• No results found

A method for valve height measurements

N/A
N/A
Protected

Academic year: 2021

Share "A method for valve height measurements"

Copied!
74
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

A method for valve height measurements

Citation for published version (APA):

Couweleers, G. C. A. (1988). A method for valve height measurements. (TU Eindhoven. Vakgr. Transportfysica : rapport; Vol. R-953-D). Technische Universiteit Eindhoven.

Document status and date: Published: 01/01/1988 Document Version:

Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain

• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

(2)

A METHOD FOR VALVE HEIGHT MEASUREMENTS

FRED COUWELEERS

November 1988

Begeleiders: P. Smulders

H. Cleijne

R 953 D

WIND

ENERGY GROUP

Technical University Eindhoven

Faculty of Physics

Laboratory of Fluid DYnamics and Heat Transfer

P.O. Box 513

5600 MB

Eindhoven. the Netherlands

Consultancy Services

Wind Energy

Developing Countries

p.O.box 85 3800 ab amersfoort holland

(3)

CONTENTS page 1 2 3 5 6 7 8 12 13 13 14 15 19 23 24 (numeric) Annex A: Calculation of h and

a

m Annex B: Results of calibration

Results of calibration (graphical) Results of tests (statical)

Annex C: Results of test with x-t writer

stability test, amplifier test, switch on test Annex D: Results of droptests

Annex E: Resul t of measurements during pump stroke Annex F: Program listing MRS-MEET and manual

Annex G: Program listing CALIBRAT and manual Summary

Contents

List of symbols

Chapter 1 Introduction 1.1 Introduction

1.2 Results of previous work 1.3 Theory

Chapter 2 Static calibration 2.1 Experimental setup

2.2 Calibration

2.3 Results of calibration 2.4 Statical test

Chapter 3 Dynamic measurements 3.1 Introduction

3.2 Experimental setup

3.3 Initial dynamic measurements 3.4 Results of drop tests

3.5 Measurements in a pump Discussion

(4)

SUMMARY

This research report concerns a method (developed earlier) to

determine

the position of a valve in a single action piston pump. The method

uses

a transducer with three magnetoresistive sensors (which detect

magnetic

field variations) and a valve with a built in permanent ring magnet.

This configuration meets the requirements (wide frequency

range,

water

proof, 10 mm height range) and is calibrated with respect to

parameters

h

m

(height of the valve's centre),

e

and

tp

(spherical coordinates

of

a

vector perpendicular to the

valve's

plane),

with

which

the

valve's

position can be described.

Because the ring magnet was not homogeneous and the valve

could

shift,

it was not possible to determine the valve's

POSt

Lion.

It was found that the valve's centre height was linearly proportional to

the sensors'

avera(!e

output voltage. Tests show that the height

can

be

approximated using this linearity (error

~

0.2 mm).

Two ASYST programs were written for measurement of

the

valve's

height

and for calibration. With these programs

a

number

of

dynamic

height

measurements were performed: drop tests, the results of which agree with

theory, and measurements of valve height during a pump stroke.

(5)

LIST OF SYMBOLS

[mm] height

vector perpendicular to plane of valve spherical coordinates of vector m

constant of gravitation friction coefficient magnetic field strength isotropic resistivity

heights of adjusting screws voltage calculated height h, x m

a,

f{> H P hi' h2, h3 V h'

e

1

e

2 t Fg F f m g k indices: [A/m] [Q] [mm] [V] [mm] [V/mm] [mm] [sec] [N] [ N] [kg] [m/s2] [kg/s] o parameter of 1inear output voltage idem time force of gravitation force of friction mass at beginning relation h vs average m e at end

gem average of three sensor outputs sensor x

(6)

Chapter 1: INTRODUCTION

1.1 Introduction

Part of the work at the Windenergy group is dedicated to waterpumping windmills. They are used allover the world, but especially in developing countries as an important substitute for systems which require fossil fuels.

Because they are used in these countries they have to meet a number of requirements. They have to be cheap and reliable, have a high efficiency and one must be able to repair them with the means available there. In general it is impossible to design a configuration that completely meets all these criteria, it is a compromise.

Often single action piston pumps are used in these systems (fig 1).

istonvalve

footvalve

Fig 1 Outline of single action piston pump

(7)

The valves in these pumps move passively, 1.e. their motion is controlled by the flow of the liquid only. Valve motion is related to pump rod forces. These forces are important Whf..il reliabil i ty is

concerned ( large pump rod forces wi 11, in time, destroy the pump). In order to minimize these forces it is necessary to know about valve motion. To check the existing models for this motion, actual measurements have to be done. The measurements are concentrated on the piston valve.

1.2 Results of previous work

During his traineeship B.J. van der Ceelen developed a method and built a transducer to measure valve position: [CEE88].

,

,

/

I

Fig 2 Draught of transducer

I

. I

I_~-,- ,

,

\ .

The method uses the transducer in fig. 2 and a valve with a built-in permanent ring magnet. The sensors in the transducer detect variations of the magnetic field normal to the direction of current.

Because the sensors' outputs are dependent on both the magnetic field strength and the direction of the field, i t should be possible to measure the valves position (actually the ring magnets position).

