2.53     0.011     Start-­‐up         -­‐.0044318***  (.0010849)   -­‐4.08     0.000             -­‐.0040565***  (.0014241)   -­‐2.85     0.004     Crisis       (305.3891)  -­‐775.84**   -­‐2.54     0.012             -­‐8,571,541**  (401.0604)   -­‐2.14     0.033     Constant       12841.72***  (475.4759)   27.01     0.000             11278.16***  (3180.198)   3.55     0.000     R2   0.8131               0.8695           rho   .99609603               .97018645           F-­‐test   0.0000***               0.0000***           Hausman   test                                 chi2(2)  =               61.89                                     Prob>chi2               0.000***                

Notes:  Standard  errors  are  in  parentheses.  **  and  ***  indicate  significance  at  5%  and  1%   respectively.  VCD  refers  to  the  total  number  of  completed  venture  capital  deals,  VCE  refers  to     the  total  venture  capital  expenses,  start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and     R&D  exp.  refers  to  the  total  R&D  expenditures.      

 

Regression  1  in  table  4  presents  the  results  of  the  fixed  effects  regression  and   regression  2  in  table  4  presents  the  results  of  the  random  effects  regression.  The   remainder  of  this  section  will  explain  the  results  of  the  fixed  effects  regression,   because  the  random  effects  model  is  rejected  by  the  Hausman  test  and  the  use  of   the  fixed  effects  regression  is  advised.          

Regression  1  in  table  4  presents  the  results  of  the  fixed  effects  regression.   All  the  variables  in  the  model  are  statistical  significant,  most  of  them  at  the  1%   level.  First  of  all,  the  two  independent  variables  are  discussed.  Both  variables  

(17)

‘venture  capital  deals’  and  ‘venture  capital  expenses’  are  significant  at  the  1%   level,  controlling  for  R&D  expenditures  and  the  number  of  start-­‐up  firms,  and   have  a  positive  relation  with  the  dependent  variable  ‘patent’.  They  have  

considerable  explanatory  power  for  the  total  number  of  patents.  This  means  that   when  the  number  of  venture  capital  deals  increases  with  one  deal,  the  number  of   patents  increases  with  2.7608  and  this  also  means  that  when  the  total  venture   capital  expenses  increases  with  1  million,  the  number  of  patents  increases  with   0.1006.  According  to  these  estimates,  good  financing  opportunities  with  regard   to  venture  capital  are  associated  with  more  innovation.  Therefore,  when  there  is   more  venture  capital  in  circulation,  there  are  more  financial  capabilities  to   finance  innovative  opportunities.  So,  there  could  be  more  patents  granted  and   the  total  of  innovation  increases.  Venture  capital  is  especially  important  for   start-­‐up  firms,  because  these  firms  perceive  difficulties  in  gaining  the  necessary   financial  assets.  With  the  venture  capital  they  have  the  opportunity  to  innovate   and  to  develop.  So,  when  they  get  access  to  venture  capital  funding,  the  number   of  patents  increases.    

Second,  the  first  control  variable  ‘R&D  expenditures’  is  discussed.  This   variable  is  significant  at  the  5%  level  and  also  has  a  positive  effect  on  the  

dependent  variable  ‘patent’.  When  the  R&D  expenditures  increase  with  1  million   in  national  currency,  then  the  number  of  patents  increases  with  0.0002.  

Technological  opportunities  and  hence  R&D  expenditures  are  often  associated   with  higher  innovation.  When  researchers  spend  more  on  R&D  expenditures,   innovation  will  increase  (Lanjouw  and  Schankerman,  2004).  However,  according   to  these  estimates,  the  effect  on  patents  is  relative  small.          

