• No results found

A reduced complexity model of a gravel-sand river bifurcation: Equilibrium states and their stability

N/A
N/A
Protected

Academic year: 2021

Share "A reduced complexity model of a gravel-sand river bifurcation: Equilibrium states and their stability"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Ralph

M.J.

Schielen

a,b,∗

,

Astrid

Blom

c

a Faculty of Engineering Technology, University of Twente, Netherlands b Ministry of Infrastructure and Water Management-Rijkswaterstaat, Netherlands c Faculty of Civil Engineering and Geosciences, Delft University of Technology, Netherlands

a

r

t

i

c

l

e

i

n

f

o

Keywords: River bifurcation Mixed-size sediment Idealized model Equilibrium Stability analysis

a

b

s

t

r

a

c

t

We derive an idealized model of a gravel-sand river bifurcation and analyze its stability properties. The model requires nodal point relations that describe the ratio of the supply of gravel and sand to the two downstream branches. The model predicts changes in bed elevation and bed surface gravel content in the two bifurcates under conditions of a constant water discharge, sediment supply, base level, and channel width and under the assumption of a branch-averaged approach of the bifurcates. The stability analysis reveals more complex behavior than for unisize sediment: three to five equilibrium solutions exist rather than three. In addition, we find that under specific parameter settings the initial conditions in the bifurcates determine to which of the equilibrium states the system evolves. Our approach has limited predictive value for real bifurcations due to neglecting several effects (e.g., transverse bed slope, alternate bars, upstream flow asymmetry, and bend sorting), yet it provides a first step in addressing mixed-size sediment mechanisms in modeling the dynamics of river bifurcations.

1. Introduction

Riverbifurcationsordiffluencesarefoundinalluvialfans,braided rivers,anabranchingrivers,deltas,cut-off channels,diversions(forflood controlorwaterintakes),andinconstructedsidechannelsthatarepart ofriverrestorationschemes.Onceabifurcationis initiated,a down-streamchannel(orbifurcateordistributary)continuestodeepenaslong asthesedimenttransportcapacityexceedsthesedimentsupplytothe channel.

Sedimenttransportinachannelconsistsofbed-materialload(i.e., bed loadandsuspended bed-material load)and washload (Church, 2006;Paola,2001).Aswashloadistypicallyassumedtobedistributed uniformlyoverthewatercolumn,itisassumedtobepartitionedover thebifurcatesaccordingtotheratioofthewaterdischarge.Bed-material load,however,partitionsoverthebifurcatesinalessstraightforward manner.The partitioning of sedimentin streams dominatedby sus-pendedbed-materialloaddependsontheinitialflowdepthandchannel slopeinthebifurcates(SlingerlandandSmith,1998),thegrainsizeof thebedsediment(SlingerlandandSmith,1998),andcurvature-induced effectsintheupstreamchannel(Hackneyetal.,2017).Thepartitioning ofsedimentinbedloaddominatedstreamsdependson:

theconditionsinthebifurcates:baselevel,channelwidth,friction, bifurcationangle(Bulle,1926;VanderMarkandMosselman,2013;

Corresponding author.

E-mailaddress:r.m.j.schielen@utwente.nl(R.M.J. Schielen).

TarekulIslametal.,2006),andthezonesofflowrecirculationclose tothebifurcation(Bulle,1926;DeHeerandMosselman,2004;Marra etal.,2014; Thomasetal., 2011),vegetation(Burge,2006),and cohesivesedimentandbankerosion(Miorietal.,2006;Zolezzietal., 2006);

theconditionsintheareajustupstreamofthebifurcation:the trans-versedistributionofwaterandsedimentovertheupstream chan-nel,whichisaffectedbysecondaryflow(VanderMarkand Mos-selman, 2013), a transverse bed slope induced by an inlet step (BollaPittalugaetal.,2003),alternatebars(BertoldiandTubino, 2007;Bertoldietal.,2009;Redolfi etal.,2016),andsediment mo-bility(FringsandKleinhans,2008);

conditionsextendingfurtherupstream:flowasymmetryinducedby abend,whichtendstoprovideonebifurcatewithalargerfraction contentoftheflowandtheotheronewithalargerfractioncontent ofthesedimentload(FedericiandPaola,2003;Hardyetal.,2011; Kleinhansetal.,2008;VanDijketal.,2014)andtransversesediment sortingduetobendflow(FringsandKleinhans,2008;Sloff etal., 2003;Sloff andMosselman,2012).

Thepartitioningofthesedimentloadoverthebifurcatesdetermines whetherthebifurcationdevelopstowardsastablestatewithtwoopen downstreambranchesorastateinwhichthewaterdischargeinoneof thebranchescontinuestoincreaseattheexpenseoftheotherbranch. Thelatter casemayleadtothesiltingupof oneof thedownstream

https://doi.org/10.1016/j.advwatres.2018.07.010

Received 6 January 2018; Received in revised form 13 July 2018; Accepted 17 July 2018 Available online 19 July 2018

0309-1708/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/)

(2)

channels.Undersuchconditionsaonechannelconfigurationisastable equilibriumsolutionofthebifurcationsystem(Wangetal.,1995),yetin literaturethissituationisoftentermedan‘unstablebifurcation’(Burge, 2006;FedericiandPaola,2003),asthetwochannelsystemceasesto exist.

Earlyone-dimensionalreducedcomplexitymodelsdescribingthe de-velopmenttowardstheequilibriumstatesoftwobifurcateshavebeen developedforbedloadtransportinsand-bedrivers(Wangetal.,1995), bedloadtransportingravel-bedrivers(BollaPittalugaetal.,2003),and suspendedbed-materialload(SlingerlandandSmith, 1998).Such re-ducedcomplexitymodelsallowforthecomputationofthepartitioning ofthewaterdischargeasthewatersurfaceelevationatthebifurcation pointmustbeequalbetweenthethreereaches.Thesediment partition-ing,however,dependsonthegeometryofthebifurcationandthe three-dimensionalflowstructure,whichobviouslycannotbereproducedbya one-dimensionalmodel.Aone-dimensionalmodelthereforerequiresa nodalpointrelationthatdescribesthepartitioningofthesedimentload overthebifurcates.

Wangetal.(1995)werethefirsttointroduceanodalpointrelation describingthepartitioningofthesedimentsuppliedfromupstreamover thebifurcates.Theythenapplyasimplerformoftheirnodalpoint rela-tion(̄𝑠1∕̄𝑠2=(𝑞1∕𝑞2)𝑘,wherē𝑠1,2istherateofsedimentsupplyperunit

widthtobranches1and2andq1,2isthewatersupplyperunitwidthto

branches1and2)toanalysethestabilityofthesolutionstothe equilib-riummorphodynamicstateofthebifurcates.Studyingavulsion devel-opment(SlingerlandandSmith,1998)introduceanodalpointrelation thatoriginatesfromintegrationoftheverticalconcentrationprofileof thesuspendedsediment.Alternative nodalpointrelationshave been developedbyBollaPittalugaetal.(2003),whoaccountfortheeffects ofatransversebedslopethatinduceslateralsedimenttransporttothe deeperbifurcate,andKleinhansetal.(2008),whoaccountforthe ef-fectsofanupstreambend,bothofwhichwillbeaddressedinfurther detailbelow.

Pioneeringworkonbifurcationdynamicsusinganodalpoint rela-tionwasconductedbyWangetal.(1995):theyassumeaconstantwater dischargeandsedimentsupplyrateintheupstreamchannel,aconstant andequalbaselevelinthetwobifurcatingbranches,andunisize sedi-mentconditions.TheyapplytheEngelundandHansen(1967)sediment transportrelationwithoutathresholdforsignificanttransport:s∝Un,

wheresdenotesthesedimenttransportcapacityperunitwidth,Uthe depth-averagedflowvelocity,andnistheexponentinthepowerlaw loadrelation(𝑛=5).Theyfindthatfork<n/3theequilibriumsolution whereoneofthebifurcatesclosesisstable,whereasfork>n/3the equi-libriumsolutionwithtwoopenbranchesisstable.Despitetheseearly re-sultsamodelforkisstilllacking.AlsoSlingerlandandSmith(1998) re-vealthatabifurcationoravulsiondevelopstowardsastablestatewith twoopendownstreambranchesorastateinwhichonechannelbecomes thedominantchannelattheexpenseoftheotherbranch.

In such strongly idealized one-dimensional analyses, two-dimensional and three-dimensional effects near the bifurcation pointarenot readilyaccountedfor.One ofthese effectsistheBulle effect(Bulle,1926;Duttaetal.,2017;VanderMarkandMosselman, 2013), which indicates a situation where the sediment supply to a diversionchannel(i.e.,achannel thatbranchesoff themainchannel underacertainangle)is significantlylargerthanthediversion chan-nel’sfractioncontentofthewaterdischarge.Thiseffectisassociated withsecondaryflow(e.g.,Thomasetal.,2011).Anothereffectisthe differenceinbedelevationthatisassociatedwithadifferenceinflow depth between thetwo bifurcates(e.g., BollaPittalugaet al., 2003; Kleinhans et al., 2013).This bed elevationdifference (also denoted usingtheterminletstep)tendstoincreasethesedimentsupplytothe deeperbifurcate (e.g.,SlingerlandandSmith,1998),whichactsasa stabilizingmechanism.

Althoughmixed-sizesedimentsystemsmayrevealbehaviorthatis essentiallydifferentfromunisizesedimentsystems(Blometal.,2017a; 2017b;2016;MosselmanandSloff,2008;SinhaandParker,1996),so

far theinfluence of noncohesive mixed-size sedimenton bifurcation dynamicshasnotbeenstudiedexplicitly.Washload,suspended bed-materialload,andbedload(Church,2006;Paola,2001)areexpectedto responddifferentlytotheabove-mentionedmechanisms(Hackneyetal., 2017).Mixed-sizesedimenteffectsarethefollowing:

1. Astheverticalprofileofsedimentconcentrationislessuniformover depthfor coarsesediment(i.e., coarsesedimenttends to concen-tratemorestronglynearthebed),coarsesedimenttendstobe af-fectedmore byaninletstep thanfinesediment(Slingerland and Smith,1998).

