• No results found

Precipitation as the main mechanism for Cd(II), Pb(II) and Zn(II) removal from aqueous solutions using natural and activated forms of red mud

N/A
N/A
Protected

Academic year: 2021

Share "Precipitation as the main mechanism for Cd(II), Pb(II) and Zn(II) removal from aqueous solutions using natural and activated forms of red mud"

Copied!
11
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

da Conceição, F. T., da Silva, M. S. G., Menegário, A. A., Antunes, M. L. P., Navarro, G. R.

B., Dorea, C., … Moruzzi, R. B. (2021). Precipitation as the main mechanism for Cd(II),

Pb(II) and Zn(II) removal from aqueous solutions using natural and activated forms of red

mud. Environmental Advances, 4, 1-10. https://doi.org/10.1016/j.envadv.2021.100056.

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Precipitation as the main mechanism for Cd(II), Pb(II) and Zn(II) removal from

aqueous solutions using natural and activated forms of red mud

Fabiano Tomazini da Conceição, Mariana Scicia Gabriel da Silva, Amauri Antonio

Menegário, Maria Lucia Pereira Antunes, Guillermo Rafael Beltran Navarro, Caetano

Dorea, … & Rodrigo Braga Moruzzi

July 2021

© 2021 Fabiano Tomazini da Conceição et al. This is an open access article distributed under the

terms of the Creative Commons Attribution License.

https://creativecommons.org/licenses/by/4.0/

This article was originally published at:

(2)

EnvironmentalAdvances4(2021)100056

ContentslistsavailableatScienceDirect

Environmental

Advances

journalhomepage:www.elsevier.com/locate/envadv

Precipitation

as

the

main

mechanism

for

Cd(II),

Pb(II)

and

Zn(II)

removal

from

aqueous

solutions

using

natural

and

activated

forms

of

red

mud

Fabiano

Tomazini

da

Conceição

a,∗

,

Mariana

Scicia

Gabriel

da

Silva

a

,

Amauri

Antonio

Menegário

b

,

Maria

Lucia

Pereira

Antunes

c

,

Guillermo

Rafael

Beltran

Navarro

a

,

Alexandre

Martins

Fernandes

a

,

Caetano

Dorea

d

,

Rodrigo

Braga

Moruzzi

a

a Instituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, 1 – Avenida 24-A, n° 1515, C. P. 178, CEP 13506-900, Bela Vista, Rio Claro, São

Paulo, Brazil

b Centro de Estudos Ambientais, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil c Instituto de Ciência e Tecnologia, UNESP - Universidade Estadual Paulista, Sorocaba, Brazil d Department of Civil Engineering, University of Victoria, Victoria, Canada

a r t i c l e

i n f o

Keywords:

Brazilian red mud Trace elements Sequential extraction Kinetics modelling

a b s t r a c t

Theredmud(RM)hasbeenusedasanalternativelow-costadsorbenttoremovetraceelements,withthe ad-sorptionontosodalitesurfacedescribedasthemainremovalmechanismfortraceelements.However,recent studieshaveshownthatprecipitationmightbeofgreatimportanceforsometracemetalsremovalusingnatural andthermalactivatedRM.Therefore,theaimofthisstudywastoidentifythemainmechanismresponsiblefor Cd(II),Pb(II)andZn(II)removalfromaqueoussolutionsusingnaturalandactivatedformsofRM,basedon se-quentialextractionsandaprecipitationkineticmodelwasdeveloped.Resultsshowedthatthecarbonatefraction wasresponsibleforthehighesttraceelementsremoval(ca.85%),withthemineralsassemblagesprecipitated: otavite– CdCO3,cerussite-PbCO3,smithsonite-ZnCO3andanglesite-PbSO4.Thekineticmodelshowedthatthe

mineralprecipitationwaslimitduetotheHCO3consumptionduringtheformationofnewminerals.Hence,this

studyshowedthatprecipitationwasthecentralmechanismontraceelementsremoval,regardlessthenaturalor activatedformsofRM.Thisfindingraisedoubtabouttheeffectivenessofthetraditionaladsorptionisothermsand kineticsmodelstodescribetracemetalsremovalusingRM,contributingwithnewinsightsforfutureresearches involvingthesehazardousmaterials.

1. Introduction

Brazilian mining activitiescontributesignificantly toglobal min-eralproduction,includingthethird-largestglobalproductionofbauxite (Brasil,2018).Brazilbenefitedmorethan35megatonsofbauxitevia theBayerProcess®,generatingaresidueknownasbauxiteresidueor redmud– RM(Hindetal.,1999).AccordingtoFortesetal.(2016), about10–25milliontons/yearofRMaregeneratedinBrazil.The Brazil-ianRM can be considered ahazardous material due to presence of different oxidesandtoxictrace elementsmixed in a highlyalkaline matrix(Antunesetal.,2012;Souzaetal.,2013).Thedisposalofthis residueusuallyoccursintailingdams,producingahighfinancialand environmentalcost, leadingtoproblemsrelatedtocontaminationof soil,groundwaterand surfacewateranddamage tofloraandfauna (SilvaFilhoetal.,2007;JonesandHaynes,2011).Themainaccident involvingtheruptureoftheRMtailingdamwasinOctober2010inAjka (Hungary),causing10deathsandmorethan100injuries(Huaetal.,

Correspondingauthor.

E-mailaddress:fabiano.tomazini@unesp.br(F.T.daConceição).

2017).InBrazil,anenvironmentaldisastercausedbyhighrainfall oc-curredinaRMtailingdamlocatedinBarbacena(Pará State)inFebruary 2018,affectingthirteenriversidecommunities,whichdependsonthe naturalresourcesofthePará Riverbasininthismunicipality (Amazô-niaReal,2018).

Cadmium – Cd(II),lead - Pb(II) andzinc– Zn(II) arecommonly used in several human activities, such asmining, smelting, electro-plating, dyes, ceramics,among others.These trace elements arenot compatiblewithbiologicaltreatmentprocesses,andadsorptionisthe maintechniqueforthese traceelementsremovalinthetreatmentof industrialeffluents (Nadarogluet al.,2010). TheCd(II)causes vom-iting and lung andkidneydiseases, withthe Pb(II) affectingalmost all organs,withthecentralnervoussystembeingthemostsensitive, while theZn(II)can causesvomiting,anaemiaandkidneyandliver damage (SãoPaulo,2012). RMhasbeen used forCd(II), Pb(II) and Zn(II)removal,withapplicationofthenatural(Vaclavikovaetal.2005;

Santona et al. 2006; Pichinelli et al., 2017; Ayala and Fernández 2019; Silva et al., 2019) or activated (Apak et al. 1998a 1998b;

https://doi.org/10.1016/j.envadv.2021.100056

Received4March2021;Receivedinrevisedform2April2021;Accepted12April2021

(3)

Table 1

StudiesofCd(II),Pb(II)andZn(II)removal(mmolg−1)fromaqueoussolutionsusing

naturalredmud(RM)andwithdifferentactivationsprocedures.

