• No results found

De ionenbalans van het 1 : 2-volume-extract

N/A
N/A
Protected

Academic year: 2021

Share "De ionenbalans van het 1 : 2-volume-extract"

Copied!
18
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

^

'ßV

k I i d tivJ- t

Bibliotheek .

Proefstation

Nââidwijk

STATION V/DOR DE GROENTEN- EN FRUITTEELT ONDER GLAS TE NAALDWIDK

2

S

74

De i o n e n b a l a n s van h e t 1 s 2 - v o l u m e - e x t r a c t

flnw-'tilx

•°<o>

C. Sonneveld en P . A . van D i j k

N a a l d w i j k , j u l i 1977

I n t e r n v e r s l a g n o . 40

(2)

ß

t

V

4

2 3 7

<58 q l

De i o n e n b a l a n s van h e t 1 : 2 v o l u m e - e x t r a c t

C . Sonneveld

P . A . van D i j k

(3)

INHOUD:

I n l e i d i n g

R e s u l t a t e n

C o n c l u s i e s

B i j l a g e n

Aanhangsel

(4)

I n l e i d i n g

Op h e t r o u t i n e l a b o r a t o r i u m v o o r grondonderzoek morden a l l e monsters

i n d u p l o o n d e r z o c h t t e r c o n t r o l e op f o u t e n . De v r a a g d i e z i c h v o o r ­

d o e t i s o f h e t m o g e l i j k zou z i j n i n enkelvoud t e onderzoeken en

c o n t r o l e u i t t e o e f e n e n door o n d e r l i n g e v e r g e l i j k i n g van b e p a l i n g e n

o f ionensommen.

Momenteel worden b i j h e t r o u t i n e grondonderzoek de volgende b e p a ­

l i n g e n v e r r i c h t :

K

+

, F)g

+ +

,

N O 3 " ,

C l " .

Voor een c o m p l e t e i o n e n b a l a n s zouden ook de volgende b e p a l i n g e n

n o d i g z i j n :

N a

+

, C a

+ +

, N H 4

+ +

, HCG

3

" en S 0

4

~ ~ .

B i j een c o m p l e t e i o n e n b a l a n s b i e d t v e r g e l i j k i n g van de anionensom

met de k a t i o n e n s o m m o g e l i j k h e d e n t o t v e r g e l i j k i n g . H e t z e l f d e g e l d t

voor de EC met de ionensommen.

T e n e i n d e d e z e m o g e l i j k h e d e n n a d e r t e b e s t u d e r e n z i j n van 20 monsters

u i t h e t r o u t i n e grondonderzoek 1 : 2 v o l u m e - e x t r a c t e n b e r e i d en werden

i n d e z e e x t r a c t e n a l l e a n i o n e n en k a t i o n e n b e p a a l d . De r e s u l t a t e n

worden i n d i t v e r s l a g b e h a n d e l d .

R e s u l t a t e n

De monsters d i e i n h e t onderzoek werden b e t r o k k e n werden e n i g s z i n s

g e s e l e c t e e r d . De s e l e c t i e vond z o d a n i g p l a a t s , d a t een r e d e l i j k e

v e r d e l i n g o v e r de g r o n d s o o r t e n werd v e r k r e g e n en d a t voldoende l a g e

en hoge waarden a a n w e z i g w a r e n .

H e t onderzoek h e e f t p l a a t s gevonden op h e t r e s e a r c h l a b o r a t o r i u m

en i s i n d u p l o u i t g e v o e r d . De gemiddelde u i t k o m s t e n van de d u p l o

-waarden z i j n opgenomen i n de b i j l a g e n 1 en 2 .

Gemiddeld werden de i n t a b e l 1 vermelde waarden gevonden. Tevens

z i j n i n d e z e t a b e l de l a a g s t e en de hoogste waarden d i e werden

gevonden opgenomen.

(5)

B e p a l i n g

Gem.

L a a g s t e

Hoogste

Gem. i n 5

a l s me

i van t o t a a l

a l s mol

Na

4 . 6 7

1 . 6 5

1 0 . 2 2

1 2 . 0

1 6 . 7

K

2 . 4 4

0 . 3 4

5 . 3 8

6 . 2

8 . 7

Ca

9 . 1 2

1 . 3 0

2 7 . 7 1

2 3 . 4

1 6 . 3

Mg

2 . 9 9

0 . 4 9

7 . 4 1

7 . 7

5 . 4

NH4

0 . 1 9

0 . 0 1

2 . 6 7

0 . 5

0 . 7

som K a t

1 9 . 4 1

'

C l

4 . 1 8

1 . 2 0

1 0 . 3 5

1 0 . 7

1 5 . 0

N 0

3

4 . 9 0

0 . 6 4

1 4 . 1 4

1 2 . 6

1 7 . 6

SO4

9 . 8 9

1 . 7 1

2 3 . 8 3

2 5 . 4

1 7 . 7

HCO3

0 . 5 3

0 . 2 1

1 . 0 8

1 . 4

1 . 9

som An

1 9 . 5 0

T a b e l 1 . G e m i d d e l d e , l a a g s t e en h o o g s t e waarden van de k a t i o n e n en

a n i o n e n i n de 1 : 2 v o l u m e - e x t r a c t e n . G e h a l t e n i n m e / l .

Z o a l s b l i j k t , z i j n N a , C a , C l ,

N O 3

en

S O 4

s t e r k v e r t e g e n w o o r d i g d i n de

e x t r a c t e n .

N H 4

en

H C O 3

s p e l e n een o n d e r g e s c h i k t e r o l .

Tussen e n k e l e s o o r t e n i o n e n b e s t a a t een nauuie c o r r e l a t i e . De volgende

r e g r e s s i e v e r g e l i j k i n g e n werden gevonden:

Na = 0 . 8 9 3 C l + 0 . 9 4

r = 0 . 9 4 6

Ca = 0 . 9 4 9

S O 4

- 0 . 2 7

r = 0 . 9 5 4

Andere nauwe c o r r e l a t i e s werden n i e t gevonden t u s s e n d e v e r s c h i l l e n d e i o n e

Hoog g e c o r r e l e e r d waren som k a t i o n e n ( S K ) som a n i o n e n ( S A ) en EC.

SK = 1 . 0 0 7 SA - 0 . 2 2

r = 0 . 9 9 8

SK = 1 2 . 5 0

EC - 3 . 2 8

r = 0 . 9 9 2

SA = 1 2 . 3 6

EC - 2 . 9 4

r = 0 . 9 8 9

T e n e i n d e c o n t r o l e m o g e l i j k h e d e n na t e gaan a a n de hand van b e r e k e n i n g van

de EC door m i d d e l van de i o n e n s a m e n s t e l l i n g i s de methode van M c N e a l , e t

a l . ( 1 9 7 0 ) op h e t m a t e r i a a l t o e g e p a s t . Hiermede w o r d t de EC berekend a a n

de hand van d e i o n e n s a m e n s t e l l i n g en v e r g e l e k e n met de gemeten EC. De a f ­

w i j k i n g e n t u s s e n b e i d e waarden moeten b i n n e n nauwe g r e n z e n b l i j v e n . McNeal

e t a l . p a s t e voor hun b e r e k e n i n g v e r s c h i l l e n d e methoden t o e en w e l :

1

E x p o n e n t i a l r e l a t i o n s h i p

EC = K

0

C

b

2

T h i r d - o r d e r p o l y n o m i a l

EC = K-I + K

2

C + K 3 C

2

+ K 4 C

3

3

L i n e a r - s e g m e n t method.