(8)

0,75

1,0 H1HO

-0,75

Fig 3 The sensors are made of permalloy strips, a material that changes

its resistivity in the presence of a magnetic field, and

processed in such a way as to linearize the resistivity

as a function of magnetic field (linearity error ::s 3 7. full

scale, see specifications)

..

,

I

,

T_-.n"

~

I 'r" I

J~

,

~

,

III

,

"

I ~

,

I II I

,

I I I I I I

,

,

I 'A I 1/1 I 1/'1 I ~

,

~!/', I V

-I

,

,

--n n -00 -.0 u .., "'wIU/ ... ,

Fig 4 Temperature dependence of sensors (temperature coefficient of

(9)

1.3 Theory

The valves position can be described by three parameters, when we assume that the ring magnet is homogeneous and that the shift relative to the axis is negligible. These parameters are: h (the height of the

m

valves center relative to the piston),

a

and ~ (two~pherical coordinates of a vector m that is perpendicular to the plane of the valve).

If

the ring magnet is homogeneous, a rotation relative to m will have no effect. When the shift is negligible, the z- and z'-axis will be the same (origin 0 is the center of the base or piston, origin 0' is the center of the valve).

z

X'

x

Fig 4 Orientation of valve, the pumprod is the z-axis, the x-y-plane is the piston or the base

(10)

Chapter 2: STATIC CALIBRATION

2. 1 Experimental setup

The calibration of this method was carried out with the device shown in fig. 5.

5

6 o

sigr.al and supply Jines

2. transducer .. 1th MRS

valv~gUide

vaJ',e withbuilt-in ring aagnet basis

l':.8,9: adjust 1ng screws f'-jndicator

pUMp rod

Fig 5 calibration device

c

e

a: valve with built-in ring magnet b:transducer

c:supplyand amplifier d:digital multimeters e:x-t writer

Fig 6 experimental setup

(11)

The height h and angle

e

can be set using the three adjusting screws

m

(h, h and h are the heights of the screws in mm, measured with

1 2 3 caliper gauge). hm

=

h + h + h 1 2 3 3 (1) .; 3( h -h )2+ (h -h +h -h )2+ 3600 1 2 3 1 3 2 cos

e

=

60 (2)

The angle ~ can be set using the scale division on the base.

2.2 Calibration

The valve height was increased with steps of 1 mm, from 3 to 10 mm. At each height the output voltages at

e

=

00 and ~

=

00 are determined. At these heights (except for h

=

10 mm) the output voltages are also

m

. 0 0 0 0 0 0 0

determIned at

e

=

2,5 and ~

=

0 , 60 , 120 , 180 , 240 and 300 .

Furthermore at h

=

8 mm the output voltages are determined at five

m

angles

e:

10, 20, 30, 40 and 50 (each time at the six angles ~ mentioned above) .

The output voltages that were measured were actually the maximum and minimum values each sensor could have at one position (described by h ,

m

e

and ~). This was due to the fact that the ring magnet proved not to be homogeneous. A rotation relative to m affected the output voltages. The valve centre could shift relative to the axis of the device. This also affected the output voltages.

By shifting and rotating the valve a max. and min. output voltage of each sensor can be determined.

(12)

2.3 Results of calibration

h~l

(mm)

~l

21

I I I I

..

V,SQ.nSDr1 (11/)

0 0,2- o)~ o){, 0,8 i,o 1,1 1 ,4 1)

t.

Fig 7 Graph of h vs V (max / min, 9

=

0°)

m sensor 1

These voltages are plotted vs the adjusted valve height (fig. 7). The difference between max. and min. output voltage at one height is about

0,1 Volt.

At 9

=

2,50 this difference increases as the height increases, due to a geometrical effect.

o

Fig 8 Graph of V vs ~ (max / min, 9

=

2,5 ,

°

h

=

7 mm)

sensor 1 m

(13)

The plot of sensor output vs rp (fig 8) shows that the voltage varies with rp as a cosine. The amplitude of this cosine is determined by

e

(as

o 0

follows from the measurements at h = 8 mm and

e

= 1 upto 5 ) and the

m

distance from ring magnet to sensor.

... _ _ _ _ _ _ _ _ _ _ _ _4 ' • • j " " . l -~ -. I-_·~:·-t ._-~-_:- ....:."---_.:..--_._~ • • + - •.,j ~ . - l . : I

-- ;- -

--;_:~-~;~-~-;

}-->-j

li

.

;

- ! . . !

2.

L----L_.-.._-..._-'--_£..---L_---'-_--l--"':'".-~.

--+:.

··.·:~~I~+1J

o 0,2.

o,~

0,6 0)8 .ftO

",2

1,1.1

",'-,---.-,-'.",-'::"1

h

m (mrn)

B

Fig 9 Graph of h vs V (max/min,

e

=

2,5°)

m

sensor 1

The val ues in this plot are

o 0

(at rp

=

60 and rp

=

240 , Fig. 9 shows the plot of h vs V

m sensorl the absolute minimum and maximum values respectively) .

Because of this difference in sensor output voltages it is impossible to determine the exact position from the measured outputs.