2. Theeffectofthetransversebedslopeonlateraltransportupstream of the bifurcation depends on grain size, wherecoarse sediment is affected by the transversebed slope more strongly thanfines (ParkerandAndrews,1985);

3. Thepresenceofabendupstreamofthebifurcationtypicallyleadsto bendsortingandacoarsersedimentsupplytothedistributaryinthe outerbendthantotheoneintheinnerbend(FringsandKleinhans, 2008;Sloff etal.,2003;Sloff andMosselman,2012);

4. Alternatebarformationandgeometryappeartobeaffectedbythe grainsizedistributionofthesedimentmixture(BertoldiandTubino, 2005;Lanzoni,2000).

Ourobjectiveistoassesstheelementaryconsequencesofthe intro-ductionofmixed-sizesedimentmechanismsinthemodellingofthe dy-namicsofariverbifurcation.TothisendwefollowWangetal.(1995)’s approachanditssimplenodalpointrelationwithassociatedlimitations andsimplifications:weneglecttheeffectsofvegetation,cohesive sedi-ment,bankerosion,alternatebarsorabendintheupstreamchannel, aswellastheBulleeffectandthetransverseslopeeffect.Weextend theirmodeltoconditionswithbed-materialloadofatwo-fraction sed-imentmixtureconsistingofgravelandsand.Thisimpliestheneedfor twonodalpointrelationsdescribingtheratioof,respectively,thegravel andsandsupplytothetwobifurcates.Westudythestabilityofthe equi-libriumstatesofthebifurcatesinanengineeredrivercharacterizedby afixedchannelwidth.

Theproposedanalysisandmodelareapplicabletobothcasesshown inFig.1:abifurcationsystemwithtwobifurcatesthatarecharacterized bythesamebaselevelandasidechannelsystem.Wesetupamodel describingtheequilibriumsolutionsofthemixedsedimentbifurcation system(Section2),wedetermineitsequilibriumsolutions(Section3), wederiveasystemofordinarydifferentialequationsfortheflowdepth andbedsurfacetextureinthebifurcates(Section4),andperforma sta-bilityanalysisoftheequilibriumsolutions(Section5).Theanalysisalso providesinsightonthetimescaleoftheevolutiontowardsthestable equilibriumsolutions(Section6).

2. Modeloftheequilibriumstate

Inthissection westronglysimplifythesituation ofagravel-sand riverbifurcation,describetheproblemfromamathematicalpointof view,andlistthegoverningequations.Tothisendweconsideran en-gineeredriverwithafixedchannelwidththatmayvarybetweenthe branches,atemporallyconstantwaterdischargeintheupstreambranch (i.e.,branch0inFig.1)andatemporallyconstantgravelsupplyrate andconstantsandsupplyratetotheupstreambranch.

Underequilibriumconditions(𝜕𝜕𝑡=0)withoutsubsidence,uplift, andparticleabrasion,theequationdescribingconservationofsediment mass(i.e.theExnerequation)reducestothestationaryExnerequation, 𝜕𝑆𝑖𝜕𝑥=0,whereSidenotesthesedimenttransportcapacityinbranch

i,thesubscriptiindicatesbranchi,andxisthestreamwisecoordinate. Inotherwords,bydefinitionthesedimenttransportcapacitySiequals

thesedimentsupplytobranchi, ̄𝑆𝑖,wherethebarindicatesthesediment supply.

ForsimplicityweapplytheEngelundandHansenpowerlawload relation(EngelundandHansen,1967):

(3)

Fig.1. Schematic of (a) a channel (branch 0) bifurcating into two channels (branches 1 and 2) flowing into a lake characterized by the same base level ( Wangetal.,1995) and (b) a side channel system. Our analysis and model are applicable to both cases.

inwhich𝑚𝑖=𝐺𝑖𝐷 withDdenotingacharacteristicgrainsize,𝐺𝑖=

0.05∕(𝐶3

𝑖𝑅2𝑔1∕2), Ui the depth-averagedflowvelocity, Bi the channel

width,Ci theChézyfrictioncoefficient,gdenotesthegravitational

ac-celeration,andRthesubmergeddensity(𝑅=(𝜌𝑠𝜌)∕𝜌 where𝜌sand 𝜌 arethemassdensityof,respectively,sedimentandwater).For sim-plicityweassumethatmidoesnotvarybetweenthebranches(𝑚𝑖=𝑚), whichimpliesthatalsothefrictioncoefficientandthecoefficientGdo notvarybetweenthebranches(𝐶𝑖=𝐶,𝐺𝑖=𝐺).

CombinationofEq.(1)withthestationaryExnerequationillustrates thatunderequilibriumconditionswherethechannelwidthandfriction donotvaryspatially,besidesthesedimenttransportrate,alsotheflow velocityisuniform.

Theflowisdescribedusingtheone-dimensionalconservation equa-tionsforwatermassandstreamwisemomentum,i.e.theSaint-Venant equations(Saint-Venant,1871).Underequilibriumconditions,the con-servationequationforwatermassissimplifiedto𝜕𝑄𝑖𝜕𝑥=0(whereQi

denotesthewaterdischargeinbranchi,seeFig.1),whichimplies

𝑄𝑖=𝐵𝑖𝑈𝑖𝐻𝑖=const (2)

whereHidenotestheflowdepth(Fig.2).Astheflowvelocityisuniform

overthebranch,Eq.(2)impliesthatalsotheflowdepthdoesnotvary overthebranch.

Underequilibriumconditionstheconservationequationfor stream-wisemomentumoftheflowreducestothebackwaterequation.Fora uniformflowdepth,thebackwaterequationreducestothenormalflow equation: 𝐻𝑖= ( 𝑄2 𝑖 𝑖𝑖𝐶2𝐵2𝑖 )1∕3 (3)

Fig.2. Definition of symbols.

whereii denotesthechannelslope.Forsimplicity,theChézyfriction

coefficientCisassumedindependentofthebedsurfacetextureandflow conditionsandhenceconstant.

Under mixed-size sediment conditions, the Exner equation is re-placedbytheequationsfortheconservationofgravelandsandmassat thebedsurface,i.e.theHiranoequations(Hirano,1971;Parker,1991; Ribberink,1987).UnderequilibriumconditionstheHiranoequations reduceto𝜕𝑆𝑖𝑔𝜕𝑥=𝜕𝑆𝑖𝑠𝜕𝑥=0,wherethesubscriptsgandsindicate gravelandsand,respectively,andSigandSisdenote,respectively,the

gravelandsandtransportcapacitiesinbranchi.This impliesthatin anequilibriumstatewithoutparticleabrasionthegravelandsandload donotvarywithinabranch(e.g.,Blometal.,2016).Forsimplicitywe applytheEngelundandHansenpowerlawloadrelationinafractional manner(Blometal.,2017a;2016)andreplaceEq.(1)by

𝑆𝑖=𝑆𝑖𝑔+𝑆𝑖𝑠 (4)

𝑆𝑖𝑔=𝐹𝑖𝑔𝐵𝑖𝑚𝑔𝑈𝑖𝑛 (5)

𝑆𝑖𝑠=(1−𝐹𝑖𝑔)𝐵𝑖𝑚𝑠𝑈𝑖𝑛 (6)

whereFig denotesthevolumetricfractioncontentofgravelatthebed surfaceinbranchior,briefly,thesurfacegravelcontent(Fig.2),and 𝑚𝑔=𝐺∕𝐷𝑔 and𝑚𝑠=𝐺∕𝐷𝑠withDgandDs thegrainsizesof,

respec-tively,gravelandsand.Obviouslythecoefficientsmgandmshave dif-ferentvalues.Similarlytotheunisizecase,weassumemgnottovary

be-tweenthebranches.Thesameholdsforms.CombinationofEqs.(5)and

(6)withthestationaryHiranoandSaint-Venantequationsshows, anal-ogoustotheunisizesedimentcase,that(underequilibriumconditions withoutuplift,subsidence,andparticleabrasion)theflowvelocity,flow depth,andsurfacegravelcontentdonotvarywithinabranch.

