• No results found

Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins

N/A
N/A
Protected

Academic year: 2021

Share "Biologically based methods for control of fumonisin-producing fusarium species and reduction of the fumonisins"

Copied!
33
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

doi: 10.3389/fmicb.2016.00548

Edited by:

Daniela Gwiazdowska, Poznan University of Economics, Poland

Reviewed by:

Jose M. Diaz-Minguez, CIALE - Universidad de Salamanca, Spain Jon Y. Takemoto, Utah State University, USA

*Correspondence:

Wentzel C. A. Gelderblom gelderblomw@cput.ac.za

Specialty section:

This article was submitted to Fungi and Their Interactions, a section of the journal Frontiers in Microbiology

Received: 28 January 2016 Accepted: 04 April 2016 Published: 26 April 2016 Citation:

Alberts JF, van Zyl WH and Gelderblom WCA (2016) Biologically Based Methods for Control of Fumonisin-Producing Fusarium Species and Reduction of the Fumonisins. Front. Microbiol. 7:548. doi: 10.3389/fmicb.2016.00548

Biologically Based Methods for

Control of Fumonisin-Producing

Fusarium

Species and Reduction of

the Fumonisins

Johanna F. Alberts

1

, Willem H. van Zyl

2

and Wentzel C. A. Gelderblom

1

*

1Mycotoxicology and Chemoprevention Research Group, Institute of Biomedical and Microbial Biotechnology, Cape Peninsula University of Technology, Bellville, South Africa,2Microbiology Department, Stellenbosch University, Stellenbosch, South Africa

Infection by the fumonisin-producing Fusarium spp. and subsequent fumonisin

contamination of maize adversely affect international trade and economy with deleterious

effects on human and animal health. In developed countries high standards of the major

food suppliers and retailers are upheld and regulatory controls deter the importation

and local marketing of fumonisin-contaminated food products. In developing countries

regulatory measures are either lacking or poorly enforced, due to food insecurity,

resulting in an increased mycotoxin exposure. The lack and poor accessibility of

effective and environmentally safe control methods have led to an increased interest

in practical and biological alternatives to reduce fumonisin intake. These include the

application of natural resources, including plants, microbial cultures, genetic material

thereof, or clay minerals pre- and post-harvest. Pre-harvest approaches include breeding

for resistant maize cultivars, introduction of biocontrol microorganisms, application

of phenolic plant extracts, and expression of antifungal proteins and fumonisin

degrading enzymes in transgenic maize cultivars. Post-harvest approaches include

the removal of fumonisins by natural clay adsorbents and enzymatic degradation of

fumonisins through decarboxylation and deamination by recombinant carboxylesterase

and aminotransferase enzymes. Although, the knowledge base on biological control

methods has expanded, only a limited number of authorized decontamination products

and methods are commercially available. As many studies detailed the use of natural

compounds in vitro, concepts in reducing fumonisin contamination should be developed

further for application in planta and in the field pre-harvest, post-harvest, and during

storage and food-processing. In developed countries an integrated approach, involving

good agricultural management practices, hazard analysis and critical control point

(HACCP) production, and storage management, together with selected biologically

based treatments, mild chemical and physical treatments could reduce fumonisin

contamination effectively. In rural subsistence farming communities, simple, practical,

and culturally acceptable hand-sorting, maize kernel washing, and dehulling intervention

methods proved to be effective as a last line of defense for reducing fumonisin exposure.

Biologically based methods for control of fumonisin-producing Fusarium spp. and

(2)

decontamination of the fumonisins could have potential commercial application, while

simple and practical intervention strategies could also impact positively on food safety

and security, especially in rural populations reliant on maize as a dietary staple.

Keywords: Fusarium, fumonisins, prevention, biological control, reduction, sub-Saharan countries

INTRODUCTION

Fusarium

spp. are agriculturally important plant pathogenic

fungi

associated with disease and mycotoxin contamination of

grain crops (

Wild and Hall, 2000; Picot et al., 2011

). Fusarium

ear rot in maize is one of the major diseases affecting maize

production worldwide and poses an enormous threat to the

international trade of foods and feeds. Fungal species of Fusarium

Section Liseola, including Fusarium verticillioides, Fusarium

proliferatum, and Fusarium subglutinans are some of the most

important causative fungal agents of Fusarium ear or kernel

rot as well as symptomless infection of maize crops, leading to

contamination with the fumonisin mycotoxins (

Munkvold et al.,

1997

).

Fifteen Fusarium spp. have been reported to produce

fumonisins. Eight species are from the Section Liseola, i.e.,

F. verticilloides, Fusarium sacchari, Fusarium fujikuroi, F.

proliferatum, F. subglutinans, Fusarium thapsinum, Fusarium

anthophilum, and Fusarium globosum (

Rheeder et al., 2002

).

Another five species fall within Section Dlaminia, i.e., Fusarium

nygamai, Fusarium dlamini, and Fusarium napiforme. Trace

amounts of fumonisin were detected in culture material of two

species, i.e., Fusarium andiyazi and Fusarium pseudonygamai.

The remaining two fumonisin-producing Fusarium spp. are

one species in Section Elegans, i.e., Fusarium oxysporum and

one in Section Arthrosporiella, i.e., Fusarium polyphialidicum.

The fumonisins are associated with several diseases in humans,

animals, poultry, and fish (

Marasas, 2001; Marasas et al., 2004;

Kimanya et al., 2010

) and are classified as Group 2B carcinogens

(

IARC, 2002

). Home-grown maize is a major dietary staple in

southern Africa and known to be frequently contaminated with

unacceptable levels of fumonisins, with fumonisin B

1

(FB

1

) being

the most prevalent natural occurring fumonisin (

Marasas, 2001;

Marasas et al., 2004; Shephard et al., 2007, 2013; Burger et al.,

2010

). The Eastern Cape Province of South Africa is one of the

areas in the world where the highest levels of FB

1

were recorded

in home-grown maize. As a result exposure to FB

1

in adults is

more than four times above the provisional maximum tolerable

daily intake (2 µg FB

1

/kg body weight/day) set by the Joint Food

and Agriculture Organization of the United Nations and the

World Health Organization (FAO/WHO) Expert Committee on

Food Additives (

Bolger et al., 2001

).

The fumonisins comprise a group of 28 characterized analogs,

which can be separated into four main groups: fumonisin A,

B, C, and P (

Rheeder et al., 2002

). The fumonisin B (FB)

analogs, which includes FB

1

, FB

2

, and FB

3

, are the most abundant

naturally occurring fumonisins, with FB

1

predominating and

usually being found at the highest levels. Apart from FB, some

of the other analogs may occur in naturally contaminated maize

at relatively low levels. The complete fumonisin molecule plays

an important role in toxic and cancer-initiating activities in vivo

(

Gelderblom et al., 1993

). Studies evaluating the

structure-activity relationship of fumonisin analogs, hydrolysis products

and a monomethyl ester of FB

1

in short-term carcinogenesis in

rats and cytotoxicity assays in primary rat hepatocytes, indicated

that the free amino group plays a pivotal role in the toxicological

effects of the fumonsins in vitro and in vivo. It was suggested

that the tricarballylic acid moiety is required for effective

absorption of the fumonisins from the gut. The fumonisins

disrupt sphingolipid biosynthesis by inhibiting the enzyme

ceramide synthase (

Wang et al., 1991

), and the tricarballylic acid

moiety is required for maximal effect (

Van der Westhuizen et al.,

1998

).

Fusarium infect maize in the field with the highest levels of

fumonisins present at harvest, concentrated in the pericarp and

embryo of the maize kernel (

Fandohan et al., 2006; Kimanya

et al., 2008; Burger et al., 2013

). Kinetics of Fusarium growth

and mycotoxin production are mainly affected by water activity,

temperature, and atmospheric composition, while nutritional

factors such as kernel endosperm composition and nitrogen

sources also play an important role (

Chulze, 2010; Picot et al.,

2011

). Fumonisin production strongly depends on the kernel

stage, and may be regulated by physicochemical factors that vary

during ear ripening. Insect damage of maize by the European

corn borer (Ostrinia nubilalis Hübner) and the corn earworm

(Helicoverpa zea Boddie) further favors Fusarium infection (

Betz

et al., 2000

).