However, the output voltages were somewhat correlated. If one sensor has its max. output voltage, the other two don't have max. outputs. This suggests that the average output voltage can be a means of determining the valves centre height (on averaging the sinellke functions cancel since cos(rp - 240) + cos(rp - 120) + cos(rp)

=

0).

This result in two linear relations: hm

=

7,23 Vgem - 2,35 at

e

=

00 h

m

=

7,26 Vgem - 2,34 at

e

=

2,50

(14)

These relations differ only slightly. Summarizing we can say that h is

m

linealy proportional to V (the average output voltage). The height of gem

the valves centre can be found by averaging the sensor output voltages, independent of

a

or I{J. This method meets two of the requirements in

[CEE88]: it is non contacting and the linearity is valid in a range upto 10 mm. '.''T'" I': _... ~;;.. Vs~,:':-c: volt~~ (v) O.q 0,6

0.'

0,'

Since ambient temperature isn't constant, the outputs of the sensors (temperature dependent sensitivity) aren't constant either. Using the x-t writer two sensor output voltages are monitored for 75 hours

o (h

=

0 mm,

a

=

0 ). m 01 ~,1 I 1 tirM

o

j 11) B l,e 1$ 30 3~ (I>-....,,)

Fig 10 Output voltages vs time at h

=

0 mm and

a

=

00

m

The output voltage could vary over a range of about 20 mV (fig. 10). This temperature effect is also present when the supply of the transducer is swi tched on. The sensors are somewhat heated and finally reach thermal balance with the surroundings. This process was monitored for 1 hour using the x-t writer (fig. 11).

(15)

0,' , " 0,> G,S ! 0,' 0,1 I 0,' OJ,

..

...

..

..

..

60 ;0

hrn.1'\ )

Fig 11 Output voltage vs time after switching on

The three-channel amplifier was tested by monitoring the unamplified and amplified signals of one sensor. The amplification and supply appears to

be stable (fig. 12). 4 ~"1,,~ ---~-:--:-;:'-;---I I -;'j- .,. , .._...~_.--~~_~~_~__~'.--'----_ _ ~..--...--.r---" ! '" l ' 11 .~ I~ t:r It.

(16)

2.4 Statical test l

h

(mrn)

b\

10

L

4

Finally the method was tested statically. At a certain height and angles 9 and 'P the output voltages were measured, a few times. The calculated heights (using the linear relations stated in section 2.3) are com ared with the ad'usted hei

1.. 4

6

8 -10

Fig 13 Calculated height (h') vs adjusted height (h)

This shows that you can approximate the height using this method. The error in the calculated height is about 0,15 mm.

(17)

Chapter 3: DYNAMIC MEASUREMENTS

3.1 Introduction

After these static measurements the method has to be subjected to dynamic tests. Generally we would like to use this method to determine the height as a function of time during motions (more specifically the motion C'f a valve during a pump stroke) Therefore the three sensor

output voltages must be determined as a function of time.

This can be done using a data acquisition system, such as the IBM computer with a Metra Byte card (the system used in the Windenergy group). This system is described better in [BEE87].

Wi th such a system we can check whether the method is capable of monitoring motions of the valve. As stated in [JAN87] the valve closure time can be as small as 5 milliseconds.

3.2 Experimental setup

The data acquisition is carried out using DMA (Direct Memory Access). Within ASYST (a programming language often used in such cases) only one channel can be sampled at a time. The time between two samples must be considerably shorter than the time in which the signal changes significantly. Then the three output voltages can be treated as sampled simul taneouslyand the height can be determined from the average output voltage.

Very short times between two samples must be avoided because the data buffer (in which the acquired data are stored) has a max. size of 64 kByte. Very fast sampling can lead to a situation in which the buffer is full before the motion that was monitored is completed.

Two programs were written (one for measurements and displaying of the results and one for calibration) to support the data acquisition system. This was done based on the work by others: [BEE88].

The measuring program samples the three sensors subsequently (two hundred times each) and calculates the height from these outputs.

The time between two samples can be set and thus determines the sampling frequency. The programs are explained more extensively in annexes F and

(18)

3.3 Initial dynamic measurements

Before measurements of the valve motion during a pump stroke simple drop tests were performed to check the entire system (hardware and software) and to get to know it.

For this kind of test was chosen because the motion is known (so the results can be checked) and the motion is similar to that of a closing valve. In both cases there are intervals at the beginning and at the end of the motion where both the output voltages and the height are known. This causes these motions to be very suitable for calibration, as will be shown below.

Fig. 14 shows the results of a measurement on a falling valve. The valve is held at the valve stop and dropped at

acquisition has been started at t

=

O.

t = t after the data

1

t ..

U(UOLTsr~

1 , . 8 U[UOLT8f1 . • 8 _

::~

,--;;8~'3C;;:8~-,-=f;9;:-;8~-.~1;:S5==8="".