Themodelrequiresanodalpointrelationthatrelatestheratioofthe sedimentsupplytothedownstreambranchestotheratioofthewater discharge.ThenodalpointrelationintroducedbyWangetal.(1995)is applicabletounisizesedimentconditions:

̄𝑠=𝛼𝑞𝑘, or ̄𝑠1 ̄𝑠2 =𝛼 ( 𝑞1 𝑞2 )𝑘 (7) wherē𝑠𝑖denotestherateofsedimentsupplyperunitwidthtobranchi,

thesuperscript∗indicatestheratioofthevaluesofthespecificvariable

forbranches1and2(e.g., ̄𝑠=̄𝑠

1∕̄𝑠2),𝛼 isthenodalpointprefactor,

andqiisthewaterdischargeperunitwidthinbranchi.Eq.(7)canalso bewrittenas ̄𝑆=𝛼𝑄𝑘𝐵∗1−𝑘, or ̄𝑆1 ̄𝑆2 =𝛼 (𝑄 1 𝑄2 )𝑘(𝐵 1 𝐵2 )1−𝑘 (8) 11

(4)

Forconditionsdominatedbytwograinsizemodes(gravelandsand), weintroducetwonodalpointrelations,onedescribingthepartitioning ofthegravelloadoverthebifurcatesandonethesandload:

̄𝑆𝑔=𝛼𝑔𝑄𝑘𝑔𝐵∗1−𝑘𝑔, or ̄𝑆1𝑔 ̄𝑆2𝑔 =𝛼𝑔 (𝑄 1 𝑄2 )𝑘𝑔(𝐵 1 𝐵2 )1−𝑘𝑔 (9) ̄𝑆𝑠=𝛼𝑠𝑄𝑘𝑠𝐵∗1−𝑘𝑠, or ̄𝑆1𝑠 ̄𝑆2𝑠 =𝛼𝑠 (𝑄 1 𝑄2 )𝑘𝑠(𝐵 1 𝐵2 )1−𝑘𝑠 (10) wherekgandksdenotethenodalpointcoefficientsand𝛼gand𝛼sare

thenodalpointprefactors,bothforgravelandsand,respectively. Werealizethattheaboveformofthenodalpointrelationsistoo sim-pletocoverthephysicsoftheproblemofriverbifurcationsadequately. Inadditiontothestronglysimplifiedformofthenodalpointrelations forgravelandsand,thevaluesforthenodalpointcoefficientskg,ks,

𝛼g,and𝛼slikelyarenotconstantsandmodelsforthesecoefficientsare

neededtoproperlyanalyzethephysicsofthebifurcationproblem.Yet despitethesestrongsimplificationswebelievethatthecurrent analy-sisprovidesusefulinsightonelementarybifurcationbehavior.Wewill addressthisaspectinfurtherdetailinthediscussionsection.

Thefactthatbothdownstreambranchesaregovernedbythesame baselevel(Fig.1)andalsotheupstreamwatersurfaceelevationofthe twobranchesisequalcreatesthefollowinggeometricalconstraintinan equilibriumstate(Wangetal.,1995):

𝑖= 1 𝐿, or 𝑖1 𝑖2 =𝐿2 𝐿1 (11) whereLiisthelengthofbranchi(Fig.1).

Wenowhaveasetofequationsthatcanbesolvedtodeterminethe equilibriumstatesofthetwodownstreambranches.

3. Theequilibriumstate

WemanipulatethesetofequationslistedinSection2tofindthe equilibriumsolutionsofthebifurcationcasesshowninFig.1.Under equilibriumconditionsthesedimentsupplyratemustbeequaltothe sedimenttransportcapacityandwethereforeset𝑆𝑖𝑔= ̄𝑆𝑖𝑔and𝑆𝑖𝑠= ̄𝑆𝑖𝑠.

Inaddition,wesubstituteEqs.(2)–(6)and(11)into(9)and(10).This yieldsanimplicitsolutiontotheratioofthewaterdischargeinthetwo downstreambranches,Q: 𝑄=𝐿𝐵∗1−3𝑛 ⎛ ⎜ ⎜ ⎜ ⎝ 𝑚𝑔𝑆𝑠0+𝑚𝑠𝑆𝑔0 𝑚𝑔𝑆𝑠0 ( 𝛼𝑠𝑄𝑘𝑠𝐵∗1−𝑘𝑠+1)−1+𝑚𝑠𝑆𝑔0 ( 𝛼𝑔𝑄𝑘𝑔𝐵∗1−𝑘𝑔+1 )−1−1 ⎞ ⎟ ⎟ ⎟ ⎠ 3 𝑛 =Φ(𝑄) (12)

AsolutionofEq.(12)providesvaluesforthegravelandsandloadinthe downstreambranches,SigandSis(𝑖=1,2),throughthenodalpoint

re-lationsinEqs.(9)and(10),providedthatthewaterdischargeinbranch 0,Q0,thegravelandsandsupplyratestobranch0,S0gandS0s,and

thevariablesmg,ms,L,B,k

s,andkgareknown.Wecomputetheflow

depth,Hi,usingEq.(3),aswellasthesurfacegravelcontent,Fig,using

Eq.(5)or(6).

Eq.(12)hasatleastthreesolutions:twosolutionsthatareassociated withtheclosureofoneofthebranches(𝑄=0,𝑄=∞)andone

solu-tioninwhichbothdownstreambranchesremainopen.Genericallythe flowdepthdiffersbetweenthedownstreambranches,butunder con-ditionsinwhich𝐿=1theflowdepthinthedownstreambranchesis

equal,evenifthewidthvariesbetweenthebranches.

Wedefineabasecasethat(exceptforthebifurcatelength)isloosely basedonthebifurcationoftheBovenrijnintothePannerdenschKanaal andthe Waal branch.The bifurcation is located in the Netherlands andabout10kmdownstreamfromwheretheRhineRivercrossesthe German–Dutchborder.Thewaterdischargeissetequaltotheone char-acterizedbyaoneyearrecurrenceperiod(4000m3/s).Wesimply

as-sumethebifurcatestohavethesamechannellength(here𝐿1=𝐿2=10

km).Thisyieldsthefollowingparametervaluesforthebasecase:𝛼𝑔=

Fig.3. Sections I, II a, II b, and III in the stability diagram in the ( kg,ks) parameter

space for the base case.

𝛼𝑠=1,𝐵0=315m,𝐵1=𝐵2=250m,𝐶1=𝐶2=50m1/2/s,𝑆0𝑔=0.001

m3/s,𝑆

0𝑠=0.007m3/s,and𝑄0=4000m3/s.

ForadetailedanalysisofEq.(12)werefertoAppendixA.1.It il-lustratesthatwecandistinguishbetweenthreesectionsinthe(kg,ks)

parameterspace(I,II,andIII),eachwithadifferentnumberofsolutions toEq.(12)andhenceoftheflowdepthinthedownstreambranches (Fig.3):

IandIII:Therearethreeequilibriumsolutions.Twosolutions cor-respondwithoneofthedownstreambranchesclosed.Theother so-lutioncorrespondswithbothbranchesopen.

IIaandIIb:Therearefiveequilibriumsolutions.Twosolutions corre-spondwithoneofthedownstreambranchesclosed.Theremaining threesolutionscorrespondwithbothbranchesopen.

ThedifferencesbetweensectionsIandIIIandbetweenIIaandIIb willbeaddressedinthenextsection.

Theboundaries ofthesectionsI,IIa,IIb,andIIIin Fig.3depend

ontheratioofthesandloadtothegravelloadintheupstreambranch (branch0),whichisdenotedby ̂𝑆0,theratioofthelengthofthe

bifur-cates,L,andtheratioofthechannelwidthofthebifurcates,B(Fig.4).

Anincreaseofthesandloadintheupstreamchannelattheexpenseof itsgravelloadleadstoadecreaseofsectionIIbandanincreaseof

sec-tionIIa.Anincreaseofthedifferenceinchannellengthbetweenthetwo

bifurcatessignificantlydecreasessectionIIandanincreaseofsectionI. SectionIItendstobecomenegligibleforvaluesofLevenmildlylarger

than1.Theeffectsof ̂𝑆0andL∗aresignificant,whereastheeffectofa

differenceinchannelwidthbetweenthetwobifurcates,B,appearsto

belimited.

Thecurrentanalysisislimitedtoengineeredriverswherethe chan-nelwidthcannotadjusttochangesinthecontrols(i.e.,statisticsofthe waterdischarge,sedimentsupply,andbaselevel).Theanalysis

(5)

illus-Fig.4. Stability diagram in the ( kg,ks) parameter space, for varying (a) ratio of the sand load to the gravel load in branch 0, ̂𝑆0; (b) ratio of the length of the downstream channels, L; and (c) ratio of the width of the downstream channels, B. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

tratesthatamixed-sizesedimenttwo-channelsystemconsistsofthreeto fivesolutionstothemorphodynamicequilibriumstate.Thisdiffersfrom aunisizesedimenttwo-channelsystem,forwhichthreeequilibrium so-lutionsexist(Wangetal.,1995).Theexistenceofthreetofivesolutions alsocontrastswiththesinglesolutiontothemorphodynamic equilib-riumstateofaone-channelsystem,underunisizeaswellasmixed-size sedimentconditions(Blometal.,2017a;2016;Howard,1980).

Naturalrivers,wherebesidesthechannelslopeandbedsurface tex-turealsothechannelwidthrespondstochangesinthecontrols,allow formoreequilibriumstatesthanengineeredriverswithafixed chan-nelwidth(Blometal.,2017a).Innaturalriversthereexistsarangeof equilibriumstatesforwhichthechannelisabletotransporttheload suppliedfrom above(Blom etal., 2017a).Inthecurrentanalysiswe havenotconsideredtheeffectoferodablebanks,yetonemayexpect that,justasinthesinglechannelcase,thepresenceoferodablebanks allowsforarangeofequilibriumstates.

4. Modelofthestabilityoftheequilibriumstate

We set up a system of differentialequations for the flow depth andthesurfacegravelcontentinthebifurcatestostudythetemporal changesinthebifurcationsystem.

Forsimplicity,weassumethatperturbationsinbedelevation(i.e., aggradationalanddegradationalwaves),whicharisefromadifference betweenthesedimentsupplytoadownstreambranchanditssediment transportcapacity,movesofastalongthedownstreambranchesthat wecanassumeabranch-averagedresponseofbedelevation.This im-pliesthatweconsiderbranch-averagedvaluesforbedelevation,𝜂i,flow

depth,Hi,andsurfacetexturerepresentedbythesurfacegravelcontent, Fig(Fig.2).Anotherconsequenceofthisbranch-averagedapproachis

thefactthatthechannelslopeineachbifurcatecannotadjustwithtime, astheaggradationordegradationratedoesnotvarywithinabifurcate. Theconstantchannelslopeandbaselevelimplythat,althoughthebed elevationchangeswithtime,thewatersurfaceelevationinthe bifur-catesremainsconstantwithtime.

