• No results found

An experimental study of rotor/fuselage interaction

N/A
N/A
Protected

Academic year: 2021

Share "An experimental study of rotor/fuselage interaction"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

AN EXPERIMENTAL STUDY OF ROTOR/FUSELAGE INTERACTION

Yasutada Tanabe, Shigeru Saito, Noboru Kobiki and Katsuichi Murota

Japan Aerospace Exploration Agency, Chofu, Tokyo, JAPAN

Hideaki Sugawara

Ryoyu Systems Co., LTD., Nagoya, JAPAN

and

Kyohei Hayashi, Katsumi Hiraoka

Graduate School, Tokai University, Hiratsuka, Kanagawa, JAPAN

Abstract

Rotor/Fuselage Interaction remains as an important problem for engineers and scientists working on helicopter aerodynamics. A model rotor test stand (JAXA Multi-purpose Rotor Test Stand, JMRTS) is used to build an experimental database for CFD code validations. Four blades are connected to an articulated rotor hub. Feathering, flapping and lead-lag angles at the hinges are measured using Hall-sensors which give high accuracy. Miniature Kulite pressure sensors are installed on the cowling surface which simulate a type of helicopter fuselages. Time-averaged and ensemble-averaged periodic data are obtained. Good correlations were obtained in the measured results between the blade angles and six-component forces and moments as well as the pressure fluctuations on the fuselage and blade surfaces. Datasets of several selected test cases are presented together with geometric descriptions of the blade and the fuselage to enable CFD validations by other parties.

1. INTRODUCTION

Rotor/Fuselage Interaction remains as an important problem for engineers and scientists working on helicopter aerodynamics. Because of the rotor downwash, periodic airloads impact on the fuselage which cause vibration and noise inside the passenger cabin. Also the fatigue life of the airframe is influenced. Detailed experimental data

of ROBIN (ROtor Body INteraction) configuration1)

have been published and they become representative test cases for CFD method validations. Besides this configuration, few data with other realistic helicopter fuselage configurations are available. A very simple model was used in Georgia-Tech (called GT-model) to study the

interference between a rotor and a cylinder body2).

A Dauphin 365N helicopter model was used in ONERA to investigate the rotor-fuselage

aerodynamic interaction problem3).

JAXA is working on an integrated CFD-based comprehensive analysis tool for low noise rotor design. A model rotor stand (JAXA Multipurpose Rotor Test Stand, JMRTS) is used to build an experimental database for the CFD code validations. This rotor stand has been used for BVI

studies and other tests4-6) till now. Four blades are

installed through an articulated rotor hub. Feathering, flapping and lead-lag angles at the hinges are measured with Hall-sensors which give high S/N ratios compared with potentiometers used before. Miniature Kulite pressure sensors are intalled on the cowling surface which simulate a type of helicopter fuselages.

Experiments were carried out in November 2008. Simple time-averaged and ensemble averaged periodic data are obtained. Good correlations were obtained in the measured results between the blade angles and six-components forces and moments as well as the pressure fluctuations on the fuselage and blade surfaces. Flight conditions include hovering, and forward flight up to advance ratio of 0.3. The whole model was tilted from forward -2 deg to backward 4 deg to simulate the general forward flight and descending flight where BVI occurs. Datasets of selected forward flight condition cases are presented together with the geometric descriptions of the rotor blade and the fuselage to enable CFD validations by other parties.

(2)

2. EXPERIMENTAL APPARATUS

2.1. Wind tunnel

Experiments were carried out in JAXA 6.5m x 5.5m Low-speed Wind Tunnel in November, 2008. This wind tunnel is a closed circuit, continuous atmospheric tunnel with free stream velocity of 1 ~ 70 m/s. The test section is a closed-wall-type with 6.5 m in height and 5.5 m in width. The rotor system is mounted with a strut to place the rotor centre in the centre of the test section. Hovering tests were carried out inside the closed wall test section. Although the rotor diameter of about 2m is relative small compared with the test section size, air circulations were expected that may have influences on the hovering test results. For experiments with relatively high advance ratios, the influences of the test section walls are considered small. Future CFD study of the effects of the test section walls is expected.

2.2. JAXA Multi-purpose Rotor Test Stand (JMRTS)

Figure 1 shows the JAXA Multi-purpose Rotor Test Stand (JMRTS) installed inside the test section. This rotor test stand was designed to drive different-types of rotors in the wind tunnel for measuring aerodynamic and acoustic characteristics of the rotors. In the present test, a rotor with four 1.021 m radius, rectangular blades are connected to the rotor head by hinges to allow flapping, lead-lagging and feathering motions. All the three hinges have a common hinge centre with offset of 44.5 mm. The wing section of the blade is NACA0012 with a chord length of 6.5 cm. Two blades have unsteady pressure sensors and other two blades have strain gauges installed. The linear twist angle for the blades is -8 deg/m. All the pitch angles are referred to that at the blade root where r=21 mm. Root-cut is at 206 mm (20.2%R). The flapping

inertia moment of the blade is

I

b

0

.

186

kg

˜

m

2

with the blade grip. Total mass is 2.4 kg together with the grip while 0.74 kg is for the blade itself. Illustration of the blade is shown in Figure 2.

The side view of the rotor stand is shown in Figure 3. The height of the rotor centre is at the centre of the wind tunnel test section. The layout of the main components of the rotor stand is shown in Figure 4. The rotor shaft angle can only be changed together with the fuselage attitude. Rotor is driven with a water-cooled electric motor with a maximum output of 37 hp.

2.3. Fuselage model

The cowling for the rotor stand was designed to be similar to one type of the representative helicopter fuselage designs. The fuselage nose extrudes ahead and the fuselage surface curvature has an abrupt change at the junction line formed by the nose and the body. Compared with ROBIN shape, current shape is more realistic and more complicated. Totally 15 positions at the upper and side surfaces are selected where the miniature Kulite high response pressure sensors are placed in a line on the upper surface center longitudinally and a line at the fore body laterally.

The shape of the fuselage is shown in Figure 5 where the contour lines are given. Rotor center is at the axis origin. The pressure sensor positions are shown in Figure 6 and tabulated in Table 1. 2.4. Sensors and measurements

New blade angle sensors are installed to improve the accuracy in the measurement of the blade motions. Hall-sensors are placed at the hinges to directly measure the flapping / lead-lagging and feathering angles. Good linearity is obtained in the calibrations. However, output offset of the flapping angle sensor is found to be influenced by the centrifugal forces. Calibration test with several different rotating speeds is carried out and a empirical compensation curve is obtained.

The unsteady pressure sensors installed in the rotor blade are gauge-types. Increasing offset is observed with higher rotating speed. Pressure variations around the average are obtained. Typical oscillations are observed at the BVI test conditions.

The elastic deformations of the blades are not measured during the test. Because a full articulated hub is used, the elastic deformations of the blades are considered small. The effects will be studied numerically and/or experimentally in the future.

Totally 32 channels of data are recorded during the test as shown in Table 2. Wind tunnel testing conditions necessary for data reductions are recorded separately at the same time.

3. EXPERIMENTAL METHODS

3.1. Test conditions

Test conditions for all of the related RUNs are summarized in Table 3. In this report, we will concentrate mainly on the forward flight case with

(3)

tip Mach number of 0.56 (RUN009).

3.2. Data processing

The outputs of the sensors are recorded with 16-bits A/D converters. The initial offsets are removed from the data then all the data are converted into physical values with calibrated factors. The outputs from the 6-component balance are converted into forces and moments in each axis with corrections of the interferences from other components using a 6x6 calibration matrix.

For each physical quantity, simple time-averaged values are obtained at first. To obtain the periodically time-varying values per each revolution, ensemble averaging is performed based on the pulse signal once a revolution. Every data record consists of 5 seconds of data sampled at 50kHz. The rotating speed may have small variations during the recording time. As a result, the data

number between the pulses may differ by about r3

for a typical 1667 samplings when the rotor is running at 1800 rpm where 150 periods are included. Ensemble-averaging are performed by defining a common azimuth angle step (0.5 deg in this report) and averaging the interpolated values from each rotation. Typical effect of this processing is shown in Figure 7 and we can see the obtained ensemble-averaged variations are smoother than the original instantaneous 1-period data and the signal uncertainties caused by random noise are removed.

