• No results found

Influence of gender and education on risk aversion

N/A
N/A
Protected

Academic year: 2021

Share "Influence of gender and education on risk aversion"

Copied!
30
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

 

 

Bachelor  of  Science  thesis  Econometrics  

 

Influence  of  gender  and  

education  on  risk  aversion  

 

 

 

 

 

 

In  this  paper  use  is  made  of  data  of  the  LISS  (Longitudinal  Internet  Studies  

for  the  Social  sciences)  panel  administered  by  CentERdata  (Tilburg  

University,  The  Netherlands)  

 

 

 

Written  by:  Margot  van  Moll  6148883  

Supervised  by:  Zhenxing  Huang  and  Jan  Tuinstra  

June  2014    

(2)

Abstract    

Economic   research   often   focuses   on   risk   aversion.   In   this   paper   the   effect   of   gender   and   education   on   three   measures   of   risk   aversion   is   explored   via   two   ways   1)   OLS   and   2)   TSLS.   OLS   indicates   a   significant   negative   correlation   between   gender   and   risk   aversion   by   which   one   can   conclude   women   are   more   risk   averse   than   men.   However,   one   failed   to   find   significant   results   of   education.   The   variable   education   appeared   to   be   endogenous   which   resulted   in   a   broader   research   by   TSLS.   The   instruments   gender,   categorised   groups   of   age   and   urbanity   were   used   in   the   TSLS   regression.  Via  TSLS  a  significant  negative  correlation  between  gender  and  risk  aversion   was   detected   again,   while   one   failed   to   detect   a   significant   result   of   education   on   risk   aversion.  

(3)

Table  of  Contents  

 

Chapter  title  

 

 

 

 

 

 

 

 

Page  

Title  page                                        i  

Abstract                                      ii  

Table  of  contents                                    iii  

1   Introduction                                      1  

1.1   Introduction  to  research                                1  

1.2     Research  question  and  hypotheses                              2  

2   Theoretical  framework                                  3  

2.1   Utility  and  risk  aversion                                3  

2.2   Determinants  gender  and  education  of  risk  aversion                          5  

2.3   Empirical  models                                  6  

2.4   Choice  of  instrumental  variables                              8  

3   Participants  and  methodology                                  9  

3.1   Participants                                    9  

3.2   Measurement  risk  attitudes                                10  

3.3   Measurement  gender,  education,  age  category  and  urbanity                        12  

4   Results                                        13  

4.1   Summary  of  variables                                  13  

4.2   Effect  of  gender  and  education  on  three  measures  of  risk  aversion  by  OLS                    14   4.3   Results  from  tests  for  homoscedasticity,  multicollinearity,  and  exogeneity                    15  

4.4   Instrumental  variables                                17  

4.5     Effect  of  gender  and  education  on  three  measures  of  risk  aversion  by  TSLS                      23  

5   Conclusion                                      24  

6     Discussion                                      25  

7     Bibliography                                      26  

 

(4)

1  Introduction    

1.1 Introduction  to  research    

A   lot   of   research   has   focused   on   risk   attitudes   and   risk   aversion.   Risk   attitudes   are  characterised  by  the  choices  that  an  individual  makes  in  situations,  while  exposed  to   uncertainty.   Someone   is   said   to   be   risk   averse   if   he   is   trying   to   reduce   uncertainty   in   these   types   of   situations   (Arrow,   1965).   In   economic   research,   risk   aversion   is   often   linked  to  economic  decision  making.  By  investigating  this  link,  one  can  understand  the   effect  of  risk  aversion  on  economic  outcomes.  

Several  factors  influence  risk  behaviour,  or  in  particular  risk  aversion.  Dohmen  et   al.  (2005)  have  found  that  risk  attitudes  correlate  with  age  and  gender.  Other  research   by   Sapienza   et   al.   (2008)   reported   a   connection   between   testosterone   levels   and   risk   aversion.   In   both   cases   researchers   concluded   that   women   are   more   risk   averse   than   men.  Other  research  has  shown  that  there  exists  a  correlation  between  education  and   risk  aversion  (Dohmen  et  al,  2005;  Hyrshiko  et  al.,  2011;  Jung,  2014).  In  the  case  of  Jung,   (2014),  this  correlation  was  positive.  Hence,  it  was  concluded  that  he  more  education  a   person  has  enjoyed,  the  more  risk  averse  a  person  becomes.  Interestingly,  Dohmen  et  al.   (2005)  concluded  the  exact  opposite,  as  they  found  that  education  reduces  risk  aversion.   Hence,  as  the  existing  literature  is  conflicting,  further  research  is  required  to  conclude  if   the  correlation  between  schooling  and  education  is  positive  or  negative.    

An  explanation  for  these  conflicting  conclusions  could  be  that  there  is  reversed   causality  between  education  and  risk  aversion.  This  would  imply  that  education  has  an   effect   on   risk   aversion,   but   also   the   other   way   around:   risk   aversion   has   an   effect   on   education.  Different  problems  could  arise  with  the  estimation  model  if  this  appears  to  be   true   (Jung,   2014).   In   the   case   of   reversed   causality,   education   will   appear   to   be   endogenous  and  the  estimates  will  no  longer  be  consistent  (Heij  et  al.,  2004).  Hence,  in   the  latter  case  a  significant  effect  via  ‘OLS’  will  be  difficult  to  find.    