Metal Natural and activated forms Removal Reference

Cd(II) RM 0.26 Ayala and Fernández (2019)

RM 0.87 Silva et al. (2019)

RM 1.41 Vaclavikova et al. (2005)

RM 1.35 Santona et al. (2006)

RM - heated 1.04 Silva et al. (2019) RM - heated 0.27 Gupta and Sharma (2002) RM - heated 0.38 Yang et al. (2020)

RM - HCl 0.95 Santona et al. (2006)

RM –HCl 0.14 Silva et al. (2019)

RM - HCl 2.24 Apak et al. (1998a)

RM - CaSO 4 0.22 Lopez et al. (1998) RM - Ca(NO 3 ) 2 0.68 Silva et al. (2019)

Pb(II) RM 2.13 Pichinelli et al. (2017)

RM 1.88 Santona et al. (2006)

RM - heated and H 2 O 2 0.35 Gupta et al. (2001) RM - carbonised 0.45 Pulford et al. (2012)

RM - HCl 0.77 Santona et al. (2006)

RM - HCl 0.84 Apak et al. (1998a)

RM - Ca(NO 3 ) 2 2.23 Pichinelli et al. (2017) RM – colloidal silica and NaOH 2.66 Lyu et al. (2020)

RM 0.18 Ayala and Fernández (2019)

Zn(II) RM 1.14 Pichinelli et al. (2017)

RM 2.47 Santona et al. (2006)

RM 2.05 Vaclavikova et al. (2005)

RM - heated 0.22 Gupta and Sharma (2002)

RM - HCl 1.59 Santona et al. (2006)

RM - CaSO 4 0.19 Lopez et al. (1998) RM - Ca(NO 3 ) 2 0.96 Pichinelli et al. (2017)

RM - CO 2 0.23 Sahu et al. (2011)

Lopez et al. 1998; Gupta et al. 2001; Gupta and Sharma 2002;

Santonaetal.2006;Silvaetal.,2019;Sahuetal.2011;Pulfordetal., 2012;Pichinellietal.,2017;Silvaetal.,2019;Lyuetal.,2020)forms ofRM.AllstudiespresentinTable1havebeenassociatedtothe ad-sorptionofthesetraceelementsontotheRMsurface,andthe adsorp-tionwasmodelledusingLangmuirandFreundlichisotherms.Sodalite pointedoutasthemainresponsiblefortheCd(II),Pb(II)andZn(II) ad-sorptionin naturalandactivated formsofRM(Santonaetal., 2006;

Pichinellietal.,2017;Silvaetal.,2019).Inaddition,differentkinetics modelswereappliedtodescribetheadsorptionprocesses,suchasthe pseudo-first-order,thepseudo-second-order,theElovichandthe intra-particlediffusionmodels.

Thetraceelementsadsorptionontosodaliteisassociatedtoion ex-changeableand,consequently,theuseofsequentialextractionscanbe ausefultooltoconfirmthismechanism.Tessieretal.(1979)proposed a methodfor sequentialextraction toidentify thegeochemical frac-tions.Thismethodassessesthepotentialmobilityfortraceelements, showing the labile (ion exchangeable, bound to carbonates, bound toFe-Mn oxidesand bound toorganic matter/sulfide) and residual phases.Recentstudiesusing sequentialextraction havereportedthat the Cu(II) (Qi et al., 2018) and Cr(II) (Qi et al., 2020) removal in RM werepreferably associated with bound tocarbonate andbound toFe-Mn oxides,respectively,insteadofadsorptionin ion exchange-able. Yang et al. (2020) proposed the Cd(II) removal is associated to adsorption in bound to Fe-Mn oxides rather thanadsorption (in ionexchangeable) whenthermaltreated RM wasstudied. Lyu etal. (2020)applied adsorptionisotherms todescribeadsorption ofPb(II) ontoRMmodifiedbycolloidalsilicaandsodiumhydroxide;however, theauthors have concluded thatthe precipitationprocesses was re-sponsiblefor78%ofPb(II)removal,asPb-carbonates,evennospecific analysiswasperformed.

Takingintoaccounttherecentfindingsontraceelementsremoval mechanismsusingRM,theroleofprecipitationshouldbethoroughly developedandtheuseofadsorptionmodelstodescribetraceelements removalreconsidered.Thefewstudiesusingsequentialextractionsare

limitedtoCu(II) andCr(II) removalbynatural RM(Qiet al.,2018,

2020,respectively)andCd(II)removalbythermalactivatedformsof RM(Yangetal.,2020),andtheyhaveshowntheremovalprecipitations productsonly,withnoprecipitationkineticsmodelproposed.Thus,the mainaimofthisstudywastodeterminethecentralmechanism respon-sibleforCd(II),Pb(II)andZn(II)removalusingnaturalandactivated formsofRM(heatedat400°C-RM400andwithchemicaltreatments

usingHCl-RMHClandCa(NO3)2-RMCa),applyingthesequential

ex-tractionmethod.Secondary,akineticmodelwasperformedtodescribe thetimeeffecton theCd(II), Pb(II)andZn(II)removalandto deter-minetheprecipitationkineticconstantsandthereactionorder. There-fore,thispaperexpandstheunderstandingandprovidenewinsightinto theinteractionsmechanismsamongCd(II),Pb(II)andZn(II)andthese hazardousmaterials,whichcanbeusedaslow-costmaterialinthefield ofenvironmentalremediationandwaterindustry.

2. Materialsandmethods

2.1. Samplingandactivationprocedures

ThemunicipalityofAlumínio(Fig.1a),SãoPauloState,Brazil,hosts themainaluminiumplantinBrazil,wherethenaturalRMwassampled (June– 2017)inatailingdam(Fig.1b).TheRMwasdriedfor12h at50°C.Antunesetal.(2012)studiedthethermalbehaviorand phys-icalpropertiesofRMfromBrazil(from400to800°C)andconcluded thatthebesttemperaturetoproduceRMwithalargesurfaceareais 400°Cduetophasetransitionofgoethitetohematiteandgibbsiteto alumina.Thus,theRMwasheatedinamufflefurnaceovenat400°Cfor twohours(RM400)toincreasetheremovalcapacityinrelationto

nat-uralRM(Antunesetal.,2012).TheRMwithchemicaltreatments(HCl -RMHClandCa(NO3)2-RMCa)wereperformedtopromotethe

extrac-tionoftheexchangeablephasebymeansofthedesorptionontheRM surface(Santonaetal.,2006;Pichinellietal.,2017).Forthechemical activation,RMwasmixedeitherwith0.05molL−1HClorwith0.1mol

L−1Ca(NO

(4)

re-F.T. da Conceição, M.S.G. da Silva, A.A. Menegário et al. Environmental Advances 4 (2021) 100056

Fig. 1. LocationofAlumíniointheSãoPaulo

State (a). The aluminium plant and tailing dam,withtheimagefromGoogleEarthPro -04/10/2020(b).

movedandtheRMHClandRMCasampleswerewashedthreetimes,using

ultrapurewaterwithelectricalconductivitylowerthan0.02μScm−1

and,then,driedat50°Cfor12h.

2.2. CharacterizationofnaturalandactivatedformsofRM

ThepHvalues forRM,RM400, RMHCl andRMCa in solutionwere characterizedusing1g:25mLofultrapurewater,usingYSI556 Multi-ProbeSystemcalibratedwithpurestandardsatpH4and7.Thespecific surfacearea(SSA)fortheRM,RM400,RMHClandRMCasampleswere

determinedbyBETmethod,usingaMicromeriticsASAPTristar3000 analyseroperatedat-196°Ccalibratedwithnitrogenadsorptioncurves. ThepHPCZ is anotherimportantissueon Cd(II),Pb(II) andZn(II)

removal by RM, once it determines whether electrostatic attraction orrespulsion betweenthesorbents andsorbates(Orfãoetal., 2006;

Jesusetal.,2015).Thepointofzerocharge(pHPZC)valueofRM,RM400,

RMHCl andRMCa wascharacterized using amixed of 0.1g of these materialswith20mLof0.1molL−1 NaClatinitialpHvaryingfrom

1to11 (Jesusetal.,2015).Thesolutionwasshakenat2501rpmat 25°Cfor24h,andthenthefinalpHwasmeasured.InitialandfinalpH valueswereplottedandthepHPZCvaluewasdeterminedaccordingto

Orfãoetal.(2006).