Suchareach-averagedapproachisvalidprovidedthatthe perturba-tioninbedelevationmigratesrelativelyfastdowninthechannelorif thechannelisrelativelyshort(i.e.,asmallvalueofLi).

TheExnerequationdescribingconservationofbedsedimentis

𝑐𝑏𝐵𝑖𝜕𝜂𝜕𝑡𝑖 =−𝜕𝑆𝜕𝑥𝑖 (13)

wheretdenotestime, cb thesedimentconcentrationwithin the bed

(𝑐𝑏=1−𝑝withpdenotingbedporosity),and𝜂 isbedelevationwith

respecttoafixedreferencelevel.As𝐻=𝜂𝑤𝜂 (Fig.2)andthewater surfaceelevation,𝜂w,isconstantduetoourbranch-averagedapproach,

wefindthat𝜕𝜂𝑖𝜕𝑡=−𝜕𝐻𝑖𝜕𝑡.ThisimpliesthatEq.(13)canbewritten

as(Wangetal.,1995):

𝑐𝑏𝐵𝑖𝜕𝐻𝜕𝑡𝑖= 𝜕𝑆𝜕𝑥𝑖 (14)

Asweassumethatgradientsinthesedimenttransportrateresultina branch-averageddegradationoraggradationrate,wewrite𝜕Si/𝜕xas

𝜕𝑆𝑖

𝜕𝑥 = 𝑆𝑖̄𝑆𝑖

𝐿𝑖 (15)

CombinationofEqs.(14)and(15)thenyields 𝑑𝐻𝑖 𝑑𝑡 = 1 𝑐𝑏𝐵𝑖𝐿𝑖 ( 𝑆𝑖̄𝑆𝑖) (16)

We apply a simplified form of the Hirano active layer model (Hirano,1971) todescribethetemporalchange ofthesurfacegravel contentinthetopmostpartofthebedthatinteractswiththeflow(i.e., intheactivelayer).

ToarriveatasimplifiedversionoftheHiranoequation,weapply asimilarbranch-averagedapproachtothemigrationofperturbations inthebedsurfacetextureastoperturbationsinbedelevation.Worded differently,weassumesurfacetextureperturbations,whicharisefrom adifferencebetweenthegrainsizedistributionofthesedimentsupply toadownstreambranchandthegrain sizedistributionofthe trans-portedsediment,tomovesofastalongabifurcatethatwecanconsider abranch-averagedresponseofthebedsurfacegravelcontentinthe bi-furcate,Fig.Thereach-averagedapproachisvalidprovidedthatthe

per-turbationinthebedsurfacetexturemigratesdownstreamfastalongthe channel(e.g.,asmalldepthofreworkingorasmallactivelayer thick-ness)orifthechannelisrelativelyshort(i.e.,asmallvalueofLi).

Inaddition,weassumethattheverticalsedimentfluxbetweenthe activelayerandthesubstratethatisassociatedwithachangein ele-vationoftheinterfacebetweentheactivelayerandthesubstratehas thesamegrainsizedistributionastheoneoftheactivelayersediment, evenunderconditionsofdegradation.

UnderthesesimplifyingassumptionstheHiranoactivelayer equa-tionreducesto 𝑑𝐹𝑖𝑔 𝑑𝑡 = 1 𝑐𝑏𝐵𝑖𝐿𝑖 1 𝐿𝐴 ( 𝐹𝑖𝑔(𝑆𝑖̄𝑆𝑖)+(̄𝑆𝑖𝑔𝑆𝑖𝑔)) (17)

whereLAdenotesthethicknessoftheactivelayerorthesurfacelayer

thatisreworkedbytheflow. 13

(6)

Theadjustmentofthebedsurfacetextureischaracterizedbyan ex-ponentialgrowthofwhichthetimescale(i.e.,thee-foldingtimeorthe timeintervalinwhichtheexponentiallygrowingquantityincreasesby afactorofe)equals

𝑇=𝑐𝑏𝐵𝑖𝐿𝑖𝐿𝐴 (18)

We have derived the following system of differential equations for the flow depth,Hi, and surfacegravel content, Fig bymanipulating

Eqs.(16)–(17),usingEqs.(9)–(10),forsimplicitysetting 𝛼𝑔=𝛼𝑠=1,

andintroducingtimê𝑡wherê𝑡=𝑡𝑐𝑏: 𝑑𝐻1 𝑑̂𝑡 = 𝑄𝑛 0 𝐵1𝐿1 ( 𝑔1(𝐻1,𝐻2,𝐹1𝑔)−̄𝑔1(𝐻1,𝐻2) ) (19) 𝑑𝐻2 𝑑̂𝑡 = 𝑄𝑛 0 𝐵2𝐿2 ( 𝑔2(𝐻1,𝐻2,𝐹2𝑔)−̄𝑔2(𝐻1,𝐻2) ) (20) 𝑑𝐹1𝑔 𝑑̂𝑡 = 𝑄𝑛 0 𝐵1𝐿1 1 𝐿𝐴 ( 𝐹1𝑔 ( 𝑔1(𝐻1,𝐻2,𝐹1𝑔)−̄𝑔1(𝐻1,𝐻2) ) +(̄𝑔1𝑔(𝐻1,𝐻2)−𝑔1𝑔(𝐻1,𝐻2,𝐹1𝑔))) (21) 𝑑𝐹2𝑔 𝑑̂𝑡 = 𝑄𝑛 0 𝐵2𝐿2 1 𝐿𝐴 ( 𝐹2𝑔(𝑔2(𝐻1,𝐻2,𝐹2𝑔)−̄𝑔2(𝐻1,𝐻2) ) +(̄𝑔2𝑔(𝐻1,𝐻2)−𝑔2𝑔(𝐻1,𝐻2,𝐹2𝑔))) (22)

wherethefunctionsgi, ̄𝑔𝑖,gig,and̄𝑔𝑖𝑔(𝑖=1,2)aredefinedinAppendix

B.

WeabbreviateEqs.(19)–(22)by( ̇𝐻𝑖,𝐹𝑖𝑔̇ )=Ψ(𝐻𝑖,𝐹𝑖𝑔)wherethedot indicatesthederivativewithrespecttotime.Naturallytheequilibrium solutionsofSection3aresolutionsofΨ(𝐻𝑖,𝐹𝑖𝑔)=0.

5. Stabilityoftheequilibriumstate

Equilibriumsolutionsonlyemergeiftheyarestable. Thestability propertiesofthesolutionsofΨ(𝐻𝑖,𝐹𝑖𝑔)=0aredeterminedbythe eigen-valuesoftheJacobianJofΨ,whichisdefinedas:

𝐽= ⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 𝜕Ψ1 𝜕𝐻1 𝜕Ψ1 𝜕𝐻2 𝜕Ψ1 𝜕𝐹1𝑔 𝜕Ψ1 𝜕𝐹2𝑔 𝜕Ψ2 𝜕𝐻1 𝜕Ψ2 𝜕𝐻2 𝜕Ψ2 𝜕𝐹1𝑔 𝜕Ψ2 𝜕𝐹2𝑔 𝜕Ψ3 𝜕𝐻1 𝜕Ψ3 𝜕𝐻2 𝜕Ψ3 𝜕𝐹1𝑔 𝜕Ψ3 𝜕𝐹2𝑔 𝜕Ψ4 𝜕𝐻1 𝜕Ψ4 𝜕𝐻2 𝜕Ψ4 𝜕𝐹1𝑔 𝜕Ψ4 𝜕𝐹2𝑔 ⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ (23)

Ifalleigenvaluesatanequilibriumsolutionhavenegative(positive) realparts,theequilibriumsolutionsarelinearlyandnonlinearlystable (unstable),andarenodalpoints inthe4-dimensionalphasespace.If therearepositiveandnegativeeigenvalues,thesolutionisunstableand asaddlepointinthephasespace(e.g.,Wiggins,1990).Purelyimaginary eigenvalueswouldgiverisetoperiodicsolutionsinthephasespace,yet thisdoesnotoccurforthisparticularsetofequations.

Asthesystemof Eqs.(19)–(22) andtheassociated JacobianJin Eq.(23)aretoocomplextobeanalyzedanalytically,weanalyzethe sys-temnumerically.ForthedetailsoftheanalysiswerefertoAppendixA.2. Insummary,thefollowingholdsforthesectionsI-IIIinFig.3:

I:Thetwoequilibriumsolutions thatcorrespondwithonebranch closedarestable.Theothersolution,wherebothbranchesareopen, isunstable.Theinitialconditionsdeterminetowhichstablestatethe systemevolves.

IIaandIIb:Thetwoequilibriumsolutionsthatcorrespondwithone

branchclosedarestable.Theotherthreesolutionscorrespondwith bothbranchesopen.Thetwo‘new’solutions(comparedtosection I)arecreatedinablueskybifurcation(AppendixA.2).Onlyoneof themisstable.Theinitialconditionsdeterminetowhichofthethree stableequilibriumstatesthesystemevolves.

III:Thetwoequilibriumsolutionsthatcorrespondwithonebranch closedareunstable.Thesolutionwithboth branchesopenis the onlystablesolution.Thisimpliesthatforeveryinitialconditionboth branchesremainopen.

Foratwo-channelsystemunderunisizesedimentconditions,there existsonecriticalvalueofthenodalpointcoefficientk(𝑘=𝑛∕3), be-lowwhichtheequilibriumsolutionwithoneclosedbifurcationisstable (Wangetal., 1995).Forvalues ofk largerthann/3theequilibrium solutionwithtwoopenbifurcatesisstable.Acaseinwhichk<n/3is similartothecurrentsectionIandthelattercaseissimilartothe cur-rentsectionIII.UnderunisizesedimentconditionssectionIIdoesnot exist.