The  main  aim  of  this  paper  is  to  describe  the  way  education  and  gender  influence   one’s  risk  behaviour.  This  research  will  attempt  to  estimate  the  effect  of  education  and   gender  on  risk  aversion  by  means  of  1)  ordinary  least  squares  (‘OLS’)  and  2)  two  staged   least  squares  (‘TSLS’).  By  testing  the  variables  on  exogeneity,  one  can  conclude  which  of   the   two   is   the   best   according   to   the   theory.   Firstly,   OLS   will   be   applied,   whereby  

(5)

education   and   gender   will   be   regressed   on   three   measures   of   risk   aversion.   Subsequently,   the   research   will   check   for   heteroscedasticity,   perfect   multicollinearity   and   endogeneity   of   the   regressors.   Heteroscedasticity   will   be   tested   by   means   of   the   Breusch-­‐Pagan  test,  there  will  be  checked  for  perfect  multicollinearity  by  calculating  the   variance  inflation  factors  (‘vif’)  and  finally,  exogeneity  of  the  variable  education  will  be   tested   by   means   of   the   Hausman   test   (Heij   et   al.,   2004).   If   education   appears   to   be   endogenous,  different  instrumental  variables  will  be  taken  into  account.  The  exogeneity   of  the  instrumental  variables  will  be  checked  by  means  of  the  Sargan  test.  Relevance  will   be  checked  by  looking  at  the  results  of  the  first  stage  of  the  TSLS  regression.  Ultimately,   the   outcomes   of   the   different   tests   will   be   interpreted   in   order   to   draw   a   conclusion   about  the  estimate  that  is  most  accurate  according  to  theory.  

It  is  expected  that  TSLS  estimates  the  effect  of  education  on  risk  aversion  more   accurately,   as   existing   literature   has   found   that   there   exists   a   reversed   causal   relationship  between  education  and  risk  aversion  (Jung,  2014).  It  is  therefore  expected   that  education  will  be  endogenous  (Heij  et  al.,  2004).  In  case  the  correlation  is  positive,   this  research  will  be  in  line  with  the  research  of  Jung  (2014).      

   

1.2  Research  question  and  hypotheses    

As   there   are   conflicting   conclusions   made   in   the   current   literature   about   risk   behavior,  the  following  research  question  will  guide  this  research:  

 

RQ:  How  does  gender  and  education  influence  risk  behaviour?    

Based   on   the   literature   about   risk   aversion,   the   following   hypotheses   are   formulated   about   the   relationships   between   the   variables   of   this   study,   which   are   gender,  education  and  risk  aversion.  

H1:  The  average  person  is  risk  averse  

H2:  The  correlation  between  gender  and  risk  aversion  is  negative  

H3:  The  correlation  between  education  and  risk  aversion  is  positive  

(6)

This  paper  is  structured  as  followed:  first  the  theory  on  utility  and  risk  aversion   will   be   explained.   Subsequently,   the   link   between   the   determinants   gender,   education   and   risk   aversion   will   be   explored.   Thereafter,   the   theoretical   estimation   model,   the   choice  of  instruments  and  a  data  analysis  will  follow.  Thenceforth,  conclusions  will  be   made  in  the  results  and  conclusion  sections.  

 

2  Theoretical  framework    

2.1  Utility  and  risk  aversion    

Economists  often  study  the  characteristics  of  risk  behaviour,  as  this  knowledge  is   of   importance   for   the   prediction   of   economical   choices.   One’s   risk   behaviour   can   be   analysed   by   means   of   a   utility   function.   A   utility   function   assigns   values   to   certain   decisions.  An  option  or  consumption  bundle  is  said  to  be  better,  or  preferred,  if  its  utility   is   higher   (Jehle   &   Reny,   2011).     In   other   words,   a   choice   with   higher   utility   is   always   preferred  over  one  with  lower  utility.  Based  on  the  utility  function  of  a  person,  one  can   decide   which   are   the   best   choices   for   him.   Hence,   a   utility   function   can   be   seen   as   a   device   to   summarize   information   contained   in   a   person’s   preferences   (Jehle   &   Reny,   2011).    

An  important  property  is  the  Expected  Utility  property  (‘EU’).  According  to  Jehle   &  Reny  (2011,  p.  98),  EU  states  that  a  ‘utility  function  u:  𝒢 → ℝ  has  the  expected  utility   property  if,  for  every  g  ∈ 𝒢,    

 

u(g)  =   !!!!𝑝I  *u(ai)    

 

where  (𝑝1 ∘ 𝑎1, . . , 𝑝𝑛 ∘ 𝑎𝑛)  is  the  simple  gamble  induced  by  g  and  ai  the  outcomes’.  Thus,  

by   stating   that   the   expected   utility   property   applies   to   u,   it   can   be   concluded   that   the   expected  utility  property  ‘assigns  to  each  gamble  the  expected  value  of  the  utilities  that   might   result,   where   each   utility   that   might   result   is   assigned   its   effective   probability’   (Jehle   &   Reny,   2011,   p.   98).   This   paper   assumes   that   every   utility   function   has   the   expected  utility  property.  

Risk   behaviour   theory   generally   refers   to   three   sorts   of   risk   behaviour:   1)   risk   seeking;   2)   risk   neutral;   and   3)   risk   averse   (Wakker,   2008).   Jehle   &   Reny   (2011)   &  

(7)

Wakker  (2008)  state  that  for  a  simple  gamble  g,  in  which  a  person  can  make  two  kinds   of  decisions,  one  risky  and  one  non-­‐risky  (g  =  (p  *  w1,  (1-­‐p)*w2),  with  0<p<1  the  chances  

of  being  rewarded  with  wi  (i=1,2):  

-­‐ A  person  is  said  to  be  risk  averse  if  u(E(g))>u(g).  In  other  words,  if  his   utility  function  is  concave.  This  is  the  case  if  u(p  *  w1  +  (1-­‐p)*w2)>  pu(w1)  

+  (1-­‐p)u(w2)  for  all  0<p<1,  w1.w2    

-­‐ A  person  is  said  to  be  risk  averse  if  u(E(g))>u(g).  In  other  words,  if  his   utility  function  is  linear.  This  is  the  case  if  u(p  *  w1  +  (1-­‐p)*w2)  =  pu(w1)  

+  (1-­‐p)u(w2)  for  all  0<p<1,  w1.w2    

-­‐ A  person  is  said  to  be  risk  averse  if  u(E(g))>u(g).   In  other  words,  if  his   utility  function  is  convex.  This  is  the  case  if  u(p  *  w1  +  (1-­‐p)*w2)<  pu(w1)  

+  (1-­‐p)u(w2)  for  all  0<p<1,  w1.w2  

The   main   focus   of   this   paper   is   risk   aversion.   In   order   to   analyse   risk   aversion   more  accurately,  the  amount  of  risk  aversion  could  be  of  importance.  Arrow  (1970)  and   Pratt  (1964)  proposed  a  measure  for  risk  aversion.  This  so-­‐called  Arrow-­‐Pratt  measure   of  absolute  risk  aversion  is  calculated  by  Ra(w)  =  !!!!(!)!!(!)  (Jehle  &  Reny,  2011).    The  sign  

of  Ra(w)  indicates  whether  a  person  is  risk  loving,  risk  neutral  or  risk  averse.  If  Ra(w)  is  

positive,  a  person  is  risk  averse.  If  it  is  zero,  a  person  is  neutral  and  if  it  is  negative,  a   person  is  risk  seeking.  Another  measurement  is  the  measure  for  relative  risk  aversion   (Wakker,   2008).   This   relative   risk   aversion   is   calculated   by:  𝑤 ∗!!!!(!)