InordertoidentifythemineralsintheRM,RM400,RMHCl,RMCaand

controlsamples,theX-raydiffractometry(XRD– PANalyticalEmpyrean Instrument)wasusedonpowderedsamplesfrom2° to90° with0.02° step-sizes,operatingat40kVand40mA,withCuK𝛼 radiation.The min-eralogicalidentificationwasperformedbythesoftwareX’PertHighscore Plus®,usingICDDPDF2database.Themorphologyofallsampleswas identifiedusingaScanningElectronMicroscopewithanEnergy Disper-siveX-raySpectrometer(SEM-EDS,JEOLJSM-6010LA).

2.3. Removalexperiment

TheCd(II), Pb(II)andZn(II)aqueous solutions(25mL), withthe initial concentrationof80mmol L−1,weremixed with1.0g ofRM,

RM400,RMHClandRMCa.ThesolutionsofCd(II),Pb(II)andZn(II)were preparedusinganalyticalgradenitratesalts:Cd(NO3)2.4H2O,Pb(NO3)2

andZn(NO3)2.6H2O.Thesampleswerestirredat145rpmat25°Cfor

12 handthencentrifuged for25 minat3000 rpm.Afterwards,the RM,RM400, RMHCl andRMCa samplesweredriedfor12 hat50 °C.

Silvaetal.(2019)andPichinelli,etal.(2017)studiedtheinfluenceof pH(2,4,7,10and12)ontheCd(II)andPb(II)andZn(II)removal.The authorsshowedthepH7asthebestvalueforremovalofthesetrace el-ements,althoughthepHragingbetween5.0and5.5havebeenwidely used(Santonaetal.,2006;Nadarogluetal.,2010,Smiljamicetal.,2010,

Smiciklasetal.,2014;Conceiçãoetal.,2016).Thus,alltheexperiments fortraceelementsremovalanalysiswereperformedatinitialpHof7, withthefinalpHvaluescharacterizedat5.

2.4. Sequentialextraction

The sequential extraction in RM, RM400, RMHCl and RMCa was

applied as described by Tessier et al. (1979) and Leleyter and Probst(1999).Thedetailedsequentialextractionprocedureispresented inTable2,withtwodifferentgeochemicalfractions:labile(F1– ion ex-changeable,F2– boundtocarbonate,F3– boundtoFe-MnoxidesandF4 – boundtoorganicmatter/sulfide)andresidual(F5).Aftereach extrac-tionstep,thesampleswerecentrifugedat3000rpmfor25min.at25°C. Oncefinished,theresidualRM,RM400,RMHClandRMCaweredriedat

25°Candappliedforthenextsteps.Thepercentage(P)ofCd(II),Pb(II) andZn(II)duetosequentialextractioninRM,RM400,RMHClandRMCa

(5)

Table 2 Sequential extraction protocols. Step Fraction Protocols F1 Ion e x ch ang e able 10 mL of MgCl 2 0.5 M fo r 2 h at 25 °C and pH 5.5 F2 Bound to Carbonat e 10 mL of CH 3 C OON a 1 M fo r 5 h at 25 °C and pH 4.5 F3 Bound to Fe -M n ox id e s 10 mL of NH 2 OH.HCl 0.04 M in 25% (v/v) ace tic acid fo r 5 h at 85 °C and pH 2.5–3.0 F4 Bound to or g a nic matt er/sulfide 3 mL of HNO 3 0.02 M + 8 mL of H2 O 2 35% fo r 5 h at 85 °C and pH 2.0. Af te r cooling to 25 °C, it wa s adde d 20 mL of ammonium ace tat e 0.85 M in 5% (v/v) HNO 3 fo r 30 min F5 R e sidual d ige st io n pr oce d ur e fo llo wing the EP A 3010A ( USEP A , 1990 )

wascalculatedusingtheEq.(1).

𝑃𝑗 (%)= [ 𝐹𝑗 ] ∑5 𝑖 =1[𝐹𝑖] .100 for𝑗 = 1,2..5 (1) where:

P= percentageof eachgeochemical fractionfor Cd(II),Pb(II) or Zn(II);[F]=Cd(II),Pb(II)andZn(II)concentrationineachgeochemical fraction(mmolg−1);Indexesjandi=geochemicalfractioninwhichP

iscalculatedoverallextractedforms,respectively.

2.5. Kineticsstudies

Thekineticsstudieswerecarriedoutusing1g(m):25mL(V)ofan aqueoussolution,withtheCd(II),Pb(II)andZn(II)initialconcentrations of80mmolL−1(C

0 ).Thesampleswerestirredat145rpm,removed

af-ter15,30,60,120,420,660and1440min,centrifugedat3000rpm for25minat25°C,withthesupernatantseparatedandtheresidual Cd(II),Pb(II)andZn(II)measured(Cf ).TheinitialpH(t=0min)was adjustedto7asexplainedabove,withthefinalpHcharacterizedat5 after1440min.TheEqs.(2)and(3)representtheamountofCd(II), Pb(II)andZn(II)retained(AS -mmolg−1)andtheremovalefficiency

in allexperiments(RE-%),respectively.Afterconfirmingthe domi-nantmechanismofCd(II),Pb(II)andZn(II)removal,thekineticmodel fortracemetalsprecipitationwasperformedasdescribedindetailat

Section3.4. 𝐴𝑠 =(𝐶0−𝐶𝑓 ).𝑉𝑚 (2) 𝑅𝐸 = 𝐶0−𝐶𝑓 𝐶0 .100 (3) 2.6. Analysis

The supernatants associated tosequentialextraction and kinetics studieswerethentransferredtoaTeflontubeof50mL,madeupto volumewithultrapurewater,foranalysisoftheCd(II),Pb(II)andZn(II) concentrations byinductively coupledplasma optical emission spec-trometry(ICPOES),iCAP6000SERIESmachineThermoScientific.The detectionlimitwas0.006mgL−1foralltraceelements.Allexperiments

werecarriedoutintriplicate.

3. Resultsanddiscussion

3.1. CharacterisationofRM,RM400 ,RMHCl andRMCa

ThepHvaluesfortheRM,RM400,RMHClandRMCainsolutionwere

10.5, 10.7,8.3and7.5,respectively. Thethermal treatmentdidnot changethepHvaluesinrelationtoRM.However,thepHvaluesafter thechemicaltreatmentwerelowerthantheRMduetoCO32−

consump-tionduringthereactionsofCO32−presentintheRM,waterandHClor

Ca(NO3)2(Santonaetal.,2006;Pichinellietal.,2017).ThepHPCZ

val-ues werefor8.8,8.3,9.1and9.9forRM,RM400,RMHClandRMCa,

respectively.Thethermaltreatmentincreasedthespecificsurfacearea (SSA)inRM400 inrelationtoRM(from33to61m2 g−1),whilethe

chemical treatmentdecreased theSSAvalues (25and27 m2 g−1 to

RMHClandRMCa,respectively).