4. RESULTS AND DISCUSSIONS 4.1. CT-CQ curve at hover

Hovering CT-CQ curve for different tip Mach number are shown in Figure 8. Although some small differences are found at the low CT range, good agreement are found between these two different tip Mach numbers elsewhere.

4.2. Averaged surface pressure

RUN011 is selected as a representative case of forward flight. Detailed test conditions and rotor control and blade motion data are shown in Table 4.

In this table, Cpa is referred to sonic speed and

defined as: (1) 2 2 1 f f f



a

p

p

C

pa

U

Only 1st harmonic coefficients of the blade angles

are tabulated. The pitch angle is:

(2)

T

(

<

)

T

0



T

1

*

cos

<



T

2

*

sin

<

so that

A

1



T

1

, and

B

1



T

2

. The flapping

angle is:

(3)

E

(

<

)

E

0



E

1

*

cos

<



E

2

*

sin

<

and the lead-lag angle is defined as positive forward:

(4)

9

(

<

)

9

0



9

1

*

cos

<



9

2

*

sin

<

A periodically ensemble-averaged sample of the blade angles is given in Figure 9. Also the reconstructed signals with only the first harmonics are compared. It can be seen low noise level is attained for these data.

Averaged surface pressure distributions with different advance ratios are shown in Figure 10 where the coefficients of pressure are referred to freestream velocities as:

(5)

C

pf

C

pa

/

M

f2

Please note that in Table 4, the first row is for

hovering case with a different CT setting. This

have been done to avoid over-current for the drive motor. This row of data must be excluded when

making trend study under a constant CT condition.

4.3. Periodic surface pressure variation

The ensemble-averaged periodic surface pressure variations for different advance ratios are shown in Figure 11. It can be seen as the advance ratio increases, pressure fluctuations also increase. Especially, at position Pbody04 and Pbody08, the pressure oscillations are remarkably high for advance ratio of 0.29.

In the longitudinal line, azimuth angles where the peaks observed are almost the same. But for the pressures in the lateral line, significant phase differences are observed with regard to the blade-passing in the order of 10 -> 09 -> 08 -> 04 -> 07 -> 06 -> 05.

Behind the rotor hub, pressure sensor position 11-15, turbulent fluctuations were observed in the instantaneous pressure signals. Flow separation and influence of the rotor shaft are expected.

5. CONCLUSION

An experimental study of Rotor/Fuselage Interaction using JMRTS (JAXA Multi-purpose Rotor Test Stand) is conducted. Blade angles are obtained with good accuracy. Besides the averaged six component balance data, periodically ensemble-averaged pressure variations on the fuselage surface are also obtained. Descriptions about the rotor blade and fuselage shape are provided to enable CFD validations.

(4)

REFERENCES

[1] Mineck, R. E., et al, “Steady and Periodic Pressure Measurement on a Generic Helicopter Fuselage Model in the Presence of a Rotor,” NASA TM-2000-210286, June 2000.

[2] Liou, S.G., et al, ”Measurement of the Interaction Between a Rotor Tip Vortex and a Cylinder,” AIAA Journal, Vol.28, No.6, June 1990.

[3] A. Le Pape, J. Gatard and J.-C. Monnier, “Experimental Investigations of Rotor-Fuselage Aerodynamic Interactions”, J. AHS, April 2007.

[4] Kenta Masaki, et al, “Wind Tunnel Test for BVI Noise and Vibration Reduction Using Blade Active Control,” 31st ERF, Sept. 13-15, 2005, Florence, Italy.

[5] Hiroyuki Kato, et al., “Application of Stereoscopic PIV to Helicopter Rotor Blade Tip Vortices,” 20th International Congress on Instrumentation in Aerospace Simulation Facilities, Aug. 25-29, 2003, DLR Gottingen, Germany.

[6] Kenichiro Nagai, et al., “Array Measurement Techniques for Noise Source Location of Helicopter Main Rotor Noise, “ InterNoise2003,

Table 1 : Coordinates of locations of unsteady surface pressure sensors

㪥㫆 㪯㩷㪲㫄㪴 㪰㩷㪲㫄㪴 㪱㩷㪲㫄㪴 㪧㪹㫆㪻㫐㪇㪈 㪄㪇㪅㪍㪏㪇 㪇 㪄㪇㪅㪋㪌㪐 㪧㪹㫆㪻㫐㪇㪉 㪄㪇㪅㪌㪉㪍 㪇 㪄㪇㪅㪉㪏㪌 㪧㪹㫆㪻㫐㪇㪊 㪄㪇㪅㪊㪍㪐 㪇 㪄㪇㪅㪉㪈㪊 㪧㪹㫆㪻㫐㪇㪋 㪄㪇㪅㪉㪈㪉 㪇 㪄㪇㪅㪇㪍㪏 㪧㪹㫆㪻㫐㪇㪌 㪄㪇㪅㪉㪈㪉 㪄㪇㪅㪉㪇㪎 㪄㪇㪅㪈㪉㪌 㪧㪹㫆㪻㫐㪇㪍 㪄㪇㪅㪉㪈㪉 㪄㪇㪅㪈㪍㪎 㪄㪇㪅㪇㪏㪊 㪧㪹㫆㪻㫐㪇㪎 㪄㪇㪅㪉㪈㪉 㪄㪇㪅㪈㪈㪉 㪄㪇㪅㪇㪍㪍 㪧㪹㫆㪻㫐㪇㪏 㪄㪇㪅㪉㪈㪉 㪇㪅㪈㪈㪈 㪄㪇㪅㪇㪍㪎 㪧㪹㫆㪻㫐㪇㪐 㪄㪇㪅㪉㪈㪊 㪇㪅㪈㪍㪌 㪄㪇㪅㪇㪏㪈 㪧㪹㫆㪻㫐㪈㪇 㪄㪇㪅㪉㪈㪊 㪇㪅㪉㪇㪌 㪄㪇㪅㪈㪉㪇 㪧㪹㫆㪻㫐㪈㪈 㪇㪅㪉㪌㪎 㪇 㪄㪇㪅㪇㪎㪉 㪧㪹㫆㪻㫐㪈㪉 㪇㪅㪋㪈㪉 㪇 㪄㪇㪅㪈㪋㪈 㪧㪹㫆㪻㫐㪈㪊 㪇㪅㪌㪍㪐 㪇 㪄㪇㪅㪉㪈㪋 㪧㪹㫆㪻㫐㪈㪋 㪇㪅㪎㪉㪌 㪇 㪄㪇㪅㪉㪌㪏 㪧㪹㫆㪻㫐㪈㪌 㪇㪅㪏㪏㪇 㪇 㪄㪇㪅㪋㪇㪉