E C = K 5 + K ß C

(6)

3

-C i s de c o n c e n t r a t i e a a n i d i v i d u e l e i o n e n i n de o p l o s s i n g en de

v e r s c h i l l e n d e k - w a a r d e n z i j n v o o r e l k i o n g e t a b e l l e e r d . De u i t k o m s t e n

voor d e v e r s c h i l l e n d e i o n e n worden gesommeerd. De p u b l i c a t i e met de

t a b é l l e n en een u i t g e w e r k t rekenschema voor methode 3 - de hand

rekenmethode - z i j n opgenomen i n a a n h a n g s e l 1."

De EC-uaarden berekend v o l g e n s de d r i e methoden v o l g e n s McNeal e t a l .

z i j n opgenomen i n b i j l a g e 3 . I n t a b e l 2 z i j n de g e m i d d e l d e n , de

g e m i d d e l d e a f w i j k i n g t e n o p z i c h t e van de gemeten EC en de s p r e i d i n g van

de a f w i j k i n g e n b e r e k e n d . De monsters z i j n d a a r t o e i n twee groepen

i n g e d e e l d en w e l i n de t i e n h o o g s t e en de t i e n l a a g s t e waarden.

Methode

L a a g s t e waarden

Hoogste waarden

Methode

M

d

Sd

M

d

Sd

meten

1 . 0 5

2 . 5 8

1

1 . 0 5

0 . 0 0 5

0 . 0 7 6

2 . 6 9

0 . 1 1 0

0 . 0 9 8

2

1 . 0 4

- 0 . 0 0 8

0 . 0 8 3

2 . 8 0

0 . 2 1 5

0 . 1 6 1

3

1 . 0 0

- 0 . 0 4 4

0 . 0 7 3

2 . 6 0

0 . 0 1 8

0 . 1 0 5

T a b e l 2 . Gemiddelde EC-waarden ( M ) , gemiddelde a f w i j k i n g van de

b e r e k e n d e EC-waarden van de gemeten waarden ( d ) en d e

s p r e i d i n g van d e z e a f w i j k i n g e n ( S ^ ) .

Z o a l s b l i j k t , w o r d t

met de berekende EC-waarden de gemeten

waarde goed b e n a d e r d . Gemiddeld g e e f t methode 3 de k l e i n s t e a f w i j k i n g .

De s p r e i d i n g e n van de a f w i j k i n g e n l o p e n w e i n i g u i t e e n . De v a r i a t i e

c o ë f f i c i ë n t i s b i j h e t l a a g s t e n i v e a u ongeveer 7% en b i j h e t h o o g s t e

n i v e a u ongeveer 4%.

M e t een o v e r s c h r i j d i n g s k a n s van 5% worden dus a f w i j k i n g e n g e s i g n a l e e r d

i n d e - b e r e k e n d e EC van 14% b i j een EC-waarde rond 1 , 0 0 en van Q% b i j

een EC-waarde r o n d 2 , 5 0 .

V o o r t s i s nagegaan w e l k e a f w i j k i n g e n worden v e r k r e g e n t u s s e n de som

a n i o n e n en som k a t i o n e n , e v e n a l s t u s s e n de k a t i o n e n s o m , berekend u i t

de EC en de gevonden k a t i o n e n s o m . H e t z e l f d e i s gedaan voor de a n i o n e n

-som. De berekende som k a t i o n e n (SKb) en a n i o n e n (SAb) z i j n v e r k r e g e n

u i t de r e e d s e e r d e r gevonden v e r g e l i j k i n g e n . De monsters z i j n weer

i n g e d e e l d i n twee g r o e p e n . *

(7)

4

-Methode

L a a g s t e waarden

Hoogste waarden

Methode

M

s

d

M

d

s

d

SK - SA

"51=10.24

- 0 . 2 3

0 . 4 9 1

ïïïï=;28.75

0 . 0 6

0 . 9 5 3

cn

X

I

cn

SÏ<=10.01

- f r . 1 7

1 . 0 8 4

"SK=28.81

0 . 1 7

1 . 8 5 8

SA

b

- SA

s7T=i 0 . 2 4

- 0 . 2 1

1 . 0 8 1

SA=28.75

0 . 2 1

2 . 2 2 2

T a b e l 3 . Gemiddelde ionensommen ( P l ) , gemiddelde a f w i j k i n g e n t u s s e n

ionensommem (cT) en de s p r e i d i n g van de a f w i j k i n g e n ( S d ) »

Z o a l s b l i j k t , z i j n t u s s e n de g e m i d d e l d e a f w i j k i n g e n geen d u i d e l i j k e

v e r s c h i l l e n b i j de methoden. De s p r e i d i n g i s b i j de methode SK - SA

h e t k l e i n s t . De v a r i a t i e c o e f f i c i e n t van de a f w i j k i n g e n i s b i j h e t

l a a g s t e n i v e a u v o o r methode SK - SA ongeveer 5% en b i j h e t hoogste

n i v e a u ongeveer

3%.

Voor de b e i d e a n d e r e methoden i s de v a r i a t i e

c o e f f i c i e n t voor de l a a g s t e en de hoogste waarden r e s p e c t i e v e l i j k

ongeveer 11$ en

7%.

Wet een o v e r s c h r i j d i n g s k a n s van

5%

worden dus a f w i j k i n g e n g e s i g n a ­

l e e r d i n de ionensommen b i j een waarde van ongeveer 1 0 van 1 0 $ en

22%

voor r e s p e c t i e v e l i j k de methode SK - SA en de b e i d e a n d e r e

methoden u i t t a b e l 3 . B i j een waarde van ongeveer 30 worden r e s p e c ­

t i e v e l i j k a f w i j k i n g e n g e s i g n a l e e r d van

6%

en 1 4 $ .

C o n c l u s i e s

Voor h e t v e r k r i j g e n van een r e d e l i j k k l o p p e n d e i o n e n b a l a n s i s h e t

n o o d z a k e l i j k d e v o l g e n d e k a t i o n e n t e b e p a l e n :

Na

+

, K

+

, C a

+ +

, M g

+ +

en l

\ ) H 4

+

.