Fig. 2 shows the XRD patterns with the minerals found in the RM,RM400,RMHClandRMCasamples.TheRMiscomposedof

kaoli-nite(Al2Si2O5(OH)4),gibbsite(Al(OH)3),sodalite(Na8Al6Si6O24Cl2),

goethite(FeO(OH)),quartz(SiO2)andcalcite(CaCO3).However,after

thethermaltreatment,thepeakscausedbyaluminumandiron hydrox-ideswerenotdetectedfromtheRM400XRDpatterns.Thiscanbe

ex-plainedbytheconversionofgoethitetohematiteat243°Candalsoby thefactthatthegibbsiteistransformedtotransitionaluminas(𝜒Al2O3)

at272°C(Antunesetal.,2012).TheRMHClandRMCapresentsthesame

(6)

F.T. da Conceição, M.S.G. da Silva, A.A. Menegário et al. Environmental Advances 4 (2021) 100056

Fig. 2. XRDpatternsofRM,RM400,RMHClandRMCa.

andRMCa particleswas observed bySEM-EDS. Particles ofdifferent

size,shapeandtexturewereobservedinRMsample,asillustratedin

Fig.3.Heterogeneousmaterialswithparticlediametersbetweenfrom

<1μmto>10μmcanbeseen.Itcanbeobservedthatthechemical orthermaltreatmentdidnot alterthemineralmorphology,withthe smallestparticlescorrespondingtoironoxidesandthelargestonesto silicon.

3.2. Sequentialextractions

The percentages of labile and residual geochemical fractions of Cd(II),Pb(II)andZn(II)intheRM,RM400,RMHClandRMCasamples

arepresentinFig.4.Bytheanalysisoftraceelementsinthe geochemi-calfractions,itispossibletonotethatthelabilegeochemicalfractions wereresponsibleforca.95%ofthesetraceelements,as6.0±0.3%for Cd(II);3.5±0.3%forPb(II)and7.3±0.4%forZn(II)areassociatedto residualfraction.ThelowestconcentrationsforCd(II),Pb(II)andZn(II) weremeasuredintheionexchangeablefraction(<0.4%foralltrace elements)incomparisontootherlabilegeochemicalfractions,witha maximumremovalof0.04,0.06and0.04mmolg−1forCd(II),Pb(II)

andZn(II),receptively.

Sodaliteisatectosilicateconsideredaszeolite-typeandithasbeen consideredthemainresponsiblefortheCd(II),Pb(II)andZn(II) adsorp-tioninnaturalandactivatedRM(Santonaetal.,2006;Silvaetal.,2019;

Fig. 3. SEMimagesofRM.

Yangetal.,2020).Unfortunately,thepHPCZofsodalitehasnotbeen characterisedyet,butithasbeenadvisedthatthenegatively-charged surfacecanbeneutralizedbytheadsorptionofCd(II),Pb(II)andZn(II) withintheouter-spherebondsandinthecagesandchannelsofits frame-work(Whittingtonetal.,1998;Monetal.,2005).However,thelow Cd(II), Pb(II)andZn(II)percentages intheionexchangeablefraction clearlyindicatethatthesetraceelementsremovalbynaturaland acti-vatedformsofRMcannotbeonlyexplainedbythetracemetals adsorp-tionontosodalite.

TheCd(II),Pb(II)andZn(II)boundtoFe-Mnoxidesandboundto organicmatter/sulfidewere7.9±0.3%,4.3±0.2%and0.4±0.1%, 2.8±0.2%and0.6±0.2%,respectively.Qietal.(2020),showedthat themainCr(II)removalprocessesintheRMcollectedfromShanxiin ChinawastheboundtoFe-Mnoxides.Yangetal.(2020)suggestedthat theFe-MnoxideswereresponsibleforCd(II)removalfromaqueous so-lution,insteadcarbonateprecipitation,duetolowcontentoftotal inor-ganiccarbonpresentintheRMwithheattreatmentrangingfrom200 to900°CsampledinthenorthofChina.TheCd(II), Pb(II)andZn(II) removalin theFe-Mn oxidesisdue toadsorptionontogoethitesand hematites presentinthenaturalandactivatedRM,whichhavelarge specificsurfaceareaandreactive-OHand-OH2functionalgroups

ex-posedontheirsurface(LiuandHuang,2003).Inaddition,thesetrace el-ementsalsocanbeadsorbedontooxidesandhydroxidesofAl3+through

theformationofinner-spherebounds(Santonaetal.,2006).

Thecarbonate fractionwas thelabilefractionresponsiblefor the higherCd(II),Pb(II)andZn(II)removalpercentagesintheRM,RM400,

RMHClandRMCa,withaverageof85.4±0.6%forCd(II),88.0±0.9%for

(7)

Fig. 4. PercentagesoflabileandresidualgeochemicalfractionsoftheCd(II) (a),Pb(II)(b)andZn(II)(c),usingRM,RM400,RMHClandRMCa(C0=2mmol 25mL−1).Theexperimentwasperformedintriplicate;withthebarsindicate

standarddeviation.

Pb(II)and87.7±0.4%forZn(II).Thus,themechanismrelatedtoCd(II), Pb(II)andZn(II)removalfromaqueoussolutioninthenaturaland ac-tivatedRMcanbetrulyassociatedwiththesetraceelementsboundto carbonate.Similarresultshavealsoshownthatcarbonateisthemain labilefractionresponsibleforCu(II)(Qietal.,2018)removalfrom aque-oussolutionbynaturalRMcollectedfromShanxiinChina,respectively. Evenwithoutasequentialextractionstudy,Lyuetal.(2020)showed thattheprecipitationprocesses,asPb-carbonates,wasresponsiblefor 78%ofPb(II)removalfromaqueoussolutionbymodifiedRM(colloidal silicaandsodiumhydroxide).

3.3. MechanismsofCd(II),Pb(II)andZn(II)removalbymineral precipitation

Duringthesequentialextractions,thelowerremovalpercentagesfor Cd(II),Pb(II)andZn(II)weredetectedintheionexchangeablefractions (<0.4%foralltraceelements),whereasthehigherpercentageswere boundtocarbonatefraction.Thissuggestthemineralprecipitationas themainmechanismsofCd(II),Pb(II)andZn(II)removalinsteadof ad-sorptionontosodalite.Therewith,adsorptionLangmuirandFreundlich

Fig. 5. TheRM400XDRpatternsafterCd(II)(a),Pb(II)(b)andZn(II)(c)removal

experiments.

isothermsarenotvalidtomodeltheCd(II),Pb(II)andZn(II)removal usingthesehazardousmaterials.

Mann and Deutscher (1980) studied the Pb(II) and Zn(II) mo-bility in water containing carbonate, sulphate and chloride ions.

SangameshwarandBarnes(1983)assessedthermodynamicallythe dis-tributionandstabilitiesofmineralassemblagesformedinsystemwith Cd(II),Pb(II)andZn(II)+CO2+S+H2Oat25°Cand1atm,withEh-pH

diagramsillustratingclearlythatthemineralassemblagesdependson theEhandpHconditions.AtthepHvaluesusedintheexperimental procedures(initialof7andfinalof5),thenaturalandactivatedforms ofRMinsolutionswithpHvalueslowerthanthepHPCZ developeda

positivechargeontheirsurface,whenpHvalueswerelowerthanthe pHPCZ.Thisresultintheelestrostaticrepulsionexistsbetweenthe

pos-itivelychargedsurfaceoftheRMandthecationicions,suchasCd(II), Pb(II)andZn(II).