Methods for reduction

of fumonisins in maize are applied

pre-harvest or during harvesting and processing (

Wild and

Gong, 2010

). These include several existing strategies to

reduce Fusarium growth and production of fumonisins in

food sources, i.e., controlled agricultural practices, ensiling

strategies, breeding for insect and fungal resistance in maize

cultivars, various physical-, chemical-, and biological treatment

methods and genetic engineering approaches. Good agricultural

management and hazard analysis and critical control point

(HACCP) practices promote the general condition of crops,

reducing but not eliminating fungal growth, and mycotoxin

contamination, while resistance breeding strives to achieve a

balance between developing resistant crops and maintaining

high quality crop yield (

Cleveland et al., 2003; Wild and

Gong, 2010

). However, optimization of agricultural management

practices is not always possible due to high production costs, the

geographical location or nature of the production systems, and

challenging environmental conditions.

Several physical and chemical control methods for mycotoxins

have been commercialized involving sorting and flotation,

solvent extraction, chemical detoxification by alkalization (e.g.,

ammonia, sodium hydroxide, and sulfur dioxide treatments),

oxidation (e.g., ozone), and irradiation and pyrolysis (

He and

(3)

Zhou, 2010

). There are, however, several limitations, challenges,

and concerns with regards to physical and chemical control

methods (

Schatzmayr et al., 2006

). Physical methods generally

have low efficacy and less specificity, while chemical methods are

not always effective, are considered expensive and may decrease

the nutritional value of foods, affect the sensory quality, and

could produce toxic derivatives (

Alabouvette et al., 2009; He

and Zhou, 2010

). Furthermore, methods involving fungicides

pose a potential health, safety, and environmental risk as certain

antifungal chemical compounds are not biodegradable or have

a long degradation period, could contaminate soil and water

and their effect on food quality and human health is a concern

(

Larkin and Fravel, 1998; da Cruz Cabral et al., 2013

). Prolonged

chemical treatment of grains can lead to the development of

resistance in fungal strains, a demand for higher concentrations,

and an increase in toxic residues in food crops. Increasingly

more stringent regulation is enforced with regards to the use

of chemical control methods together with a strong consumer

demand to reduce the use of potentially harmful chemicals in

the food supply (

Liu et al., 2013

). There is also an ecological

and societal movement toward safe and natural food, without

chemical treatments and/or preservatives (

Edlayne et al., 2009

).

Research over the past 25 years indicates support for

agricultural management practices and a renewed interest

in practical and biological control methods as possible

alternatives. In this regard several methods for controlling

fungal growth and mycotoxin production pre- and

post-harvest involving clay minerals, plant extracts and a variety

of microbial taxa have been commercialized (

He and Zhou,

2010

). In rural subsistence farming communities a number

of effective, practical, and culturally acceptable intervention

methods have been developed (

Kimanya et al., 2008; Van

der Westhuizen et al., 2010

). While the focus in the past

was more on the most economically important mycotoxins,

i.e., aflatoxin B

1

(AFB

1

), much less information is available

on other important mycotoxins such as FB

1

, trichothecenes,

zearalenone, citrinin, and patulin (

Kabak et al., 2006

). This

paper presents a comprehensive overview of recent research

on biological- and practical-based approaches for control of

fumonisin-producing Fusarium spp. and methods for reduction

thereof during pre- and post-harvest conditions. Current

information on the application of natural clay adsorbents,

biocontrol organisms, antioxidants, essential oils, plant extracts,

and molecular approaches are reviewed; as well as practical

and culturally acceptable methods for reduction of fumonisin

exposure in rural subsistence farming communities.

PRE-HARVEST BIOLOGICALLY BASED

CONTROL METHODS FOR

FUMONISIN-PRODUCING FUSARIUM Spp.

Biocontrol Microorganisms

This approach involves a three-way interaction between the

host commodity, the pathogen and the antagonistic biocontrol

microorganism together with dynamics such as competition

for nutrients and space, parasitism of the pathogen, secretion

of antifungal compounds, induction of systemic resistance

(ISR), biofilm formation and involvement with reactive

oxygen species in defense response (

Larkin and Fravel, 1998;

Alabouvette et al., 2009

). Recent research also suggested that the

aflatoxin biocontrol mechanism, employing atoxigenic strains of

Aspergillus flavus, is triggered by physical contact or interaction

between hyphae of the competing fungal strains (

Damann, 2014

).

Essential criteria for effective biocontrol microorganisms include

the ability to colonize the plant part infected by the pathogen

organism, efficacy under the relevant environmental conditions

and compatibility with other control methods that are applied

(

Bacon and Hinton, 2011; Liu et al., 2013

). Niche overlap indices

(NOIs) provide information on ecological similarity, coexistence,

and competition between microorganisms in a specific niche

and assists in identifying possible microbial antagonists

against F. verticillioides colonization (

Cavaglieri et al., 2004

).

Microorganisms naturally associated with and adapted to the

vegetative parts of a specific plant, sharing the ecological niche

with pathogen microorganisms, could hold advantages as

biocontrol agents. One such a microorganism, Bacillus subtilis

occupies the same ecological niche as F. verticillioides within

the maize plant and effectively inhibits growth of the fungus,

based on competitive exclusion (

Bacon et al., 2001

; Table 1).

B. subtilis is considered generally regarded as safe (GRAS) by

the United States Food and Drug Administration [US FDA,

GRAS substances evaluated by the Select Committee on GRAS

substances (SCOGS)], is easy to cultivate and manipulate

genetically, and therefore suitable for industrial processes. A

pre-harvest biological control system, involving B. subtilis RRC101,

was developed on maize which reduces fumonisin accumulation

during the endophytic growth phase of F. verticillioides (= F.

moniliforme;

Bacon et al., 2001

). The endophytic phase of F.

verticillioides is transferred vertically to the next generation

through clonal infection of seeds. This phase is characterized

by intercellular systemic infection of plants and seeds, which

cannot be controlled with fungicides. Effective biocontrol has

also been demonstrated with wild type and fusaric acid resistant

mutant strains of the bacterial endophyte, Bacillus mojavensis,

in vitro and in planta (

Bacon and Hinton, 2011

). Efficacy of these

strains under field conditions could be influenced by fusaric acid

produced by F. verticillioides. The mechanism of biocontrol by

B. mojavensis is complex and still unclear, as indicated by broad

differences in maize seedling protection by a range of strains

evaluated.

Pediococcus pentosaceus, a lactic acid bacterial isolate from

maize, inhibits F. verticillioides and F. proliferatum growth

in vitro (

Dalie et al., 2010

; Table 1). Antifungal activity in P.

pentosaceus culture supernatant was observed toward the end

of the exponential phase of growth and was pH dependent.

The antifungal metabolites produced proved to be heat stable

and resistant to proteolytic enzymes. Culture fractions exhibiting

antifungal activity contained compounds with molecular masses

ranging from 500 to 1400 Da. P. pentosaceus has GRAS status,

has been widely used in the fermentation of a variety of foods

and could be suitable as biocontrol organism to improve the

quality of ensilage. Clonostachys rosae, a fungal isolate from

straw, stubble, seed surfaces, and the phylosphere or roots of

cereal crops, effectively reduced sporulation of F. verticillioides

and F. proliferatum on maize stalks in vitro and in field trials

(4)