!!(!) .   Relative   risk  

aversion  has  as  advantage  that  c  can  vary  while  the  function  remains  a  valid  measure  for   risk  aversion  in  the  case  that  the  utility  varies  from  risk  averse  to  risk  seeking.  

In  his  book  ‘Prospect  Theory  for  Risk  and  Ambiguity’,  Wakker  (2008)  describes   different   families   of   the   utility   function.   For   example,   the   family   of   power   utility   functions  is  characterised  by  the  parameter  denoted  as:  

𝜃,  on  ℝ!:  for  𝛼>0  by:  

 

For  𝜃>0,  u(𝛼) =   𝛼!  

For  𝜃=0,  u(𝛼) =  ln  (𝛼)   For  𝜃<0,  u(𝛼) =   −𝛼!  

(8)

This  family  is  also  referred  to  as  the  family  of  constant  relative  risk  aversion  (CRRA),  in   which  𝜃  can  be  seen  as  the  ‘anti-­‐index  of  concavity’  (Wakker,  2008,  p.  101).  The  bigger  𝜃,   the  less  concave  u  is,  and  therefore  less  risk  aversion  will  be  generated.  Wakker  (p.  101,   2008)  states  that  under  EU,  the  ‘functions  u  are  interval  scales  and  therefore  replaceable   by  any  function  𝜏 + 𝛼𝑢  for  𝜏 ∈ ℝ, 𝛼 > 0  and  therefore  concludes:    

For   all  𝜃 ≠ 0, 𝑢 𝛼 =  !!!,  which   amounts   to   scaling   u’(1)   =   1’.   The   family   of   constant   relative  risk  aversion  is  characterised  by  the  multiplication  of  both  prospects  by  a  same   positive  number,  which  does  not  affect  one’s  preferences.    

Wakker   (2008)   also   describes   the   family   of   exponential   utility   functions.   This   utility  function  is  characterised  by  the  parameter  denoted  𝜃,  on  the  entire  outcome  set  ℝ   by:     For  𝜃>0,  u(𝛼) =  1 − 𝑒!!"       For  𝜃=0,  u(𝛼) =  𝛼             For  𝜃<0,  u(𝛼) =   𝑒!!"− 1      

in  which  the  first  implies  concave  utility,  the  second  linear  utility  and  the  third  convex   utility.    In  this  case,  𝜃  can  be  seen  as  the  ‘index  of  concavity’.  The  bigger  𝜃,  the  more  risk   concave   u   is,   and   therefore   the   more   risk   aversion   will   be   generated   (Wakker,   2008,   p.104)  Again,  Wakker  (p.  101,  2008)  states  that  under  EU,  the  ‘functions  u  are  interval   scales   and   therefore   replaceable   by   any   function  𝜏 + 𝛼𝑢  for  𝜏 ∈ ℝ, 𝛼 > 0  and   therefore   concludes:  For  all  𝜃 ≠ 0, 𝑢 𝛼 =  !!!!!!".  This  family  of  utility  functions  is  mostly  used  in   data  fitting  theories,  since  adding  a  number  does  not  affect  a  person’s  preferences.      

   

2.2 Determinants  gender  and  education  of  risk  aversion    

Many  variables  determine  a  person’s  risk  aversion.  Some  personal  characteristics   are   positively   correlated   with   risk   aversion,   while   others   are   negatively   correlated.   Firstly  the  link  between  gender  and  risk  aversion  will  be  discussed.  Hyrsko  et  al.  (2011)   found   that   females   are   more   risk   averse.   This   fact   was   confirmed   by   the   research   by   Charness  and  Gneezy  (2012),  who  found  in  their  experiment  that  women  were  making  

(9)

lower  financial  risk  investments  than  men.  Considering  this  fact,  this  research  concluded   that  women  are  more  financially  risk  averse  than  men.    

The  second  variable  in  this  paper  for  the  estimation  of  risk  aversion  is  education.   The   link   between   education   and   risk   aversion   has   been   broadly   explored   without   definite  results.  This  could  be  due  to  the  fact  that  the  direction  of  the  causality  remains   unclear  (Jung,  2014).  Jung  (2014)  collected  data  from  schools  before  and  after  the  1973   British  reform  whereby  the  compulsory  years  of  schooling  were  increased  by  one  year.   He  found  that  the  change  in  compulsory  years  of  schooling  increased  the  subjects’  risk   aversion.  This  would  imply  a  positive  correlation  between  education  and  risk  aversion.   Dohmen   et   al.   (2005)   concluded   the   exact   opposite.   In   their   research   they   used   data   retrieved  from  the  German  Socio-­‐Economic  Panel  (‘SOEP’).  Via  this  panel  risk  attitudes   of  more  than  22,000  subjects  were  collected.  They  looked  at  the  link  between  a  person’s   risk  aversion  and  years  of  education  and  found  a  negative  correlation  between  schooling   and  risk  aversion.  Hryshko  et  al.  (2011)  concluded  the  same.  In  their  research  they  used   data   from   the   Panel   Study   of   Income   Dynamics.   In   this   panel,   individuals   and   their   children   are   followed   over   time.   By   the   use   of   compulsory   schooling   laws   as   instruments,   they   showed   that   policies   that   increase   schooling   tended   to   make   future   generations  less  risk  averse.  This  implies  a  negative  correlation  between  education  and   risk  aversion.  