ConsideringtheinitialandfinalpHvalues,theEh-pHdiagrams pro-posedbySangameshwarandBarnes (1983)andthepHPCZvalues in

thenaturalandactivatedformsofRM,themainmechanismsofCd(II), Pb(II) andZn(II)removal by mineral precipitation, formingotavite, cerussite, smithsoniteandanglesite.Fig.5illustratestheRM400 XRD

patternsafterCd(II),Pb(II)andZn(II)removalexperiment,confirming themineralassemblagesproposed.Fig.6presentsthereactionproducts duringtheinteractionbettwenCd(II),Pb(II)andZn(II)andRMCainthe

aqueoussolutions.Themineralprecipitationprocessescanbedescribed asfollowing:

(a) WhenRM,RM400,RMHClandRMCa areaddedintheaqueous

so-lutionwithCd(II),Pb(II)andZn(II)atpH7,these traceelements reactwithHCO3− availablein thenaturalandactivatedformsof

RM,producingCd(II),Pb(II)andZn(II)precipitates,suchasotavite (Eq.(4)),cerussite(Eq.(5))andsmithsonite(Eq.(6));

(8)

F.T. da Conceição, M.S.G. da Silva, A.A. Menegário et al. Environmental Advances 4 (2021) 100056

Fig. 6. ReactionproductsduringtheinteractionbettwenCd(II)(a),Pb(II)(b)

andZn(II)(c)intheaqueoussolutionsandRM.

Cd 2++ HCO 3−→ CdCO 3(otavite) + H + (4) Pb 2++ HCO 3−→ PbCO 3(cerussite) + H + (5) Zn 2++ HCO 3−→ ZnCO 3(smithsonite) + H + (6)

(b) Fornatural andactivated forms of RM,withthe total consump-tionofHCO3−andproductionofH+,thepHvaluesdecreasedand

Pb(II) precipitatesas anglesite (Eq. (7))at pHvalues below 5.4 (Sangameshwar andBarnes, 1983; Marani etal., 1995). The

an-Fig. 7. Removalefficiency(RE)oftheCd(II)(a),Pb(II)(b)andZn(II)(c)versus

time,usingRM,RM400,RMHClandRMCa(C0=80mmolL−1).Theexperiment wasperformedintriplicate;withthebarsindicatestandarddeviation.

glesiteprecipitationexplainsthePb(II)removalpercentagesinthe boundtoorganicmatter/sulfide(2.8±0.2%);

Pb 2++ S 2−+ 4H

2O → PbSO 4(anglesite) + 8H + (7)

(c) Greenockiteorhawleyite(CdS),galena(PbS)andsphalerite(ZnS) arenotprecipitatedduetooxidationconditionsduringtheCd(II), Pb(II)andZn(II)removalexperiments.

3.4. KineticsstudyofCd(II),Pb(II)andZn(II)removal

Fig.7showstheAs values(Eq.(2))overtimefortheCd(II)Pb(II)and Zn(II)removalontoRM,RM400,RMHClandRMC.TheCd(II),Pb(II)and Zn(II)removaldependsonthereactiontimeandeithernaturaland acti-vatedRMisused.Inthefirst15min,ca.70%ofCd(II),Pb(II)andZn(II) wasremoved.Inaddition,Cd(II),Pb(II)andZn(II)removaltrendtotheir maximumafter120min(2h)foralltestedRMvariants.Themaximum amountoftraceelementsremovedusingRM,RM400,RMHClandRMCa

were0.95,0.99,0.37and0.35andmmolg−1forCd(II),1.27,1.39,0.51

and0.50mmolg−1forPb(II)and0.90,0.94,0.28and0.30mmolg−1

forZn(II),respectively,after1440min(24h).DifferentRMremoval ca-pacitieshasbeendescribedintheliteratureforCd(II),Pb(II)andZn(II) (Table1),asaconsequenceofnotonlythelargemineralsvariability, butalsothespecificsurfacearea,chemicalcompositionandactivation proceduresaswell(Wangetal.2008).

Thethermaltreatmentpromotedthetransformationofgoethiteand gibbsite intohematiteandalumina andconsequently,promotingthe incrementintheSSAintheRM400(61m2g−1)whencomparedtoRM

(33m2g−1).Antunesetal.(2012)proposedthatthethermaltreatment

(9)

at400–500°CwouldbethebesttemperaturetoincreasetheSSAand, consequently,theadsorptionassociatedwithnewmineralphases gen-erated(hematiteandalumina).Inaddition,thepHvalueswere practi-callythesamefortheRM(10.5)andRM400(10.7),indicatingthatthe

thermaltreatmentdidnotremovetheHCO3availableinthese

mate-rials.Thus,theincrementintheSSAand,consequently,inthereactive -OHand-OH2functionalgroupsexposedontheRM400surface(Liuand

Huang,2003),increasestheCd(II),Pb(II)andZn(II)removalontothe Fe-MnoxidescomparedtoRM.

Ontheotherhand,thechemicaltreatmentwithHClandCa(NO3)2

decreasedtheCd(II),Pb(II)andZn(II)removalefficacyinca.60%in relationtoRM.ThisfactwasalsodescribedbySantonaetal.(2006),

Pichinellietal.(2017)andSilvaetal.(2019),whosuggestedthatthe chemicaltreatmentsdissolvedaportionofthezeolite-typesminerals, re-ducingthetraceelementsremovalcapacity.However,ourstudyshowed clearlytheCd(II),Pb(II)andZn(II)removalontheactivatedformsof RMisassociatedtochemicaltreatmentusedtoactivateRMHClandRMCa

samples.ThiscausethereductionoftheamountHCO3availablein

so-lutionandtheconsequentlimitationtoaminimumresidualfractionsin solutionforCd(II),Pb(II)andZn(II).

Kineticsmodelsweremadetodescribethesorptionof pollutants on solid surfaces for liquid-solid phase sorption systems (Ho and McKay,1998),suchasthepseudo-first-orderLagergren, pseudo-second-order,Elovichandintraparticlediffusionmodels.Thesetraditional ki-neticsmodelshavebeenusedtostudytheremovalofseveraltrace el-ementsusingnaturaloractivatedRM(Lópezetal.,1998;Guptaetal., 2001;GuptaandSharma,2002;Sahuetal.,2011;Pichinellietal.,2017;

Silvaetal.,2019;Yangetal.,2020;Lyuetal.,2020).However, con-sideringthecentralroleofmineralprecipitationmechanismontrace elementsremoval,thetraditionalkineticsmodelscommonlyassociated totraceelementsadsorptionbyRMshouldappliedcarefully,oncemay notrepresentthemineralprecipitationphenomenon.

3.5. ModellingCd(II),Pb(II)andZn(II)removalbycarbonate precipitation

Precipitationwasthemainresponsibleforremovalofca.85%for Cd(II),Pb(II)andZn)II),asseeninsequentialextractionsexperiment. ConsideringGreenbergandTomson(1992),weassumedthekinetic re-actionofnthorderasplausibletoexplainthebehaviourofmetalsdecay.

Toperformthemodel,weusednofthenthorderreactionasoneofthe

adjustingparameters,alongwiththekineticconstant.Accordingtothe pHvaluesusingduringthekineticsstudies,theprecipitationkineticwas consideredtodependuponthetraceelementsandRMconcentrations, andtheavailabilityofHCO3insolution,foragivenpHandPCO

2 .Eq.