Hoewel ammonium m e e s t a l s l e c h t s i n z e e r k l e i n e h o e v e e l h e i d e n voorkomt

moet d i t i o n t o c h worden b e p a a l d omdat i n een b e p e r k t a a n t a l g e v a l l e n

e n k e l e m i l l i e q u i v a l e n t e n i n h e t 1 î 2 v o l u m e - e x t r a c t a a n w e z i g kunnen

z i j n . De v o l g e n d e a n i o n e n d i e n e n t e worden b e p a a l d ;

(8)

5

-Hoewel b i c a r b o n a a t a b s o l u u t en ook r e l a t i e f de g e r i n g s t e schomme­

l i n g e n v e r t o o n d e i s de b e p a l i n g voor de i o n e n b a l a n s n o o d z a k e l i j k ,

d a a r de h o e v e e l h e d e n t o c h nog v r i j s t e r k kunnen v a r i ë r e n . I n ons

onderzoek t u s s e n 0 . 2 en 1 . 1 m i l l i e q u i v a l e n t p e r l i t e r .

C o n t r o l e van de b e p a l i n g e n door m i d d e l van v e r g e l i j k i n g van EC,

k a t i o n e n s o m en anionensom b i e d t s l e c h t s b e p e r k t e m o g e l i j k h e d e n . B i j

een o v e r s c h r i j d i n g s k a n s van 5 $ , dus a l s 1 op e l k e 20 a n a l y s e s t e n

o n r e c h t e a l s f o u t zou worden a a n g e m e r k t , worden de volgende a f w i j ­

k i n g e n g e s i g n a l e e r d .

Laao n i v e a u

HOOQ

n i v e a u

"

B t h

°

d 9

EC ± 1 . 0

EC ± 2 . 6

EC en EC-berekend

1 4 $

8 $

SK

en

S A

1 0 $

6 $

EC en

( S K - S A )

2 2 $

1 4 $

D

e

c o n t r o l e door m i d d e l van v e r g e l i j k i n g van de gevonden ionensommen

b l i j k t h e t meest g e v o e l i g t e z i j n . Met behulp van d e z e methoden worden

f o u t e n t e r g r o o t t e van 1 m i l l i - e q u i v a l e n t g e s i g n a l e e r d b i j een l a a g

n i v e a u en van ongeveer 1 . 5 b i j een hoog n i v e a u . Voor de u i t k o m s t e n

van b e p a l i n g e n a l s c a l c i u m en s u l f a a t - d i e i n g r o t e hoeveelheden i n

h e t e x t r a c t voorkomen b i e d t d i t een r e d e l i j k e bescherming t e g e n

b l u n d e r s . Voor de a n d e r e b e p a l i n g e n i s d i t n i e t h e t g e v a l . Een n i e t

g e s i g n a l e e r d e a f w i j k i n g van 1 à 1 . 5 m i l l i - e q u i v a l e n t b e l o o p t dan a l s

s p o e d i g 2 5 $ van de b e p a l i n g s u i t k o m s t , h e t g e e n t e hoog i s .

T e n s l o t t e moet n a d r u k k e l i j k op de b e p e r k i n g e n van d i t onderzoek

worden gewezen. H e t i s u i t g e v o e r d met een b e p e r k t a a n t a l m o n s t e r s .

De a n a l y s e s z i j n u i t g e v o e r d op h e t r e s e a r c h l a b o r a t o r i u m . H e t moet

n i e t u i t g e s l o t e n worden d a t op een r o u t i n e l a b o r a t o r i u m n i e t d e z e l f d e

n a u w k e u r i g h e i d w o r d t g e h a a l d . A n d e r z i j d s moet h e t n i e t u i t g e s l o t e n

worden g e a c h t d a t - v o o r a l b i j s t e r k e a u t o m a t i s e r i n g - op een r o u t i n e

l a b o r a t o r i u m een g r o t e r e n a u w k e u r i g h e i d w o r d t g e h a a l d dan op een

r e s e a r c h a f d e l i n g .

A l met a l genoeg r e d e n e n om d i t r a p p o r t v o o r l o p i g meer t e beschouwen

a l s een i n d i c a t i e dan a l s een g e g e v e n .

(9)

Bi.ilaqe 1

R e s u l t a t e n a n i o n e n en k a t i o n e n

r n e / l

N r .