Hence,  as  existing  research  has  found  conflicting  results  with  respect  to  the  sign   of  the  correlation  between  education  and  risk  aversion,  this  paper  will  further  explore   this.   Thereby,   the   aforementioned   variables   (i.e.   education,   gender   and   age)   will   be   taken  into  consideration,  as  they  all  appear  to  be  correlated  to  risk  aversion.    

   

2.3 Empirical  models    

Ordinary  Least  Squares  (‘OLS’)  

To   estimate   the   model,   with   dependent   variable   Risk   Aversion   (RAi)   and   independent  

variables  gender,  education  and  a  constant  𝛽1  one  fits  the  following  model:  

 

RAi  =  𝛽1  +  𝛽2  Dgender  i  +  𝛽3  educi  +  𝜀    

(10)

In   OLS   the   coefficients   will   be   estimated   by   the   following   formula:   b   =   (X’X)-­‐1X’y,   in  

which  b  are  the  estimated  coefficients,  X  are  all  the  variables  collected  in  the  model,  in   this  case  a  constant,  gender  and  educ,  and  whereby  y  is  the  dependent  variable,  RA.     Via  OLS  𝛽1,..,  𝛽3  will  be  estimated  in  STATA.    

OLS  estimates  must  meet  several  conditions  to  be  called  optimal  and  consistent.   An   estimate   b   is   called   consistent   if   all   regressors   in   X   are   exogenous   and   there   is   no   perfect  multicollinearity.  An  estimate  b  is  optimal  if  the  errors  are  not  heteroscedastic   and  not  serially  correlated.    

 

Testing  perfect  multicollinearity  

  Multicollinearity  will  be  checked  by  the  variation  inflation  factors  (‘vif’)  (Heij  et   al.,   2004).   This   is   a   factor   that   calculates   by   which   the   variance   of   the   regressors   increases   because   of   multicollinearity.   Vif’s   that   are   greater   than   10   indicate   severe   multicollinearity.  Vif’s  of  1  indicate  an  absence  of  multicollinearity.    

 

Testing  exogeneity  

  The   OLS   estimates   will   be   tested   on   exogeneity   via   the   Hausman   LM-­‐test.   According  to  literature,  especially  the  variable  educ  has  a  chance  of  being  endogenous   (Jung,   2014).     If   educ   turns   out   to   be   endogenous,   there   must   be   a   reversed   causal   relationship  between  education  and  RA,  in  other  words:  

educ  =  𝛾1  +  ..  +  𝛾n  RA  +  𝜉  with  𝛾n  ≠  0.    

In  the  Hausman  test,  firstly,  an  OLS  regression  of  RA  on  a  constant,  gender  and   educ  is  done.  After  that,  residual  vector  eOLS  will  be  saved.  Subsequently,  the  regression  

of  educ  on  its  instrumental  variables  is  done.  The  residuals  are  saved  under  the  name  V.   After  these  operations,  the  first  stage  of  TSLS  is  completed.  

Secondly,   a   regression   of   eOLS   is   done   on   a   constant,   gender,   educ   and   V.   This  

regression  therefore  looks  like:  eOLS  =  𝛿1  +  𝛿2  gender  +  𝛿3  educ  +  𝛼V  +  𝜂.  The  hypotheses  

are:  H0:  𝛼 = 0,  education  is  exogenous,  vs.    Ha:  𝛼 ≠ 0,  education  is  endogenous  Under  H0  

LM   =   nR2   ≈   χ2(m-­‐k)   holds,   with   m   being   the   amount   of   instruments   and   k   being   the  

amount  of  regressors  in  X.  For  values  of  nR2>  χ2(m-­‐k),  H0  of  exogeneity  will  be  rejected.  

STATA   will   calculate   the   value,   allowing   for   a   conclusion   on   the   endogeneity   of   education  (Heij  et  al,  2004).    

(11)

Testing  heteroscedasticity    

Heteroscedasticity  will  be  tested  via  the  Breusch-­‐Pagan  test  for  homoscedasticity.   In  the  test,  one  will  check  if  the  p-­‐value  is  small  enough  to  reject  H0  of  homoscedasticity.    

 

Two  Staged  Least  Squares  (‘TSLS’)  

If  educ  turns  out  to  be  endogenous,  TSLS  will  be  applied  instead  of  OLS.  In  two   staged   least   squares,   instrumental   variables   are   used.   An   instrumental   variable   must   satisfy   three   conditions   (Heij   et   al.,   2004).   The   three   conditions   are:   it   must   be   exogenous,   it   must   be   relevant   and   there   must   be   at   least   as   much   instruments   as   regressors  (Heij  et  al.,  2004).  In  this  analysis  the  X  stands  for  exogenous  variables  used   in   the   RAi   model,   and   the   Z   represents   the   matrix   with   instruments.   In   stage   1,   each  

column   of   X   is   regressed   on   Z,   with   the   fitted   values  𝑋  =   (Z’Z)-­‐1Z’X.   In   stage   2,   y   is  

regressed  on  𝑋  with  parameter  estimates  bIV  =  (𝑋′  𝑋)-­‐1  𝑋′y.  

   

2.4 Choice  of  instrumental  variables      

   The  first  instrumental  variable  used  in  this  paper  is  the  variable  ‘urbanity’.  This   variable   refers   to   the   urbanity   of   the   residency   of   the   subjects.   Since   universities   and   other  forms  of  higher  education  are  mainly  located  in  a  city,  a  place  with  a  high  level  of   urbanity,  one  could  conclude  there  might  be  a  correlation  between  the  level  of  education   and  the  urbanity  of  the  residency  of  the  participant.  Therefore  urbanity  will  be  used  as   an  instrument  if  it  appears  to  be  a  correct  variable  to  use  as  instrument.  

  Age   appears   to   be   another   suitable   instrument   for   education.   Age   is   exogenous   and  also  appears  to  be  relevant.    There  are  indications  of  a  negative  correlation  between   education   levels   and   age,   since   the   percentage   of   higher   educated   individuals   rises   (Increasing   levels   of   education   around   the   world,   2012).   This   would   mean   individuals   nowadays   are   higher   educated   than   older   individuals.   One   has   to   check   if   this   relationship  is  true,  which  could  imply  that  age  is  a  relevant  instrumental  variable  for   education.  