Forasinglechannelsystemwithfixedbanksthesinglesolutionto theequilibriumstateisstable(Blometal.,2017a;2016;Howard,1980). 6. Evolutiontowardsthestableequilibriumstate

WenumericallysimulatethesystemofEqs.(19)–(22)toassess(1) theeffectsoftheinitialflowdepth,H1andH2,andtheinitialsurface

gravelcontent,F1gandF2g,inthebifurcatingbranches;(2)the

mecha-nismthatresultsinclosureofoneofthebranches;and(3)theeffectsof thenodalpointcoefficientsincombinationwiththesedimentsupply. Weanalyzethesethreeaspectsbelow.

6.1. Effectoftheinitialconditionsinthebifurcatingbranches

InsectionIItheinitialconditionsdeterminetowhichofthethree stableequilibriumstatesthesystemevolves.

Fig. 5shows the results of two numerical runs of thesystem of Eqs.(19)–(22),inwhichweassesstheeffectsoftheinitialflowdepthin thebifurcatingbranches,H1andH2.Theonlydifferencebetweenthe

tworunsaretheinitialvaluesoftheflowdepth,H1andH2.Forequal lengthofthebifurcates(𝐿=1)andarbitraryvalueoftheratioofthe

bifurcatewidth,B,theflowdepthandsurfacegravelcontentinthetwo

bifurcatesevolvetowardthesamevalue(𝐻=1and𝐹

𝑔 =1).Itappears

thatadifferenceintheinitialflowdepthresultsindifferentbehavior: inonecasebothbranchesstayopen,whileintheothercaseonebranch closes.

Inthecasewherebothbranchesremainopen,thesurfacegravel con-tentinthetwobranches,F1gandF2g,evolvestowardsthesamevalue.

ThesurfacegravelcontentF1gintheclosingbranchevolvesto0,which

meansthateventuallythebedsurfaceinthisclosingbranchconsistsof sandonly.

Fig.6showstheresultsoftworunswhereonlytheinitialsurface gravelcontentinthebifurcatingchannels,F1gandF2g,variesbetween theruns.Againweobservetheeffectoftheinitialconditions:they de-terminewhetherthesituationevolvestowardsastatewitheitherboth branchesopenoronebranchclosed.

6.2. Mechanismofclosureofoneofthebranches

WeconsiderthecasewhereoneofthebranchesclosesinFig.5(solid lines)tostudythemechanismofbranchclosure.Tothisendweanalyze thedifferencebetweentheloadandsupplyofgravelandsandfor, re-spectively,branches1and2(Fig.7aandb).

As thesediment supply in branch2 exceedsthe sediment trans-portcapacity(𝑆2− ̄𝑆2<0),aggradationwilloccurandbranch2slowly

closes.Thesedimentsupplyinbranch1approachesthesediment trans-portcapacity(𝑆1− ̄𝑆1↓ 0),whichimpliesthattheflowdepthinbranch

1approachesanequilibrium(nonzero)value.

In branch2thesand supplyexceeds thesand transportcapacity (𝑆2𝑠̄𝑆2𝑠<0)andthegravelsupplyissmallerthanthegravel

trans-portcapacity(𝑆2𝑔̄𝑆2𝑔>0),whichimpliesthatthebedsurfaceofthe

branchbecomesincreasinglysandy.This isreflectedbythefactthat bedsurfacegravelcontentapproacheszero(F2g↓0,solidlineinFig.5b).

(7)

Fig.5. Effect of the initial flow depth in the downsteam channels on bifurcation dynamics. Flow depth H1and H2(left panel) and surface gravel content F1gand F2g (right panel) in the two downstream branches. Initially, 𝐻1= 14 m and 𝐻2= 8 m (solid lines) and 𝐻1= 14 m and 𝐻2= 10 m (dashed lines), and 𝐹1𝑔= 0 .5 ,𝐹2𝑔= 0 .5 .

Blue and red lines indicate, respectively, branch 1 and branch 2. Results are given for 𝑘𝑔= 3 ,𝑘𝑠= 1 ,𝛼𝑔= 𝛼𝑠= 1 ,and 𝐿𝐴= 1 m. Here time indicates ̂𝑡. (For interpretation

of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig.6. Effect of the initial surface gravel content in the downsteam channels on bifurcation dynamics. Flow depth H1and H2(left panel) and surface gravel content F1gand F2g(right panel) in the two downstream branches. Initially, 𝐹1𝑔= 0 .8 ,𝐹2𝑔= 0 .5 (dashed lines) and 𝐹1𝑔= 0 .3 ,𝐹2𝑔= 0 .5 (solid lines), and 𝐻1= 14 m and 𝐻2= 8 m. Blue and red lines indicate, respectively, branch 1 and branch 2. Results are given for 𝑘𝑔= 3 ,𝑘𝑠= 1 ,𝛼𝑔= 𝛼𝑠= 1 , and 𝐿𝐴= 1 m. Here time indicates ̂𝑡. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig.7. Difference between the supply and transport capacity of gravel (blue line) and sand (red line) in branch 1 (left panel) and branch 2 (right panel). The conditions are equal to the case represented by the solid lines in Fig.5. Here time indicates ̂𝑡. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Thebedsurfaceofbranch1continuestoconsistofamixtureofgravel andsand (i.e.,F1gapproachesanequilibriumnonzerovalue).Thisis

understandableasinthefinalstatethegravelandsandsupplyfromthe upstreambranchistransportedbybranch1,whichrequiresbothgravel andsandtoberepresentedatthebedsurface(seeEqs.(5)and(6)).

6.3. Effectsofnodalpointcoefficientsandsedimentsupply

Finally we studythe dependenceof bifurcation dynamics onthe nodalpointcoefficients,kgandks,andthegravelandsandsupplyto

theupstreambranch0.Weconsidertwosituations:𝑘𝑔=5,𝑘𝑠=1 (sec-tionIIa,Fig.8)and𝑘𝑔=1,𝑘𝑠=5(sectionIIb,Fig.9).Westudytwo

(8)

Fig.8. Effect of the gravel content in the sediment supply on bifurcation evolution for 𝑘𝑔= 5 ,𝑘𝑠= 1 (section II a): flow depth H1and H2(left panels) and surface gravel content F1gand F2g(right panels). Results are given for 𝛼𝑔= 𝛼𝑠= 1 and 𝐿𝐴= 1 m. Initially 0.1 ≤ F1g≤ 0.9 and 𝐹2𝑔= 0 .2 . In upper panels ̂𝑆0= 𝑆0𝑠𝑆0𝑔= 2 (i.e.,

a relatively coarse supply) and in lower panels ̂𝑆0= 7 (i.e., a relatively fine supply). Blue and red lines indicate, respectively, branch 1 and branch 2. Here time indicates ̂𝑡. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig.9. Effect of the gravel content in the sediment supply on bifurcation evolution for 𝑘𝑔= 1 ,𝑘𝑠= 5 (section II b): flow depth H1and H2(left panels) and surface gravel content F1gand F2g(right panels). Results are given for 𝛼𝑔= 𝛼𝑠= 1 and 𝐿𝐴= 1 m. Initially 0.1 ≤ F1g≤ 0.9 and 𝐹2𝑔= 0 .2 . In upper panels ̂𝑆0= 𝑆0𝑠𝑆0𝑔= 2 (i.e.,

a relatively coarse supply) and in lower panels ̂𝑆0= 7 (i.e., a relatively fine supply). Blue and red lines indicate, respectively, branch 1 and branch 2. Here time indicates ̂𝑡. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

(9)

Finallywestressthelongtimescaleassociatedwiththetemporal changeofthebifurcationsysteminournumericalruns.Thisseemsto beduetoourassumptionofbranch-averagedchangeinthetwo bifur-cates,whichslowsdownbifurcationadjustment.Thisisbecauseinthe branch-averagedmodeltheresultofamismatchbetweenthesediment supplytoabifurcateanditssedimenttransportcapacityisdistributed overtheentirebranchratherthantheeffectinitiallybeinglimitedto theupstreamendofthebifurcate.Inrealitysuchamismatchleadstoan aggradationalordegradationalwavethatstartsattheupstreamendof thebifurcateandthenmigratesdownstream.Thisfeedsbacktothe mis-matchmorestronglythaninourbranch-averagedapproachand there-foreinrealitytheexpectedchangelikelyoccursmuchfasterthaninour idealizedmodel.Nevertheless,thereisevidencefromfielddatathat bi-furcationchangecanbeslow:achangetoanewdominantchannelmay requiresignificanttime(SlingerlandandSmith,2004)andoftenrequire severalcenturiesintheRhine-Meusedelta,anddurationsofupto1250 yearshavebeenestimatedbyStouthamerandBerendsen(2001). 7. Discussion

7.1. Theloadrelation

InouranalysiswehaveappliedtheEngelundandHansenload rela-tioninafractionalmanner(Blometal.,2017a;2016).Thisfractional formoftheloadrelationhasneverbeenproperlyvalidatedandthis ap-proachlikelyismorevalidinlowlandriverswherepartialmobilityis lessrelevant.Theanalysiscanberepeatedformorecomplicatedload relations(e.g.,thoseincludingathresholdforsignificanttransportor hidingeffects).Wedonotexpect,however,thatapplicationofamore complicatedandrealisticloadrelationaffectsouranalysisofthe equilib-riumstatesandtheassociatedconclusions,asanotherloadrelationdoes notchangetheanalysisinafundamentalmanner.Theanalysiswould stillyieldfourcoupleddifferentialequations(similartoEqs.(19)–(22)), inwhichthecoefficientsaredifferentfromtheonesbasedonthe origi-nalloadrelation.ThisalsoholdsfortheJacobianinEq.(23).Theresults woulddiffersomewhatfromtheonesbasedontheoriginalloadrelation butwedonotexpectnewphenomena.