K

Na

Ca

Mg

NH

4

k a t ­

i o n e n

NO

3

HCO

3

CI

s o

4

a n

-i o n e r

, 1

1 . 9 6

3 . 9 9

8 . 4 1

4 . 1 4

0 . 1 5 1 8 . 6 5

6 . 9 1

0 . 2 9

3 . 1 6

7 . 7 7 1 8 . 1 2

2

0 . 3 4

2 . 7 6

2 . 1 2

0 . 7 4

0 . 1 0

6 . 0 6

0 . 6 4

0 . 6 2

1 . 9 6

2 . 9 4

6 . 1 6

3

1 . 1 0

3 . 1 2

6 . 0 7

2 . 1 8

0 . 0 9 1 2 . 5 6

2 . 1 2

0 . 6 4

2 . 5 0

7 . 8 9 13.1E

4

4 . 5 7

8 . 7 6 1 7 . 0 0

7 . 3 6

0 . 0 8 3 7 . 7 7 1 0 . 1 4

0 . 8 6

6 . 6 4 2 0 . 6 2 3 8 . 2 6

5

2 . 6 4

2 . 4 1

5 . 4 5

1 . 6 2

0 . 0 6 1 2 . 1 8

5 . 2 7

0 . 6 0

1 . 4 6

5 . 4 6 1 2 . 7 5

6

3 . 0 0

6 . 5 1 1 6 . 9 8

3 . 9 1

0 . 0 2 3 0 . 4 2

5 . 2 0

0 . 2 8

4 . 9 8 2 0 . 8 1 31.27

7

1 . 9 4

1 . 7 4

6 . 3 9

2 . 0 4

0 . 0 9 1 2 . 2 0

3 . 4 6

0 . 4 6

1 . 5 7

5 . 9 3 11 . 4 2

8

0 . 7 6

1 . 6 5

1 . 3 0

0 . 4 9

0 . 0 3

4 . 2 3

0 . 8 7

0 . 6 5

1 . 2 0

1 . 7 1

4 . 4 2

9

3 . 1 1

6 . 8 4

6 . 1 3

2 . 4 8

2 . 6 7

2 1 . 2 3

1 . 1 7

1 . 0 8

8 . 8 6 1 1 . 0 8 22.15

1 0

3 . 2 6

4 . 8 0 1 1 . 6 6

3 . 3 4

0 . 0 9 2 3 . 1 5

5 . 1 4

0 . 4 1

4 . 6 2 1 0 . 7 5 2 0 . 9 2

1 1

1 . 1 0

3 . 5 6

2 . 4 5

0 . 8 0

0 . 0 1

7 . 9 2

1 . 0 9

0 . 8 7

2 . 9 1

3 . 4 2

8 . 2 5

1 2

1 . 1 7

4 . 7 2

4 . 3 1

1 . 0 1

0 . 0 6 1 1 . 2 7

3 . 2 1

0 . 5 8

3 . 8 7

4 . 4 0 1 2 . 0 6

1 3

4 . 9 8 1 0 . 2 2 1 6 . 4 7

5 . 6 3

0 . 0 2 3 7 . 3 2 1 0 . 3 4

0 . 6 0 1 0 . 3 5 1 5 . 9 9 3 7 . 2E

1 4

5 . 3 8

4 . 1 9

7 . 7 8

3 . 4 2

0 . 0 2 2 0 . 7 9

8 . 1 3

0 . 2 5

3 . 8 7

9 . 1 8 21 . 4 3

15

3 . 1 4

6 . 0 8

7 . 3 3

3 . 1 2

0 . 0 1 1 9 . 6 8

5 . 2 4

0 . 2 1

5 . 5 8

8 . 3 6 1 9 . 3 5

1 6

0 . 7 3

2 . 3 7

4 . 4 4

1 . 3 8

0 . 0 4

8 . 9 6

1 . 5 9

0 . 3 2

1 . 7 4

5 . 8 2

9 . 4 7

1 7

1 . 7 0

4 . 8 8

8 . 2 9

2 . 4 3

0 . 0 4 1 7 . 3 4

6 . 8 6

0 . 3 7

4 . 0 4

5 . 6 4 1 6 . 9 1

1 8

4 . 6 1

4 . 9 2 2 7 . 7 1

7 . 4 1

0 . 0 4 4 4 . 6 9 1 4 . 1 4

0 . 8 0

5 . 2 0 2 3 . 8 3 4 3 . 9 7

1 9

0 . 5 0

2 . 7 2

2 . 9 2

1 . 1 8

0 . 0 6

7 . 3 8

0 . 7 6

0 . 3 8

2 . 6 4

3 . 9 4

7 . 7 2

20

2 . 8 0

7 . 2 0 1 9 . 2 6

5 . 1 0

0 . 0 4 3 4 . 4 0

5 . 6 8

0 . 2 4

6 . 4 2 2 2 . 3 2 3 4 . 6 6

(10)

Bi.ilaqe

O v e r i g e b e p a l i n g e n

merk

m g / 1

P205

m e / l

N

m e / l

Ca+Mg

pH

mS/25°C

E . C .

1

25

6 . 1 4

1 1 . 9 5

6 . 5 1

1 . 7 4

2

1 4

0 . 9 6

3 . 0 7

7 . 4 0

0 . 6 2

3

1 1

2 . 1 6

8 . 3 2

7 . 3 6

1 . 2 2

4

1 4

1 0 . 1 4

2 4 . 5 8

7 . 4 0

3 . 2 4

5

1 0

5 . 1 8

7 . 2 4

7 . 4 6

1 . 2 8

6

1 3

5 . 4 8

2 0 . 9 2

6 . 9 0

2 . 5 1

7

1 3

3 . 4 3

8 . 6 1

7 . 2 6

1 . 2 4

8

1 5

1 . 1 4

2 . 0 4

7 . 2 7

0 . 4 4

9

1 0

4 . 5 7

9 . 1 0

7 . 3 0

2 . 1 3

1 0

1 6

4 . 9 7

1 6 . 4 6

7 . 0 5

2 . 2 4

1 1

6 . 1

1 . 0 0

3 . 5 4

7 . 5 3

0 . 8 8

1 2

1 3

3 . 3 3

5 . 8 5

7 . 3 6

1 . 2 6

1 3

24

9 . 9 3

2 1 . 4 2

7 . 1 4

3 . 3 6

1 4

4 9

7 . 8 2

1 0 . 6 0

6 . 3 9

2 . 1 2

15

1 7

5 . 2 1

1 0 . 7 9

6 . 6 6

1 . 9 5

1 6

1 2

1 . 8 0

5 . 9 8

6 . 9 8

0 . 9 3

1 7

1 7

6 . 7 1

1 0 . 2 1

7 . 0 4

1 . 6 6

1 8

8 . 1

1 2 . 8 4

3 5 . 4 7

7 . 3 9

3 . 7 0

1 9

1 9

1 . 0 5

4 . 2 4

7 . 1 7

0 . 9 6

20

1 1

5 . 7 6

2 2 . 8 1

6 . 7 8

2 . 8 2

(11)

Bi.ilaqe 3

Berekende EC-uiaarden v o l g e n s McNeal e t a l .

M o n s t e r

n o .

Rekenmethode

*

Gemeten

( b i j l a g e 2 )

M o n s t e r

n o .

1

2

3

Gemeten

( b i j l a g e 2 )

1

1 . 8 4

1 . 8 8

1 . 7 4

1 . 7 4

2

0 . 6 5

0 . 6 3

0 . 6 4

0 . 6 2

3

1 . 2 3

1 . 2 4

1 . 1 8

1 . 2 2

4

3 . 4 2

3 . 6 0

3 . 3 4

3 . 2 4

5

1 . 3 1

1 . 3 1

1 . 2 4

1 . 2 8

6

2 . 6 5

2 . 7 8

2 . 6 0

2 . 5 1

7

1 . 2 1

1 . 2 0

1 . 1 3

1 . 2 4

- 8

0 . 4 9

0 . 4 8

0 . 5 0

0 . 4 4

9

2 . 2 6

2 . 2 8

2 . 1 6

2 . 1 3

1 0

2 . 1 4

2 . 1 9

2 . 0 2

2 . 2 4

' 1 1

0 . 8 7

0 . 8 5

0 . 8 4

0 . 8 8

1 2

1 . 2 3

1 . 2 3

1 . 1 8

1 . 2 6

1 3

3 . 5 6

3 . 7 4

3 . 4 6

3 . 3 6

1 4

2 . 1 6

2 . 2 1

2 . 0 7

2 . 1 2

1 5

1 . 9 8

2 . 0 1

1 . 8 9

1 . 9 5

1 6

0 . 9 1

0 . 9 0

0 . 8 8

0 . 9 3

1 7

1 . 7 9

1 . 8 0

1 . 6 9

1 . 6 6

1 8

3 . 9 3

4 . 1 5

3 . 8 1

3 . 7 0

1 9

0 . 7 9

0 . 7 7

0 . 7 7

0 . 9 6

20

2 . 9 7

3 . 1 2

2 . 9 0

2 . 8 2

* 1 - E x p o n e n t i a l

2 - T h i r a - o r d e r

3 - L i n e a r - s e g m e n t

(12)

Aanhangsel 1

Rekenschema voor EC-ujaarden v o l g e n s McNeal e t a l » . 1 9 7 0

L i n e a i r e segmenten model

Gevonden i o n e n b a l a n s

Ca

5 1 . 9 m e / l

Mg

5 2 . 5

Na

1 4 7

K

D . 6

som k a t i o n e n 2 5 2

SO4

2 4 . 6

C 0

3

. 0

H C O 3

1 . 4

C l

226

som a n i o n e n 2 5 2

Z o v e e l a l s a a n w e z i g Ca u i t d r u k k e n a l s ( C a , Mg)

S O 4 .