Table 2: Data sampling channels

㪚㪿 㪥㫆㫄㪼㫅㪺㫃㪸㫋㫌㫉㪼 㪩㪸㫅㪾㪼 㪇㪈 㪝㫏 ᶠ 㪌㪭 㪇㪉 㪝㫐 ᶠ 㪌㪭 㪇㪊 㪝㫑 ᶠ 㪌㪭 㪇㪋 㪤㫏 ᶠ 㪌㪭 㪇㪌 㪤㫐 ᶠ 㪌㪭 㪇㪍 㪤㫑 ᶠ 㪌㪭 㪇㪎 㪧㪹㫆㪻㫐㪇㪈 ᶠ 㪈㪇㪭 㪇㪏 㪧㪹㫆㪻㫐㪇㪉 ᶠ 㪈㪇㪭 㪇㪐 㪧㪹㫆㪻㫐㪇㪊 ᶠ 㪈㪇㪭 㪈㪇 㪧㪹㫆㪻㫐㪇㪋 ᶠ 㪈㪇㪭 㪈㪈 㪧㪹㫆㪻㫐㪇㪌 ᶠ 㪈㪇㪭 㪈㪉 㪧㪹㫆㪻㫐㪇㪍 ᶠ 㪈㪇㪭 㪈㪊 㪧㪹㫆㪻㫐㪇㪎 ᶠ 㪈㪇㪭 㪈㪋 㪧㪹㫆㪻㫐㪇㪏 ᶠ 㪈㪇㪭 㪈㪌 㪧㪹㫆㪻㫐㪇㪐 ᶠ 㪈㪇㪭 㪈㪍 㪧㪹㫆㪻㫐㪈㪇 ᶠ 㪈㪇㪭 㪚㪿 㪥㫆㫄㪼㫅㪺㫃㪸㫋㫌㫉㪼 㪩㪸㫅㪾㪼 㪇㪈 㪝㫏 ᶠ 㪌㪭 㪇㪉 㪝㫐 ᶠ 㪌㪭 㪇㪊 㪝㫑 ᶠ 㪌㪭 㪇㪋 㪤㫏 ᶠ 㪌㪭 㪇㪌 㪤㫐 ᶠ 㪌㪭 㪇㪍 㪤㫑 ᶠ 㪌㪭 㪇㪎 㪧㪹㫆㪻㫐㪇㪈 ᶠ 㪈㪇㪭 㪇㪏 㪧㪹㫆㪻㫐㪇㪉 ᶠ 㪈㪇㪭 㪇㪐 㪧㪹㫆㪻㫐㪇㪊 ᶠ 㪈㪇㪭 㪈㪇 㪧㪹㫆㪻㫐㪇㪋 ᶠ 㪈㪇㪭 㪈㪈 㪧㪹㫆㪻㫐㪇㪌 ᶠ 㪈㪇㪭 㪈㪉 㪧㪹㫆㪻㫐㪇㪍 ᶠ 㪈㪇㪭 㪈㪊 㪧㪹㫆㪻㫐㪇㪎 ᶠ 㪈㪇㪭 㪈㪋 㪧㪹㫆㪻㫐㪇㪏 ᶠ 㪈㪇㪭 㪈㪌 㪧㪹㫆㪻㫐㪇㪐 ᶠ 㪈㪇㪭 㪈㪍 㪧㪹㫆㪻㫐㪈㪇 ᶠ 㪈㪇㪭 㪚㪿 㪥㫆㫄㪼㫅㪺㫃㪸㫋㫌㫉㪼 㪩㪸㫅㪾㪼 㪈㪎 㪧㪹㫆㪻㫐㪈㪈 ᶠ 㪈㪇㪭 㪈㪏 㪧㪹㫆㪻㫐㪈㪉 ᶠ 㪈㪇㪭 㪈㪐 㪧㪹㫆㪻㫐㪈㪊 ᶠ 㪈㪇㪭 㪉㪇 㪧㪹㫆㪻㫐㪈㪋 ᶠ 㪈㪇㪭 㪉㪈 㪧㪹㫆㪻㫐㪈㪌 ᶠ 㪈㪇㪭 㪉㪉 㪧㪹㫃㪸㪻㪼㪈㪈 ᶠ 㪈㪇㪭 㪉㪊 㪧㪹㫃㪸㪻㪼㪈㪉 ᶠ 㪈㪇㪭 㪉㪋 㪧㪹㫃㪸㪻㪼㪈㪊 ᶠ 㪈㪇㪭 㪉㪌 㪧㪹㫃㪸㪻㪼㪈㪋 ᶠ 㪈㪇㪭 㪉㪍 㪪㪞㪹㫃㪸㪻㪼㪈 ᶠ 㪈㪇㪭 㪉㪎 㪞㫊㪼㫅㫊㫆㫉㪈 ᶠ 㪌㪭 㪉㪏 㪩㫆㫋㪸㫋㫀㫆㫅 ᶠ 㪌㪭 㪉㪐 㪙㪈㪶㪝㫃㪸㫇 ᶠ 㪌㪭 㪊㪇 㪙㪉㪶㪧㫀㫋㪺㪿 ᶠ 㪌㪭 㪊㪈 㪙㪈㪶㪣㪻㪩㪾 ᶠ 㪌㪭 㪊㪉 㪧㫌㫃㫊㪼 ᶠ 㪌㪭 㪚㪿 㪥㫆㫄㪼㫅㪺㫃㪸㫋㫌㫉㪼 㪩㪸㫅㪾㪼 㪈㪎 㪧㪹㫆㪻㫐㪈㪈 ᶠ 㪈㪇㪭 㪈㪏 㪧㪹㫆㪻㫐㪈㪉 ᶠ 㪈㪇㪭 㪈㪐 㪧㪹㫆㪻㫐㪈㪊 ᶠ 㪈㪇㪭 㪉㪇 㪧㪹㫆㪻㫐㪈㪋 ᶠ 㪈㪇㪭 㪉㪈 㪧㪹㫆㪻㫐㪈㪌 ᶠ 㪈㪇㪭 㪉㪉 㪧㪹㫃㪸㪻㪼㪈㪈 ᶠ 㪈㪇㪭 㪉㪊 㪧㪹㫃㪸㪻㪼㪈㪉 ᶠ 㪈㪇㪭 㪉㪋 㪧㪹㫃㪸㪻㪼㪈㪊 ᶠ 㪈㪇㪭 㪉㪌 㪧㪹㫃㪸㪻㪼㪈㪋 ᶠ 㪈㪇㪭 㪉㪍 㪪㪞㪹㫃㪸㪻㪼㪈 ᶠ 㪈㪇㪭 㪉㪎 㪞㫊㪼㫅㫊㫆㫉㪈 ᶠ 㪌㪭 㪉㪏 㪩㫆㫋㪸㫋㫀㫆㫅 ᶠ 㪌㪭 㪉㪐 㪙㪈㪶㪝㫃㪸㫇 ᶠ 㪌㪭 㪊㪇 㪙㪉㪶㪧㫀㫋㪺㪿 ᶠ 㪌㪭 㪊㪈 㪙㪈㪶㪣㪻㪩㪾 ᶠ 㪌㪭 㪊㪉 㪧㫌㫃㫊㪼 ᶠ 㪌㪭

(5)