~ ~. ::~~ ::~

'='2';"18:=""',--:2:'=7C;;:1I~ • 838 • 898 • 158

U[SENSOR 1] T[SEC] U[SE"80R 2]

U[UOLTS[

~~:: ~~~~\

,41111 -. eee --..,.,..., 7 II'f , 8 3 8 ' . 8 9 8 ' .1'58' .2111' ,2711 U[SENSOR 3] T[SEC) .2'18 ,,'78 Tl SEC]

Fig 14 Result of measurement on falling valve (voltages vs time)

h

=

h (in this case the height of the valve stop

=

10,8 mm) for

m 0

o

s t stand h = h (= 0) for t s t s t . This is valid for all drop

1 m e 2 e

(19)

h = C

v

+

c

0 1 gem,0 2 he = C

v

+ C 1 gem,e 2 h - h h - h C = 0 e C = h - V

0 e 1 V -V 2 0 gem,o V -V

gem,o gem,e gem,o gem,e

The height is linearly proportional to the average sensor output voltage (as stated in section 2.3) and can be written as:

h - h o e h (t) = ;-;---.,:---m V -V gem,o gem, e h - h o e • Vgem(t) + h0 - Vgem,0• V -V gem,o gem,e

In different setup temperature and external magnetic fields wi 11 be different. With the calibration program (that calculates the values of Vgem, and V ) the val ues of C and C (dependent on these

0 gem,e 1 2

factors) can be adapted to new conditions.

3.4 Results of drop tests

As a first experiment the valve height was measured, as it fell down the axis of the calibration device (see section 3.3).

The desired sample frequency was set to be 800 Hz (the data acquisition then takes 0.25 sec). The actual sampling rate was three times this frequency: 2400 Hz. HtNM] 18 •• n .•

••••

4 .••

••••

.838 .898 .U8 .218 .278

Fig 15 Height vs time as result of drop test

(20)

Resl..llcf> of

me."sl..lr,m~ntsst"lla.oI

in

",nnc.J\.

O.

For this motion we can form the following equation:

F

(t)

=

-m g e

g x

=

-k

~

{x(t)} e

a

t x

This force is made up of two parts: friction of air and friction at valve guide.

a

2

'*

m

2

{x(tH

=

at

a

- mg - k --- {x(t)}

a

t

x

I- -

1

I

o

-Fig 16 Orientation of forces working on falling valve

This gives eventually:

~

m

~

k

x(t)

=

h + --- g - --- g t - ---2 g exp (- --- t)

o k2 k k m

When we try try to fit this relation to the measured plot we find that the curve is best approached when we take on a value of kim

of about 11.

16

(21)

, / '

[1-~?1'J6)

s

"'IJ -

:r

Ie.

Fig 17 Calculated height vs time (0) and curve fitted to these points (solid line)

According to the sensors' specifications the frequency range of the sensors is upto several MHz. It was expected that even fast motions could be monitored. The results shown above indicate that indeed dynamic measurements can be done. Hereby, another requirement of [CEE88] is met. The signals in figs. 14 and 15 aren't very smooth, there is a 100 Hz

interference on the signal. This is probably caused by the supply from the amp I ifier: a rect ifier causes one period of the mains voltage to become two periods (2x50=100 Hz). A capacitar changes this voltage into a DC signal. Because the capacitar wasn't dimensioned correctly, the vol tage drops when the sensors rece.i ve current: 100 Hz interference. ASYST allows you to smooth the signals (i. e. the signal is Fourier-transformed and then re-transformed after the high-frequency part is canceled). Htl'1HJ 1B • • 1& • • e .••

...

••••

T (SEC] 0,06 0,10 0,10 0,2.5

(22)

Another measurement shows that the system is capable of monitoring even faster motions. In the results you can point out the different stages in the fall, changes that are much faster that the general mot ion

(fig. 19). HtMHJ 16. e .l2.e 8.ee 4.ee .lIee

.1I3e • 11911 • 1511 .21e .27e

'ii_naMe s 8:TEST?DAT

Fig 19 Height vs time as result of drop test

TtSECJ

1: the valve starts to drop, according to equation (3)

2: the valve tilts and the fall is stopped momentarily by the valve guide (max. tilting occurs at 9 ~ 50)

3: the valve continues to fall, again according to (3) 4: the valve hits the basis and bounces back.

A funny example of this bouncing follows from measurements on a valve, when you force it to fall like a dime on a table:

NUIMJ 18 •• la .• •. e. 4.e• . ee.

L

_

.ae. .6ee 1.ee 1.4e 1. Ie

£llefta.e • 8:TEIT6.DAT TtSECJ

(23)

duct

As is shown in fig. 20 during this bouncing and turning the valves centre height increases and decreases but is never equal to zero, i.e. the valve centre never hits the base. In the end the motion is stopped by friction.

3.5 Measurements in a pump

After these droptests enough of the system was known to perform the planned measurements of valve motion in a running pump (in fig. 1).

In-stead of the usual metal duct a new perspex duct was made to allow eventual stroboscopic measurements. The piston moves inside a hole bored in the perspex block.

The transducer is placed at the pump rod to function as the val ve stop. The signal and supply lines are lead out of the pump by a system of two hollow screws (with O-rings to make it waterproof) . This system is shown in fig. 21.