I n d i e n meer

S O 4

a a n w e z i g zo v e e l a l s a a n w e z i g Mg u i t d r u k k e n a l s

( C a , Mg) S 0

4

.

V o o r t s i o n e n u i t d r u k k e n a l s p r o c e n t e n van de som a n i o n e n o f

k a t i o n e n .

Zo o n t s t a a t :

Ca

2 7 . 3 m e / l

1 0 . 8 $ van som K o f A

Mg

5 2 . 5

2 0 . 8

Na

1 4 7

5 8 . 3

K

0 . 6

0 . 2

S O 4

0 . 0

0 . 0

CO3

0

0 . 0

HCO3

1 . 4

0 . 6

CL

226

8 9 . 7

(CaMg)S0

4

2 4 . 6

9 . 8

(13)

flanhanosel 2

Daarna i n d e l i n g p e r i o n i n k l a s s e n v o l g e n s M c N e a l .

dus

Ca = 2 7 . 3

^ k l a s s e

5 0

Mg = 5 2 . 2

k l a s s e

5 0 - 1 0 0

Na = 1 4 7

k l a s s e 1 0 0 - 200

e n z .

V e r v o l g e n s de v e r g e l i j k i n g opzoeken i n t a b e l 3 . De r e g r e s s i e

-c o ë f f i -c i e n t v e r m e n i g v u l d i g e n met de -c o n -c e n t r a t i e i n m e / l .

H e t i n t e r c e p t v e r m e n i g v u l d i g e n met h e t p e r c e n t a g e g e d e e l d door 1 0 0 .

Zo w o r d t v e r k r e g e n :

B i j d r a g e t o t EC

R e g r e s s i e

I n t e r c e p t

Ca

0 . 0 4 1 4 C

+

0 . 0 5 5

1 . 1 3 0

0 . 0 0 6

Mg

0 . 0 2 6 9 C

+

0 . 4 4

1 . 4 1 2

0 . 0 9 2

Na

0 . 0 3 7 3 C

+

0 . 5 4

5 . 4 8 3

0 . 3 1 5

K

0 . 0 6 6 0 C

+

0 . 0 3 0

0 . 0 4 0

0 . 0 0 0

HCO

3

0 . 0 3 4 8 C

+

0 . 0 2 9

0 . 0 4 9

0 . 0 0 0

C l

0 . 0 5 6 3 C

+

1 . 1 4

1 2 . 7 2 4

1 . 0 2 3

( C a , M g ) S 0 4 0 . 0 6 2 9 C

+

0 . 1 8 3

1 . 5 4 7

0 . 0 1 8

som

2 2 . 3 8 5

1 . 4 5 4

tesamen 2 3 . 8 3 9

(14)

SOIL Sarscn

Copyright © 1970 by The Williams & Wilkins Co.

Vol. 110, No. 6 l*T\ntei in U.S.A.

CALCULATION OF ELECTRICAL CONDUCTIVITY FROM SOLUTION

COMPOSITION DATA AS AN AID TO IN-SITU ESTIMATION

OF SOIL SALINITY

B. L. McNEAL, J. D. OSTER, AND J. T. HATCHER U. S. Salinity Laboratory1

Received for publication March 2, 1070

An important aspect of models for plant growth cn salt-affected soils is a knowledge of the vertical and lateral distribution of salt con­ tent and matric potential in the soil. The distri­ bution of salt content depends upon the initial salinity of the soil solution, the exchange proper­ ties of the soil, the pattern of water extraction by plants, the rate of movement of soil solution, the salinity and salt composition of the irriga­ tion water, the extent of leaching, and the com­ position of the gas phase.of the soil. The devel­ opment of accurate plant growth models de­ pends upon experimental verification of predic­ tions made by each of the different models. One such test which can be made at low matric po­ tentials is the in-situ measurement of electrical conductivity (EC) of the soil solution with sa-linity sensors (2, 5, 8). This requires the conver­ sion of predicted solution-composition data to EC values. Consequently, a method of computa­ tion is required whereby the EC of mixed-salt solutions can be calculated. Once such a method has been developed and tested on solutions of known composition and EC, it can serve as the basis for testing models of salt movement and plant-water extraction, using salinity sensors.

A second use for calculated EC values is in the periodic checking of the accuracy of the • salinity sensors themselves. Such checks may be required occasionally if the sensors have been installed for periods in excess of several months. In this case it. is necessary to take a soil sample near the sensor and determine the salinity of the sample. Such a determination can be made on a sample of soil solution extracted with a pres­ sure-plate or pressure-membrane apparatus, but may be in error due to "salt sieving" at field-wa­ ter contents (1). An alternative approach is to

1 Contribution from the U. S. Salinity Labora­

tory, Soil and Water Conservation Research Divi­ sion, Agricultural Research Service, TJSDA, River­ side, California.

determine the ionic composition of the satura­ tion extract of this sample, extrapolate the data to field-water content, and convert the final data to an EC value in order to verify the stability of the sensor. Ion concentrations rarely vary in a simple inverse manner with soil-water content, because of changes caused by salt precipitation, ion-exchange, mineral weathering, and repulsion of anions from the vicinity of charged soil sur­ faces. Extrapolation of solution composition data from ono, relatively high water content to another by the use of models taking some or all of these phenomena into account has already been demonstrated to be feasible (6, 11). The current work aids in the extrapolation of data to the much lower water contents found in the. field as well.

The present paper evaluates several methods for calculating EC of mixed-salt solutions from ion-concentration data, and compares measured and calculated'electrical conductivities for 193 soil-saturation extracts for which adequate data on ion composition were available. Methods have been selected which combine a reasonable mixture of accuracy and simplicity. Compari­ sons of calculated values for EC with values from in-situ EC sensors are included in a forth­ coming publication which describes the models being used for the extrapolation process.

ELECTIÎICAL CONDUCTIVITY METHODS

Background Material

The methods for calculating EC were devel­ oped for mixed-salt solutions containing those ions most commonly found in significant concen­ trations in natural waters and soils. These are the cations Ca**, Mg"*, Na*, and IC*, and the an­ ions SO,", Cl", HCO.-, and CO,". The NO," anion was also treated, but results are not pre­ sented because of the limited importance of this species in salt-affected soils. Calculations were 405

406

MCNEAL, OSTER AND HATCHER

eral common salts.

restricted to total salt concentrations of 0-200 meq./liter for all ions but Na* and CI". Calcula­ tions involving the latter ions were extended to 500 meq./liter. These ranges cover most common agricultural situations. Only values for EC at 25° C were considered, but the same approach could be taken at other temperatures as well.