7.2. Thenodalpointrelation

Acrucialpointinthepresentedanalysisisthefactthatweassume thatthereexistsanodalpointrelationoftheformofEq.(8)forthe unisizesedimentcase,orEqs.(9)and(10)forthemixed-sizesediment case.Thisformofthenodalpointrelationistoosimpletodescribethe partitioningofsedimentatriverbifurcations(e.g.,VanderMarkand Mosselman,2013).Wangetal.(1995)alreadysuggestedanodalpoint relationofamoreextensiveform:𝑆=𝑓(𝐵,𝑄,𝐶,𝐻,…).Itis,

how-ever,difficulttoconstrainthevariousparametersinthenodalpoint re-lation,althoughanattemptmayleadtoamorerealisticrelation.Even inthesimpleformofthenodalpointrelationusedhere,thevaluesof itscoefficientskg,ks,𝛼g,and𝛼sarenotlikelyconstantandmodels

de-thedownstreambranchesaccordingtotheratioofthewaterdischarge (̄𝑆=𝑄),whichimpliesthat𝑘=𝛼 =1(DeHeerandMosselman,2004;

Duttaetal.,2017).Thus,weexpectthatthefinerthesedimentsupply tobranch0,thelargeristhevalueofk(withintherangeof0to1). Inreality,however,conditionsaremorecomplexduetothepresence ofalateralbedslope,abend,bars,orstructures.Wediscussthelatter effectsbelow,firstfortheunisizesedimentcaseandsubsequentlyfor themixed-sizesedimentcase.

Typicallythedifferenceinbedelevationbetweenthetwobifurcates inducesalateralslopejustupstreamofthebifurcation.Thisslopeeffect increasesthesedimentsupplytothedeeperbifurcateandthereforeacts asastabilizingmechanism,asitcounteractsfurtherdeepeningofthe deeperbifurcate.Thiseffectneedstobeaccountedforwhensettingup amodelforthenodalpointcoefficient.

Bends and bars affect the flow just upstream of the bifurcation andassuchmayaffectthesedimentpartitioningoverthedownstream branchesofthebifurcation.Forinstance,thesedimentpartitioningat abifurcationthatislocatedjustdownstreamofapointbarinaninner bendis affectedbytheassociatedsecondary flowandthetransverse gradientinbedelevationjustupstreamofthebifurcation.

Thepresenceofasillinthedownstreambranch1likelyreducesthe sedimentsupplytothatbranch(Fig.10a).Consideringthenodalpoint relationinEq.(7)andassumingthatthesill’seffectonthesediment supplyislargerthanonthewaterdischarge,kmustbelargerthan1 andforarelativelyhighsill(withbarelysedimentsupplytothespecific channel)kshouldapproach∞.

A similarlineof reasoningholds undermixed-size sediment con-ditions. Recallthatthenodalpointrelations(Eqs.(9)and(10))read

̄𝑠

𝑔=𝛼𝑔𝑞𝑘𝑔 and ̄𝑠𝑠=𝛼𝑠𝑞𝑘𝑠.Theabovelateralslopeeffectinducedby theinletstepvarieswithgrain size:coarsesedimentisaffectedmore stronglythanfinesediment(ParkerandAndrews,1985),andthesame holds forthelateralslope effectintroduced bybendsandbars. This alsoapplies tothepresenceof asill inone ofthebifurcates: coarse sediment is affectedmore strongly thanfine sediment,as the trans-portofcoarse sedimentconcentratesmorestronglynearthebed.An additionaleffectofariverbendisbendsorting.Apointbartypically consistsofrelativelyfinesediment,whereasthebedsurfaceand trans-portedloadintheouterbendarecoarser(Fig.10b).Hence,thesediment supplytothebifurcatelocatedintheouterbendiscoarserthanthe sup-plytotheotherbifurcate.Theseeffectswillneedtobeaccountedfor inrelationsforthenodalpointcoefficients𝛼g,𝛼s,kg,andks.The

as-sociated consequencesforriverbifurcation dynamicswillneedtobe studied.

7.3. Thestabilitycriterion

Basedontheirmathematicalstabilityanalysisforthecaseofunisize sedimentconditions,Wangetal.(1995)foundthatthestability crite-rionfortwoopenbranchesisgivenbyk>n/3.Thiscanalsobefound throughreasoning(Kleinhansetal.,2008),whichissummarizedhereto subsequentlyextendthisreasoningtothecaseofmixed-sizesediment. Eq.(8)illustratesthatthesedimentsupplytobranchi,̄𝑠𝑖,isproportional

(10)

Fig.10. Schematic of two bifurcating branches with (a) a sill and (b) a point bar.

to𝑞𝑘

𝑖,andEqs.(1)–(3)showthatthesedimenttransportcapacityofa

branchisproportionalto𝑞𝑛∕3

𝑖 .Nowsupposethatk>n/3.Inthatcasethe

sedimentsupplyperunitwidthtobranchiincreasesmorestronglywith increasingwaterdischargeperunitwidthinbranchi,thanthesediment transportcapacity,which leadstoaggradation.Asaresultthewater dischargeperunitwidth,qi,decreases,whichmeansthatthesituation

stabilizes.Ontheotherhand,ifk<n/3,thesedimentsupplytobranchi increaseslessstronglywithincreasingqithanthesedimenttransport ca-pacity.Thisimpliesthatthechanneldegrades,whichincreasesqieven

further.Sothesituationfurtherdestabilizesattheexpenseoftheother downstreambranch,whichcloses.

Forthecaseofmixed-sizesedimentwereasoninasimilarmanner. Thesupplyofgravelandsandtobranchi,̄𝑠𝑖𝑔and̄𝑠𝑖𝑠,areproportional

to𝑞𝑘𝑔

𝑖 and𝑞𝑖𝑘𝑠,respectively.Thetransportcapacitiesofgravelandsand

inbranchi,sigandsis,nowalsodependonthesurfacegravelcontent inbranchi,Fig,andareproportionalto𝐹𝑖𝑔𝑚𝑔𝑞𝑖𝑛∕3and(1−𝐹𝑖𝑔)𝑚𝑠𝑞𝑖𝑛∕3,

respectively.Wenowsupposethatthewaterdischargeperunitwidth inbranchi,qi,increases.Thisimpliesthatthegravelandsandsupply

tobranchiincrease,themannerofwhichdependonthevaluesofkg

andks.Askgandks areexpectedtohavedifferentvalues,thegravel andsandsupplytobranchiresponddifferentlytotheincreaseinthe waterdischarge.Alsothegravelandsandtransportcapacities,sigand

sis,responddifferentlytotheincreaseinthewaterdischargeduetothe mobilitydifferencebetweencoarseandfinesediment(i.e.,grainsize se-lectivetransport).Dependingontheresultingchangeofthegraveland sandsupplytobranchi, ̄𝑠𝑖𝑔 and̄𝑠𝑖𝑠,andthechangeinthegraveland

sandtransportcapacities,sigandsis,theincreaseinwaterdischargeqi

affectsthesurfacegravelcontentinbranchi,Fig,whichisexpressedbya

coarseningorfiningofthebedsurface.Thus,basedonphysical reason-ingitismuchlessstraightforwardtodrawconclusionsconcerningthe expectedtemporalchangeandastabilitycriterionofariverbifurcation dominatedbymixed-sizesediment.

Asanextstepwerecommendtheformulationofsubmodelsforthe nodalpointcoefficientskgandks,which,amongotherparameters,likely

dependon thetransversebed slope justupstream ofthe bifurcation (BollaPittalugaetal.,2003)andhencelikelyareafunctionoftheratio oftheflowdepthinthebifurcates,H(where𝐻=𝐻

1∕𝐻2).Insucha

casetheformulationoftheJacobianinEq.(23)becomesmore compli-catedbecauseofthederivativeswithrespecttoH1andH2.Analysisof theJacobianandthenumericalresultswouldprovideinsightonthe ex-pectedtemporalchangeandthestabilitycriterionofariverbifurcation dominatedbymixed-sizesediment.

7.4. Symmetricalbifurcations

Ithasbeenfoundthatsymmetricalbifurcations(i.e.,bifurcateswith equal properties such as water discharge, channel width, and flow depth)tendtobeunstablemoreoftenthanasymmetricalbifurcations (i.e.,oneofthebifurcatesissignificantlysmallerthantheotherone) (BertoldiandTubino,2007;BollaPittalugaetal.,2015;Edmondsand Slingerland,2008;Kleinhansetal.,2013;2008;Miorietal.,2006).In ourbasecase,whichischaracterizedbyequalchannelwidth,friction, andlengthof thebifurcates,we findthatin sectionsIIandIII

sym-metricalsolutionsarestable,whichmaycontradicttheabovefindings. Ourresults aresimilar tothoseofWangetal.(1995),whofindthat a symmetrical solutionis stable fork>n/3. This similaritybetween theresultsmaynotbesurprisingasourmodelisanextensionofthe highlyidealizedmodelofWang etal.(1995)tomixed-sizesediment conditions,whereasothermodelsaccountfortheeffectsofatransverse bedslope(BollaPittalugaetal.,2015;2003;EdmondsandSlingerland, 2008;Kleinhansetal.,2013;2008),alternatebars(Bertoldietal.,2009; Redolfi etal., 2016),curvature-inducedflowasymmetry upstreamof the bifurcation (Kleinhans etal., 2008; Van Denderenet al., 2017), suspendedbed-materialload(SlingerlandandSmith,1998),cohesive sediment(EdmondsandSlingerland,2008;HajekandEdmonds,2014), bendsorting(Sloff etal.,2003;Sloff andMosselman,2012),andbank erosion(Miorietal.,2006;VanDenderenetal.,2017).These effects arenottakenintoaccountinouranalysisbutmayberepresentedby appropriatefuturemodelsforkgandks.