Third,  the  other  control  variable  ‘start-­‐up  firms’  is  discussed.  This  variable   is  significant  at  the  1%  level  and  has  a  negative  effect  on  the  dependent  variable   ‘patent’.  When  the  number  of  start-­‐up  firm’s  increases  with  one,  the  number  of   patents  decreases  with  -­‐0.0044.  Although  other  researchers  suggest  a  possible   positive  relation  with  innovation,  this  result  shows  a  negative  effect.  An  

explanation  could  be  that  when  the  number  of  start-­‐up  firms  increases,  it  is   harder  to  be  innovative.  Therefore  there  will  be  fewer  patents  granted  when   there  are  more  start-­‐up  firms  in  a  certain  period.  The  more  start-­‐up  firms  enter   an  area,  the  less  opportunity  to  develop  or  innovate.                

(18)

Finally,  the  last  variable  is  discussed,  the  crisis  dummy.  This  variable  is   significant  at  the  5%  level.  The  result  of  the  dummy  variable  indicates  a  negative   effect  on  patents  due  to  the  current  financial  crisis.  This  means  that  in  an  

economic  downturn,  such  as  the  financial  crisis,  there  are  fewer  patents  granted   and  there  is  less  innovation  spurred  by  venture  capital.        

The  remaining  results  in  the  table  indicate  a  high  R2,  a  high  rho  and  a  low  

F-­‐test.  The  regression  R2  is  the  fraction  of  the  sample  variance  of  Yi,t  explained  by  

(or  predicted  by)  the  regressors  (Stock  and  Watson,  2012,  p.  235).  This  means   that  81.31%  of  the  sample  variance  of  ‘patent’  is  explained  by  the  regressors   used  in  this  model.  The  rho  in  the  regression  is  known  as  the  intraclass   correlation.  It  is  the  fraction  of  the  variance  due  to  differences  across  panels   (Stock  and  Watson,  2012,  pp.  133-­‐134).  In  this  model  is  99.61%  of  the  variance   due  to  differences  across  the  several  countries.  The  F-­‐test  is  a  test  to  see  whether   all  the  coefficients  in  the  model  are  different  than  zero.  It  tests  the  joint  

hypothesis  that  all  the  slope  coefficients  are  zero  (Stock  and  Watson,  2012,  pp.   263-­‐265).  The  p-­‐value  of  the  F-­‐test  is  0.0000,  which  means  that  the  model  is   significant  at  the  1%  level.            

 

However,  some  researchers  have  concerns  about  possible  lags  between  venture   capital  funding  and  patenting  (Kortum  and  Lerner,  2000).  The  venture  capital   funds  have  to  be  invested  before  the  firms  can  innovate,  thus  venture  capital  has   a  lagged  effect  on  patents.  Hall  et  al.  (1986)  suggest  that  R&D  spending  and   patenting  are  contemporaneous  and  that  there  is  a  reason  why  the  lags  between   venture  capital  funding  and  patenting  should  not  be  long.  They  state  that  

companies  who  obtained  venture  capital  experience  pressure  to  commercialise   products  quickly.  In  the  following  regression  the  same  fixed  effects  model  is   used,  but  now  with  a  lag  of  1  year  of  the  ‘venture  capital  deals’  and  ‘venture   capital  expenses’  variables.  The  same  data  is  used,  but  now  losing  one  period   because  of  the  lag.  The  lag  is  only  presented  in  the  data  of  the  two  venture  capital   variables,  because  the  variables  ‘R&D  expenditures’  and  ‘start-­‐up  firms’  are  not   involved  with  a  lag.    

   

(19)

Table  5:  Fixed  effects  regression  with  a  lag  of  1  year  

Dependent  variable:  Patent          

  1  year  lag   FE  regression               (1)   t-­‐value   p-­‐value   VCD       6.104425***  (1.0465)   5.83     0.000     VCE       (0.0249852)  0.11174***   4.47     0.000     R&D  exp.       (0.0001147)  0.0000206   0.18     0.857     Start-­‐up         -­‐0.0062317***  (0.0011504)   -­‐5.42     0.000     Crisis       -­‐1081.362***  (330.285)   -­‐3.27     0.001     Constant       17450.55***  (573.3327)   30.44     0.000     R2   0.7849           rho   0.99773788           F-­‐test   0.0000***          

Notes:  Standard  errors  are  in  parentheses.  ***  indicates  significance  at  1%.  VCD  refers  to  the  total   number  of  completed  venture  capital  deals,  VCE  refers  to  the  total  venture  capital  expenses,   start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and  R&D  exp.  refers  to  the  total  R&D   expenditures.      