Despite the good correlation between EC and total salinity which is observed for many natural waters (12), single salt solutions can vary by 25 to 50 per cent in their EC at a given concentra­ tion (fig. 1). As a result, estimating the EC of ono salt solution from that of another can easily produce errors of the same magnitude.

Several attempts have been made to predict the EC of mixed-salt solutions from ion-concen­

tration data (3, 9, 10). Such attempts become excessively complex whenever more than 3 or 4 ionic species are considered, and wherever at­ tempts are made to cover wide concentration ranges. At low concentrations, ion mobility can be assumed independent of concentration, so that the ratio of conductivity to ion concentra­ tion (the equivalent ionio conductance) remains a constant. The conductivity of dilute salt solu­ tions can be estimated by assuming the conduc­ tivity values of the constituent ions to be addi­ tive. Assuming that such values are additive can lead to errors of 15 to 103 per cent when EC data for common salts are linearly extrapolated from a salt concentration of 1 meq./liter to a

concentration of 100 meq./liter. Most workers have found that addiug the conductivity values of individual ions provides only a rough approx­ imation to the conductivity of mixed-salt solu­ tions at high salt concentrations.

Several useful equations which attempt to take into account electrical and ionic interac­ tions have been developed for calculating the EC of single-salt solutions at salt concentration (C) values up to 50 or 100 meq./liter or higher (3, 10). They are commonly in the form of a power series, reducing to the equivalent ionic conductance values for dilute solutions, and in­

volving expansion in terms of C" at higher con­ centrations, where " is chosen as either or 1 for the different models. Equations involving a single C term raised to a variable power have also been tested for simple salt solutions over limited concentration ranges. None of the equa­ tions is applicable for complex mixed-salt solu­ tions over wide salt-concentration ranges, as is commonly found in soils. Hence the following approach was adopted for the current study.

Ion Conductivity Allocation

The basic data used in developing all but one of the methods for calculating EC of mixed-salt solutions were individual-ion electrical conduc­ tivities at 0.5, 1, 2, 5, 10, 20, 50, 70, 100, 200, and 500 meq./liter. To obtain such value3, EC data from the literature were tabulated for sin­ gle-salt solutions containing combinations of the nine common ions listed above (including NO.,") . Because of similarities in ionic size and mobility, the EC of KCl at each concentration was as­ sumed to arise from equal contributions of K* and CI". Other salts containing K* were assumed to have an EC equal to the sum of the EC of X* at the appropriate salt concentration, and the EC of the anion accompanying K' in the respec­ tive salt. A similar approach was taken to obtain the EC at each concentration for cations accom­ panying CI" in the common chloride salts. The resultant EC for Na, Ca", or Mg5' was used to

obtain the EC for SO.", IICO,", CO,'", or NO," from the EC of the respective sulfate, bicarbon­ ate, carbonate, or nitrate salt at each concentra­ tion. The EC values for SO,'", IICO,", CO.,'", and NO/ which were obtained from the respective potassium salts were also used to obtain an EC for Na', Ca", or Mg" at each concentration. The table thus formed contained a single EC for

(15)

ELECTRICAL CONDUCTIVITY CALCULATIONS

407

K* and for CI" at each salt concentration, and 2

to 5 values for the EG of each of the other ions at each concentration, depending upon the num­ ber of data available for each of the single-salt solutions. The general suitability of this ap­ proach was evident when values for the EC of individual ions at each concentration were aver­ aged and then sumnimed to produce estimates of the EC of single-salts containing these ions at the same concentration. Such values were in error by less than 1 to 2 per cent throughout the salt-concentration range studied.

The only exceptions were solutions of CaSO, and MgSO«, where calculated EC at any given salt concentration was consistently too low by 25 to SO per cent. This probably resulted from ion-pair formation, which is known to occur for these two salts. This problem was handled by mathematically partitioning the Cas", Mg", and

SO/" ions into both salt and ionic fractions. As much Ca'* and SO.'" possible were first allo­ cated to the CaSO, species and then as much of the remaining SO,°" as possible was mathemati­ cally paired with Mg" to form the MgSO« spe­ cies. As both salts are similar in their EC-salt concentration relationships, all CaSO» and MgSO, [hereafter designated as (Ca, Mg)SO,] was assigned the EC of MgSO« at a concentra­ tion equal to the sum of the CaSO« and MgSO» concentration in the solution. The contribution to the total EC from the remainder of the Ca",

Mg**, or SO,3" was calculated from values for

single-ion EC in the normal manner.

Single-Salt Solutions

Three different methods were tested for calcu­ lating values for individual-ion EC over the con­ centration range from 1 to 200 or 600 meq./liter, using concentrations listed above. Appropriate individual ion EC values from each model were paired and summed for comparison with single-salt values of EC from the literature. The first method was an exponential relation of the form EC := k.Ck, where C equals the concentration of

the ion in meq./liter and k. and C* are arbitrary constants. The fitting jirocess used for individ­ ual-ion values of EC was a linear regression of log EC on log C, and thus was weighted toward the highest and lowest ion concentrations (table 1). This caused single-salt values of EC at inter­ mediate concentrations to be underestimated by several tenths of a mmho./cm. after summing values for the EC of individual ions as calcu­ lated by this method.

Considerably better fit over the entire ion-concentration range was provided by a second method, using third-order polynomials of the form EC = k, + kC + kjC' + k,Cs. Single-salt

values for EC calculated by summing individ­ ual-ion EC values obtained with this method were in error by less than a tenth of a mmho./ cm. throughout most of the salt-concentration

TABLE 1

Absolute error in calculating electrical conductivity of single-salt solutions from individual ion conductivities

Salt

Third-Order Polynomial Exponential Relationship

Source* Salt Salt Concentration (meq/litcr) Salt Concentration (meq/liter) Source* Salt 1 S 10 50 100 200 1 5 10 50 100 200 Source* (mmho/cm.) {mmho/cm.) CaSO« + .031 -.041 -.070 — — — -.OOS — .058 -.105 — — — 1 MgSO, + .035 -.035 -.050 + .03S -.030 + .002 -.004 -.052 -.094 -.220 -.201 + .078 1 NajSO« +. 025 -.014 -.032 + .013 -.010 -.487 -.008 -.072 -.147 — .555 - .760 -.639 1, 2 NasCOj + .006 -.033 -.007 + .110 + .003 -.033 -.102 -.433 -.520 -.200 1 Ca(IlCOj), + .013 -.007 + .001 — — — -.001 - .019 -.031 — — — 1 Mg(IlCO,)i — .010 -.OOS + .198 + .094 — — -.030 -.070 -.051 + .315 — 1 NallCOa + .01S —. OOS -.OIS + .031 -.050 -.005 -.038 -.079 -.300 -.377 — 1 CaCli + .021 — .011 -.025 + .039 + .110 -.002 — .032 -.007 -.192 -.150

2

MgClj -.002 -.011 -.005 + .114 -.043 .000 I O p -.039 — ,0S3 -.187 -.534 -.352 1, 2 NaCI + .021 -.001 -.015 + .027 + .117 + .053 -.005 - .040 -.OSO -.350 -.527 -.528 1 KCl + .017 -.008 -.021 -.000 + .023 + .010 -.003 -.031 -.005 -.250 -.323 -.240

1 . 3

* 1 = International Critical Tables (4). 2 = Harried and Owen (3). 3 = Robinson and Stokes (9).