  Gender  is  the  third  instrumental  variable  used  in  this  paper.  King  (2000)  found   that  women  earn  increasingly  more  degrees  each  year  compared  to  men.  She  found  that   this  gap  between  men  and  women  with  regards  to  education  degree  was  related  to  race,  

(12)

ethnicity   and   social   class   (King,   2000).   Gender   is   therefore   correlated   with   education,   which  makes  it  an  instrumental  variable.  

For  an  instrument  to  be  correct  it  must  also  relevant  and  exogenous.  In  this  thesis   the  instruments  are  a  constant,  gender,  and  urbanity.  To  check  for  exogeneity,  a  Sargan   test  is  applied.  First,  a  regression  of  education  on  a  constant,  gender,  age  and  urbanity  is   completed.   Subsequently,   the   fitted   values   are   saved   under   the   name  𝑒𝑑𝑢𝑐𝑎𝑡𝚤𝑜𝑛 .   Secondly,   a   regression   of   RA   on   a   constant,   gender   and   𝑒𝑑𝑢𝑐𝑎𝑡𝚤𝑜𝑛  is   done.   The   coefficient   values   bIV   are   saved   and   the   IV   residuals   are   calculated:   eIVi   =   RA   -­‐   bIV1   -­‐  

bIV2  𝑒𝑑𝑢𝑐𝑎𝑡𝚤𝑜𝑛.   Subsequently,   a   test   regression   is   done:   eIVi  is   regressed   on   a   constant,  

gender,   age   and   income,   after   which   the   test   LM   =   nR2   ≈   χ2(4-­‐3)   will   be   calculated.   If    

nR2>   χ2(1),   H0   of   exogeneity   will   be   rejected.   STATA   will   calculate   the   value,   and  

conclusion  can  be  drawn  upon  the  exogeneity  of  the  instruments  (Heij  et  al.,  2004).  

   

3  Participants  and  methodology    

3.1  Participants    

This  research  will  make  use  of  the  data  retrieved  from  the  LISS-­‐panel.  The  LISS-­‐ panel  is  a  panel  linked  to  the  Tilburg  University.  In  this  LISS  panel,  approximately  9000   subjects   complete   a   questionnaire   each   month.   In   order   to   make   the   experiments   as   accurate  as  possible,  an  attempt  was  made  to  simulate  the  real  world  by  rewarding  the   subjects   in   some   tasks   with   real   money.   In   the   data,   several   observable   background   characteristics  are  taken  into  account,  which  results  in  a  representative  reimbursement   of  the  Dutch  population.    

People   participating   in   the   LISS   panel   were   categorised   according   to   certain   background   variables,   allowing   for   the   controlling   of   certain   conditions.   This   research   will   make   use   of   the   data   from   the   panels   ‘work   and   schooling’,   ‘economic   situation:   income’,   and   ‘measuring   higher   order   risk   attitudes   of   the   general   population’.   The   information  on  gender  and  age  will  be  retrieved  from  the  panel  ‘background  variables’.    

Since  the  panel  on  risk  attitudes  was  conducted  in  2009,  the  data  in  this  research   stems   from   2009.   By   merging   the   datasets   there   will   be   approximately   1004   subjects,  

(13)

which  will  allow  for  an  accurate  estimation.  Answers  to  the  relevant  questions  from  the   data  will  be  selected  to  estimate  the  effect  properly.    

   

3.2 Measurement  risk  attitudes    

  Subjects  in  the  risk  measurement  panel  had  to  complete  five  trials  in  which  they   had   to   choose   between   two   options:   one   safe   option   and   one   risky   option.   The   trials   were  presented  by  hypothetically  rolling  a  dice.  If  the  value  of  the  dice  was  1,  2  or  3,  the   payoff   was   65,   if   the   value   of   the   dice   was   4,   5   or   6,   the   payoff   was   5.   Therefore   the   payoffs  for  option  1  were  a  50%  chance  of  earning  65  and  a  50  %  chance  of  earning  5.   The  second  option  was  a  sure  payoff  varying  from  20  to  40  in  steps  of  five.  Therefore,  a   rational,  or  risk  neutral  person,  would  be  indifferent  at  the  expected  value  of  option  1,   being  35.  Subjects  did  not  learn  the  actual  outcome  of  any  of  the  lotteries  presented  in   the  different  trials.  

  The  trials  were  counterbalanced  in  several  ways.  With  the  first  being  the  varying   kind  of  task.  Half  of  the  subjects  were  given  a  trial  in  which  they  had  a  1/10  chance  of   actually  winning  the  amount  presented,  the  other  half  were  given  a  trial  in  which  there   were  purely  hypothetical  payoffs.  The  amounts  presented  in  the  tasks  also  varied.  The   amounts  were  varying  by  the  standard  payoffs,  varying  from  20  to  40  in  steps  of  five,   multiplied  by  a  factor  K,  in  which  K  could  be  larger  or  smaller  than  1.  The  second  factor   that  was  taken  into  account  was  the  position  of  the  options  on  the  screen.  For  half  of  the   subjects,  option  1  was  on  the  right  and  option  2  on  the  left.  For  the  other  half  this  was   mirrored:  with  option  1  being  on  the  left  and  option  2  being  on  the  right.  The  final  factor   was   the   order   in   which   the   sure   payoffs   were   presented.   Half   of   the   subjects   were   presented  with  increasing  sure  payoffs,  starting  at  20  and  increasing  with  5  each  trial,   and   the   other   half   with   decreasing   sure   payoffs,   starting   at   40   and   decreasing   with   5   each  trial.    

  In   order   to   measure   the   risk   attitudes,   the   theory   of   Wakker   (2008)   will   be   applied.  Thereby,  three  types  of  risk  measures  will  be  used:  the  first  one  is  the  amount  of   sure  payoffs  the  subject  made  in  the  risk  task,  the  second  one  is  according  to  the  power   utility,  and  the  third  one  is  according  to  the  exponential  utility.    