Table 3: Test conditions 㪭 㪭㺙 㪫 㱝 㪸 㪤㺙 㱘 㪤㫋㫀㫇 㱍 㪚㪫 㱔㪇 㪘㪈 㪙㪈 㪥 㫄㪆㫊 㷄 㫂㪾㪆㫄㪊 㫄㪆㫊 㪻㪼㪾 㬍㪈㪇㪄㪊 㪻㪼㪾 㪻㪼㪾 㪻㪼㪾 㫉㫇㫄 㪩㪬㪥㩷㪇㪇㪈 㪟㫌㪹㩷㪻㫉㪸㪾㪃㩷㪝㫌㫊㪼㫃㪸㪾㪼㩷㫇㫉㪼㫊㫊㫌㫉㪼㪤㪼㪸㫊㫌㫉㪼㫄㪼㫅㫋 㪎 㪇㪏㪅㪈㪈㪆㪇㪌 㪊㪇䊶㪍㪇 㪈㪍㪅㪌 㪈㪅㪉㪊 㪊㪋㪈 㪇㪅㪇㪐䊶㪇㪅㪈㪏 㪇㪅㪉㪐 㪇㪅㪊㫕㪇㪅㪌㪍 㪇 㪈㪇㪇㪇䊶㪈㪐㪌㪇 㪩㪬㪥㩷㪇㪇㪉 㪟㫌㪹㩷㪻㫉㪸㪾㪃㩷㪝㫌㫊㪼㫃㪸㪾㪼㩷㫇㫉㪼㫊㫊㫌㫉㪼 㪤㪼㪸㫊㫌㫉㪼㫄㪼㫅㫋 㪎 㪇㪏㪅㪈㪈㪆㪇㪌 㪊㪇䊶㪍㪇 㪈㪎㪅㪏 㪈㪅㪉㪉 㪊㪋㪈 㪇㪅㪇㪐䊶㪇㪅㪈㪏 㪇㪅㪉㪐 㪇㪅㪊㫕㪇㪅㪌㪍 㪄㪉 㪈㪇㪇㪇䊶㪈㪐㪌㪇 㪩㪬㪥㩷㪇㪇㪊 㪫㪼㫊㫋㩷㪩㫌㫅㪃㩷㪟㫆㫍㪼㫉㫀㫅㪾 㪧㪼㫉㪽㫆㫉㫄㪸㫅㪺㪼 㪊㪐 㪇㪏㪅㪈㪈㪆㪇㪍 㪇 㪈㪌㪅㪋 㪈㪅㪉㪉 㪊㪋㪇 㪇 㪇 㪇㪅㪈㪐㫕㪇㪅㪌㪍 㪇 㪋䌾㪈㪏 㪇 㪇 㪍㪇㪇䌾㪈㪏㪇㪇 㪩㪬㪥㩷㪇㪇㪋 㪟㫆㫍㪼㫉㫀㫅㪾㩷㪧㪼㫉㪽㫆㫉㫄㪸㫅㪺㪼䋧 㪚㫆㫅㫋㫉㫆㫃㩷㪩㪼㫊㫇㫆㫅㫊㪼 㪊㪐 㪇㪏㪅㪈㪈㪆㪇㪍 㪇 㪈㪌㪅㪋 㪈㪅㪉㪉 㪊㪋㪇 㪇 㪇 㪇㫕㪇㪅㪊 㪇 㪍䌾㪈㪏 㪄㪉䌾㪉 㪄㪉䌾㪉 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪇㪌 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊 㪈㪈 㪇㪏㪅㪈㪈㪆㪇㪍 㪌䌾㪊㪇 㪈㪎 㪈㪅㪉㪈 㪊㪋㪈 㪇㫕㪇㪅㪇㪐 㪇㪅㪇㪌䌾㪇㪅㪉㪐 㪇㪅㪊㪈 㪄㪉 㪊 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪇㪍 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊 㪈㪈 㪇㪏㪅㪈㪈㪆㪇㪍 㪌䌾㪊㪇 㪈㪎 㪈㪅㪉㪈 㪊㪋㪈 㪇㫕㪇㪅㪇㪐 㪇㪅㪇㪌䌾 㪇㪅㪉㪐 㪇㪅㪊㪈 㪄㪉 㪌 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪇㪎 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊 㪈㪈 㪇㪏㪅㪈㪈㪆㪇㪍 㪌䌾㪊㪇 㪈㪎 㪈㪅㪉㪈 㪊㪋㪈 㪇㫕㪇㪅㪇㪐 㪇㪅㪇㪌䌾 㪇㪅㪉㪐 㪇㪅㪊㪈 㪄㪉 㪍㪅㪋 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪇㪏 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊㩷㩽㪚㫆㫅㫋㫉㫆㫃㩷㪩㪼㫊㫇㫆㫅㫊㪼 㪈㪍 㪇㪏㪅㪈㪈㪆㪇㪍 㪈㪌 㪈㪎 㪈㪅㪉㪈 㪊㪋㪈 㪇㫕㪇㪅㪇㪐 㪇㪅㪈㪋 㪇㪅㪊㪈 㪄㪉 㪌 㪄㪉䌾㪉 㪄㪉䌾㪉 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪇㪐 㪟㫆㫍㪼㫉㫀㫅㪾㩷㪧㪼㫉㪽㫆㫉㫄㪸㫅㪺㪼䋧 㪚㫆㫅㫋㫉㫆㫃㩷㪩㪼㫊㫇㫆㫅㫊㪼 㪊㪌 㪇㪏㪅㪈㪈㪆㪇㪎 㪇 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇 㪇 㪇㫕㪇㪅㪌㪍 㪇 㪍䌾㪈㪋 㪄㪉䌾㪉 㪄㪉䌾㪉 㪈㪏㪇㪇 㪩㪬㪥㩷㪇㪈㪇 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊 㪈㪍 㪇㪏㪅㪈㪈㪆㪇㪎 㪌䌾㪌㪌 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇㫕㪇㪅㪈㪍 㪇㪅㪇㪌䌾 㪇㪅㪉㪐 㪇㪅㪌㪍 㪄㪉 㪊 㪈㪏㪇㪇 㪩㪬㪥㩷㪇㪈㪈 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊 㪈㪍 㪇㪏㪅㪈㪈㪆㪇㪎 㪌䌾㪌㪌 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇㫕㪇㪅㪈㪍 㪇㪅㪇㪌䌾㪇㪅㪉㪐 㪇㪅㪌㪍 㪄㪉 㪌 㪈㪏㪇㪇 㪩㪬㪥㩷㪇㪈㪉 㪝㫆㫉㫎㪸㫉㪻㩷㪝㫃㫀㪾㪿㫋㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅㫊㩷㩽 㪚㫆㫅㫋㫉㫆㫃㩷㪩㪼㫊㫇㫆㫅㫊㪼 㪈㪍 㪇㪏㪅㪈㪈㪆㪇㪎 㪉㪌 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇㫕㪇㪅㪈㪍 㪇㪅㪈㪊 㪇㪅㪌㪍 㪄㪉 㪊 㪈㪏㪇㪇 㪩㪬㪥㩷㪇㪈㪊 㪙㪭㪠㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅 㪈㪋 㪇㪏㪅㪈㪈㪆㪇㪎 㪈㪉䌾㪉㪇 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇㫕㪇㪅㪈㪍 㪇㪅㪈㪈䌾 㪇㪅㪈㪐 㪇㪅㪊㪈 㪋 㪏 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪈㪋 㪙㪭㪠㩷㪚㫆㫅㪻㫀㫋㫀㫆㫅 㪈㪋 㪇㪏㪅㪈㪈㪆㪇㪎 㪈㪉䌾㪉㪇 㪈㪎㪅㪉 㪈㪅㪉㪇 㪊㪋㪉 㪇㫕㪇㪅㪈㪍 㪇㪅㪈㪈䌾㪇㪅㪈㪐 㪇㪅㪊㪈 㪋 㪍㪅㪋 㪈㪇㪇㪇 㪩㪬㪥㩷㪇㪉㪉 㪟㫌㪹㩷㪻㫉㪸㪾㪃㩷㪝㫌㫊㪼㫃㪸㪾㪼㩷㫇㫉㪼㫊㫊㫌㫉㪼 㪤㪼㪸㫊㫌㫉㪼㫄㪼㫅㫋 㪏 㪇㪏㪅㪈㪈㪆㪈㪉 㪈㪇䌾㪊㪇 㪈㪋 㪈㪅㪉㪊 㪊㪊㪐 㪇㫕㪇㪅㪇㪏 㪇㪅㪇㪐䌾 㪇㪅㪉㪏 㪇㪅㪊㪈 㪋 㪈㪇㪇㪇 㪮㫀㫅㪻㩷㪫㫌㫅㫅㪼㫃㩷㪧㪸㫉㪸㫄㪼㫋㪼㫉㫊 㪩㫆㫋㫆㫉㩷㪧㪸㫉㪸㫄㪼㫋㪼㫉㫊 㪩㪬㪥㩷㪥㪦㪅 㪫㪼㫊㫋㩷㪫㫀㫋㫃㪼 㪥㫌㫄㪹㪼㫉㫊㪚㪸㫊㪼 㪛㪸㫋㪼

(6)

765 725

65

1000

900

865 815 65 㪲㫄㫄㪴 1021 921 Rotor Center Pressure Sensors

765 725

65

1000

900

865 815 65 㪲㫄㫄㪴 1021 921 Rotor Center Pressure Sensors

(a) Blade dimensions

4%

7%

c

c

1%c

Chord length c=65mm NACA0012

4%

7%

c

c

1%c

1%c

Chord length c=65mm NACA0012

(b) Blade section with pressure sensors Figure 2: Rotor blade

[mm]

3250

2042

Side View

f

V

[mm]

3250

2042

Side View

f

V

(7)

Attitude Control Actuator Water-Cooled Electric Drive Motor (37hp) Pitch Control Actuator Pitch Control Actuator 6 Component Balance Slip Ring Blade Angle Amplifier

Attitude Control Actuator Water-Cooled Electric Drive Motor (37hp) Pitch Control Actuator Pitch Control Actuator 6 Component Balance Slip Ring Blade Angle Amplifier

Figure 4: Main components of JMRTS

(8)