403

MCNEAL, OSTER AND HATCHER

range (table 1). This is better than had been hoped for, despite the larger number of constants used for the fitting process with this method. Furthermore, nearly equal quantities of positive and negative errors provided a better opportun­ ity for cancellation of errors in mixed-salt solu­ tions. All errors did not arise from imperfect fit between the polynomials and actual EC-concen­ tration relationships for the respective ions. Ana­ lytical errors were also included, as were errors arising from the use of averaged values for indi­ vidual-ion EC at each concentration instead of specific individual-ion data for the salt in ques­ tion. The polynomial method proved to be the most accurate of the methods tested for estimat­ ing the EC of single-salt solutions from individ­ ual-ion EC data.

As both the exponential and polynomial meth­ ods are cumbersome for hand calculations of EC for mixed-salt solutions, a third method was tested in which individual-ion EC and concen­ tration data were also approximated by a series of linear segments. Slopes and appropriate inter­ cepts for EC as a function of salt concentration were obtained over the following concentration ranges: 5 to 50, 50 to 100, 100 to 200, and 200 to 500 meq./liter.

Mixed-Salt Solutions

All three of the above methods can be applied directly to single-salt solutions. For mixed-salt solutions, however, both the polynomial and lin­ ear segment methods overestimate the values for EC when the full intercept for each ion is used in calculations. This is reasonable, because all intercepts for a given method are of comparable magnitude, and only a single average intercept should be used for a mixed-salt solution. Hence the intercept value for each cation was multi­ plied by the fraction of the total cation popula­ tion represented by the cation. Cations in the (Ca, Jig)SO« species were included among the cation population for this calculation. A similar procedure was used for each anion. For hand calculations, approximate estimates by visual inspection usually suffice for these average inter­

cept values. s

A fourth method of estimating the EC of mixed-salt solutions having approximately con­ stant composition but variable total salinity is the use of a regression equation between EC and total salt concentration. Such an approach was

applied to the soil-saturation extracts of the cur­ rent study, and will be discussed below. At­ tempts were also made to allocate the ions of mixed-salt solutions to a series of single salts, and to calculate the EC of mixed-salt solutions from EC values of the appropriate single salts. Such an approach is more artificial than an indi­

vidual-ion approach, and in no cases led to sig­ nificant improvement in the EC values that were calculated. In general, the use of single-salt EC values tended to produce poorer estimates of EC for mixed-salt solutions than did corresponding individual-ion approaches. Thus such ap­ proaches will not be considered in this paper.

/ METHODS AND MATERIALS

Data for the EC of single-salt solutions as a

function of concentration were taken primarily from the International Critical Tables (4), with supplementary values from Harncd and Owen (3) and Robinson and Stokes (9). All values were for 25°C., and in the salt-concentration range of 0.5 to either 200 or 500 meq./liter. These data were fit with the three methods listed in the previous section, after forming ap­ propriate individual-ion EC data.

Solution composition and EC data for 193 soil-saturation extracts were taken from the files of the U. S. Salinity Laboratory from the period 1900-196!). The samples came from California, North Dakota, Texas, and 13 foreign countries. Electrical conductivity was measured at 1000 cps. with an Industrial Instruments' bridge, using a conductivity cell having a cell constant of approximately 20. All values of EC were con­ verted to equivalent values at 25°C. through the use of conversion factors derived from standard tables (12). The conductivity cell was calibrated with KCl solutions of known concentrations. So­ lution concentrations of Na*, Ca", Mg", IC, CI",

HCOa", CO,'",

and NOa" were determined

with standard analytical techniques (12). Con­ centrations of SO«*" were determined by differ­ ence.

Calculations of EC for the soil-saturation ex­ tracts were performed on an IBM 360-90 com­ puter. Computations for all 193 solutions re­ quired approximately 6 to 8 seconds of central

•Trade names are included for the convenience of the reader, and do not imply preferential en­ dorsement of the product by the U. S. Department of Agriculture.

(16)

ELECTRICAL CONDUCTIVITY CALCULATIONS

409

processing time for allocation of (Ca,Mg)SO.-,

calculation of individual ion and total EC, or­ dering of results, linear regression analysis on the data grouped into each of 6 EC ranges, and tabulation of residuals between calculated values of EC and EC calculated from the regression equation for the range in EC in question.

RESULTS AND MSCUSS10X

The complete set of coefficients developed for calculation of EC values for individual ions from ion-concentration data is given in table 2. When third-order polynomials from the table are used for mixed-salt solutions, k, values must be mul­ tiplied by the fraction of cations or anions in solution represented by the given ionic species.

No such corrections are required when using the exponential method. In both cases, the necessary calculations are performed most efficiently with a digital computer. The set of linear equations recommended for hand calculation of EC for mixed-salt solutions over various ion-concentra­ tion ranges is given in table 3. As with the third-order polynomial method, weighted intercepts should be used with the linear equations for mixed-salt solutions. In practice, the average in­ tercept can usually be estimated visually to within 0.1 mmho./cm. A fourtli method was de­ veloped from the regression of EC on total salt concentration. Only the 141 soil-saturation ex­ tracts having an EC of 10 mmho./cm. or less were used for this regression. The regression

TABLE 2

Coefficients used for computer calculation of electrical conductivity (EC) for mixed-salt solutions from individual ion concentrations

Third-Order Polynomial (Method 2)* Exponeotif»! (Method !)f Species " -• •••••—-— - • , . kiXlO' ki X 10» kiXlO' k« X 10' ko b Ca'+ 1.60S 4.831 -1.323 3.702 .05011 .9202 Mg«+ -1.208 5.005 -2.749 9.100 .05099 .9102 Na+ 1.155 4.718 -0.448 0.383 .01748 .9195 K+ 0.S25 G.Ö73 -0.722

1.601

.07203 .S70G

so

4

«-

3.090 5.9S4 -1.710 3.408 .00900 .8973 CO^ 5.281 5.20S -1.202 2.028 .07330 .8719

ncor

1.071 3.755 -0.192 -3.401 .04143 .9501

ci-

1.919 6.700 -0.357 0.353 .07200 .9071 NOr 0.193 6.017 -1.211 •2.510 .00538 .9586 (Ca, Mg)

so.