(14)

Amount  of  safe  choices:    

The   amount   of   safe   choices   can   vary   from   0   to   5.   A   rational   person   would   be   indifferent  at  the  break-­‐even  point  of  35,  and  therefore  only  make  1  or  2  safe  options   with   sure   payoffs   of   35   and   40.   In   the   other   three   cases   it   would   choose   the   unsure   payoffs,  since  the  expected  payoffs  of  those  options  is  higher.  Therefore,  if  more  than  2   safe   options   were   chosen,   the   subject   was   said   to   be   risk   averse.   The   amount   of   risk   aversion  increased  with  the  amount  of  safe  choices  made  in  the  task.  

    Power  utility:  

  In  order  to  calculate  the  amount  of  risk  aversion  the  questions  and  corresponding   answers   from   the   risk   task   will   be   considered.   A   person   was   said   to   be   indifferent   between  two  options,  if  the  utility  was  equal.  For  example,  if  a  subject  was  not  willing  to   accept   20,   but   was   willing   to   accept   25,   the   least   amount   of   money   was   said   to   be  

!"!!"

! =  22.5.    So  at  22.5  the  utility  of  both  options  must  be  equal.  

  To  find  the  amount  of  risk  aversion  the  following  equation  must  be  solved:  

0.50*u(65)  +  0.50*u(5)  =  u(22.5)  ⇔  u(65)  +  u(5)  =  2  *  u(22.5)  ⇔!"!!  +  !!!  =  2  *  22.5!  è  

solve  to  risk  aversion  measure  𝜗.  

If  a  subject  only  made  safe  choices,  his  break  even  point  was  said  to  be  17.5,  if  a  subject   only  made  risky  options,  his  break  even  point  was  said  to  be  42.5.  

 

Table  1:  𝜗  solved  for  the  different  break-­‐even  points  in  power  utility  

Break  even   17.5   22.5   27.5   32.5   37.5   42.5  

𝜗   -­‐0.0361423   0.274986   0.554813   0.842792   1.17245   1.59206  

 

Exponential  utility:  

The  same  risk  task  is  used  for  the  exponential  utility,  for  which  the  following  equation   must  be  solved:  

0.50*u(65)   +   0.50*u(5)   =   u(22.5)  ⇔  u(65)   +   u(5)   =   2   *   u(22.5)  ⇔!!!!!!"!    +  !!!!!!!    =   2 ∗!!!!!!.!!!  è  solve  to  risk  aversion  measure  𝜗  

 

(15)

Break  even   17.5   22.5   27.5   32.5   37.5   42.5  

𝜗   0.0519937   0.0316247   0.0174043   0.00558144   -­‐0.00558144   -­‐0.0174043  

 

The  three  measures  will  be  referred  to  as  Risk  Aversion  Safe  (‘RAS’),  which  represents   the  risk  aversion  measured  by  the  amount  of  safe  choices,  Risk  Aversion  Power  (‘RAP’),   which  represents  the  risk  aversion  measured  by  the  power  utility  function  and  finally   Risk  Aversion  Exponential  (‘RAE’),  which  represents  the  risk  aversion  measured  by  the   exponential  utility  function.  

 

Table  3:  Means  of  the  different  RAi  

                 

Variable     #obs       Mean      

                  RAS       1004       3.467                   (.054)             RAP       1004       .478                   (.018)             RAE       1004       .026                   (.001)                                

All  three  estimated  risk  aversions  𝜗  will  be  used  in  analysing  the  model.      

 

3.3 Measurement  of  gender,  education  agecat  and  urbanity    

The   variables   agecat,   education   and   gender   of   the   variables   will   be   calculated   from  the  dataset,  whereby  gender  can  be  male,  denoted  by  0,  or  female,  denoted  by  1.  To   test   the   effect   of   age   on   education,   the   variable   agecat   is   created.   The   subjects   will   be   divided  into  several  age  categories.  Category  1  consists  of  subjects  varying  from  17-­‐24  in   age.  Category  2  will  consist  of  people  varying  from  the  ages  of  25-­‐34  and  so  on.  The  final   category  will  be  category  6,  which  consists  off  all  subjects  above  the  age  of  64.    

(16)

Education   will   be   referred   to   as   ‘educ’.   Educ   will   be   categorised   into   three   categories:  1  for  lower  education,  2  for  medium  education  and  3  for  higher  education.   Lower   education   consisted   of   people   with   a   highest   completed   education   level   with   a   diploma   of   VMBO,   HAVO,   VWO   or   MBO.   The   medium   level   of   education   consisted   of   people   who   finished   HBO   as   the   highest   level   of   education,   and   the   higher   level   of   education  consisted  of  people  who  graduated  from  university.  The  level  of  urbanity  will   be  conducted  from  a  question  of  the  LISS-­‐panel.  This  question  asked  the  subject  to  grade   the   urbanity   of   their   residency.   They   could   chose   grades   varying   from   1   to   5   with   1   representing  high  urbanity  and  5  representing  low  urbanity.  Therefore  this  variable  was   already  suitable  for  the  regression.  

    4 Results    

4.1  Summary  of  variables    

First  an  overall  correlation  between  risk  aversion  and  education  is  considered.  In   this   measure   the   mean   of   every   form   of   risk   aversion   is   calculated   for   each   level   of   education.  In  table  4  an  overview  of  the  means  of  the  risk  aversions  is  given.  The  first   thing  that  is  indicated,  is  that  the  average  person  appears  to  be  risk  averse.  With  the  first   measure   of   risk   aversion,   the   amount   of   safe   choices,   the   mean   is   varying   from   about   3.37  to  3.50.  A  risk  neutral  agent  would  make  a  maximum  of  2  safe  choices.  Therefore  it   can   be   concluded   the   average   person   is   risk   averse   by   the   first   measurement   of   risk   aversion.   With   the   risk   aversion   abducted   via   the   power   and   the   exponential   utility   function,  a  person  is  said  to  be  risk  averse  if  𝜃 > 0.    The  mean  of  both  measures  is  >0   and  therefore  the  average  person  also  appears  to  be  risk  averse  via  these  measures  of   risk  aversion.  