Fig 21 Draught of system of two hollow screws to lead lines out of the

pump. At the arrow head the rubber ring is pressed against the lines by the narrow screw to assure water resistance

(24)

Unfortunately the transducer didn't meet the last requirement of

"461Ot.t.I7

[CEE88]: water resistance. After the transducer submerged for a few minutes, the water reached the sensors inside the transducer. For this reason only one measurement could be done properly:

H[ 1 ' " ] 16.11 12.11 8.1111 4.88 .888 .unl .31111 .51111 . ?1111 .91111

rtl_naN. ~ B:DATA.l TlSEC]

Fig 22 Height vs time as result of measurement during a pump stroke

(25)

H LHH] 16.8 1:/.8 8.88 , I . - - - \

\

4.88 .888

Fig 23 height vs time, interference canceled

Comparison with [JAN87] shows agreement, where shape is concerned.

Actually the measured result isn't of much interest since the cup in the pump didn't fit at the time. Therefore water could flow easily between the piston and the duct, in stead of through the holes in the piston. The interesting fact is that this method can be used in measurements of valve motion. In chapter 4 a few points of interest are mentioned for future measurements of this kind.

(26)

IDstuthoek top~"t1no.stlc.lI o1f---."TO---,TIO--L:J:===-27rO---I..,60-;SI;;:U:t,t~....::;.;--"-U-'-h"-' I lcyadrnl I o 0,.83 0,H3

Fig 24 height vs time as result of calculation [JAN87]

(27)

Chapter 4: DISCUSSION

Wi th the present method it is possible to determine the height of the valve, not depending on

e

or ~ (al though water resistance is an important factor and more attention should be payed to it). The error in the height is smaller than 0.2 rom, both statical and dynamic (see last remark) .

If the shifting was canceled (e.g. using floating valves which are much higher than usual disk valves and can be fitted closer to the rod because they don't tilt), information about ~ can could be derived from

o the measurements, to check whether the valve turns or not (then

e

~ 0 ).

Another method would be to minimize the shifting and to use better (more homogeneous) magnets. Then an extens i ve cal i brat ion must be done with respect to

e

and~. It seems useful to use a temperature correcting circui t and to replace the screws (which are adjusted using gauge slides) with micro meters, which can be adjusted much more accurately.

A point of interest could be to check the effect of the moving magnet near conductors. This creates additional magnetic fields which in turn affect the sensors' outputs and contribute to the error in the calculated height (in dynamic measurements).

(28)

REFERENCES

[BEE871

[BEE88]

[GEE88]

[JAN87]

P. Beekman

"Een meetsysteem voor het meten van pompstangkrachten"

*

Internal report

R 857

S,

May 1987

P.

Beekman

Measure program version

2

(TESTRIG2.PMP) for pumptestrig

updated 12-4-1988 (internal note*)

B.J. van der Ceelen

"Two methods for dynamic measurement ot the

valve

height

in a piston pump"

*

Internal report

R 939 S, September 1988

\II.

Janssen

"Berekening van de kleppenbeweging in zuigerpompen"

*

Internal report

R 860 S. June 1987

*

Internal reports of the Laboratory of Fluid Dynamics and

Heat

Transfer

(29)

Annex A: Calculation of hand

e

m

The three adjusting screws can be represented by three vectors: h , h and h (lengths in mm).

1 2 3

The plane of the valve can then be described by:

x

= [

2U

+

~

[

::~~

]

The z-axis can be described by:

[ 10v'3 ] + P. 30 h -h 3 2 (h +h +h )/3 1 2 3

The intersection of the plane and the z-axis can be calculated from:

{

h + A (h -h ) + P. (h -h )

=

v

3 3 1 3 2

- A 10v'3 + P. 10v'3

=

0

20 + A 30 + p. 30

=

0 This leads to:

A

=

-1/3, p.

=

-1/3 and v

=

(h +h +h )/3

1 2 3

intersection point = height valve center =

Xl

_--+-_~iI::::::::::

Y

Fig 1 Orientation of vectors representing screws

(30)

Calculation of e: cose

=

a

= [

lal

=

I

b

= [

-1:~3

] x [

1:~3]

=

[20h3~~~~::~~IOh,

V3 ]

h -h h -h -600v3 3 1 3 2

I

bl

= 1O/9(h -h )2 + 3(h -h +h -h )2 +10800 1 2 3 1 3 2 cose = _-;===::::;==-=6=0===::::;==:::::; / 3 (h -h)2 + (h - h +h -h)2 + 3600 1 2 3 1 3 2

(31)

Annex B: Results of calibration (numeric)

h

mm1

h2

mm

h3

hm

e

'P V1

V2

V3

mm 11Im degr degr V V V

Ah.O.1 mm. Av=O.02 V. 10.00 10.00 10.00 10.00 0 0 1.68 1.54 1.65 1.81 1.66 1.73

-9.00 9.00 9.00 9.00 0 0 1.54 1.43 1.56 1.67 1.55 1.65 8.13 9.+1 9.+1 9.00 2.5 0 1.52 1.41 1.61 1.64 1.52 1.68 ,, ,, ,, , , ,, 60 1.50 1045 1.58 1.61 1.56 1.66 , , ,

.

,, , , ,, 120 1.52 1.41 1.54 1.&4 1.58 1.62 ,, ,

.

, , ,, ,

.

180 1.51 1.45 1.52 1. 70 1.56 1.60

·

,

·

,

·

, ,, ,

.