T A B L E 1 | C u rr e n t in fo rma ti o n o n re d u c ti o n o f fu mo n is in -p ro d u c in g F u s a ri u m s p p . b y b io c o n tr o l mi c ro o rg a n is ms in v it ro , in p la n ta , a n d in fi e ld tr ia ls . B io c o n tr o l mi c ro o rg a n is m F u s a ri u m s p p . s tu d ie d Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) Tr ic h o d e rm a sp p . st ra in s a g g re ss iv e to w a rd F u s a ri u m ve rt ic ill io id e s (= m o n ili fo rm e ): Tr ic h o d e rm a h a rz ia n u m T 1 a n d T 2 , Tr ic h o d e rm a vi ri d e T 5 a n d T 6 F. ve rt ic ill io id e s (= F. m o n ili fo rm e ) In vi tr o st u d ie s o n th e p o te n tia lf o r b io lo g ic a lc o n tr o lo f A s p e rg ill u s fla vu s a n d F. m o n ili fo rm e b y Tr ic h o d e rm a sp p .: a st u d y o f th e p ro d u c tio n o f e xt ra c e llu la r m e ta b o lit e s b y Tr ic h o d e rm a sp p . In vi tr o : E ff e c t o f c a rb o n so u rc e o n a n tif u n g a l p ro p e rt ie s o f Tr ic h o d e rm a sp p .; A n tif u n g a la c tiv iti e s o f Tr ic h o d e rm a sp p . c u ltu re fil tr a te s: p re p a ra tio n o f liq u id c u ltu re fil tr a te s; P D A p la te a ss a y; d e te rm in a tio n o f in h ib iti o n ; sc a n n in g e le c tr o n m ic ro sc o p y o f m yc e lia lp lu g s; P ro d u c tio n o f vo la til e s: in ve rt e d fu n g a l c u ltu re s; c o lo n y d ia m e te rs ; P ro d u c tio n o f e xt ra c e llu la r e n zy m e s: a g a r p la te m e th o d ; m e a su re m e n t o f d e p le tio n o f n u tr ie n t so u rc e s; E va lu a tio n o f o sm o tic p o te n tia l; P ro d u c tio n o f a n tib io tic s: so lid a g a r p la te a ss a y; m o n ito rin g zo n e s o f in h ib iti o n o f E . c o li a n d S ta p h yl o c o c c u s a u re u s In vi tr o : E ff e c t o f c a rb o n so u rc e o n a n tif u n g a lp ro p e rt ie s o f Tr ic h o d e rm a sp p .: Tr ic h o d e rm a sp p . in h ib ite d F. ve rt ic ill io id e s g ro w th o n g ro w th m e d iu m w ith g lu c o se a s c a rb o n so u rc e ; n o in h ib iti o n w ith su c ro se a s c a rb o n so u rc e ; in h ib iti o n o b se rv e d w ith L -a la n in e a s n itr o g e n so u rc e ; T. h a rz ia n u m T 2 a n d T. vi ri d e T 5 e xh ib ite d th e st ro n g e st in h ib ito ry e ff e c t; A n tif u n g a la c tiv iti e s o f Tr ic h o d e rm a sp . c u ltu re fil tr a te s: g e n e ra li n h ib iti o n o f F. ve rt ic ill io id e s g ro w th ; c u ltu re fil tr a te s o f T. h a rz ia n u m T 2 a n d T. vi ri d e T 5 re su lte d in p ro n o u n c e d m o rp h o lo g ic a la lte ra tio n s; P ro d u c tio n o f vo la til e s: th e p re se n c e o f vo la til e c o m p o u n d s o f T. h a rz ia n u m T 2 , T. vi ri d e T 5 a n d T 6 w e re a b le to su p p re ss F. ve rt ic ill io id e s g ro w th ; P ro d u c tio n o f e xt ra c e llu la r e n zy m e s: a m yl a se a n d c e llu lo se a c tiv ity e xh ib ite d b y a ll fo u r st ra in s; ly p o ly tic a c tiv ity e xh ib ite d b y T. h a rz ia n u m T 1 , T 2 a n d T. vi ri d e T 5 ; p ro te o ly tic a c tiv ity e xh ib ite d b y T. h a rz ia n u m T 2 a n d T. vi ri d e T 5 ; e xt ra c e llu la r p e c tin o ly tic a c tiv ity e xh ib ite d b y T. h a rz ia n u m T 1 a n d T. vi ri d e T 5 . T. vi ri d e p ro d u c e d th e w id e st sp e c tr u m o f e xt ra c e llu la r e n zy m e s; E va lu a tio n o f o sm o tic p o te n tia l: e n zy m e p ro d u c tio n d e c re a se d w ith in c re a si n g o sm o tic p o te n tia l; P ro d u c tio n o f a n tib io tic s: T. vi ri d e T 5 e xh ib ite d th e g re a te st in h ib ito ry e ff e c t o n E . c o li a n d S . a u re u s , su g g e st in g p ro d u c tio n o f a n tib io tic s Tr ic h o d e rm a sp p . e xh ib ite d p o te n tia lf o r b io c o n tr o la g a in st m yc o to xi n -p ro d u c in g fu n g i; th e la c k o f o sm o to le ra n c e in a ir-d rie d se e d c o u ld b e a d is a d va n ta g e C a lis tr u e t a l., 1 9 9 7 T. vi ri d e U P S 1 0 1 is o la te d fr o m ro o t se g m e n ts o f c o rn p la n ts g ro w n in P ie d m o n t, G e o rg ia , U S A F. ve rt ic ill io id e s (= F. m o n ili fo rm e ) st ra in s: R R C P A T, R R C P A T g u s T. vi ri d e su p p re ss e s F B1 p ro d u c tio n b y F. m o n ili fo rm e . In vi tr o : A n tif u n g a la c tiv ity : si n g le a n d c o -c u lti va tio n o n P D A ; c o lo n y d ia m e te rs ; E ff e c t o n F B1 le ve ls : si n g le a n d c o -c u lti va tio n o n m a iz e ke rn e ls ; d e te rm in a tio n o f F B1 le ve ls In vi tr o : A n tif u n g a la c tiv ity : T. vi ri d e su p p re ss e d ra d ia l e xt e n si o n o f F. ve rt ic ill io id e s c o lo n ie s (4 6 % re d u c tio n a ft e r 6 d a ys ; 9 0 % a ft e r 1 4 d a ys ); E ff e c t o n F B1 le ve ls : T. vi ri d e su p p re ss e d F B1 p ro d u c tio n b y F. ve rt ic ill io id e s w h e n c o -c u lti va te d o n m a iz e ke rn e ls ; 8 5 % re d u c tio n in F B1 le ve ls w h e n th e T. vi ri d e a n d F. ve rt ic ill io id e s w e re in o c u la te d si m u lta n e o u sl y; 7 2 % re d u c tio n in F B1 le ve ls w h e n T. vi ri d e w a s in o c u la te d 7 d a ys a ft e r F. ve rt ic ill io id e s Tr ic h o d e rm a sp p . m a in ly a p p lie d to so il a s b io c o n tr o la g e n ts ; T. vi ri d e c o u ld b e a p p lie d to in h ib it F. ve rt ic ill io id e s g ro w th p re -h a rv e st , to p re ve n t d is e a se d u rin g p la n t d e ve lo p m e n t, p o st h a rv e st d u rin g st o ra g e o r to su p p re ss F B1 a c c u m u la tio n in in a d e q u a te ly d rie d m a iz e ke rn e ls ; a p p lic a b le fo r F B1 re d u c tio n in m a iz e ke rn e ls in te n d e d fo r a n im a lf e e d Y a te s e t a l., 1 9 9 9 (C o n ti n u e d )

(5)