Figure 6 : Locations of unsteady pressure sensors on fuselage surface

1 period instantaneous data

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 V ol tage [ V ] Pbody04 Pbody05 Pbody06 Pbody07 Pbody08 Pbody09 Pbody10 ensemble-averaged data -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5 V ol tage [ V ] Pbody04 Pbody05 Pbody06 Pbody07 Pbody08 Pbody09 Pbody10

(a) Instantaneous (b) ensemble-averaged Figure 7: Ensemble averaging of periodic data

㪇㪈 㪇㪉 㪇㪊 㪇㪋 㪈㪈 㪈㪉 㪈㪊 㪈㪋 㪈㪌 㪇㪎 㪇㪍 㪇㪌 㪇㪐 㪈㪇 㪇㪏 㪯 㪰 㪩㫆㫋㫆㫉㩷㪚㪼㫅㫋㪼㫉

(9)

Table 4: Detailed test conditions and averaged data for RUN011 (Mtip=0.56) 㱘 㱘 㪇 㪇㪅㪇㪊 㪇㪅㪇㪌 㪇㪅㪇㪏 㪇㪅㪈 㪇㪅㪈㪊 㪇㪅㪈㪍 㪇㪅㪈㪏 㪇㪅㪉㪈 㪇㪅㪉㪊 㪇㪅㪉㪍 㪇㪅㪉㪐 㪤㺙 㪇 㪇㪅㪇㪈㪌 㪇㪅㪇㪉㪐 㪇㪅㪇㪋㪋 㪇㪅㪇㪌㪐 㪇㪅㪇㪎㪊 㪇㪅㪇㪏㪏 㪇㪅㪈㪇㪉 㪇㪅㪈㪈㪎 㪇㪅㪈㪊㪈 㪇㪅㪈㪋㪍 㪇㪅㪈㪍㪈 㪤㫋㫀㫇 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪈 㪇㪅㪌㪍㪇 㪇㪅㪌㪍㪇 㪇㪅㪌㪍㪇 㪇㪅㪌㪌㪐 㪇㪅㪌㪌㪐 㪚㪫㬍㪈㪇㪊 㪉㪅㪐㪎 㪋㪅㪎㪏 㪋㪅㪎㪎 㪋㪅㪎㪐 㪋㪅㪎㪍 㪋㪅㪏㪇 㪋㪅㪏㪇 㪋㪅㪎㪏 㪋㪅㪏㪈 㪋㪅㪎㪎 㪋㪅㪎㪍 㪋㪅㪎㪏 㱔㪇㩷㪲㪻㪼㪾㪴 㪈㪇㪅㪐㪏 㪈㪉㪅㪌㪉 㪈㪈㪅㪎㪇 㪈㪈㪅㪇㪍 㪈㪇㪅㪋㪌 㪈㪇㪅㪉㪌 㪈㪇㪅㪇㪌 㪐㪅㪏㪏 㪐㪅㪏㪉 㪐㪅㪎㪎 㪐㪅㪏㪈 㪐㪅㪏㪐 㪘㪈㩷㪲㪻㪼㪾㪴 㪄㪇㪅㪇㪉 㪄㪈㪅㪎㪍 㪄㪊㪅㪇㪈 㪄㪊㪅㪊㪇 㪄㪊㪅㪈㪌 㪄㪉㪅㪐㪊 㪄㪉㪅㪎㪉 㪄㪉㪅㪎㪋 㪄㪉㪅㪍㪍 㪄㪉㪅㪍㪐 㪄㪉㪅㪎㪍 㪄㪉㪅㪎㪍 㪙㪈㩷㪲㪻㪼㪾㪴 㪇㪅㪇㪊 㪇㪅㪋㪐 㪇㪅㪎㪏 㪈㪅㪇㪐 㪈㪅㪋㪎 㪈㪅㪎㪋 㪉㪅㪇㪏 㪉㪅㪊㪊 㪉㪅㪌㪎 㪉㪅㪏㪌 㪊㪅㪉㪈 㪊㪅㪌㪇 㱍㩷㪲㪻㪼㪾㪴 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪄㪉 㪫㪼㫊㫋㩷㪺㫆㫅㪻㫀㫋㫀㫆㫅 㪚㪟 㪄㪈㪅㪇㪎㪜㪄㪇㪋 㪄㪈㪅㪋㪌㪜㪄㪇㪋 㪄㪈㪅㪇㪇㪜㪄㪇㪋 㪄㪎㪅㪍㪏㪜㪄㪇㪌 㪄㪋㪅㪌㪐㪜㪄㪇㪌 㪄㪎㪅㪏㪈㪜㪄㪇㪍 㪋㪅㪉㪋㪜㪄㪇㪌 㪈㪅㪈㪈㪜㪄㪇㪋 㪈㪅㪐㪎㪜㪄㪇㪋 㪉㪅㪍㪋㪜㪄㪇㪋 㪊㪅㪊㪐㪜㪄㪇㪋 