One  can  state  that  for  the  power  and  the  exponential  utility  risk  aversion,  it  looks   like   risk   aversion   increases   as   education   levels   increase.   However,   for   risk   aversion   measured  by  the  amount  of  safe  choices,  one  cannot  draw  a  conclusion  since  the  means   appear  to  increase  alongside  education  at  first,  but  decrease  again  in  the  final  stage.      If  one  looks  at  the  means  in  each  category,  one  can  state  that  in  all  three  cases   women  appear  to  be  more  risk  averse  than  men.  In  the  risk  task,  women  made  on  an  

(17)

average  0.5  more  safe  choices  than  men,  and  with  the  power  and  the  exponential  utility   women  also  appear  to  be  more  risk  averse.  

 

Table  4:  Summary  statistics  

                         

Variable       #obs     Mean  RAS   Mean  RAP   Mean  RAE    

                          Education     1  Low  levela     694     3.4669     0.4897     0.0260     2  Medium  levelb   231     3.5022     0.4523     0.0270     3  High  levelc     79     3.3671     0.4521     0.0274   Gender     0  Male       501     3.2216     0.5350     0.0234     1  Female     503     3.7117     0.4215     0.0292                                

aparticipant  finished    primary  school,  VMBO,  HAVO,  VWO  or  MBO  as  a  highest  degree  

bparticipant  finished  HBO  as  a  highest  degree  

cparticipant  finished  University  or  higher  as  a  highest  degree  

 

Result  1:     The  average  person  appears  risk  averse    

 

4.2  Effect  of  gender  and  education  on  three  measures  of  risk  aversion  by  OLS    

Now   OLS   regressions   of   the   three   measures   of   risk   aversion   will   be   considered   with  independent  variables  age,  gender  and  education.  One  can  conclude  the  regressor   gender   significantly   differs   from   zero   in   the   regression   on   all   three   measures   of   risk   aversion.    However,  the  sign  of  the  estimate  gender  is  positive  with  a  regression  on  RAS   and   RAE,   but   it   is   negative   when   one   looks   at   the   regression   with   RAP.   But   since   an   increase   in  𝜃  in   the   power   utility   function   means   a   decrease   in   risk   aversion,   one   can   conclude  the  results  are  not  conflicting.    

 

Result  2:     Regression  by  OLS  shows  that  in  all  three  measures  of  risk  aversion,  women   are  significantly  more  risk  averse  than  men.  

(18)

Table  5:  OLS  regression  of  a  constant,  gender  and  educ  on  RAi  

                         

Variable        RAS       RAP        RAE    

                          Constant       3.205***     .582***     .022***           (.144)       (.047)       (.002)     Gender       .491***     -­‐.117***     .006***           (.107)       (.035)       (.002)       Educ         .011         -­‐.328       .001           (.144)       (.028)       (.001)                               R-­‐squared       .021       .012       .013   Adj.  R-­‐squared     .019       .010       .012   No.  observations     1004                              

Standard  errors  are  reported  in  the  parentheses   */**/***  indicate  significance  at  10%,  5%  and  1%  level.  

 

As  for  the  other  regressor  and  education,  one  is  inconclusive,  since  significance   levels  are  higher  than  the  allowed  0.05.  As  mentioned  above,  the  fact  that  the  results  are   not  significant  could  be  due  to  several  reasons.  

 

Result  3:     Regression   by   OLS   fails   to   significantly   clarify   the   relationship   between   education  and  risk  aversion  

   

4.3  Results  from  tests  for  homoscedasticity,  multicollinearity,  and  exogeneity    

First   heteroscedasticity   will   be   tested   via   the   Breusch-­‐Pagan   test.   The   test   statistic  is  asymptotically  distributed  as  𝜒!(1)  under  H0  of  homoscedasticity.  This,  since  

(19)

First  the  OLS  regression  RAi  =  𝛽1  +  𝛽2  Dgender  i  +  𝛽3  educ  +  𝜀  is  applied,  followed  by  

the  computation  of  the  regression  residuals.  Then  an  auxiliary  regression  of  the  square   residuals  is  done  on  the  differences  in  variance  of  the  observations.  Then  LM=nR2  leads  

to  the  test  statistic.  

 In   none   of   the   three   regressions   on   the   measures   of   risk   aversion   H0  of  

heteroscedasticity  could  be  rejected.  Therefore  one  cannot  conclude  there  is  significant   heteroscedasticity  in  the  estimated  model.  

 

Table  6:  Breusch-­‐Pagan  test  for  heteroscedasticity  with  H0:  constant  variance  

                         

Variable       RAS       RAP       RAE      

                         

𝜒!(1)         1.67       .28       .01  

𝑝 > 𝜒!(1)       .196       .594       .943    

Reject  H0  

𝛼 = 10%     No       No         No      

𝛼 = 5%       No       No         No  

𝛼 = 1%     No       No         No  

                         

 

  Subsequently,  a  test  for  serial  correlation  will  be  considered  by  the  vif’s.  All  three   vif’s  are  1.01,  which  indicates  hardly  any  multicollinearity.  Therefore,  multicollinearity   will  not  be  causing  the  problems  in  the  results.  

Next,  endogeneity  of  education  on  all  three  measures  of  risk  will  be  tested  via  the   Wu-­‐Durbin-­‐Hausman   test.   Hausman   test   shows   endogeneity   for   all   measures   of   education,   namely   in   the   regression   of   gender   and   education   on   RAS   and   on   RAE   are   significant  at  a  level  of  1%  and  5%  respectively.  In  the  case  of  RAE,  H0  of  exogeneity  of  

regressors  can  be  rejected  at  a  significance  level  of  10%.  The  analysis  via  TSLS  will  be   applied  to  all  three  measures  of  risk  aversion.  