T A B L E 1 | C o n ti n u e d B io c o n tr o l mi c ro o rg a n is m F u s a ri u m s p p . s tu d ie d Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) B a c ill u s s u b ti lis st ra in s is o la te d fr o m m a iz e in n o rt h e rn It a ly : B . s u b ti lis R R C 1 0 1 (w ild ty p e ) (P a te n t 5 , 9 9 4 , 1 1 7 ), B . s u b ti lis R R C 2 6 ss a n d B . s u b ti lis R R C 2 4 w f (r ifa m p ic in re si st a n t m u ta n ts ); F. ve rt ic ill io id e s (= m o n ili fo rm e ) W ild ty p e st ra in s: M R C 8 2 6 , R R C 4 1 0 , R R C P A T, R R C 4 0 8 ; F. ve rt ic ill io id e s tr a n sf o rm e d e c o lo g ic a lm a rk e r st ra in s: M R C 8 2 6 g u s, R R C P A T g u s, R R C 4 0 8 g u s B io lo g ic a lc o n tr o lo f F. m o n ili fo rm e in m a iz e . In p la n ta : Y o u n g a n d vi g o ro u s m a iz e se e d lin g s: P la n t p o t c u ltu re s su b je c te d to d ro u g h t tr e a tm e n ts ; se e d tr e a te d w ith B . s u b ti lis ; p la n ts c u lti va te d in so il in fe st e d w ith F. ve rt ic ill io id e s ; p la n t g ro w th lig h t ro o m ; d e te rm in a tio n o f se e d lin g h e ig h t a n d b la d e w id th ; p e rc e n ta g e se e d lin g ro o t in fe c tio n ; C F U c o u n ts o f B . s u b ti lis a n d F. ve rt ic ill io id e s in so il; d e te rm in a tio n o f F B1 le ve ls ; M a tu re m a iz e p la n ts : Te n w e e k o ld m a iz e p la n ts ; d e te rm in a tio n o f F B1 le ve ls in ro o ts , st e m s, le a ve s a n d ke rn e ls In p la n ta : Y o u n g a n d vi g o ro u s m a iz e se e d lin g s: B . s u b ti lis e xh ib ite d a p ro te c tiv e e ff e c t o n m a iz e se e d lin g g ro w th a n d p e rc e n ta g e se e d lin g ro o t in fe c tio n ; B . s u b ti lis re d u c e d F. ve rt ic ill io id e s c o lo n iz a tio n o f so ils ; F B1 w a s si g n ific a n tly re d u c e d (5 0 % ) b y a ll b a c te ria l tr e a tm e n ts , e sp e c ia lly u n d e r d ro u g h t st re ss ; M a tu re m a iz e p la n ts : B . s u b ti lis e xh ib ite d p ro te c tio n in m a tu re d p la n ts a t th e ke rn e lfil ls ta g e B . s u b ti lis c o u ld b e a p p lie d a s se e d tr e a tm e n t to a c t a s b io c o n tr o la g e n t d u rin g th e g ro w th o f m a iz e p la n ts ; e va lu a tio n o f B . s u b ti lis u n d e r fie ld c o n d iti o n s n e e d e d B a c o n e t a l., 2 0 0 1 A la rg e va rie ty o f p o te n tia la n ta g o n is tic b a c te ria la n d fu n g a l st ra in s is o la te d fr o m st ra w , st u b b le , se e d su rf a c e s, a n d th e p h yl o sp h e re o r ro o ts o f c e re a lc ro p s; A d d iti o n a li so la te s: C h a e to m iu m sp p ., F u s a ri u m e q u is e ti F u s a ri u m is o la te s fr o m in fe c te d w h e a t g ra in s in T h e N e th e rla n d s: F u s a ri u m c u lm o ru m , F u s a ri u m g ra m in e a ru m , F u s a ri u m p ro lif e ra tu m , F. ve rt ic ill io id e s P o te n tia lo f fu n g a la n ta g o n is ts fo r b io -c o n tr o lo f F u s a ri u m sp p . in w h e a t a n d m a iz e th ro u g h c o m p e tit io n in c ro p d e b ris . In vi tr o : R e d u c tio n o f F u s a ri u m sp p . c o n id ia fo rm a tio n : w h e a t st ra w b io a ss a y; p re -i n o c u la tio n o f st ra w w ith F u s a ri u m sp p .; su b se q u e n t in o c u la tio n o f st ra w w ith p o te n tia la n ta g o n is ts ; d e te rm in a tio n o f th e n u m b e r o f c o n id ia : m ic ro sc o p y b io a ss a y; R e d u c tio n o f F u s a ri u m sp p . c o n id ia fo rm a tio n : m a iz e st u b b le b io a ss a y; p ro c e d u re s si m ila r to th e w h e a t st ra w b io a ss a y; F ie ld tr ia ls : M a iz e st a lk s: d e te rm in a tio n o f a n ta g o n is m ; p re -i n o c u la tio n o f st a lk s w ith p o te n tia l a n ta g o n is ts ; su b se q u e n t in o c u la tio n o f st a lk s w ith F. ve rt ic ill io id e s , F. p ro lif e ra tu m a n d F. g ra m in e a ru m ; p lo ts in o c u la te d w ith st rip s c o n ta in in g st a lk p ie c e s; c u ltu rin g o f h a rv e st e d st a lk s o n m o d ifie d P D A ; id e n tific a tio n o f F. ve rt ic ill io id e s , F. p ro lif e ra tu m a n d F. g ra m in e a ru m : c o lo n y m o rp h o lo g y a n d m ic ro sc o p ic e xa m in a tio n ; In vi tr o : R e d u c tio n o f F u s a ri u m sp p . c o n id ia fo rm a tio n (w h e a t st ra w b io a ss a y) : sp o ru la tio n o f F. c u lm o ru m a n d F. g ra m in e a ru m o n st ra w : o ve ra ll re d u c tio n (> 8 0 % ) b y a n ta g o n is tic is o la te s; S p o ru la tio n o f F. c u lm o ru m o n C lo n o s ta c h ys ro s e a -t re a te d st ra w : 8 5 -9 9 % re d u c tio n ; sp o ru la tio n o f F. g ra m in e a ru m o n C . ro s e a -t re a te d st ra w : 9 1 -1 0 0 % re d u c tio n ; H ig h ly e ff e c tiv e fu n g a la n ta g o n is ts : C . ro s e a , F. e q u is e ti , C h a e to m iu m g lo b o s u m a n d E p ic o c c u s n ig ru m ; n o n -p a th o g e n ic F u s a ri u m sp p . e xh ib ite d m o d e ra te a n ta g o n is m ; Y e a st s w e re w e a k c o m p e tit o rs ; R e d u c tio n o f F u s a ri u m sp p . c o n id ia fo rm a tio n (m a iz e st u b b le b io a ss a y) : le ss e ff e c tiv e re d u c tio n in sp o ru la tio n th a n re p o rt e d fo r w h e a t st ra w ; st ro n g e st a n ta g o n is t: C . ro s e a ; F ie ld tr ia ls : M a iz e st a lk s: V a ria tio n in re su lts ; M o st c o n si st e n t re d u c tio n o f F u s a ri u m c o lo n iz a tio n b y C . ro s e a ; M a iz e e a rs : E a r tr e a tm e n ts w ith C . ro s e a a n d C la d o s p o ri u m c la d o s p o ri o id e s re d u c e d c o lo n iz a tio n o f ke rn e ls w ith b o th F. ve rt ic ill io id e s a n d F. g ra m in e a ru m (5 0 % re d u c tio n ); F. p ro lif e ra tu m c o lo n iz a tio n re d u c e d b y C . c la d o s p o ri o id e s a n d F. e q u is e ti A p p lic a tio n o f a n ta g o n is ts o n flo w e rin g m a iz e e a rs : p ro m is in g re su lts in p re lim in a ry fie ld tr ia ls ; fu rt h e r e xp e rim e n ts u n d e r d is e a se c o n d u c iv e c o n d iti o n s n e e d e d ; se ve ra la n ta g o n is ts e xh ib ite d p o te n tia lt o c o n tr o l F u s a ri u m sp p . in w h e a t a n d m a iz e c ro p re si d u e s p o st h a rv e st , a n d a t th e flo w e rin g e a r st a g e s L u o n g o e t a l., 2 0 0 5 (C o n ti n u e d )

(6)