240 1.61 1041 1.55 1. 73 1.53 1.&4 , , , , ,, ,, ,, 300 1.57 1.40 1.59 1.70 1.50 1.67

h

1

h2

h3

hen

e

.,

Vi

V2

V3

mm mm mm mill degr degr V V V

Ah=O.1 mm AY .. O.02 V. 8.00 8.00 8.00 8.00 0 0 1.39 1.29 1.46 1.52 1041 1.55 7.13 8.+1 8.+1 8.00 2.5 0 1.39 1.29 1.50 1.51 1.40 1.58 , , ,,

·. ·.

·

, 60 1.37 1.32 1.48 1.48 1.44 1.57

·

.

,

.

·

.

·.

·

.

120 1.38

1.35

1.44 1.50 1.45 1.53 ,

.

·

.

·

. ·.

·

.

180 1.42 1.33 1043 1.54 1.44 1.50

·

.

·

.

·

. ·.

·

.

240 1.+1 1.29 1.+1 1.56 1.40 1.52

·.

,, ,,

·

.

·.

300 1.42 1.27 1.46 1.54 1.37 1.56

(32)

hi mm 4h=O.i mm.

hm

mm I

e

I

cp de9l deg,. Vi Y 4Y=O.02 Y. 7.00 7.00 7.00 7.00 0 0 1.22 1.16 1.30 1. 34 1. 27 1. '40 6.13 7.+4 7.+4 7.00 2.5, 0 •• 2'40 •. 300

·.

·.

·. ·.

·.

60 120 180 1.20 1.13 1.35 1.31 1.23 1. ..3 1.18 1.16 1.32 1.27 1.27 1."1 1.19 1.18 1.28 1.30 1.28 1.37 1.23 1.16 1.26 1.34 1.27 1.34 1.25 1.13 1.28 1.36 1.23 1.36 1.2.. 1.11 1.31 1.35 1.20 1.'40 hi h2 h3

11m

e

cp V1 V2 V3 mm mm mm mm deg,. deg,. V V V 4h=O.1 mm. 4Y:O.02 V. 6.00 6.00 6.00 6.00 0 0 1.10 1.O'l 1.20 1.21 1.15 1.29 5.13 6.+4 6.+4 6.00 2.5 0 1.08 1.02 1.23 1.18 1.11 1.31

·

.

·

.

·. ·. ·.

60 1.05 1.O'l 1.21 1.H 1.15 1.30

·

.

·. ·. ·. ·

.

120 1.06 1.06 1.18 1.16 1.15 1.26

·

.

·. ·

.

·. ·.

180 1.09 1.O'l 1.16 1.20 1.1.. 1.23

·. ·.

·.

·

.

·.

2'40 1.11 1.01 1.17 1.21 1.11 1.25

·. ·

.

·

. ·.

·

.

300 1.10 0.99 1.19 1.20 1.08 1.28

28

(33)

I h1 h2 h3 hm

a

'P V1 V2 V3 mm mm mm mm deg .. deg .. V V V Ah=O.1 mm. AV:O.02 v. 5.00 5.00 5.00 5.00 0 0 0.95 0.91 1.06 1.05 1.01 1.15 04.13 5."H 5."H 5.00 2.5 0 0.93 0.89 1.09 1.02 0.97 1.17

·

.

·. ·.

·

. ·.

60 0.91 0.91 1.08 0.99 1.00 1.16

·. ·

.

·

.

·

.

·.

120 0.92 0.92 1.05 1.01 1.01 1.13

·

.

·

.

·

.

·.

I

·

.

180 0.94 0.91 1.004 1.04 1.00 1.10 i

·.

·

.

·

.

·.

·.

2040 0.96 0.88 1.004 1.05 0.98 1.12

·

. ·. ·.

·

. ·.

300 0.95 0.88 1.07 1.05 0.95 1.15 ht h2 h3

hm

e

'P Vt V2 V3

mm IlIm mm mill de, .. deg .. V V V

Ah:O.t mm. AV_O.02 V. 4.00 4.00 4.00 4.00 0 0 0.81 0.78 0.93 0.90 0.87 1.02 3.14 4."H 4.44 4.00 2.5 0 0.79 0.76 0.96 0.87 0.84 1.03

·.

·

.

·

.

·

.

·

.

60 0.77 0.77 0.96 0.84 0.88 1.004 • •

·

. ·.

·

. ·.

120 0.80 0.81 0.93 0.88 0.89 1.01

·.

·

. ·.

• •

·

.

190 0.82 0.79 0.92 0.91 0.88 0.98

·. ·. ·

.

·.

·

.

2040 0.83 0.76 0.93 0.91 0.85 1.00

·

.

·. ·.

• •

·.

300 0.81 0.76 0.94 0.90 0.82 1.02

(34)

! I h1 h2 h3 hm

e

'/1 r VI V2 V3 I mm mm mm mm degr degr ; V V V ll.h:O.l mm. ll.V:O.02 v. 3.00 3.00 3.00 3.00 0 0 0.&4 0.&4 0.79 0.73 0.73 0.87 2.13 3.44 3.44 3.00 2.5 0 0.65 0.65 0.82 0.72 0.72 0.89

·

. ·. ·

.

·

.

·

.

60 0.&4 0.65 0.81 0.70 0.7-t 0.88

·

.

·.

·

.

·. ·

.