㪋㪅㪊㪏㪜㪄㪇㪋 㪚㪰 㪄㪊㪅㪊㪏㪜㪄㪇㪌 㪄㪉㪅㪇㪊㪜㪄㪇㪋 㪄㪉㪅㪎㪈㪜㪄㪇㪋 㪄㪉㪅㪏㪉㪜㪄㪇㪋 㪄㪉㪅㪍㪎㪜㪄㪇㪋 㪄㪉㪅㪌㪈㪜㪄㪇㪋 㪄㪉㪅㪋㪋㪜㪄㪇㪋 㪄㪉㪅㪋㪏㪜㪄㪇㪋 㪄㪉㪅㪎㪉㪜㪄㪇㪋 㪄㪉㪅㪐㪎㪜㪄㪇㪋 㪄㪉㪅㪐㪉㪜㪄㪇㪋 㪄㪊㪅㪉㪐㪜㪄㪇㪋 㪚㪫 㪉㪅㪐㪋㪜㪄㪇㪊 㪋㪅㪎㪋㪜㪄㪇㪊 㪋㪅㪎㪊㪜㪄㪇㪊 㪋㪅㪎㪌㪜㪄㪇㪊 㪋㪅㪎㪉㪜㪄㪇㪊 㪋㪅㪎㪍㪜㪄㪇㪊 㪋㪅㪎㪎㪜㪄㪇㪊 㪋㪅㪎㪌㪜㪄㪇㪊 㪋㪅㪎㪐㪜㪄㪇㪊 㪋㪅㪎㪍㪜㪄㪇㪊 㪋㪅㪎㪍㪜㪄㪇㪊 㪋㪅㪎㪏㪜㪄㪇㪊 㪚㪩 㪄㪈㪅㪍㪌㪜㪄㪇㪌 㪈㪅㪊㪊㪜㪄㪇㪍 㪈㪅㪇㪋㪜㪄㪇㪌 㪎㪅㪎㪎㪜㪄㪇㪍 㪄㪈㪅㪌㪊㪜㪄㪇㪍 㪄㪉㪅㪐㪐㪜㪄㪇㪍 㪄㪈㪅㪌㪉㪜㪄㪇㪍 㪄㪈㪅㪊㪉㪜㪄㪇㪍 㪄㪊㪅㪍㪉㪜㪄㪇㪍 㪄㪍㪅㪈㪏㪜㪄㪇㪍 㪋㪅㪈㪍㪜㪄㪇㪍 㪄㪉㪅㪍㪉㪜㪄㪇㪍 㪚㪤 㪄㪏㪅㪉㪋㪜㪄㪇㪍 㪐㪅㪇㪎㪜㪄㪇㪍 㪐㪅㪉㪉㪜㪄㪇㪍 㪄㪊㪅㪏㪉㪜㪄㪇㪍 㪄㪐㪅㪉㪉㪜㪄㪇㪍 㪊㪅㪏㪐㪜㪄㪇㪍 㪄㪊㪅㪌㪋㪜㪄㪇㪍 㪌㪅㪉㪎㪜㪄㪇㪍 㪉㪅㪐㪍㪜㪄㪇㪌 㪈㪅㪉㪌㪜㪄㪇㪌 㪎㪅㪉㪎㪜㪄㪇㪍 㪈㪅㪎㪈㪜㪄㪇㪌 㪚㪨 㪉㪅㪊㪌㪜㪄㪇㪋 㪊㪅㪊㪎㪜㪄㪇㪋 㪊㪅㪇㪎㪜㪄㪇㪋 㪉㪅㪎㪍㪜㪄㪇㪋 㪉㪅㪋㪋㪜㪄㪇㪋 㪉㪅㪉㪎㪜㪄㪇㪋 㪉㪅㪈㪏㪜㪄㪇㪋 㪉㪅㪇㪐㪜㪄㪇㪋 㪉㪅㪇㪊㪜㪄㪇㪋 㪈㪅㪐㪐㪜㪄㪇㪋 㪉㪅㪇㪉㪜㪄㪇㪋 㪉㪅㪇㪈㪜㪄㪇㪋 㪸㫍㪼㫉㪸㪾㪼㪻㪄㪍㩷㪺㫆㫄㫇㫆㫅㪼㫅㫋㩷㪹㪸㫃㪸㫅㪺㪼 㱎㪇 㪇㪅㪐㪏 㪈㪅㪉㪈 㪇㪅㪐㪊 㪇㪅㪐㪏 㪈㪅㪇㪈 㪈㪅㪈㪌 㪈㪅㪈㪇 㪇㪅㪐㪏 㪇㪅㪐㪇 㪇㪅㪏㪍 㪇㪅㪎㪋 㪇㪅㪎㪈 㱎㪈 㪄㪇㪅㪇㪌 㪇㪅㪈㪉 㪇㪅㪈㪋 㪇㪅㪈㪊 㪇㪅㪈㪎 㪇㪅㪈㪏 㪇㪅㪇㪌 㪇㪅㪉㪈 㪇㪅㪈㪏 㪇㪅㪉㪈 㪇㪅㪉㪋 㪇㪅㪉㪊 㱎㪉 㪄㪇㪅㪇㪊 㪄㪇㪅㪇㪋 㪄㪇㪅㪇㪊 㪄㪇㪅㪇㪉 㪄㪇㪅㪈㪎 㪄㪇㪅㪈㪋 㪄㪇㪅㪈㪋 㪄㪇㪅㪇㪏 㪄㪇㪅㪇㪎 㪄㪇㪅㪇㪌 㪄㪇㪅㪇㪉 㪇㪅㪇㪋 㱔㪇 㪈㪇㪅㪐㪏 㪈㪉㪅㪌㪉 㪈㪈㪅㪎㪇 㪈㪈㪅㪇㪍 㪈㪇㪅㪋㪌 㪈㪇㪅㪉㪌 㪈㪇㪅㪇㪌 㪐㪅㪏㪏 㪐㪅㪏㪉 㪐㪅㪎㪎 㪐㪅㪏㪈 㪐㪅㪏㪐 㱔㪈 㪇㪅㪇㪉 㪈㪅㪎㪍 㪊㪅㪇㪈 㪊㪅㪊㪇 㪊㪅㪈㪌 㪉㪅㪐㪊 㪉㪅㪎㪉 㪉㪅㪎㪋 㪉㪅㪍㪍 㪉㪅㪍㪐 㪉㪅㪎㪍 㪉㪅㪎㪍 㱔㪉 㪄㪇㪅㪇㪊 㪄㪇㪅㪋㪐 㪄㪇㪅㪎㪏 㪄㪈㪅㪇㪐 㪄㪈㪅㪋㪎 㪄㪈㪅㪎㪋 㪄㪉㪅㪇㪏 㪄㪉㪅㪊㪊 㪄㪉㪅㪌㪎 㪄㪉㪅㪏㪌 㪄㪊㪅㪉㪈 㪄㪊㪅㪌㪇 㱒㪇 㪄㪈㪅㪇㪈 㪄㪈㪅㪉㪋 㪄㪈㪅㪋㪎 㪄㪈㪅㪊㪊 㪄㪈㪅㪉㪉 㪄㪈㪅㪇㪊 㪄㪈㪅㪇㪍 㪄㪈㪅㪈㪏 㪄㪈㪅㪉㪍 㪄㪈㪅㪊㪈 㪄㪈㪅㪋㪌 㪄㪈㪅㪌㪊 㱒㪈 㪄㪇㪅㪇㪍 㪇㪅㪈㪌 㪇㪅㪈㪐 㪇㪅㪈㪍 㪇㪅㪉㪇 㪇㪅㪉㪇 㪇㪅㪇㪌 㪇㪅㪉㪉 㪇㪅㪉㪇 㪇㪅㪉㪈 㪇㪅㪉㪋 㪇㪅㪉㪇 㱒㪉 㪄㪇㪅㪇㪋 㪄㪇㪅㪇㪎 㪄㪇㪅㪇㪍 㪄㪇㪅㪇㪍 㪄㪇㪅㪉㪊 㪄㪇㪅㪈㪏 㪄㪇㪅㪈㪎 㪄㪇㪅㪈㪇 㪄㪇㪅㪇㪎 㪄㪇㪅㪇㪍 㪄㪇㪅㪇㪉 㪇㪅㪇㪍 㪹㫃㪸㪻㪼㩷㪸㫅㪾㫃㪼 㪧㪹㫆㪻㫐㩷㪇㪈 㪄㪇㪅㪉㪉㪏 㪄㪇㪅㪈㪊㪋 㪇㪅㪇㪍㪊 㪇㪅㪈㪎㪈 㪇㪅㪊㪈㪐 㪇㪅㪌㪇㪍 㪇㪅㪎㪊㪎 㪈㪅㪇㪇㪉 㪈㪅㪊㪈㪏 