(8)showsageneralderivativeformforasecondorderreaction.

𝑑[𝐴]

𝑑𝑡 =−𝑘[𝐴].[𝐵].𝑃𝐶𝑂2 (8)

where:

k=precipitationrateconstantforpartialpressureofCO2at25°C (mmolL−1 min−1)(atm)−1;[A]=concentrationofthetraceelement

insolutionattime(t)(mmolL−1);[B]=concentrationofHCO 3−

de-rivedofthenaturaloractivatedRMinsolutionattime(t)(mmolL−1);

PCO2 =partialpressureofCO2duetopHat25°C(atm).

Assuming[B]≈[A]andintegratingfrominitialconcentrationtothe concentrationattimet,thenEq.(8)yieldsEq.(9).

[𝐴]=([𝐴0 ]−𝑛 +1 +(𝑛−1).𝑘.𝑡)− 1 𝑛−1 +𝑘𝐶 (9) where:

[A0 ]=concentrationof[A]insolutionattime(t)zero(mmolL−1);

n=nthgeneralreactionorder;k=precipitationrateconstant(mmolL−1

min−1),k

c =constantappliedtotakeintoaccountthelimitedcapacity ofHCO3−transferfromnaturaloractivatedRMtosolution(mmolL−1),

describingtheasymptoticlimitforthetraceelementsprecipitationdue toHCO3availabilityinsolution.

Fig. 8. KineticsofCd(II)(a),Pb(II)(b)andZn(II)(c)precipitation,usingRM,

RM400,RMHClandRMCa,consideringC0=80mmmolL−1andCd(II),Pb(II)and Zn(II)removalbycarbonateprecipitationinca.85%.Symbolsareexperimental data.

Table 3

ParametersobtainedforthemodellingPb(II)andZn(II) removalbyprecipitation.

Element k’ (mmol L −1 min −1 ) k

c (mmol L −1 ) R 2 RM Cd(II) 0.32 35.6 0.99 Pb(II) 0.44 24.8 0.98 Zn(II) 0.32 37.6 0.98 RM400 Cd(II) 0.32 34.4 0.99 Pb(II) 0.48 20.4 0.96 Zn(II) 0.32 32.0 0.99 RMHCl Cd(II) 0.12 55.6 0.99 Pb(II) 0.16 50.8 0.99 Zn(II) 0.08 58.4 0.99 RMCa Cd(II) 0.12 56.0 0.99 Pb(II) 0.16 51.2 0.98 Zn(II) 0.12 57.6 0.99

TheCd(II),Pb(II)andZn(II)precipitationmechanismsusingnatural oractivatedformsofRMwasmodelledusingEq.(9)(Fig.8).The pa-rameters(k’ ,kcandn)ofEq.9werecalculatedbyminimisingthesum ofthesquareddifferencebetweenexperimentalandmodelleddata, us-ingnon-lineargeneralizedreducedgradientalgorithmofSOLVER-MS Excell®.Table3showsresultsobtainedforEq.(9)parametersandR2

aswell.Theresultsshowedthesecondorderreactionasthebesttrend lineforCd(II),Pb(II)andZn(II)precipitation,withR2 higherthan0.96 foralltraceelements.Thesecondorderreactionareinaccordancewith

(10)

F.T. da Conceição, M.S.G. da Silva, A.A. Menegário et al. Environmental Advances 4 (2021) 100056

datareportedinliterature(e.g.,Gilmouretal.,1977;Kazmierczaketal., 1981,GreenbergandTomson,1992).Theproposedconstantkc limit precipitationaccordingly, asHCO3− concentrationin solutiondecay

overtime.

TheaverageCd(II),Pb(II) andZn(II)precipitationratesconstants were0.36,0.40,0.12and0.13(mmolL−1min−1)forRM,RM

400,RMHCl

andRMCa,respectively.Thekineticsofthesetraceelements

precipita-tionshowedfastremovalwithinthefirst15min,withlittleincrement oftheCd(II),Pb(II)andZn(II)removalbyprecipitationascarbonates byHCO3− andH2CO3equilibrium.Inaddition,theCd(II),Pb(II)and

Zn(II)removalbymineralprecipitationisatypicalbiphasic precipita-tionkineticsforallnaturalandactivatedformsRM,withafasttrace elementsprecipitationwithinthefirst120min,followedbysteadyof thesetraceelementsremoval.Inthefastprecipitationkinetics,mainly duetoCd(II),Pb(II)andZn(II)precipitationwithHCO3availablein

theaqueoussolution,providesarapiddecreaseintheHCO3−

concen-tration.ThisfactlimitstheCd(II),Pb(II)andZn(II)removalbymineral precipitationfrom120to1440minbecausethelessHCO3available

fortheformationofotavite,cerussite,smithsoniteandanglesiteinthe naturalandactivatedformsofRM.

Summarizing,undertheexperimentalconditionshereinpresented, bothselectiveextractionandkineticsstudyhaveshownthatcarbonate precipitationisthemostrelevantmechanismforCd(II),Pb(II)andZn(II) removalusingRM,RM400,RMHCl andRMCa fromaqueoussolutions,

regardlessthenaturalandactivatedformsofRM,andthattheofHCO3

playsacrucialroleinkineticsbylimitingtheprecipitateformation.

4. Conclusions

The Cd(II), Pb(II) and Zn(II) removal mechanismsfrom aqueous solutionusing naturalanddifferent chemical(HCl0.05molL−1and

Ca(NO3)20.1molL−1)andthermal(400°C)RMwerestudiedusing

se-quentialextraction.Inaddition,thekineticsofCd(II),Pb(II)andZn(II) removal bycarbonate precipitations weremodelled. Results showed thecarbonatefractionwasthemainlabilefractionresponsibleforthe higher Cd(II), Pb(II) andZn(II) removal percentages (ca. 85%), fol-lowedbyboundFe-Mnoxides,boundtoorganicmatter/sulphideand ionexchangeablefractions. Irrespectiveofwhethernatural and acti-vatedformsofRM,themineralprecipitationwasthemainmechanism forCd(II),Pb(II)andZn(II)removal,formingotavite– CdCO3,

cerus-site-PbCO3,smithsonite-ZnCO3andanglesite-PbSO4.Kinetics

stud-iesshowedamaximumamountoftraceelementsremovedusingRM, RM400,RMHClandRMCaof0.95,0.99,0.37and0.35andmmolg−1for

Cd(II),1.27,1.39,0.51and0.50mmolg−1forPb(II)and0.90,0.94,

0.28and0.30mmolg−1forZn(II).Theseresultsclearlyindicatedthat

thechemicaltreatmentsdecreasedtheCd(II),Pb(II)andZn(II)removal whilstthethermaltreatmentsincreasedupto10%thetraceelements re-movalinrelationtoRM.Therefore,chemicalandthermaltreatmentsdo notbringarelevantimprovementfortraceelementsremovalandthey canbeavoided,loweringthecostsassociatedtotheseprocedures.Afast traceelementsprecipitationoccurredwithinthefirst120min,with lim-itationinthesetraceelementsremovalduetoHCO3consumption

dur-ingthemineralprecipitation.Consequently,thetraditionaladsorption isothermsandkineticsmodelscommonlyassociatedtotraceelements adsorptionbyRMshouldbeconsideredcarefullyinfuturestudies.Asa whole,theresultsprovidenewinsightsintotherelativeimportanceof theCd(II),Pb(II)andZn(II)removalmechanismsfromaqueous solu-tionusingnaturalandactivatedformsofRM.Furthermore,theresults pointedouttotheuseofthesehazardousmaterialsonenvironmental systemsintheframeworkofenvironmentalremediationandwater in-dustryinareasheavilyimpactedbyanthropogenicactivities.Itshould beunderscoredthattheresidualRMshouldbeproperlystored,in or-dertopreventthesolubilizationofthelabilefractionoftraceelements totheenvironment,especiallyforthelabiletraceelementsfractions. FuturestudiesapplicabletouseofRMonalargerscaleandforreuse

ofCd(II),Pb(II)andZn(II)precipitatedintheindustrialactivitiesare advised.