T A B L E 1 | C o n ti n u e d B io c o n tr o l mi c ro o rg a n is m F u s a ri u m s p p . s tu d ie d Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) M a iz e e a rs : p re -i n o c u la tio n o f si lk s w ith p o te n tia la n ta g o n is ts ; si lk o f ta g g e d e a rs a t th e b lo o m in g st a g e ; su b se q u e n t in o c u la tio n o f si lk s w ith F. ve rt ic ill io id e s , F. p ro lif e ra tu m a n d F. g ra m in e a ru m ; id e n tific a tio n o f F. ve rt ic ill io id e s , F. p ro lif e ra tu m a n d F. g ra m in e a ru m : c o lo n y m o rp h o lo g y a n d m ic ro sc o p ic e xa m in a tio n L a c tic a c id b a c te ria l is o la te s fr o m m a iz e tis su e s c o lle c te d in m a iz e fie ld s (6 6 is o la te s) ; P e d io c o c c u s p e n to s a c e u s L 0 0 6 A va rie ty o f F. ve rt ic ill io id e s a n d F. p ro lif e ra tu m st ra in s fr o m th e IN R A M yc S A c o lle c tio n P o te n tia lo f P. p e n to s a c e u s (L 0 0 6 ) is o la te d fr o m m a iz e le a f to su p p re ss fu m o n is in -p ro d u c in g fu n g a lg ro w th . In vi tr o : A n tif u n g a la c tiv ity a g a in st F. ve rt ic ill io id e s a n d F. p ro lif e ra tu m : O ve rla y M R S a g a r p la te m e th o d ; se le c tio n o f th e m o st e ffic ie n t is o la te ; Id e n tific a tio n o f th e m o st e ffic ie n t a n tif u n g a ll a c tic a c id b a c te ria li so la te : b io c h e m ic a la n d p h ys io lo g ic a l c h a ra c te riz a tio n (A P I 5 0 C H L te st ); 1 6 S rR N A g e n e se q u e n c in g ; A n tif u n g a ls p e c tr u m o f P. p e n to s a c e u s L 0 0 6 o n so lid m e d iu m : P. p e n to s a c e u s L 0 0 6 te st e d a g a in st a ra n g e o f F. ve rt ic ill io id e s a n d F. p ro lif e ra tu m st ra in s; O ve rla y M R S a g a r p la te m e th o d ; P ro d u c tio n o f a c tiv e a n tif u n g a lm e ta b o lit e s b y P. p e n to s a c e u s L 0 0 6 : c u lti va tio n in M R S b ro th ; sa m p lin g d u rin g 1 2 0 h in c u b a tio n p e rio d ; m e a su re m e n t o f p H , c e ll g ro w th a n d a n tif u n g a la c tiv ity o f c e ll-fr e e su p e rn a ta n t; d e te rm in a tio n o f a n tif u n g a la c tiv ity ; C h a ra c te riz a tio n o f P. p e n to s a c e u s L 0 0 6 c e ll-fr e e c u ltu re su p e rn a ta n t: d e te rm in a tio n o f h e a t st a b ili ty a n d th e e ff e c ts o f p H a n d p ro te o ly tic e n zy m e tr e a tm e n ts o n a n tif u n g a la c tiv ity In vi tr o : A n tif u n g a la c tiv ity a g a in st F. ve rt ic ill io id e s a n d F. p ro lif e ra tu m : 8 9 % o f la c tic a c id b a c te ria li so la te s w e re a b le to in h ib it fu n g a lg ro w th ; a n tif u n g a la c tiv ity m a xi m a lt o w a rd th e e n d o f th e e xp o n e n tia lp h a se o f g ro w th ; Id e n tific a tio n o f th e m o st e ffic ie n t a n tif u n g a ll a c tic a c id b a c te ria li so la te : P. p e n to s a c e u s L 0 0 6 (1 0 0 % se q u e n c e si m ila rit y w ith P. p e n to s a c e u s A T C C 2 5 7 4 5 ); A n tif u n g a ls p e c tr u m o f P. p e n to s a c e u s L 0 0 6 o n so lid m e d iu m : P. p e n to s a c e u s L 0 0 6 in h ib ite d th e g ro w th o f a ll fu n g a ls tr a in s te st e d ; P ro d u c tio n o f a c tiv e a n tif u n g a lm e ta b o lit e s b y P. p e n to s a c e u s L 0 0 6 : a n tif u n g a la c tiv ity in c re a se d w ith in c u b a tio n tim e ; a n tif u n g a ls u b st a n c e s a re p o ss ib ly se c o n d a ry m e ta b o lit e s; p H d e c re a se d (p H 6 .5 to 3 .8 ) d u rin g in c u b a tio n ; C h a ra c te riz a tio n o f P. p e n to s a c e u s L 0 0 6 c e ll-fr e e c u ltu re su p e rn a ta n t: a n tif u n g a la c tiv ity w a s n o t re d u c e d b y h e a t a n d p ro te o ly tic e n zy m e tr e a tm e n ts ; a n tif u n g a lc o m p o u n d s n o t p ro te in a c e o u s; a n tif u n g a l a c tiv ity lo st a t p H 7 ; a n tif u n g a la c tiv ity w a s a sc rib e d to th e p re se n c e o f o rg a n ic a c id s, e xc lu d in g la c tic a c id A p p lic a tio n o f P. p e n to s a c e u s L 0 0 6 c a n p o ss ib ly im p ro ve si la g e q u a lit y; re su lts o b ta in e d in vi tr o n e e d to b e e xt e n d e d to in p la n ta st u d ie s a n d fie ld tr ia ls D a lie e t a l., 2 0 1 0 (C o n ti n u e d )

(7)

T A B L E 1 | C o n ti n u e d B io c o n tr o l mi c ro o rg a n is m F u s a ri u m s p p . s tu d ie d Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) B a c ill u s m o ja ve n s is st ra in s R C C 1 0 1 (A T C C 5 5 7 3 2 ) (p a te n te d ); N R R L B 1 4 6 9 9 ; N R R L B 1 4 7 0 1 ; N R R L B 1 4 7 0 3 to N R R L B 1 4 7 0 6 ; N R R L B 1 4 7 0 8 to N R R L B 1 4 7 1 2 ; B . m o ja ve n s is rif a m p in m u ta n t R R C 1 1 2 rif ; B . m o ja ve n s is fu sa ric a c id re si st a n t m u ta n t R R C 1 1 2 fa F. ve rt ic ill io id e s st ra in s: M R C 8 2 6 (s ym p to m le ss e n d o p h yt ic st ra in ), “P a tg u s” (v iru le n t st ra in ), 4 0 8 (v iru le n t w ild ty p e st ra in ), a n d U V 2 8 (n o n -f u sa ric a c id p ro d u c in g m u ta n t st ra in ) In p la n ta re d u c tio n o f m a iz e se e d lin g st a lk le si o n s b y th e b a c te ria le n d o p h yt e B . m o ja ve n s is . In p la n ta : B . m o ja ve n s is (s tr a in s R C C 1 0 1 ; N R R L B 1 4 6 9 9 ; N R R L B 1 4 7 0 1 ; N R R L B 1 4 7 0 3 to N R R L B 1 4 7 0 6 ; N R R L B 1 4 7 0 8 to N R R L B 1 4 7 1 2 ) in o c u la te d Z e a m a ys “E a rly S u n g lo w ” se e d s w e re c u lti va te d fo r 3 5 d a ys in a p la n t g ro w th lig h t ro o m a n d in o c u la te d w ith a sp o re su sp e n si o n o f F. ve rt ic ill io id e s “P a tg u s” ; B . m o ja ve n s is R R C 1 1 2 fa in o c u la te d Z e a m a ys “P io n e e r 3 1 4 0 ” se e d s w e re c u lti va te d a n d in o c u la te d a s d e sc rib e d a b o ve w ith F. ve rt ic ill io id e s st ra in s M R C 8 2 6 , 4 0 8 a n d U V 2 8 ; B . m o ja ve n s is R R C 1 1 2 fa in o c u la te d Z e a m a ys “E a rly S u n g lo w ” se e d s w e re c u lti va te d a s d e sc rib e d a b o ve a n d in o c u la te d w ith F. ve rt ic ill io id e s st ra in s “P a tg u s” a n d U V 2 8 ; D e te rm in a tio n o f st a lk le si o n d e ve lo p m e n t; M e a su re m e n t o f th e le n g th o f n e c ro tic le si o n s a n d st a lk d ia m e te rs In p la n ta : R a n g e o f B . m o ja ve n s is st ra in s + F. ve rt ic ill o id e s “P a tg u s” (“ E a rly S u n g lo w ” m a iz e ): 2 4 -5 8 % re d u c tio n in st a lk le si o n le n g th ; la rg e d iff e re n c e s in th e a b ili ty to re d u c e le si o n s; B . m o ja ve n s is R C C 1 0 1 e xh ib ite d 5 8 % re d u c tio n ; B . m o ja ve n s is R R C 1 1 2 fa + F. ve rt ic ill io id e s st ra in s M R C 8 2 6 , 4 0 8 a n d U V 2 8 (“ P io n e e r 3 1 4 0 ” m a iz e ): 3 0 -4 1 % re d u c tio n in st a lk le si o n le n g th ; B . m o ja ve n s is R R C 1 1 2 fa si g n ific a n tly (P = 0 .0 5 ) re d u c e d st a lk le si o n le n g th s c a u se d b y F. ve rt ic ill io id e s “P a tg u s” o n “E a rly S u n g lo w ” m a iz e (5 4 % re d u c tio n ); B . m o ja ve n s is R R C 1 1 2 fa : 7 0 % re d u c tio n in st a lk le si o n le n g th ; re d u c tio n n o t si g n ific a n tly d iff e re n t fr o m re su lts fo r th e R R C 1 0 1 w ild ty p e st ra in a n d rif a m p in m u ta n t st ra in (R R C 1 1 2 rif ); S ig n ific a n t (P ≤ 0 .0 5 ) re d u c tio n in st a lk le si o n le n g th b y th e b a c te riu m re g a rd le ss o f its a b ili ty to to le ra te fu sa ric a c id ; F. ve rt ic ill o id e s U V 2 8 si g n ific a n tly (P ≤ 0 .0 5 ) re d u c e d m a iz e st a lk d ia m e te r; n o e n h a n c e d e ff e c t w h e n th e fu n g u s w a s c o -i n o c u la te d w ith B . m o ja ve n s is A p p lic a tio n o f B . m o ja ve n s is fo r su p p re ss io n o f se e d lin g d is e a se in m a iz e : to p ro o f th e e ffic a c y o f B . m o ja ve n s is a s b io c o n tr o l a g e n t a d d iti o n a ls tu d ie s sh o u ld b e p e rf o rm e d in vi tr o a n d in th e fie ld u til iz in g m u ta n ts a n d w ild -t yp e st ra in s o f b a c te ria a n d n o n -f u m o n is in p ro d u c in g fu n g i; m o re p a th o lo g ic a lf a c to rs sh o u ld a ls o b e e va lu a te d B a c o n a n d H in to n , 2 0 1 1 F B1 , F u m o n is in B1 ; C F U , C o lo n y fo rm in g u n its ; P D A , P ota to de xtr os e a ga r; MR S br oth /a ga r, de Ma n , R ogos a a n d S h a rpe br oth /a ga r.