7.459 7.84 —2.8S2 7.170 .1133 .8103 * EC (mmho/cm.) = ki + kiC + k>C' + k<C'

t EC (mmho/cm.) = k0Cb C = Ion concentration (mcq/litcr)

TABLE 3

Recommended equations for hand calculation of electrical conductivity for mixed-salt solutions (Method 3)

<50 50-100 100-200 200-500 Ion Concentration

meq./liler tneç./liter mcq./liler mrq. /liter

Spcciu Electrical conductivity immho/cm.)

Ca»+ .055 + .0414

C*

.26 + .0355

C

.40 + .0350 C .91 + .0323 C Mg'+ .060 + .0350

C

.44 + .0209

C

-.17 + .0329 C 2.20 + .0210 C Na+ .023 + .0452

C

.27 + .0-102

C

.54 + .0373 C 1.85 + .0306 C K+ .030 + .0060

C

.23 + .0020

C

.46 + .0597 C 1.14 + .0503 C

so<«-

.077 + .0507 C .59 + .0-107 C 1.22 + .0332 C 2.50 + .0268 C

co,>-

.070 + .0-170 C .51 + .0382

C

1.26 + .0307 C 2.70 + .0238 C

ncor

.029 + .0348 C .32 + .0291 C

ci-

.030 + .0060 C .23 + .0020 C .46 + .0597 C 1.14 + .0563 C

NOr

.034 + .0003 C .40 + .0528 C .92 + .0-174 C 3.05 + .0307 C (Ca, Mg) SO« • 1S3 + .0029 C .87 + .0492 C 1.62 + .0417 C 3.00 + .034S C

* C — Ion concentration (mcq./liter)

410

McNEAL, OSTEB AND HATCHES

equation could then be used to estimate EC from total salt concentration. The regression equation for the 141 saturation extracts was EC = 0.280 + 0.077G C, where C is total salt concentration in meq./liter. The correlation coefficient for this model in the EC range 0 to 10 mmho./cm. was 0.9S5. This method is the simplest of those used, but it suffers from the need for a rather large set of EC and total salinity data from which to derive the initial regression equation for a given set of waters. Obtaining such data for soil solutions would re­ quire considerable effort in many cases. Further­ more, as the required regression equation changes with salt composition (e.g., fig. 1), the accuracy which is obtained by a general conver­ sion of total concentration to EC is often poorer

than that from other approaches. This will be further treated below. This method could be im­ proved by grouping waters according to salt composition, and by using different regression equations for waters of each group. As the num­ ber of groups increases, however, the method becomes increasingly similar to the linear seg­ ment method based on individual-ion data. Thus no grouping of solutions according to salt com­ position was undertaken for the current ap­ praisal of the regression method.

The 193 soil saturation-extract analyses used for comparing the various EC methods repre­ sented a wide range of salt concentrations and compositions. Some general properties of this group of solutions arc presented in table 4. Nearly three-fourths of the solutions had electri­ cal conductivities less than 10 mmho./cm., with approximately half falling between 1 and 10

TABLE 4

Properties of soil Saturation extracis used for electrical conductivity calculations

Electrical Con­ ductivity

No.

of Per­ Predominant No. of Per­ Electrical

Con­

ductivity Sam­ples cent Anions Sam­ ples cent {mm haf cm.) 0-1 45 23.3 IlCOl 30 15.5 1-3 44 22.8 S0«-1IC0| -i 21 10.9 3-10 62 26.0 >*4 SO« 44 22.8 10-25 30 15.5

so<-ci

20 10.4 25-50 13

6.7

ci-sot-ncoi

23 14.5 50-100 0 4.7 CI-SO4 17 8.S — — >H CI 33 17.1 103 99.0 193 IOO.O

mmho./cm. All but three of the high HCO." waters fell in the EC range of 0 to 1 mmho./cm. Seven of the nine waters having an EC greater than 50 mmho./cm. fell into the >34 CI" group, as did 12 of the 13 waters having an EC be­ tween 25 to 50 mmho./cm. Thus, although wide ranges of total salinity and solution composition were studied, the salinity and composition values were somewhat interdependent. Poor fit of the different methods in certain ranges may suggest ionic associations which arc not adequately treated by the methods used.

Representative data used for calculation of EC of soil-saturation extracts from the various methods are given in table 5, along with meas­ ured and calculated EC values. The solutions were selected by arraying the 193 sets of experi­ mental data in order of increasing EC, and then selecting every 8th set of data.

Despite the imperfect fit of the exponential method (method 1) to individual-ion and sin­ gle-salt EC values, this method provided quite good values for tho EC of mixed-salt solutions over much of the EC range. Calculated values for EC were generally within ±0.2 mrulio./cm. of measured EC values up to 7 mmho./cm., and within ±1.0 mmho./cm. up to 20 mmho./cm. As tho exponential method commonly under-pre­ dicted the EC of single-salt solutions, the fit of this model for mixed-salt solutions suggests that the values for individual-ion EC are not strictly additive throughout the entire salt-concentration range. Ion interactions in mixed-salt solutions apparently lower the values for individual-ion EC to the point that they agree reasonably well with values calculated from the exponential method.

Use of third-order polynomials for relating in­ dividual-ion concentrations to EC proved satis­ factory for single-salt solutions. When applied to soil-saturation extracts, this same method (method 2) gave calculated values for EC which agreed well with measured values up to approxi­ mately 3 mmho./cm. Measured EC then was consistently over-estimated throughout the re­ mainder of the EC range. Calculated and meas­ ured EC generally agreed within ±0.2 mmho./ cm. up to 3.5 mmho./cm., and within ±1.0 mmho./cm. up to 7 mmho./cm. The method would thus work well for calculating tho EC of most irrigation waters, but would fail for the more important task of calculating EC for soil solutions.

Referenties

GERELATEERDE DOCUMENTEN

Unfortunately, there is a lack of microbiological susceptibility data of the different FQs to drug-resistant-isolates and therefore in the majority of cases the usefulness of the

The calculated data shows a good consistence with the experimental results for both low energy and high energy electrons, which further support our

Administration Board (NOFBA). 88 The DET kept its promise of progressive change in the provision of better education facilities for the black people in South

Vervolgens is het belangrijk dat deze kennis niet alleen op algemeen niveau beschikbaar is, maar dat deze kennis wordt doorvertaald naar de effecten voor de natte kunstwerken

De zaai vond plaats op 3 november, waarbij voor soja, katjang idjo en cowpea steeds drie zaden per plantgat wor- den gezaaid en voor aardnoot en mais twee. Er werd niet in-

A logistic regression attempts to predict the probability that an observation falls into one of two categories of a dichotomous dependent variable based on one or more

Het gaat om iets nieuws, dat in wezen nog vorm moet krijgen, om een bepaalde geeste- lijke instelling en (nog) niet of nauwelijks om concrete cultuurpro- ducten. In de practijk van

NASCHRIFT: Afgelopen januari besloot de stichting Stop Afvalwaterinjecties Twente uit het overleg met de NAM te stappen, omdat de burgers zich niet gehoord, en vooral