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgment

TheauthorsthanktheFundaçãodeAmparoà PesquisadoEstado deSãoPaulo(FAPESP-ProcessesNo.2009/02374-0and 2013/00994-6)andConselhoNacionaldeDesenvolvimentoCientíficoeTecnológico (CNPq-ProcessNo.480555/2009-5)forfinancialsupport.Dr.Moruzzi isalsogratefultoCNPqforgrantawarded301210/2018-7.Wethankall therefereesfortheirdetailedandinsightfulreview’scomments,whom helpedtoimprovethemanuscript.

References

Amazônia Real, 2018. Vazamento de rejeitos da Hy- dro Alunorte causa danos socioambientais em Barba- cena. https://amazoniareal.com.br/vazamento-de-rejeitos-da-hydro-alunorte-causa -danos-socioambientais-em-barcarena-no-para/ (accessed 9 November 2020). Antunes, M.L.P, Couperthwaite, S.J., Conceição, F.T., Jesus, C.P.C., Kiyohara, P.K.,

Coelho, A.C.V., Frost, R.L., 2012. Red mud from Brazil: thermal behaviour and phys- ical properties. Ind. Eng. Chem. Res. 51, 775–779. doi: 10.1021/ie201700k . Apak, R., Guclu, K., Turgut, M.H., 1998a. Modelling of copper (II), cadmium (II)

and lead (II) adsorption on red mud. J. Colloid Interface Sci. 203, 122–130. doi: 10.1006/jcis.1998.5457 .

Apak, R., Tütem, E., Hügül, M., Hizal, J., 1998b. Heavy metal cation retention by unconventional sorbents (red muds and fly ashes). Water Res. 32, 430–440. doi: 10.1016/S0043-1354(97)00204-2 .

Ayala, J., Fernandez, B., 2019. Removal of zinc, cadmium and nickel from min- ing waste leachate using walnut shells. Environ. Prot. Eng. 45, 141–158. doi: 10.5277/epe190210 .

Brasil, 2018. Sumário Mineral. Departamento Nacional de Produção Mineral (DNPM), Brasília .

Conceição, F.T., Pichinelli, B.C., Silva, M.S.G., Moruzzi, R.B., Menegário, A.A., An- tunes, M.L.P., 2016. Cu(II) adsorption from aqueous solution using red mud activated by chemical and thermal treatment. Environ. Earth Sci. 75, 362. doi: 10.1007/s12665-015-4929-y .

Fortes, G.M., Lourenço, R.R., Montini, M., Gallo, J.B., Rodrigues, J.A., 2016. Synthesis and mechanical characterization of iron oxide rich sulfobelite cements prepared using bauxite residue. Mater. Res. 19, 276–284. doi: 10.1590/1980-5373-MR-2015-0180 . Gilmour, J.T., Shirk, J.A., Fergunson, J.A., Griffis, C.L., 1977. A kinetic study

of the CaCO 3 precipitation reaction. Agric. Water Manag. 1, 253–262. doi: 10.1016/0378-3774(77)90004-X .

Greenberg, J., Tomson, M., 1992. Precipitation and dissolution kinetics and equilib- ria of aqueous ferrous carbonates vs temperature. Appl. Geochem. 7, 185–190. doi: 10.1016/0883-2927(92)90036-3 .

Gupta, V.K., Gupta, M., Sharma, S., 2001. Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminum industry waste. Water Res. 35, 1125–1134. doi: 10.1016/S0043-1354(00)00389-4 .

Gupta, V.K., Sharma, S., 2002. Removal of cadmium and zinc from aqueous solutions using red mud. Environ. Sci. Technol. 36, 3612–3617. doi: 10.1021/es020010v . Hind, A.R., Bhargava, S.K., Grocott, S.C., 1999. The surface chemistry

of Bayer process solids: a review. Colloids Surf. A 146, 359–374. doi: 10.1016/S0927-7757(98)00798-5 .

Ho, Y.S., Mckay, G., 1998. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Trans. Inst. Chem. Eng. 76, 332–340. doi: 10.1205/095758298529696 .

Hua, Y., Heal, K.V., Friesl-Hanl, W., 2017. The use of red mud as an immobiliser for metal/metalloid-contamined soil: a review. J. Hazard. Mater. 325, 17–30. doi: 10.1016/j.jhazmat.2016.11.073 .

Jesus, C.P.C, Antunes, M.L.P., Concieção, F.T, Navarro, G.R.B., Moruzzi, R.B., 2015. Re- moval of reactive dye from aqueous solution using thermally treated red mud. Desalin. Water Treat. 55, 1040–1047. doi: 10.1080/19443994.2014.922444 .

Jones, B.E.H., Haynes, R.J., 2011. Bauxite processing residue: a critical review of its for- mation, properties, storage, and revegetation. Crit. Rev. Environ. Sci. Technol. 41, 271–315. doi: 10.1080/10643380902800000 .

Kazmierczak, T.F. , Schuttringer, E. , Tomazic, B. , Nancollas, G.H. , 1981. Controlled com- position studies of calcium carbonate and sulfate crystal growth. Croat. Chem. Acta 54, 277–287 .

Leleyter, L., Probst, J.L., 1999. A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. Int. J. Environ. Anal. Chem. 73, 109– 128. doi: 10.1080/03067319908032656 .

Liu, C., Huang, P.M., 2003. Kinetics of lead adsorption by iron oxides formed under the influence of citrate. Geochim. Cosmochim. Acta 67, 1045–1054. doi: 10.1016/S0016-7037(02)01036-0 .

(11)

López, E., Soto, B., Arias, M., Nunez, A., Rubinos, D., Barral, M.T., 1998. Adsorbent prop- erties of red mud and its use for wastewater treatment. Water Res. 32, 1314–1322. doi: 10.1016/S0043-1354(97)00326-6 .

Lyu, F., Niu, S., Wang, L., Sun, W., He, D., 2020. Efficient removal of Pb(II) ions from aqueous solution by modified red mud. J. Hazard. Mater. 15, 124678. doi: 10.1016/j.jhazmat.2020.124678 .

Mann, A.W., Deutscher, R.L., 1980. Solution geochemistry of lead and zinc in wa- ter containing carbonate, sulphate and chloride ions. Chem. Geol. 29, 293–311. doi: 10.1016/0009-2541(80)90026-1 .

Marani, D., Macchi, G., Pagano, M., 1995. Lead precipitation in the presence of sulphate and carbonate: testing of thermodynamic predictions. Water Res. 29, 1085–1092. doi: 10.1016/S0043-1354(94)00232-V .