8. Conclusions

Weextendahighlyidealizedmodelofthedynamicsofariver bifur-cationtomixed-sizesedimentconditions.Themodelisbasedonnodal pointrelationsforgravelandsandthatsetthepartitioningofgraveland sandoverthedownstreambranchesorbifurcates.Themodeldescribes theequilibriumsolutionsand,basedonabranch-averaged approxima-tionofaggradationanddegradation,describesthetemporalchangeof bedelevationandbedsurfacetextureinthebifurcatesofamixed-size sedimentriverbifurcation.

Theintroductionofmixed-sizesedimentmechanismstotheriver bi-furcationproblemintroducesanadditionaldegreeoffreedom:the tem-poraladjustmentofthebedsurfacetextureineachof thebifurcates. Thedynamicsofthedownstreambranchesconcerningtheirflowdepth andbedsurfacetexture andtheresulting stableconfigurationof the downstream branchesresult fromdifferencesbetween (a)the gravel andsandsupplyineachbranchand(b)itsgravelandsandtransport capacity.

Wesetupamathematicalmodeloftheequilibriumstatesand dy-namicsofamixed-sizesedimentriverbifurcation.Inouranalysiswe have neglected theeffects of a transverse bed slope,alternate bars, curvature-induced flow asymmetry upstream of the bifurcation, sus-pendedbed-materialload,cohesivesediment,bendsorting,andbank erosion.Theproposedmodelthereforehaslimitedpredictivevalue re-gardingrealriverbifurcations,yetprovidesinsightontheelementary effectsofmixed-sizesedimentmechanismsontheriverbifurcation prob-lem.Subsequentanalysesmaycombinetheanalysisofmixed-size sedi-mentmechanismswiththeabovementionedeffects.

Howard (1980) and Blom et al.(2017a, 2016) have shown that there existsone solutiontothemorphodynamicequilibriumstatein a one-channelsystem withnonerodiblebanks.Inaunisize sediment two-channelsystemwithfixedbanksthreeequilibriumsolutionsexist, whereasthreetofivesolutionsexistinamixed-sizesedimentbifurcation system.

Inthemixed-sizesedimenttwo-channelsystemwedistinguishthree sections(I,II,andIII)intheparameterspacerelatedtothenodalpoint

(11)

A1. Equilibriumsolutions

Inthisappendixwe analyzeEq.(12) andexplainFig.3in more detail.ThethreesolutionsforQofEq.(12)giverisetothreesolutions

forthecombinationofflowdepthsinthedownstreambranchesHi:two

withonebranchclosed,onewithbothbranchesopen.Wenowconsider afixedvalueofksandincreasethevalueofkg,i.e.,wemakeahorizontal transectinFig.3.

Forrelativelysmallvaluesofksandkg,threeequilibriumsolutions

exist(Fig.11a).Forsuchsmallvalues of ks,there existsathreshold valueforkg(𝑘𝑔=𝑘𝑔𝑎)forwhichthereisa ̂𝑄∗suchthat ̂𝑄∗−Φ(̂𝑄∗)=0

and𝑑(𝑄Φ(𝑄))∕𝑑𝑄|

𝑄=̂𝑄∗=0.Thisimpliesthatforkg>kgatwonew

solutionsof𝑄Φ(𝑄)=0emergeandwethenfindfiveequilibrium

solutions(Fig.11b):twowithonebranchclosedandthreewithboth branchesopen.Thethresholdvaluekgadependsonks anddefinesthe

boundarybetweensectionsIandIIa,binFig.3.

Forlargervaluesofks,wefindanotherthresholdvalueforkg,which

we callkgb. At thatvalue, thenew solutionsof 𝑄∗−Φ(𝑄∗)=0that

computetheassociatedflowdepthinthetwobifurcates,Hi,and com-putetheothervariables(e.g.Sis,Sig,Fs,Fgetc)andtheeigenvaluesof

theJacobianJinEq.(23).

Fig.12ashowstheresultforQfor𝑘

𝑠=1and0<kg<4,forthree

valuesofL.Forsimplicitywedonotindicatethestablesolutions𝑄=0

and𝑄=∞.ForeachvalueofLonemathematicalbifurcationoccurs

ataspecificvalueofkg (blueskybifurcation,correspondingwiththe

occurrenceofthesolidlinesinFig.12a).For𝐿=1.33thebifurcation

intoastablesolutionoccursforkg>4inFig.12aandisthereforenot

visible.Thevaluesof kgforwhich thebifurcationsoccur correspond

withthetransitionsfromsectionItoIIainFig.3.

Fig.12bshowsasimilarplotfor𝑘𝑠=2.5.Nowweobservetwo

bi-furcations:onewherethestablesolutionforQemergesinabluesky

bifurcation(occurrenceofthesolidlinesinFig.12b),andonewhere the unstable solutions of Qare annihilated in a collision with the

stablesolutions 𝑄=0and𝑄=(saddle-nodebifurcation,

vanish-ingofthedasheslinesat𝑄=0),leavingonlyonesinglestable

solu-tioninsectionIII.Wesummarizetheconsequencesoftheseresultsin Section5.

Fig.11. Typical graphs of 𝑄Φ( 𝑄) for parameter values in sections I (left plot), II

a,b(center plot) and III (right plot). Equilibrium solutions correspond with 𝑄Φ( 𝑄) = 0 . 𝑄= 0 and 𝑄= are global solutions of 𝑄Φ( 𝑄) = 0 .

(12)

Fig.12. Bifurcation diagram for the equilibrium values of Qas a function of kgfor (a) 𝑘𝑠= 1 and (b) 𝑘𝑠= 2 .5 . Solid and dashed lines indicate, respectively,

stable and unstable solutions. For simplicity the stable solutions 𝑄= 0 and 𝑄= ∞are not shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

AppendixB. Functionsinthesystemofequations

Thisappendixprovidesthefunctionsforg1,g1g,g2,g2g, ̄𝑔1, ̄𝑔1𝑔, ̄𝑔2,

and̄𝑔2𝑔,requiredinthesystemdescribedbyEqs.(19)–(22):

𝑔1(𝐻1,𝐻2,𝐹1𝑔)=(𝑚𝑔𝐹1𝑔+𝑚𝑠(1−𝐹1𝑔)) 𝛾1𝐻 (𝑛∕2) 1 ( 𝛽1𝐻 (3∕2) 1 +𝛽2𝐻 (3∕2) 2 )𝑛 𝑔1𝑔(𝐻1,𝐻2,𝐹1𝑔)=𝑚𝑔𝐹1𝑔 𝛾1𝐻 (𝑛∕2) 1 ( 𝛽1𝐻 (3∕2) 1 +𝛽2𝐻 (3∕2) 2 )𝑛 𝑔2(𝐻1,𝐻2,𝐹2𝑔)=(𝑚𝑔𝐹2𝑔+𝑚𝑠(1−𝐹2𝑔)) 𝛾2𝐻 (𝑛∕2) 2 ( 𝛽1𝐻 (3∕2) 1 +𝛽2𝐻 (3∕2) 2 )𝑛 𝑔2𝑔(𝐻1,𝐻2,𝐹2𝑔)=𝑚𝑔𝐹2𝑔 𝛾2𝐻 (𝑛∕2) 2 ( 𝛽1𝐻 (3∕2) 1 +𝛽2𝐻 (3∕2) 2 )𝑛 ̄𝑔1(𝐻1,𝐻2)= 𝐵(1−𝑛) 0 𝐻𝑛 0 (𝑓 𝑔(𝐻1,𝐻2)𝐹0𝑔𝑚𝑔 1+𝑓𝑔(𝐻1,𝐻2) +𝑓𝑠(𝐻1,𝐻2)(1−𝐹0𝑔)𝑚𝑠 1+𝑓𝑠(𝐻1,𝐻2) ) ̄𝑔1𝑔(𝐻1,𝐻2)= 𝐵(1−𝑛) 0 𝐻𝑛 0 (𝑓 𝑔(𝐻1,𝐻2)𝐹0𝑔𝑚𝑔 1+𝑓𝑔(𝐻1,𝐻2) ) ̄𝑔2(𝐻1,𝐻2)= 𝐵(1−𝑛) 0 𝐻𝑛 0 ( 𝐹 0𝑔𝑚𝑔 1+𝑓𝑔(𝐻1,𝐻2) + (1−𝐹0𝑔)𝑚𝑠 1+𝑓𝑠(𝐻1,𝐻2) ) ̄𝑔2𝑔(𝐻1,𝐻2)= 𝐵(1−𝑛) 0 𝐻𝑛 0 ( 𝐹 0𝑔𝑚𝑔 1+𝑓𝑔(𝐻1,𝐻2) ) where 𝛽𝑖=𝐵𝑖𝐶𝐿(−1∕2)𝑖 , 𝑖=1,2 𝛾𝑖=𝐵𝑖𝐶𝑛𝐿𝑖(−𝑛∕2), 𝑖=1,2 and 𝑓𝑔(𝐻1,𝐻2)= ̄𝑆𝑔∗= ̄𝑆1𝑔 ̄𝑆2𝑔 =𝐻∗(3𝑘𝑔∕2)𝐵∗(1−𝑘𝑔) ( 𝐵∗ √ 𝐿∗ )𝑘𝑔 𝑓𝑠(𝐻1,𝐻2)= ̄𝑆𝑠∗= ̄𝑆̄𝑆1𝑠 2𝑠 =𝐻∗(3𝑘𝑠∕2)𝐵∗(1−𝑘𝑠) ( 𝐵∗ √ 𝐿∗ )𝑘𝑠

whichfollowsfromsubstitutionofEqs.(2)–(3)and(11)intoEqs.(9)– (10).