 

Educ  is  endogenous  in  all  three  measures  of  risk  aversion  (at  different  significance  levels)    

(20)

Table  7:  Wu-­‐Durbin-­‐Hausman  test  with  H0  exogenous  regressor  education  

                         

Variable       RAS       RAP       RAE      

                         

𝐹(1,998)       6.98       3.51       5.06  

𝑝 > 𝐹(1,998)       .01***       .06*       .025**     Reject  H0      

𝛼 = 10%     Yes       Yes         Yes    

𝛼 = 5%       Yes       No         Yes  

𝛼 = 1%     Yes       No         No  

                         

*/**/***  indicate  significance  at  10%,  5%  and  1%  level.  

   

4.4  Instrumental  variables    

  If  one  looks  at  the  variables  in  table  7,  there  are  several  things  one  can  see.  The   first  thing  is  that  education  levels  appear  to  be  higher  for  people  stating  to  live  in  an  area   with   high   urbanity.   With,   apart   from   the   two   levels   3   and   4,   the   levels   of   education   decrease  alongside  the  decrease  of  urbanity.    

Second  conclusion  one  can  draw,  is  that  men  appear  to  be  higher  educated  than   women.  If  one  looks  at  the  variables,  there  are  several  things  one  can  see.  The  first  thing   is   that   education   levels   appear   to   be   higher   for   people   living   in   an   area   with   high   urbanity.  Apart  from  the  two  levels  3  and  4,  the  levels  of  education  decrease  alongside   the  decrease  of  urbanity.  The  second  conclusion  one  can  draw,  is  that  men  appear  to  be   higher  educated  than  women.  If  one  looks  at  the  variable  age,  a  pattern  appears  to  be   present.  Education  levels  appear  to  decrease  as  age  increases,  apart  from  the  first  and   fourth  category.  In  the  category  17-­‐24  education  levels  are  much  lower  than  in  the  other   categories.  This  is  partly  due  to  the  fact  that  someone  in  the  category  17-­‐24  years  old   simply   has   not   finished   his   education.   Therefore   the   results   are   not   completely   representing  somebody’s  education  level.  In  order  to  prevent  this  from  interfering  with   the   results,   it   is   decided   to   drop   the   first   category   of   age.   This   means   that   106   observations  are  dropped  in  the  analysis.  

(21)

   

Table  8:  Summary  instruments  all  agecat  

                         

Variable           #obs     Mean     Mean  educ  

                          Urbanity           1004     3.0986              -­‐     1  Extremely  urbana         112                -­‐     1.7054     2  Very  urbanb         261                -­‐     1.4215     3  Moderately  urbanc       220                -­‐     1.3091     4  Slightly  urband       238                -­‐     1.3529     5  Not  urbane         173                -­‐     1.2775   Gender           1004     0.5010                        -­‐       0  Male           501                -­‐     1.4371     1  Female           503                -­‐     1.3380   Age             1004     48.7679            -­‐       1  17-­‐24         106                -­‐     1.1321     2  25-­‐34         110                -­‐     1.7182     3  35-­‐44         179                -­‐     1.4134     4  45-­‐54         198                -­‐     1.4646     5  55-­‐64         224                -­‐     1.3482     6  65  +           187                -­‐     1.2781                            

a  Urban  character:  Surrounding  address  density  per  km2  >2500  

b  Urban  character:  Surrounding  address  density  per  km2  1500-­‐2500  

c  Urban  character:  Surrounding  address  density  per  km2  1000-­‐1500  

d  Urban  character:  Surrounding  address  density  per  km2  500-­‐1000  

e  Urban  character:  Surrounding  address  density  per  km2  <500  

 

To  check  if  this  does  not  affect  the  other  variables  in  the  model,  means  from  all   the  variables  are  recalculated,  starting  with  the  means  of  all  the  risk  aversion  measures.  

(22)

Table  9:  Summary  statistics  agecat,  agecat>1  

                         

Variable     #obs     Mean     #obs     Mean  (age>25)    

                          RAS       1004     3.467     898     3.437             (.054)         (.058)     RAP       1004     .478     898     .475             (.018)         (.019)     RAE       1004     .026     898     .026             (.001)         (.001)                                  

Standard  errors  are  reported  in  the  parentheses  

 

If   one   looks   at   the   differences   in   results,   it   appears   no   significant   changes   occurred.  All  new  means  of  the  measures  are  in  the  confidence  interval  of  the  old  means.   Because   of   the   empirical   rule,   confidence   intervals   are   calculated   by   adding   or   detracting  the  standard  errors,  multiplied  by  2  (Bain&Engelhardt,  1992).  This  leads  to   confidence   intervals   of   approximately   95%.   One   is   allowed   to   do   this,   since   the   assumption  of  normally  distributed  data  can  be  done,  as  the  data  sample  is  large  enough.   For   RAS   the   confidence   interval   is   calculated   by:   (3.467   –   2*.054;   3.467   +2*.054)   =   (3.359;   3.575).   One   can   conclude   there   is   no   significant   different   mean   for   RAS   as   3.437  ∈ (3.359;  3.575).   The   same   holds   for   RAP   and   RAE   with   for   RAP   .475∈ (.442; .514)  and   for   RAE   .026    ∈ . 025; .027 .  New   means   of   the   instruments   are   calculated  in  the  table  below.  

Referenties

GERELATEERDE DOCUMENTEN

In this thesis, there are three papers about the interactions among preference parameters, such as the discount rate, loss aversion, reference points, and risk aversion, and one

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

The compressive strength of the post tensioned box girder is determined to be 124.3 MPa from cube tests on specimens prepared from the same batch and cured in similar conditions as

When looking at the choice of reference picture for both regular words and diminutives, the Israeli group linked animate items more often to the corresponding

The managerial conclusion is that the European Commission needs to stimulate board gender diversity in Great-Britain and Ireland, because in these countries a more gender diverse

% ( : Risk aversion is significantly negatively correlated to the probability of having a risky asset and the share invest in risky assets. The decision to acquire debt

Hypothesis 3: There is a negative relationship between a high level of parental control on the way a child spends its money in an individual’s childhood and the financial risk

In hierdie hoofstuk gaan daar in diepte gekyk word na die didaktiese riglyne om 'n positiewe klasklimaat in die klaskamers aan 'n sekondere skool te skep..