120 0.&4 0.66 0.79 0.72 0.73 0.86

·.

·.

·. ·. ·

.

180 0.66 0.65 0.79 0.7-t 0.73 0.85

·

.

·

.

·

.

·.

·

.

2-tO 0.67 0.63 0.79

O.H

0.71 0.86

·

.

·

.

·

.

·.

·

.

300 0.66 0.63 0.80 0.73 0.69 0.88 0.00 0.00 0.00 0.00 0 0 0.30 0.32 0.46 0.36 0.10 0.52

30

(35)

himm h 2mm hamm 11m

e

'P Vi V2 Va

mm degr degr V V V

I

Ah=O.l mm·i AV=O.02 V.

8.00 8.00 8.00 !8.00 0 0 1.39 1.28 1.43

i

1.50 1.40 1.52 7.65 8.11 8.11 8.00

I

1 0 1.38 1.28 1.'6 I I 1.49 1.39 1.54 I '

·

.

·. ·.

·

. ·.

60 1.36 1.29 1.+1 1.41 1.41 1.53

·

.

·

.

·

.

·. ·.

120 1.36 1.31 1."12 1.48 1."12 1.51

·

.

·

.

·

.

·.

·

.

180 1.38 1.29 1.41 1.50 1.41 1.49

·.

·.

·

. ·

.

·

.

240 1.40 1.28 1."12 I 1.52 1.40 1.51

·

. ·

.

·. ·. ·.

300 1.40 1.21 1.+1 1.52 1.31 1.53 7.30 8.35 8.35 8.00 2 0 1.38 1.28 1.48 1.50 1.38 1.56

·

.

·.

·

.

·

. ·.

60 1.35 1.31 1.<46 1.'6 1."12 1.55

·

.

·

.

·.

·

.

·

.

120 1.36 1.34 1."12 1.41 1.+1 1.51

·

.

·

.

·

.

·

. ·.

180 1.39 1.32 1. ..1 1.52 1.43 1.48

·

. ·.

·

. ·. ·

.

240 1."12 1.28 1."12 : .54 1.39 1.50

·.

·

.

·

. ·. ·.

300 1. ...1 1.25 1.+1 1.53 1.35 1.53 6.95 8.52 8.52 8.00 3 0 1.34 1.25 1. ..1 1.'6 1.35 1.55

·.

·

. ·

.

·

.

·

.

60 1.31 1.30 1.45 1. ..1 1.40 1.53

·

.

·

.

·. ·. ·.

120 1.33 1.32 1.39 1.+1 1."12 1.48

·

. ·. ·. ·. ·.

180 1.31 1.30 1.38 1049 1.41 1.45

·

.

·

. ·. ·.

·

.

240 1.40 1.25 1.39 1.51 1.36 1.48

·

. ·

.

·. ·. ·.

300 1.38 1.22 1.43 1.50 1.31 1.52

31

(36)

h 1 h2 h3 h",

e

.,

V1 V2 V3 mm mm mm mm degr degr V V V 4h=O.1 mm. 4V=O.02 v. 6.60 8.70 8.70 8.00 4 0 1.33 1.24 1.49 1.43 1.33 1.56

·

.

·

.

·

. ·

.

·.

60 1.29 1.30 1..f6 1.37 1.41 1.53

·

.

·

.

·. ·

.

·.

120 1.32 1.35 1.39 1.42 1.+4 1.47

·

.

·.

·.

·

.

·.

180 1.39 1.32 1.36 1.50 1.42 1.42

·

.

·.

·

.

·.

·

.

240 1.+4 1.25 1.39 1.53 1.35 1.46

·

.

·.

·

.

·

.

·

.

300 1.40 1.21 1.45 1.51 1.29 1.53 6.25 8.87 8.87 8.00 5 0 1.33 1.23 1.50 1.42 1.31 1.56

·.

·.

·

.

·. ·

.

60 1.28 1.31 1.56 1.35 1.40 1.54

·

.

·.

·

.

·

.

·

.

120 1.30 1.36 1.39 1.39 1.+4 1..f6

·

.

·

. ·

.

·

.

·.

180 1.39 1.33 1.35 1.50 1.42 1.41

·

.

·

.

·

. ·

.

·.

240 1.45 1.25 1.38 1.54 1.34 1.45

·. ·. ·. ·.

·.

300 1.42 1.20 1.45

i

1.52 1.27 1.53

32

(37)

~~et1

0

-

..c:: ~

fib

l:: 0

-

+J aI r.... .0

--

aI rn N") 0 c... 0 lJ) +J

-

~ lJ) ~ i. " 1

,

.

! :

I .f-· .1. i ....

,.

1,1

..'

o,q

0,8

0,6

o

1,0

em.,.,)

fOp

9=

OD

, I

!-r,o

uppflr

h

tn

c

6,'1'f

VSf.n~

1

1 ,ItO

lower

h",

6,"'3

V

$f.nsor-

1 -

1,"tLf

3,0

S,D

60

J

4,0

3,0

(38)

lOp

h""

=

1,

bq

Vsu\80r 2 -

1,q6

h.".

1.31 v

sensor

2.

-

2,'.. 1

(V)

" I I !

..