㪈㪅㪍㪎㪈 㪉㪅㪇㪍㪎 㪉㪅㪌㪇㪊 㪧㪹㫆㪻㫐㩷㪇㪉 㪇㪅㪈㪊㪊 㪇㪅㪉㪇㪌 㪇㪅㪇㪌㪇 㪇㪅㪈㪇㪈 㪇㪅㪈㪋㪊 㪇㪅㪈㪐㪈 㪇㪅㪉㪋㪋 㪇㪅㪊㪇㪉 㪇㪅㪊㪍㪏 㪇㪅㪋㪊㪌 㪇㪅㪌㪈㪈 㪇㪅㪍㪇㪇 㪧㪹㫆㪻㫐㩷㪇㪊 㪇㪅㪈㪈㪎 㪇㪅㪉㪇㪈 㪇㪅㪈㪏㪈 㪇㪅㪈㪊㪌 㪇㪅㪉㪊㪍 㪇㪅㪊㪍㪉 㪇㪅㪌㪈㪊 㪇㪅㪍㪏㪌 㪇㪅㪏㪏㪐 㪈㪅㪈㪈㪉 㪈㪅㪊㪍㪍 㪈㪅㪍㪋㪏 㪧㪹㫆㪻㫐㩷㪇㪋 㪇㪅㪇㪌㪉 㪇㪅㪈㪌㪐 㪇㪅㪈㪏㪈 㪇㪅㪈㪊㪏 㪇㪅㪈㪉㪇 㪇㪅㪈㪊㪌 㪇㪅㪈㪇㪐 㪇㪅㪇㪎㪇 㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪏㪇 㪄㪇㪅㪈㪏㪉 㪄㪇㪅㪊㪇㪇 㪧㪹㫆㪻㫐㩷㪇㪌 㪄㪇㪅㪇㪐㪇 㪄㪇㪅㪊㪇㪎 㪄㪇㪅㪊㪌㪉 㪄㪇㪅㪉㪊㪍 㪄㪇㪅㪋㪎㪏 㪄㪇㪅㪎㪌㪈 㪄㪈㪅㪇㪐㪏 㪄㪈㪅㪌㪇㪋 㪄㪈㪅㪐㪏㪐 㪄㪉㪅㪌㪈㪌 㪄㪊㪅㪈㪇㪉 㪄㪊㪅㪎㪌㪍 㪧㪹㫆㪻㫐㩷㪇㪍 㪄㪇㪅㪇㪉㪍 㪄㪇㪅㪇㪐㪍 㪄㪇㪅㪈㪊㪐 㪄㪇㪅㪈㪐㪏 㪄㪇㪅㪊㪇㪊 㪄㪇㪅㪋㪍㪐 㪄㪇㪅㪍㪐㪊 㪄㪇㪅㪐㪍㪇 㪄㪈㪅㪉㪐㪊 㪄㪈㪅㪍㪌㪏 㪄㪉㪅㪇㪌㪎 㪄㪉㪅㪋㪐㪋 㪧㪹㫆㪻㫐㩷㪇㪎 㪇㪅㪇㪍㪍 㪇㪅㪇㪏㪌 㪇㪅㪇㪏㪎 㪇㪅㪇㪈㪋 㪄㪇㪅㪇㪊㪍 㪄㪇㪅㪇㪐㪏 㪄㪇㪅㪉㪇㪋 㪄㪇㪅㪊㪊㪍 㪄㪇㪅㪌㪈㪋 㪄㪇㪅㪎㪈㪎 㪄㪇㪅㪐㪋㪍 㪄㪈㪅㪈㪏㪍 㪧㪹㫆㪻㫐㩷㪇㪏 㪇㪅㪇㪋㪎 㪇㪅㪈㪏㪈 㪇㪅㪉㪇㪇 㪇㪅㪈㪍㪈 㪇㪅㪈㪈㪏 㪇㪅㪇㪐㪋 㪇㪅㪇㪊㪐 㪄㪇㪅㪇㪊㪇 㪄㪇㪅㪈㪊㪉 㪄㪇㪅㪉㪌㪍 㪄㪇㪅㪊㪏㪋 㪄㪇㪅㪌㪊㪍 㪧㪹㫆㪻㫐㩷㪇㪐 㪇㪅㪇㪌㪋 㪇㪅㪈㪊㪍 㪇㪅㪈㪇㪏 㪇㪅㪇㪋㪋 㪄㪇㪅㪇㪍㪍 㪄㪇㪅㪈㪏㪌 㪄㪇㪅㪊㪍㪈 㪄㪇㪅㪌㪍㪐 㪄㪇㪅㪏㪉㪋 㪄㪈㪅㪈㪈㪊 㪄㪈㪅㪋㪊㪊 㪄㪈㪅㪎㪐㪈 㪧㪹㫆㪻㫐㩷㪈㪇 㪇㪅㪇㪊㪈 㪄㪇㪅㪇㪉㪊 㪄㪇㪅㪈㪇㪊 㪄㪇㪅㪈㪍㪉 㪄㪇㪅㪉㪏㪋 㪄㪇㪅㪌㪇㪌 㪄㪇㪅㪎㪏㪍 㪄㪈㪅㪈㪉㪋 㪄㪈㪅㪌㪊㪌 㪄㪈㪅㪐㪏㪏 㪄㪉㪅㪋㪐㪇 㪄㪊㪅㪇㪋㪏 㪧㪹㫆㪻㫐㩷㪈㪈 㪇㪅㪈㪊㪏 㪇㪅㪈㪌㪈 㪄㪇㪅㪇㪐㪏 㪄㪇㪅㪈㪉㪋 㪄㪇㪅㪈㪎㪐 㪄㪇㪅㪉㪋㪍 㪄㪇㪅㪊㪈㪐 㪄㪇㪅㪋㪈㪉 㪄㪇㪅㪌㪋㪇 㪄㪇㪅㪍㪌㪊 㪄㪇㪅㪎㪐㪌 㪄㪇㪅㪐㪏㪌 㪧㪹㫆㪻㫐㩷㪈㪉 㪇㪅㪈㪍㪎 㪇㪅㪈㪏㪌 㪇㪅㪇㪍㪇 㪇㪅㪇㪇㪎 㪄㪇㪅㪇㪍㪊 㪄㪇㪅㪈㪋㪈 㪄㪇㪅㪉㪉㪇 㪄㪇㪅㪊㪈㪏 㪄㪇㪅㪋㪊㪍 㪄㪇㪅㪌㪐㪈 㪄㪇㪅㪎㪎㪌 㪄㪇㪅㪐㪊㪐 㪧㪹㫆㪻㫐㩷㪈㪊 㪇㪅㪈㪎㪍 㪇㪅㪉㪌㪋 㪇㪅㪈㪈㪏 㪇㪅㪇㪊㪌 㪄㪇㪅㪇㪈㪉 㪄㪇㪅㪇㪎㪋 㪄㪇㪅㪈㪉㪐 㪄㪇㪅㪉㪇㪌 㪄㪇㪅㪉㪎㪌 㪄㪇㪅㪊㪏㪋 㪄㪇㪅㪋㪍㪎 㪄㪇㪅㪌㪐㪊 㪧㪹㫆㪻㫐㩷㪈㪋 㪇㪅㪈㪊㪐 㪇㪅㪈㪏㪐 㪇㪅㪇㪋㪌 㪄㪇㪅㪇㪈㪉 㪇㪅㪇㪈㪇 㪄㪇㪅㪇㪈㪐 㪄㪇㪅㪇㪊㪌 㪄㪇㪅㪇㪍㪎 㪄㪇㪅㪇㪐㪌 㪄㪇㪅㪈㪊㪍 㪄㪇㪅㪈㪋㪈 㪄㪇㪅㪉㪇㪋 㪧㪹㫆㪻㫐㩷㪈㪌 㪄㪇㪅㪈㪐㪍 㪄㪇㪅㪋㪈㪏 㪄㪇㪅㪇㪌㪐 㪄㪇㪅㪇㪈㪇 㪇㪅㪇㪈㪈 㪇㪅㪇㪈㪏 㪄㪇㪅㪇㪇㪈 㪄㪇㪅㪇㪉㪎 㪄㪇㪅㪇㪌㪌 㪄㪇㪅㪈㪇㪋 㪄㪇㪅㪈㪊㪐 㪄㪇㪅㪈㪐㪎 㪸㫍㪼㫉㪸㪾㪼㪻㪄㪚㫇㪸㬍㪈㪇㪉