Mon, J., Deng, Y., Flury, M., Harsh, J.B., 2005. Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophone. Microporous Mesoporous Mater. 86, 277– 286. doi: 10.1016/j.micromeso.2005.07.030 .

Nadaroglu, H., Kalkan, E., Demir, N., 2010. Removal of copper from aqueous solution using red mud. Desalination 251, 90–95. doi: 10.1016/j.desal.2009.09.138 . Órfão, J.J.M., Silva, A.I.M., Pereira, J.C.V., Barata, S.A., Fonseca, I.M., Faria, P.C.C.,

Pereira, M.F.R., 2006. Adsorption of reactive dye on chemically modified ac- tivated carbons – influence of pH. J. Colloid Interface Sci. 296, 480–489. doi: 10.1016/j.jcis.2005.09.063 .

Pichinelli, B.C., Silva, M.S.G., Conceição, F.T., Menegario, A.A., Antunes, M.L.P., Navarro, G.R.B., Moruzzi, R.B., 2017. Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO 3 ) 2 -neutralised red mud. Water Air Soil Pollut. 228, 1–13. doi: 10.1007/s11270-016-3208-1 .

Pulford, I.D., Hargreaves, J.S.J., Durisová, J., Kramulova, B., Girard, C., Balakrish- nan, M., Batra, V.S., Rico, J.L., 2012. Carbonised red mud - a new water treat- ment product made from a waste material. J. Environ. Manag. 100, 59–64. doi: 10.1016/j.jenvman.2011.11.016 .

Qi, X., Wang, H., Huang, C., Zhang, L., Zhang, J., Xu, B., Li, F., Junior, J.T.A., 2018. Analy- sis of bauxite residue components responsible for copper removal and related reaction products. Chemosphere 207, 209–217. doi: 10.1016/j.chemosphere.2018.05.041 . Qi, X., Wang, H., Zhang, L., Xu, B., Shi, Q., Li, F., 2020. Removal of Cr (III) from aqueous

solution by using bauxite residue (red mud): identification of active components and column tests. Chemosphere 245, 125560. doi: 10.1016/j.chemosphere.2019.125560 . Sahu, R.C., Patel, R., Ray, B.C., 2011. Adsorption of Zn(II) on activated red mud: Neutral-

ized by CO 2 . Desalination 266, 93–97. doi: 10.1016/j.desal.2010.08.007 .

Sangameshwar, S.R., Barnes, H.L., 1983. Supergene processes in zinc-lead-silver sulfide ores in carbonates. Econ. Geol. 78, 1379–1397. doi: 10.2113/gsecongeo.78.7.1379 . Santona, L., Castaldi, P., Melis, P., 2006. Evaluation of the interaction mecha-

nisms between red mud and heavy metals. J. Hazard. Mater. 136, 324–329. doi: 10.1016/j.jhazmat.2005.12.022 .

São Paulo, Companhia Ambiental do Estado de São Paulo, 2012. Ficha de Informação Tox- icológica. http://www.cetesb.sp.gov.br/userfiles/file/laboratorios/fit/cobre.pdf (ac- cessed 12 September 2012).

Silva, M.S.G. , Pichinelli, B.C. , da Conceição, F.T. , Moruzzi, R.B. , Yabuki, L.N. , Menegário, A.A. , Antunes, M.L.P. , 2019. Adsorção de Cd (II) por lama vermelha natural e com diferentes ativações. Geochim. Bras. 33, 76–88 http://dx.doi.org/10.21715/GB2358-2812.2019331076 .

Silva Filho, E.B. , Alves, M.C.M. , Motta, M. , 2007. Lama vermelha da indústria de benefi- ciamento de alumina: produção, características, disposição e aplicações alternativas. Matéria 12, 322–338 http://dx.doi.org/10.1590/S1517-70762007000200011 . Smiciklas, I., Smiljanic, S., Peric-Grujic, A., Š ljivic-Ivanovic, M., Mitric, M., Antonovic, D.,

2014. Effect of acid treatment on red mud properties with implications on Ni(II) sorp- tion and stability. Chem. Eng. J. 242, 27–35. doi: 10.1016/j.cej.2013.12.079 . Smiljanic, S., Smiciklas, I., Peric-Grujic, A., Loncar, B., Mitri, M., 2010. Rinsed and ther-

mally treated red mud sorbents for aqueous Ni 2+ ions. Chem. Eng. J. 162, 75–83. doi: 10.1016/j.cej.2010.04.062 .

Souza, K.C., Antunes, M.L.P., Couperthwaite, S.J., Conceição, F.T., Barrs, T.R., Frost, R., 2013. Adsorption of reactive dye on seawater-neutralised bof reactive dye on seawater-neutralised bauxite refinery residue. J. Colloid Interface Sci. 396, 210–214. doi: 10.1016/j.jcis.2013.01.011 .

Tessier, A., Campbell, P.G.C., Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51, 844–851. doi: 10.1021/ac50043a017 .

USEPA, 1990. Methods for Chemical Analysis of Water and Wastes EPA 3010 Cincinnati, Ohio .

Vaclavikova, M., Misaelides, P., Gallios, G., Jakabsky, S., Hredzak, S., 2005. Re- moval of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste. Stud. Surf. Sci. Catal. 155, 517–525. doi: 10.1016/S0167-2991(05)80179-X .

Wang, S., Ang, H.M., Tadé, M.O., 2008. Novel applications of red mud as coagulant, adsor- bent and catalyst for environmentally benign processes. Chemosphere 72, 1621–1635. doi: 10.1016/j.chemosphere.2008.05.013 .

Whittington, B.I., Fletcher, B.L., Talbot, C., 1998. The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions. Hydrometallurgy 49, 1–22. doi: 10.1016/S0304-386X(98)00021-8 .

Yang, T., Wang, Y., Sheng, L., He, C., Sun, W., He, Q., 2020. Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanism of sorption. J. Environ. Manage. 255, 109866. doi: 10.1016/j.jenvman.2019.109866 .

Referenties

GERELATEERDE DOCUMENTEN

At night, when 'the coast is clear' and viral numbers have increased within their hosts by high ceLl activity and replication, the lytic cycle is induced and new virus particles

We moeten onszelf beperkingen oplcggen in hct gebruik van grondstoffen als hout en mctalen, fossiele brandstoffen en land- oppervlak (ter beschcrming van de

aangebracht door een krachtige matiging van de lonen c. De bedrijven 7c,---ten in staat zijn meer investeringen dan tot dusver te doen.. De prijskorrensatie dient

In mei 2017 informeerden wij u dat we, samen met de gemeente Nijmegen, concludeerden dat het vervoer van zand via een zandtransportband geen realistische oplossing bleek te zijn.

Met het verlengen van haar benoeming voor de periode van een jaar heeft de gemeente Beuningen de gelegenheid het gekozen rekenkamermodel van de gemeente Beuningen te evalueren..

Op basis van een advies van Twynstra en Gudde is afgesproken dat de subsidievoorwaarden op verstrekte beschikkingen door de Stadsregio Arnhem Nijmegen worden geëerbiedigd

Paviljoen het Buitenhuis is een meerwaarde voor de gemeente Beuningen en bruidsparen dienen steeds vaker een verzoek in om het huwelijk op deze locatie te laten voltrekken..

Zowel voor de bedrijfsvoering van Slot Doddendael als het toeristische aanbod van de gemeente zijn overnachtingsmogelijkheden gewenst.. 1.3 Cultuurhistorische waarden