 

These  results  appear  quite  robust.  Both  the  two  venture  capital  variables  have  a   positive  relation  and  the  same  significance  level  as  the  regression  without  the   time  lag.  Although  the  higher  impact  of  the  crisis,  the  coefficients  of  the  ‘venture   capital  deals’  and  ‘venture  capital  expenses’  variables  are  also  higher.  A  reason   might  be  that  the  time  lag  is  taken  into  account  in  this  regression.  Only  the   control  variable  ‘R&D  expenditures’  is  not  statistically  significant  in  this   regression.        

  Overall,  the  several  regressions  give  the  same  results,  namely  a  positive   and  highly  significant  result  for  the  two  venture  capital  variables  and  a  negative   impact  of  the  current  financial  crisis.      

 

The  last  part  of  this  section  discusses  some  implications  of  the  findings.  The   results  suggest  that  there  is  a  positive  relation  between  venture  capital  funding   and  innovation.  The  higher  coefficient  on  ‘venture  capital  expenses’  compared  to   ‘R&D  expenditures’  means  that  money  invested  in  venture  capital  is  more  potent  

(20)

in  stimulating  innovation  than  money  spend  on  R&D.  The  model  controls  for   R&D  expenditures  and  the  number  of  start-­‐up  firms,  and  the  crisis  dummy   indicates  that  the  current  financial  crisis  has  a  negative  impact  on  the  number  of   patents.  This  means  that,  although  there  is  a  positive  relation  between  venture   capital  and  innovation,  the  impact  of  the  crisis  ensures  that  this  positive  relation   is  smaller  during  the  crisis  than  this  particular  relation  before  the  crisis.    

4.2  Robustness  check  

This  section  presents  some  robustness  checks  and  additional  results.    

There  are  two  different  robustness  checks  implemented  with  respect  to   the  crisis.  First  of  all,  the  data  is  divided  into  two  different  time  periods.  The  first   period  is  2004-­‐2007,  representing  the  period  before  the  financial  crisis  and  the   second  period  is  2008-­‐2011,  representing  the  period  during  the  financial  crisis.   The  following  table  presents  the  results  of  the  first  robustness  check.    

 

Table  6:  Fixed  effects  regression  with  to  different  time  periods  

                         Dependent  variable:  Patent                      

  FE  regression             FE  regression          

    2004-­‐2007   t-­‐value   p-­‐value   2008-­‐2011   t-­‐value   p-­‐value  

VCD       5.650075**  (2.225657)   2.54     0.014     3.360216***  (.9626131)   3.49     0.001     VCE       (0.0480309)  0.0276541   0.58     0.567     (0.0537506)  0.0161227   0.30     0.765     R&D  exp.       0.0007305**  (0.0002919)   2.50     0.015     (0.0001191)  0.000156   1.31     0.195     Start-­‐up         (0.0043561)  0.0084477*   1.94     0.058     (0.0009099)  -­‐0.0008349   -­‐0.92     0.363     Constant       9670.667***  (1056.499)   9.15     0.000     9912.848***  (549.7961)   18.03     0.000     R2   0.8073           0.8704           rho   0.99678012           0.99779161           F-­‐test   0.0000***           0.0000***          

Notes:  Standard  errors  are  in  parentheses.  *,  **  and  ***  indicate  significance  at  10%,  5%  and  1%   respectively.  VCD  refers  to  the  total  number  of  completed  venture  capital  deals,  VCE  refers  to  the   total  venture  capital  expenses,  start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and  R&D  exp.   refers  to  the  total  R&D  expenditures.      