(8)

(

Luongo et al., 2005

). C. rosae exhibited potential to control

Fusarium spp. in maize at the flowering ear stages and in crop

residues post-harvest. Food-grade yeasts are also considered

ideal biocontrol microorganisms, as they are generally genetically

stable, effective at low concentrations, easy to cultivate,

capable to survive under adverse environmental conditions,

compatible with commercial processing, and resistant to

pesticides.

Trichoderma

spp.

Trichoderma spp. are considered effective biocontrol agents

because of their repertoire of extracellular lytic enzymes that

cause necrotrophic action through lysis of fungal cell walls

as well as the role they play in ISR in plants (

Bacon et al.,

2001; Hermosa et al., 2012

). Trichoderma mainly colonizes the

rhizosphere and intercellular root areas of plants, and maintains

interactions by promoting plant growth and providing protection

against infections, while utilizing plant sucrose to facilitate root

colonization (

Hermosa et al., 2012

). Plant disease severity is

reduced in the presence of Trichoderma by inhibition of a wide

range of plant pathogens through antagonistic and mycoparasitic

action; ISR or induction of localized resistance. Trichoderma

is also able to withstand toxic metabolites that are produced

by the plant in response to invasion. Plants are able to detect

pathogen- or microbe associated molecular patterns (MAMPs),

which leads to activation of defense mechanisms and eventually

synthesis of antimicrobial compounds. Certain Trichoderma

strains produce a variety of MAMPs, contributing to activation of

plant defense responses. Salicylic acid, jasponic acid and ethylene

play a key role in plant immunity and hormone-signaling

pathways as well as defense response pathways of the hormones

abscisic acid, indole-3-acetic acid, and gibberellin (

Pieterse

et al., 2009

). Indole-3-acetic acid produced by Trichoderma

contributes to ethylene biosynthesis, which in turn stimulates

abscisic acid biosynthesis. Depending on Trichoderma stimuli,

phytohormone homeostasis will control plant development and

immune responses. Trichoderma chitinases also release fungal

chitin oligosaccharides, and elicit ISR by jasmonic acid/ethylene

dependent pathways, thereby triggering defense responses in

plants. A polyketide synthase/non-ribosomal peptide synthetase

hybrid enzyme of Trichoderma virens is involved in plant

interactions and was shown to induce plant defense responses

(

Mukherjee et al., 2012

). Several Trichoderma spp. with

GRAS status, including Trichoderma viride and Trichoderma

harzianum, are capable of effectively reducing F. verticillioides

(= F. moniliforme) growth and fumonisin production in

vitro and in planta (

Calistru et al., 1997; Larkin and Fravel,

1998; Yates et al., 1999

; Table 1). The inhibitory effect on

F. verticillioides growth when co-cultured with Trichoderma

spp. can be attributed to antibiosis through production of

volatile compounds, extracellular enzymes and antibiotics. The

antagonistic fungal species T. viride is widely used in

bio-fertilizers for biological control of soil borne plant-pathogenic

fungi in crops.

Non-Pathogenic Biocontrol Strains

Non-pathogenic strains of pathogenic species are often applied

for biocontrol (

Liu et al., 2013

). In this regard, moderate

suppression of toxigenic F. verticillioides and F. proliferatum

strains by non-pathogenic Fusarium strains was demonstrated by

Luongo et al.

(

2005

; Table 1).

The development of Fusarium biocontrol strains with reduced

mycotoxin production ability through RNA silencing technology

may be a useful tool for reducing mycotoxin contamination in

agricultural products (

McDonald et al., 2005

). Transformation of

F. graminearum with inverted repeat transgenes (IRT) containing

sequences of mycotoxin-specific regulatory genes results in

suppression of mycotoxin production. Other gene silencing

techniques involving deletion of ZFR1 of F. verticillioides, which

regulates sugar transporter genes and in turn affect fumonisin

biosynthesis during kernel colonization, resulted in significantly

less growth on maize kernel endosperm tissue (

Bluhm et al.,

2008

).

Rhizobacteria

Fusarium verticillioides is the most prevalent Fusarium spp.

present in the rhizoplane and endorhizosphere areas of maize,

while Arthrobacteria and Azotobacter are the predominant

bacterial genera (

Cavaglieri et al., 2005a

). Pathogens germinate

and colonize roots within a few days of planting, while biocontrol

rhizobacteria could be metabolically active during this period.

A number of rhizobacterial isolates of maize plants sampled

from a commercial maize field and exhibiting high NOIs with

F. verticillioides, including Arthrobacter globiformis, Azotobacter

armeniacus, Pseudomonas solanacearum, B. subtilis, Enterobacter

cloacae, and Microbacterium eoleovorans exhibited antifungal

activity in vitro by effectively reducing F. verticillioides growth

and FB

1

production on maize meal extract agar (

Cavaglieri

et al., 2004, 2005a,b,c

) (Table 2). Maize seeds pre-treated with A.

armeniacus RC2, A. globiformis RC5, E. cloacae, M. eoleovorans,

and Bacillus sp. CE1 and evaluated in planta, resulted in

effective reduction of F. verticillioides growth in the rhizoplane

and endorhizosphere areas. A good correlation was observed

between results obtained from in vitro and in planta studies

(

Cavaglieri et al., 2005c

). Enterobacter cloacae exhibited potential

for biocontrol of root colonization by F. verticillioides. Inducible

Type 1 fimbrae of E. cloacae may play a role in the colonization

of roots (

Hinton and Bacon, 1995

). Rhizobacterial strains could

have potential application as seed inoculants to reduce F.

verticillioides colonization on root level, in the rhizoplane and

endorhizosphere areas (

Cavaglieri et al., 2005c

). Effectiveness of

a biocontrol organism to colonize the rhizosphere and its value as

biocontrol agent could, however, be influenced by environmental

conditions and the initial cell concentrations of the biocontrol

organism and the pathogen.

Antioxidants, Phenolic Compounds, and

Essential Oils

Several natural phenolic compounds derived from plants

are strong antioxidants and exhibit antimicrobial activity by

inhibiting the activity of key fungal enzymes, and are applied as

preservatives in the cosmetic, food and drug industries (Table 3).

These compounds are also considered promising antifungal

agents for controlling fungal growth and associated mycotoxin

production in agricultural crops pre-harvest, post-harvest, and

during storage.