(10)

CT-CQ Curve at Hover 0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0 0.0002 0.0004 0.0006 0.0008 CQ C T Mtip=0.32 (RUN004) Mtip=0.56 (RUN009)

Figure 8 : CT-CQ curve at hover

-4.00 -2.00 0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 0 90 180 270 360

Azimuth angle [deg]

B lade angl e [ deg] Flap Pitch Lead-lag Flap_1st_harmonics Pitch_1st_harmonics Lead-lag_1st_harmonics

Figure 9 : Signals of blade angle sensors

㪄㪈㪅㪌 㪄㪈㪅㪇 㪄㪇㪅㪌 㪇㪅㪇 㪇㪅㪌 㪈㪅㪇 㪈㪅㪌 㪉㪅㪇 㪉㪅㪌 㪊㪅㪇 㪊㪅㪌 㪄㪈 㪄㪇㪅㪌 㪇 㪇㪅㪌 㪈 㪯㪹㪄㪯㪺㪆㪩 㪧㫉 㪼㫊㫊㫌 㫉㪼 㩷㪺 㫆㪼 㪽㪽㫀㪺 㫀㪼 㫅㫋 䇮 㪚㪧㺙 㪇 㪇㪅㪉㪌 㪇㪅㪌 㪇㪅㪎㪌 㪈 㪈㪅㪉㪌 㪈㪅㪌 㪈㪅㪎㪌 㪉 㪉㪅㪉㪌 㪉㪅㪌 㪱㪹 㩷㪲㫄 㪴 㱘=0.05 㱘=0.16 㱘=0.29 㱍= -2[deg], CT=4.8㬍10-3 㪄㪈㪅㪌 㪄㪈㪅㪇 㪄㪇㪅㪌 㪇㪅㪇 㪇㪅㪌 㪈㪅㪇 㪈㪅㪌 㪉㪅㪇 㪉㪅㪌 㪊㪅㪇 㪊㪅㪌 㪄㪈 㪄㪇㪅㪌 㪇 㪇㪅㪌 㪈 㪯㪹㪄㪯㪺㪆㪩 㪧㫉 㪼㫊㫊㫌 㫉㪼 㩷㪺 㫆㪼 㪽㪽㫀㪺 㫀㪼 㫅㫋 䇮 㪚㪧㺙 㪇 㪇㪅㪉㪌 㪇㪅㪌 㪇㪅㪎㪌 㪈 㪈㪅㪉㪌 㪈㪅㪌 㪈㪅㪎㪌 㪉 㪉㪅㪉㪌 㪉㪅㪌 㪱㪹 㩷㪲㫄 㪴 㱘=0.05 㱘=0.16 㱘=0.29 㱍= -2[deg], CT=4.8㬍10-3 㱘=0.05 㱘=0.16 㱘=0.29 㱘=0.05 㱘=0.16 㱘=0.29 㱍= -2[deg], CT=4.8㬍10-3 㪄㪋㪅㪌 㪄㪊㪅㪍 㪄㪉㪅㪎 㪄㪈㪅㪏 㪄㪇㪅㪐 㪇 㪇㪅㪐 㪈㪅㪏 㪉㪅㪎 㪊㪅㪍 㪋㪅㪌 㪄㪇㪅㪋㪌 㪄㪇㪅㪊㪌 㪄㪇㪅㪉㪌 㪄㪇㪅㪈㪌 㪄㪇㪅㪇㪌 㪇㪅㪇㪌 㪇㪅㪈㪌 㪇㪅㪉㪌 㪇㪅㪊㪌 㪇㪅㪋㪌 㪰㪹㩷㪲㫄㪴 㪧㫉 㪼㫊 㫊㫌㫉 㪼㩷 㪺㫆 㪼㪽 㪽㫀㪺㫀 㪼㫅㫋 㩷䇮 㪚㪧㺙 㪇㪅㪊㪋 㪇㪅㪊㪐 㪇㪅㪋㪋 㪇㪅㪋㪐 㪇㪅㪌㪋 㪇㪅㪌㪐 㪇㪅㪍㪋 㪇㪅㪍㪐 㪇㪅㪎㪋 㪇㪅㪎㪐 㪇㪅㪏㪋 㪱㪹 㩷㪲㫄 㪴 Advancing side Retreating side 㱍= -2[deg], CT=4.8㬍10-3 㱘=0.05 㱘=0.16 㱘=0.29 㪄㪋㪅㪌 㪄㪊㪅㪍 㪄㪉㪅㪎 㪄㪈㪅㪏 㪄㪇㪅㪐 㪇 㪇㪅㪐 㪈㪅㪏 㪉㪅㪎 㪊㪅㪍 㪋㪅㪌 㪄㪇㪅㪋㪌 㪄㪇㪅㪊㪌 㪄㪇㪅㪉㪌 㪄㪇㪅㪈㪌 㪄㪇㪅㪇㪌 㪇㪅㪇㪌 㪇㪅㪈㪌 㪇㪅㪉㪌 㪇㪅㪊㪌 㪇㪅㪋㪌 㪰㪹㩷㪲㫄㪴 㪧㫉 㪼㫊 㫊㫌㫉 㪼㩷 㪺㫆 㪼㪽 㪽㫀㪺㫀 㪼㫅㫋 㩷䇮 㪚㪧㺙 㪇㪅㪊㪋 㪇㪅㪊㪐 㪇㪅㪋㪋 㪇㪅㪋㪐 㪇㪅㪌㪋 㪇㪅㪌㪐 㪇㪅㪍㪋 㪇㪅㪍㪐 㪇㪅㪎㪋 㪇㪅㪎㪐 㪇㪅㪏㪋 㪱㪹 㩷㪲㫄 㪴 Advancing side Retreating side 㱍= -2[deg], CT=4.8㬍10-3 㱘=0.05 㱘=0.16 㱘=0.29 㱘=0.05 㱘=0.16 㱘=0.29

(a) Longitudinal line (b) Lateral line

(11)

Pbody01 Pbody02

Pbody04 Pbody11 Pbody12

Pbody13 Pbody14 Pbody15 Pbody03 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐 㱍= -2[deg], CT=4.8㬍10-3 㪧㪹㫆㪻㫐㪇㪈 㪄㪇㪅㪇㪇㪊 㪄㪄㪇㪇㪅㪅㪇㪇㪇㪇㪈㪈㪌㪌 㪇㪇 㪇㪇㪅㪅㪇㪇㪇㪇㪈㪈㪌㪌 㪇㪇㪅㪅㪇㪇㪇㪇㪊㪊 㪇 㪐㪐㪇㪇 㪈㪈㪏㪏㪇㪇 㪉㪉㪎㪎㪇㪇 㪊㪊㪍㪍㪇㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪉 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪊 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪋 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪈 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪉 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪊 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪋 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪌 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 Pbody04 Pbody01 Pbody02

Pbody04 Pbody11 Pbody12

Pbody13 Pbody14 Pbody15 Pbody03 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐 㱍= -2[deg], CT=4.8㬍10-3 㪧㪹㫆㪻㫐㪇㪈 㪄㪇㪅㪇㪇㪊 㪄㪄㪇㪇㪅㪅㪇㪇㪇㪇㪈㪈㪌㪌 㪇㪇 㪇㪇㪅㪅㪇㪇㪇㪇㪈㪈㪌㪌 㪇㪇㪅㪅㪇㪇㪇㪇㪊㪊 㪇 㪐㪐㪇㪇 㪈㪈㪏㪏㪇㪇 㪉㪉㪎㪎㪇㪇 㪊㪊㪍㪍㪇㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪉 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪊 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪋 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪈 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪉 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪊 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪋 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪌 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸

(a) Longitudinal line

Pbody05 Pbody06

Pbody07 Pbody04 Pbody08

Pbody09 Pbody10 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐

㱍= -2[deg], C

T

=4.8

㬍10

-3 㪧㪹㫆㪻㫐㪇㪎 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪍 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪌 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪋 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪏 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪐 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪇 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 Pbody05 Pbody06

Pbody07 Pbody04 Pbody08

Pbody09 Pbody10 Pbody05

Pbody06

Pbody07 Pbody04 Pbody08

Pbody09 Pbody10 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐 㱘 㪔㩷㪇㪅㪇㪌 㱘 㪔㩷㪇㪅㪈㪍 㱘 㪔㩷㪇㪅㪉㪐

㱍= -2[deg], C

T

=4.8

㬍10

-3 㪧㪹㫆㪻㫐㪇㪎 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪍 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪌 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪋 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪏 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷 㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪇㪐 㪄㪇㪅㪇㪇㪍 㪄㪇㪅㪇㪇㪊 㪇 㪇㪅㪇㪇㪊 㪇㪅㪇㪇㪍 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 㪧㪹㫆㪻㫐㪈㪇 㪄㪇㪅㪇㪇㪊 㪄㪇㪅㪇㪇㪈㪌 㪇 㪇㪅㪇㪇㪈㪌 㪇㪅㪇㪇㪊 㪇 㪐㪇 㪈㪏㪇 㪉㪎㪇 㪊㪍㪇 㪘㫑㫀㫄㫌㫋㪿㩷㪸㫅㪾㫃㪼䇮㱄㩷㪲㪻㪼㪾㪴 㪚 㫇 㪸 㩷㪄 㩷㪚 㫇 㪸 (b) Lateral line

Referenties

GERELATEERDE DOCUMENTEN

Known risk factors are donor age &lt;6 or &gt;60 years, recipient age &lt;5 or &gt;50 years, cold ischemia time&gt;24 h, renal atherosclerosis in donor and recipient, donation of

To investigate the mechanism of increased cardiovascular risk in HD, we measured complement activation, pro-inflammatory cytokines, and a pro-thrombotic factor during one HD

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded

Firstly, in contrast with the elongation of the other appendages (i.e. antenna and legs), the evolution of maxillary palps length relative to the body length is not reflecting

In conclusion: we have developed a generic method for the immobilization of living and synthetic cells on surfaces that allow the structure of the cells and dynamic processes in

This technical breakthrough has enabled real-time observation of molecular processes, such as the movement of motor proteins along cytoskeletal filaments, and has allowed

PRIME FOCUS CORRECTOR FIBRE CABLES SPECTROGRAPH ROOM FIBRE POSITIONER Robots Retractors plate A Retractors plate B Fieldplate B Fieldplate A Tumbler axis Focal plane imager

A case study protocol was developed that observed the consultant in three sessions at the club, interviews were conducted with the consultant, the board of the club, and