References

Bertoldi, W., Tubino, M., 2005. Bed and bank evolution of bifurcating channels. Water Resour. Res. 41 (7). https://doi.org/10.1029/2004WR003333 . W07001

Bertoldi, W., Tubino, M., 2007. River bifurcations: experimental ob- servations on equilibrium configurations. Water Resour. Res. 43. https://doi.org/10.1029/2007WR005907 .

Bertoldi, W., Zanoni, L., Miori, S., Repetto, R., Tubino M., 2009. Interaction between mi- grating bars and bifurcations in gravel bed rivers. Water Resour. Res. 45 (6) W06418 https://doi.org/10.1029/2008WR007086 .

Blom, A., Arkesteijn, L., Chavarrías, V., Viparelli, E., 2017. The equilibrium alluvial river under variable flow and its channel-forming discharge. J. Geophys. Res. Earth Surf. 122. https://doi.org/10.1002/2017JF004213 .

Blom, A., Chavarrías, V., Ferguson, R.I., Viparelli, E., 2017. Advance, retreat, and halt of abrupt gravel-sand transitions in alluvial rivers. Geophys. Res. Lett. 44. https://doi.org/10.1002/2017GL074231 .

Blom, A., Viparelli, E., Chavarrías, V., 2016. The graded alluvial river: profile concavity and downstream fining. Geophys. Res. Lett. 43. https://doi.org/10.1002/2016GL068898 .

Bolla Pittaluga, M., Coco, G., Kleinhans, M.G., 2015. A unified framework for stability of channel bifurcations in gravel and sand fluvial systems. Geophys. Res. Lett. 42 (18), 7521–7536. https://doi.org/10.1002/2015GL065175 .

Bolla Pittaluga, M., Repetto, R., Tubino, M., 2003. Channel bifurcation in braided rivers: equilibrium configurations and stability. Water Resour. Res. 39 (3), 1046. https://doi.org/10.1029/2001WR001112 .

Bulle, H. , 1926. Untersuchungen über die Geschiebeableitung bei der Spaltung von Wasserläufen: Modellversuche aus dem Flussbaulaboratorium der Technischen Hochschule zu Karlsruhe. VDI Verlag, Berlin, (in German) .

Burge, L.M., 2006. Stability, morphology and surface grain size patterns of channel bifur- cation in gravel-cobble bedded anabranching rivers. Earth Surf. Processes Landforms 31 (10), 1211–1226. https://doi.org/10.1002/esp.1325 .

Church, M., 2006. Bed material transport and the morphology of alluvial river channels. Annu. Rev. Earth Planet. Sci. 34. https://doi.org/10.1146/annurev.earth.33.092203.122721 .

De Heer, A. , Mosselman, E. , 2004. Flow structure and bedload distribution at alluvial diversions. In: River Flow 2004, Proc. 2nd Int. Conf. Fluvial Hydraulics. Napoli, Italy . Dutta, S., Wang, D., Tassi, P., Garcia, M.H., 2017. Three-dimensional numerical modeling of the bulle effect: the nonlinear distribution of near-bed sediment at fluvial diver- sions. Earth Surf. Processes Landforms https://doi.org/10.1002/esp.4186 . Edmonds, D.A., Slingerland, R.L., 2008. Stability of delta distributary net-

works and their bifurcations. Water Resour. Res. 44 (9), W09426. https://doi.org/10.1029/2008WR006992 .

Engelund, F. , Hansen, E. , 1967. Monograph on sediment transport in alluvial streams. Tech. Rep.. Hydraul. Lab., 63, Tech. Univ. of Denmark, Copenhagen, Denmark . Federici, B., Paola, C., 2003. Dynamics of channel bifurcations in noncohesive sediments.

Water Resour. Res. 39 (6), 1162. https://doi.org/10.1029/2002WR001434 . Frings, R.M., Kleinhans, G.M., 2008. Complex variations in sediment transport at three

large river bifurcations during discharge waves in the river rhine. Sedimentology 55 (5), 1145–1171. https://doi.org/10.1111/j.1365-3091.2007.00940.x .

Hackney, C.R., Darby, S.E., Parsons, D.R., Leyland, J., Aalto, R., Nicholas, A.P., Best, J.L., 2017. The influence of flow discharge variations on the morphodynam- ics of a diffluence-confluence unit on a large river. Earth Surf. Processes Landforms https://doi.org/10.1002/esp.4204 .

Hajek, E., Edmonds, D., 2014. Is river avulsion style controlled by floodplain morphody- namics? Geology 42 (3), 199–202. https://doi.org/10.1130/G35045.1 .

Hardy, R.J., Lane, S.N., Yu, D., 2011. Flow structures at an idealized bifurcation: a numerical experiment. Earth Surf. Processes Landforms 36 (15), 2083–2096. https://doi.org/10.1002/esp.2235 .

Hirano, M. , 1971. River bed degradation with armoring. Trans. Jpn. Soc. Civ. Eng. 3 (2), 194–195 .

Howard, A.D. , 1980. Thresholds in river regimes. In: Coates, D.R., Vitek, J.D. (Eds.), Thresholds in Geomorphology. Allen and Unwin, Boston, pp. 227–258 .

Kleinhans, M.G., Ferguson, R.I., Lane, S.N., Hardy, R.J., 2013. Splitting rivers at their seams: bifurcations and avulsion. Earth Surf. Processes Landforms 38 (1), 47–61. https://doi.org/10.1002/esp.3268 .

Kleinhans, M.G., Jagers, H.R.A., Mosselman, E., Sloff, C.J., 2008. Bifurcation dynamics and avulsion duration in meandering rivers by one-dimensional and three-dimensional models. Water Resour. Res. 44, W08454. https://doi.org/10.1029/2007WR005912 . Lanzoni, S., 2000. Experiments on bar formation in a straight flume: 2. Graded sediment.

Water Resour. Res. 36 (11), 3351–3363. https://doi.org/10.1029/2000WR900161 . Van der Mark, C.F., Mosselman, E., 2013. Effects of helical flow in one-dimensional mod-

elling of sediment distribution at river bifurcations. Earth Surf. Processes Landforms 38, 502511. https://doi.org/10.1002/esp.3335 .

Marra, W.A., Parsons, D.R., Kleinhans, M.G., Keevil, G.M., Thomas, R.E., 2014. Near-bed and surface flow division patterns in experimental river bifurcations. Water Resour. Res. 50 (2), 1506–1530. https://doi.org/10.1002/2013WR014215 .

Miori, S., Repetto, R., Tubino, M., 2006. A one-dimensional model of bifurcations in gravel bed channels with erodible banks. Water Resour. Res. 42, W11413. https://doi.org/10.1029/2006WR004863 .

Mosselman, E., Sloff, K., 2008. The importance of floods for bed topography and bed sedi- ment composition: numerical modelling of rhine bifurcation at pannerden. In: Gravel- Bed Rivers VI: From Process Understanding to River Restoration. Elsevier, pp. 161– 179. https://doi.org/10.1016/S0928-2025(07)11124-X .

Paola, C. , 2001. Modelling stream braiding over a range of scales. In: Mosley, M.P. (Ed.), Gravel-bed Rivers V. Wellington, New Zealand Hydrological Society, pp. 11–46 . Parker, G., 1991. Selective sorting and abrasion of river gravel. I: Theory. J. Hydraul. Eng.

117 (2), 131–147. https://doi.org/10.1061/(ASCE)0733-9429(1991)117:2(131) . Parker, G., Andrews, E.D., 1985. Sorting of bed load sediment by flow in meander bends.

(13)

tion. In: Proc. 3rd IAHR Symposium on River, Coastal, and Estuarine Morphodynamics (RCEM) . Barcelona

Sloff, K., Mosselman, E., 2012. Bifurcation modelling in a meandering gravel- sand bed river. Earth Surf. Processes Landforms 37 (14), 1556–1566. https://doi.org/10.1002/esp.3305 .

Stouthamer, E., Berendsen, H.J., 2001. Avulsion frequency, avulsion duration, and inter- avulsion period of Holocene channel belts in the Rhine-Meuse delta, The Netherlands. J. Sediment. Res. 71 (4), 589–598. https://doi.org/10.1306/112100710589 .

Springer-Verlag, New York . 844p

Zolezzi, G. , Bertoldi, W. , Tubino, M. , 2006. Morphological analysis and prediction of river bifurcations. In: Braided Rivers: Process, Deposits, Ecology and Management, Vol. 36. Wiley-Blackwell, IAS Special Publ., pp. 233–256 .

Referenties

GERELATEERDE DOCUMENTEN

Nadat de projectresultaten met convenantspartners zijn uitgewerkt in oplossingen, weten telers met welke emissieroutes ze rekening moeten houden en wat ze eraan kunnen

‘Ik leer Nederlands omdat ...’: een project van het Algemeen-Nederlands Verbond : studenten Nederlands in Europa vertellen over hun liefde voor de Nederlandse taal en cultuur /

Pakketadvies daratumumab combinatiebehandelingen (conclusie) Daratumumab toegevoegd aan bortezomib en dexamethason (DarBorDex) en daratumumab toegevoegd aan lenalidomide

Theorem 1 In the homogeneous chain with the finite time hypothesis, the strategy to publish immediately every intermediate passed step is better for a scientist than the strategy

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of

tions are: the state space is counta&#34;lle, the action space is measurable and the supremum of the expected total of the positive rewards over the Markov strategies is finite..

Data equalizers serve to combat the intersymbol interference (I SI) and noise which arise in digital transmission and recording systems. They comprise one or more filters,

Als je bijvoorbeeld kijkt naar Lipton Ice die zou heel goed kunnen passen bij voetbal an sich omdat Lipton Ice een heel algemeen merk is en voor mannen, maar ook voor vrouwen en