(9)

T A B L E 2 | C u rr e n t in fo rma ti o n o n re d u c ti o n o f F u s a ri u m v e rt ic il li o id e s g ro w th a n d fu mo n is in B1 p ro d u c ti o n b y rh iz o b a c te ri a in v it ro a n d in p la n ta . R h iz o b a c te ri a l mi c ro o rg a n is m F u s a ri u m s p . s tu d ie d W a te r a c ti v it y (aw ) Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) R h iz o b a c te ria li so la te s fr o m m a iz e p la n ts in It a ly : E n te ro b a c te r c lo a c a e F. ve rt ic ill io id e s (= F. m o n ili fo rm e ): Is o la te s fr o m m a iz e : M R C 8 2 6 , R R C 3 7 4 , R R C 4 0 8 , Is o la te s fr o m ric e : R R C 4 1 0 N /A E . c lo a c a e is a n e n d o p h yt ic sy m b io n t o f c o rn . R e d u c tio n o f F. ve rt ic ill io id e s ro o t c o lo n iz a tio n o f m a iz e se e d lin g s b y E . c lo a c a e : In p la n ta : D is tr ib u tio n o f E . c lo a c a e ro o t c o lo n iz a tio n : st e ril e m a iz e se e d in o c u la te d w ith E . c lo a c a e a n d c u ltu re d in tu b e s w ith so il; c u ltu re d in p la n t g ro w th ro o m s u n d e r lig h t; m ic ro sc o p ic e xa m in a tio n o f ro o t c o lo n iz a tio n ; In vi tr o : C u lti va tio n o f in o c u la te d se e d s o n P D A , d a m p fil te r p a p e r o r st e ril e so il; m ic ro sc o p ic e xa m in a tio n o f ro o t c o lo n iz a tio n ; D e te rm in a tio n o f a n ta g o n is m : c o -c u lti va tio n o n P D A ; e xa m in a tio n o f zo n e s o f in h ib iti o n ; m ic ro sc o p ic e xa m in a tio n o f se e d lin g ro o ts : lig h t m ic ro sc o p y; tr a n sm is si o n e le c tr o n m ic ro sc o p y; sc a n n in g e le c tr o n m ic ro sc o p y In p la n ta : E . c lo a c a e ro o t c o lo n iz a tio n : E . c lo a c a e b io lo g ic a lly a ss o c ia te d w ith m a iz e se e d lin g ro o ts ; o b se rv e d in te rn a lly a n d in th e rh iz o p la n e a re a s; o n m a iz e se e d lin g s E . c lo a c a e w a s d is tr ib u te d o ve r th e e p id e rm is a n d in te rn a lly in se ve ra ll o c a tio n s o f th e c o rt e x; n o b a c te ria o b se rv e d in th e e n d o d e rm is , b u t in te rc e llu la r w ith in th e o u te r m a rg in o f th e p e ric yc le ; E . c lo a c a e n o t o b se rv e d in th e p ith a re a ; p re se n t in st e m s a n d le a ve s; E . c lo a c a e d is tr ib u te d e xt e rn a lly a lo n g th e se c o n d a ry a n d p rim a ry se e d lin g ro o ts a s w e ll a s th e ro o t c a p o f th e p rim a ry ro o t; a m a tr ix -l ik e c a p su le o b se rv e d su rr o u n d in g th e b a c te ria lc e lls o n th e e xt e rn a l su rf a c e o f th e p rim a ry ro o t; E . c lo a c a e : n o d a m a g e to h o st c e lls ; n o re d u c tio n in p e rc e n ta g e g e rm in a tio n o r tim e o f g e rm in a tio n ; D e te rm in a tio n o f a n ta g o n is m : a ll b a c te ria li so la te s in h ib ite d g ro w th o f F. ve rt ic ill io id e s st ra in s E . c lo a c a e e xh ib ite d p o te n tia lf o r b io c o n tr o lo f ro o t c o lo n iz a tio n b y F. ve rt ic ill io id e s ; th e e n d o p h yt ic a ss o c ia tio n o f E . c lo a c a e w ith m a iz e e n h a n c e s its p o te n tia la s b io c o n tr o la g e n t H in to n a n d B a c o n , 1 9 9 5 R h iz o b a c te ria li so la te s fr o m m a iz e ro o ts , sa m p le d fr o m a c o m m e rc ia lm a iz e fie ld : A rt h ro b a c te r g lo b ifo rm is , A zo to b a c te r a rm e n ia c u s , P s e u d o m o n a s s o la n a c e a ru m , B . s u b ti lis F. ve rt ic ill io id e s is o la te s fr o m m a iz e ro o ts sa m p le d fr o m a c o m m e rc ia lm a iz e fie ld 0 .9 3 7 ; 0 .9 5 5 ; 0 .9 8 2 S c re e n in g p ro c e d u re s fo r se le c tin g rh iz o b a c te ria ls tr a in s w ith b io c o n tr o l e ff e c ts u p o n F. ve rt ic ill io id e s g ro w th a n d F B1 p ro d u c tio n : In vi tr o : D e te rm in a tio n o f N O Is : u til iz a tio n o f 1 7 c o m p o u n d s in m a iz e a s so le c a rb o n so u rc e ; se le c tio n o f is o la te s w ith th e h ig h e st N O Is ; A n tib io si s a n d a n tif u n g a la c tiv ity o f se le c te d is o la te s: 2 % M M E A ; a d ju st m e n t o f aw le ve ls ; in o c u la tio n a n d in c u b a tio n ; m e a su re m e n t o f zo n e s o f in h ib iti o n a n d c o lo n y d ia m e te rs ; F B1 le ve ls in M M E A c u ltu re s: H P L C a n a ly se s In vi tr o : D e te rm in a tio n o f N O Is : in fo rm a tio n o n e c o lo g ic a l si m ila rit y a n d c o e xi st e n c e w ith F. ve rt ic ill io id e s ; p e rc e n ta g e is o la te s a b le to u til iz e a ll c a rb o n so u rc e s: aw 0 .9 3 7 (5 8 % ), 0 .9 5 5 (2 0 % ) 0 .9 8 2 (7 5 % ); m o st c o m p e te n t st ra in s: A rt h ro b a c te r st ra in s a t a ll aw le ve ls ; A . a rm e n ia c u s , P. s o la n a c e a ru m a n d B . s u b ti lis c o m p e te n t a t aw 0 .9 5 5 a n d 0 .9 3 7 ; A n tib io si s a n d a n tif u n g a la c tiv ity o f se le c te d is o la te s: a ll b a c te ria li so la te s e ff e c tiv e ly in h ib ite d F. ve rt ic ill io id e s g ro w th ; m o st e ff e c tiv e g ro w th in h ib iti o n (P < 0 .0 0 1 ): A . g lo b ifo rm is a n d B . s u b ti lis is o la te s; a ll is o la te s si g n ific a n tly (P < 0 .0 0 1 ) re d u c e d th e g ro w th ra te a n d in c re a se d th e la g p h a se o f fu n g a lg ro w th ; B . s u b ti lis st ra in s e xh ib ite d th e st ro n g e st e ff e c ts ; F B1 le ve ls in M M E A c u ltu re s: re d u c e d F B1 le ve ls e xh ib ite d a t a ll aw le ve ls e va lu a te d ; P. s o la n a c e a ru m a n d B . s u b ti lis : 7 0 -1 0 0 % re d u c tio n a t a ll aw le ve ls ; A . a rm e n ia c u s : 6 5 % re d u c tio n a t aw 0 .9 5 5 A . a rm e n ia c u s R C 2 a n d R C 3 ; B . s u b ti lis R C 8 , R C 9 a n d R C 1 1 ; P. s o la n a c e a ru m R C 7 a n d R C 1 0 c o u ld h a ve va lu e fo r c o n tr o lo f F. ve rt ic ill o id e s ro o t c o lo n iz a tio n C a va g lie ri e t a l., 2 0 0 4 (C o n ti n u e d )

(10)