 

In  table  6  are  the  results  of  the  fixed  effects  regressions  of  the  two  different  time   periods.  Derived  from  the  coefficients,  all  the  variables  have  a  smaller  impact   during  the  crisis  than  before  the  crisis.  However,  the  ‘venture  capital  deals’  

(21)

variable  has  both  before  and  during  the  crisis  a  significant  impact  on  

innovations,  while  the  ‘venture  capital  expenses’  variable  has  in  neither  period  a   significant  impact.  The  insignificance  of  the  ‘venture  capital  expenses’  variable   could  be  caused  by  the  small  sample  size,  because  the  period  2004-­‐2011  is   divided  into  two  different  time  periods,  each  representing  only  4  years.    

  The  second  robustness  check  takes,  besides  the  crisis,  the  concerns  about   possible  lags  between  venture  capital  funding  and  patenting  into  account.  In  the   following  regression  the  same  two  time  periods  are  used,  but  now  with  a  lag  of  1   year  of  the  ‘venture  capital  deals’  and  ‘venture  capital  expenses’  variables.                  

 

Table  7:  Fixed  effects  regression  with  two  different  time  periods  and  a  lag  of  1  year  

           Dependent  variable:  Patent                      

  1  year  lag       1  year  lag            

  FE  regression             FE  regression          

    2004-­‐2007   t-­‐value   p-­‐value   2008-­‐2011   t-­‐value   p-­‐value  

VCD       16.59311***  (3.109579)   5.34     0.000     8.006799***  (1.890951)   4.23     0.000     VCE       (.0796435)  .217704***   2.73     0.006      .1289256***  (.0166306)   7.75     0.000     R&D  exp.       (.0004533)  .0003589   0.79     0.429     (.0001248)  -­‐.0001154   -­‐0.92     0.359     Start-­‐up         (.006926)  .0042715   0.62     0.537     -­‐.0050706***  (.0016645)   -­‐3.05     0.004     Constant       (4262.121)  7208.914*   1.69     0.091     17189.41***  (1176.18)   14.61     0.000     R2   0.8212           0.8414           rho   0.9860556           0.99926453           F-­‐test   0.0000***           0.0000***          

Notes:  Standard  errors  are  in  parentheses.  *  and  ***  indicate  significance  at  10%  and  1%  

respectively.  VCD  refers  to  the  total  number  of  completed  venture  capital  deals,  VCE  refers  to  the   total  venture  capital  expenses,  start-­‐up  refers  to  the  total  number  of  start-­‐up  firms  and  R&D  exp.   refers  to  the  total  R&D  expenditures.      

 

Table  7  presents  the  results  of  the  fixed  effects  regression  with  two  different   time  periods  and  a  lag  of  1  year.  These  results  also  show  for  all  the  variables   lower  coefficients  during  the  crisis  than  before  the  crisis  and  both  venture   capital  variables  are  significant  at  the  1%  level.  This  means  that  the  impact  of   venture  capital  on  innovations  is  lower  during  the  crisis  than  before  the  crisis.        

Referenties

GERELATEERDE DOCUMENTEN

We find a positive significant effect of regional social capital on the likelihood that individuals have advanced beyond the pre- establishment stage to higher engagement levels

However, the negative results of CVC can be attributed to the minor attention of this type of VC towards the financial performance of the company, while, regarding the

Therefore, it is fair to state that geographical distance does not moderate the relationship between CVC’ network centrality and the innovation performance of the corporation

Our key result is that the stock returns of companies from open economies are more negatively affected during the starting period of a crisis, started in an open

For the bank characteristics the result is that banks with high Total Assets, Asset Growth Rates, Net Interest Margin, Efficiency Ratios, Total Loans to Total

The impact of venture capital reputation on the long run performance of Asian venture- backed initial public offerings.... Venture-backed initial public offerings in China, Japan

Companies that receive venture capital finance are associated only with the Make-And-Buy innovation strategy that corresponds empirically to the build-up of absorptive capacity..

In other words, previous attempts to estimate the impact of EU funding faced two main problems: their scope was narrow and, therefore, they were able to provide