T A B L E 2 | C o n ti n u e d R h iz o b a c te ri a l mi c ro o rg a n is m F u s a ri u m s p . s tu d ie d W a te r a c ti v it y (aw ) Te s t s y s te m w it h d e ta il s o f e x p e ri me n ta l mo d e l R e d u c ti o n c ri te ri a A p p li c a ti o n R e fe re n c e (s ) P re d o m in a n t b a c te ria l is o la te s c o lo n iz in g th e m a iz e e n d o rh iz o sp h e re a n d is o la te d fr o m m a iz e ro o ts , sa m p le d fr o m a c o m m e rc ia lm a iz e fie ld : A . g lo b ifo rm is , A . a rm e n ia c u s To xi g e n ic F. ve rt ic ill io id e s m a iz e e n d o rh iz o sp h e re is o la te s fr o m m a iz e ro o ts , sa m p le d fr o m a c o m m e rc ia l m a iz e fie ld 0 .9 3 7 ; 0 .9 5 5 ; 0 .9 8 2 R h iz o b a c te ria a n d th e ir p o te n tia lt o c o n tr o lF . ve rt ic ill io id e s : e ff e c t o f m a iz e b a c te riz a tio n a n d in o c u lu m d e n si ty : In vi tr o : F. ve rt ic ill io id e s is o la te s p a ire d w ith e a c h b a c te ria ls tr a in in d u a lc u ltu re ; A n tib io si s a n d e ff e c t o n fu n g a lg ro w th ra te : M M E A ; in o c u la tio n a n d in c u b a tio n ; m e a su re m e n t o f zo n e s o f in h ib iti o n ; m e a su re m e n t o f c o lo n y d ia m e te rs ; F B1 le ve ls in M M E A c u ltu re s: H P L C a n a ly se s G re e n h o u se st u d ie s: E ff e c t o f se p a ra te a n d c o m b in e d b a c te ria lt re a tm e n ts o n F. ve rt ic ill io id e s ro o t c o lo n iz a tio n in th e rh iz o p la n e a n d e n d o rh iz o sp h e re a re a s; in o c u la tio n o f se e d s w ith rh iz o b a c te ria ls tr a in s; m o d ifie d tu b e a ss a y; d e te rm in a tio n o f F. ve rt ic ill io id e s C F U c o u n ts in th e rh iz o p la n e a n d e n d o rh iz o sp h e re a re a s In vi tr o : A n tib io si s a n d e ff e c t o n fu n g a lg ro w th ra te : e ff e c tiv e in h ib iti o n o f fu n g a lg ro w th a t aw 0 .9 5 5 a n d 0 .9 8 2 ; A . a rm e n ia c u s R C 2 a n d R C 3 in h ib ite d fu n g a l g ro w th o f 6 0 -1 0 0 % F. ve rt ic ill io d e s st ra in s a t aw 0 .9 5 5 –0 .9 8 2 ; A . g lo b ifo rm is R C 4 a n d R C 5 in h ib ite d fu n g a lg ro w th o f 6 9 -8 0 % o f F. ve rt ic ill io d e s s tr a in s a t aw 0 .9 5 5 -0 .9 8 2 ; A . a rm e n ia c u s R C 2 re d u c e d (5 6 -7 5 % ) F B1 a c c u m u la tio n a t aw 0 .9 5 5 ; A . g lo b ifo rm is R C 4 a n d R C 5 re d u c e d (2 0 -9 6 % ) F B1 a c c u m u la tio n a t aw 0 .9 5 5 a n d 0 .9 8 2 ; G re e n h o u se st u d ie s: S e e d s tr e a te d w ith A . a rm e n ia c u s R C 2 a n d A . g lo b ifo rm is R C 5 : 1 0 0 % in h ib iti o n o f fu n g a lg ro w th in th e rh iz o p la n e a n d e n d o rh iz o sp h e re a re a s; b a c te ria lm ix tu re tr e a tm e n t re su lte d in 1 0 0 % in h ib iti o n o f fu n g a lg ro w th in th e e n d o rh iz o sp h e re a re a A . a rm e n ia c u s R C 2 e xh ib ite d p o te n tia la s m a iz e se e d in o c u la n t fo r re d u c tio n o f F. ve rt ic ill io id e s ro o t c o lo n iz a tio n C a va g lie ri e t a l., 2 0 0 5 a E n d o rh iz o sp h e re b a c te ria li so la te s fr o m m a iz e ro o ts , sa m p le d fr o m a c o m m e rc ia l m a iz e fie ld : B a c te ria lm ix tu re 1 : E . c lo a c a e , M ic ro b a c te ri u m e o le o vo ra n s B a c te ria lm ix tu re 2 : P. s o la n a c e a ru m , B . s u b ti lis To xi g e n ic F. ve rt ic ill io id e s m a iz e e n d o rh iz o sp h e re is o la te s fr o m m a iz e ro o ts , sa m p le d fr o m a c o m m e rc ia l m a iz e fie ld 0 .9 3 7 ; 0 .9 5 5 ; 0 .9 8 2 In vi tr o in flu e n c e o f b a c te ria lm ix tu re s o n F. ve rt ic ill io id e s g ro w th a n d F B1 p ro d u c tio n : e ff e c t o f se e d s tr e a tm e n t o n m a iz e ro o t c o lo n iz a tio n : In vi tr o : A n tib io si s: M M E A ; a d ju st m e n t o f aw le ve ls ; F. ve rt ic ill io id e s is o la te s p a ire d w ith e a c h b a c te ria lm ix tu re in d u a l c u ltu re ; d iff e re n t b a c te ria li n o c u lu m si ze s e va lu a te d (1 0 8, 1 0 9a n d 1 0 1 0 c e lls /m l); m e a su re m e n t o f zo n e s o f in h ib iti o n ; A n tif u n g a la c tiv ity : M M E A ; a d ju st m e n t o f aw le ve ls ; p o u r-p la te m e th o d ; in o c u la tio n w ith F. ve rt ic ill io id e s is o la te s; m e a su re m e n t o f c o lo n y d ia m e te rs ; F B1 le ve ls in M M E A c u ltu re s: H P L C a n a ly se s; G re e n h o u se st u d ie s: E ff e c t o f c o m b in e d b a c te ria ls e e d tr e a tm e n ts o n F. ve rt ic ill io id e s ro o t c o lo n iz a tio n in th e rh iz o p la n e a n d In vi tr o : B a c te ria lm ix tu re 1 : A n tib io si s: fu n g a lg ro w th si g n ific a n tly (P < 0 .0 5 ) re d u c e d a t a ll aw le ve ls a n d in o c u lu m si ze s; in o c u lu m si ze 1 0 8c e lls /m le xh ib ite d th e st ro n g e st e ff e c t; A n tif u n g a la c tiv ity : si g n ific a n t (P < 0 .0 5 ) d e c re a se in fu n g a lg ro w th ra te a t aw 0 .9 5 5 a n d 0 .9 3 7 w ith a ll in o c u lu m si ze s; re d u c tio n in fu n g a lg ro w th ra te o b ta in e d a t aw 0 .9 8 2 w ith 1 0 9a n d 1 0 1 0c e lls /m l; F B1 p ro d u c tio n : o n ly re d u c e d a t aw 0 .9 5 5 b y a ll in o c u lu m si ze s; B a c te ria lm ix tu re 2 : A n tib io si s: fu n g a lg ro w th m o st e ff e c tiv e ly (P < 0 .0 5 ) re d u c e d a t aw 0 .9 3 7 w ith 1 0 8a n d 1 0 9c e lls /m l; A n tif u n g a la c tiv ity : si g n ific a n t (P < 0 .0 5 ) re d u c tio n in fu n g a lg ro w th ra te o b ta in e d a t aw 0 .9 8 2 w ith 1 0 1 0 c e lls /m la n d a t aw 0 .9 5 5 w ith 1 0 9c e lls /m l; n o e ff e c t w ith 1 0 8c e lls /m l; F B1 p ro d u c tio n n o t re d u c e d b y a n y o f th e in o c u lu m si ze s; E . c lo a c a e a n d M . o le o vo ra n s e xh ib ite d p o te n tia la s m a iz e se e d in o c u la n ts fo r re d u c tio n o f F. ve rt ic ill io id e s ro o t c o lo n iz a tio n , i.e . p re ve n tio n o f ve rt ic a l tr a n sm is si o n o f F. ve rt ic ill io id e s C a va g lie ri e t a l., 2 0 0 5 b (C o n ti n u e d )

Referenties

GERELATEERDE DOCUMENTEN

To asses this threat, leaves from plants of 33 grass species were sampled from Mbita, Bungoma, and Busia districts in western Kenya; Tarime district in northern Tanzania; and Busia

Deze resultaten geven aan dat personen in angstige situaties meer agents detecteren die niet aanwezig zijn, wat mogelijk kan worden verklaard door het bestaan van een HADD..

Doordat in de interactieve afbeelding lichamelijke cues en een interactieve intentie zichtbaar zijn wordt verwacht dat men hier een sterkere neiging heeft om het allocentrisch

Did the propagandists of the Office of War Information manage to effectively propagandize the American people through the medium of movies while remaining true to

78 Although the Generic Scorecard allocates only 5 out of a possible 100 points to socio- economic development contributions, thus possibly indicating that this element is

During this study acute toxicity test were performed over a range of concentrations to determine the effect of cadmium tellurium quantum dots (Cd/Te QD’s)

Nieuwe flexibele methodes om niet invasief te meten (zoals de boven beschreven fMRI en foto-akoustiek) zijn heel mooi, maar ik verwacht uiteindelijk meer van invasieve methodes

The anti-imaging filter circuit is simulated using OrCadQ in order to verify its frequency response, the results of which is shown in Figure 4.5.. From the figure it can be