'I'" I .~,._- , " ' , 't' , : , : , : , I :~. I : . 1 ' ; I

;. ,,' :;..,1-.<_:

I

§VLj••••.

~

.

l

·:

I :':

I ' ;

,-

:.:_::--+~.;:"+,, I , I::" I '

l'; "i ::: :

" f :

I I !

T' "

, ,

,','

" , i , • I'-•••• -• • i,

,I·

i I ' i

o,q

; . j ,

-.

, t !

0,8

uppe.r

lowar

4,0

8,0

6,0

(39)

-1,6

i· . I

"",5

., , , i-·~··-·C. ~~~:-.. t: .; 1; : ,j

I

"

I

.,."

c',:,-o"l~~"~' i . . . . "'1'" ,.-.... I

" . : , ' : , : i

i ' ; " ;

o,e

h

ton

= ;. ,

t....

Vsc.nsor

.3

.3,

1

a

h

m

=

1,66

VsU\sor

3 -

3,1'1

O{t-upp~r

lower

nil) (

'1N1l)

10,0

6,0

f,O

q,o

SjO

(40)

1,6

1,'-1

Of}

0,6

6p

-hllJ

(?MA)

10,0

e

-1.

50

-

,

q,o

upper:

h

rn :::

6,

qo

V

Se.nsor

1

- ., 31

,

( aJ:

\f -

60

0 )

lowe... :

h~:::.

6,10

Yse.nsor 1

-

1 ...

,

6

( Q.~

If

r:. .2.L.f0 0 )

8,0

5",0

4,0

(41)

hili

('1nm)

() =

2,5 ()

upper:

h

m

=

t,8~ Vsenser 2 - i,8q (~t

'f -

3000 )

I

0

W~

r ;

h

m _ ,."

10

V

sensor

2 -

2,20

l

at:.

\f'.

1:to0 )

8,0

;'0

qp

10,0

6p

4p

(42)

h

lh

(?JIM)

10,0

(} =

},,5

0

q,o

0'

upper :

h",

=

8,

iii

Vstnsor

.3

- .3

1

LtLt

( a.l:

tt

.180 )

lowe.r

.

h

m

=

r,~q

vse.nso.. .3

- 3,1

3

( CA.\;

0

.

'fa

0

)

8p

tv)

i. ' I I j .~....~,.,'";. .. -j i 'j " : ' , I .. , ,

1.+-

:,1"

::,~.:

'i"+ ;...' ..,

•• J'!':.:.! .•..

j

. . j

i~

..

'I:

,

j,,'

'i :

l':;

,,;t,,~

..

L_,:...

~"

'

·

,t~":~I;'[~j::;T"-"J";"

t-: .: '

i,:

I,,:

: I ' , ' , ' , , ' I ' \' , I ' , ' 1 , 1

:·t:

:-'-I~'~" ,I . : , (

,·1,·

':-'1"

·-I'''::··:~''i

.,'

,t" '," i . " ' , ' " , ; "

,I

"

! I : : : I ~ . ' : ,

1,1

"',0

o,q

0,6

~,o

o

0,6

6,0

3,0

5,0

" "i "

4,0

,I ,J I

(43)

top

This

e,<pAaclon

is I:hc.

~VC.""~9C.

of

the.

oth, ....

'9u.~;ons

~~

e.

0 °

-h

rn -

r).t

8

V

Sc.nsor

-

Z)

lot

1

! ., . , j • I . -t- . " I , ... -.. , _ . ! - L I ....

!.

} . . . .-..;, -

--

-~_. ~..•.. I I. ! ' ! ~ I: I : " ~, . I : I . • • . ' •> . .:"-~ • • • I •. , • . I I '

I.

i

·1 .-.' i: . I .i ' .' r-··· I I I

+

I. :."

",0

0,8

0,6

6,0

8,0

5;0

'1,0

(44)

, i . ·1· .. i

!

i ' i , . I . .-,_ • • • f" • • • • • • -,.~ -'. _ •.•~ I I· . I I' ..._~-_. : ! ... L_ ~.

1,1

o,Cf

0,8

O,'f

0)6

6p

1,0

5)0

hili

(~)

iOp

B

=

2,5'1)

q,o

h~

;, L

6

VS(.hSO,.

- Z 3'-1

/

T"h'5

L~U~'=

iof'\

is

4:he.

aVf...raej£.

of

l::he

8,0

0

oth...

c.qu.a!:ion6

at

9 •

.2.,

'5'

(45)

Results of tests (statical)

I

h1 h2 h3 : hm

Ie

I

-

h'm

de g r Vi V2 V3

I

V

I In mm. i In volt. in mn'l.

I

~h=O.1 mm. Av =O.02 v0I t Ah=O.14 mm.

-7.00 3.65 4.80 5.15 5.7 1.08 1.03 1.08 1.06 5.31 , , , , , , ,, ,

.

1.09 1.00 1.09 1.06 5.31

I

.

,

·

,

·

,

·

,

·.

1.08 0.98 1.10 1.05 5.24 ,

.

,

. ·

.

,

. ·

, 1.11 0.93 1.16 1.07 5.38 1 '

.

, ,

·

, ,

.

,

.

1.05 0.95 1.19 1.06 5.31 hi h2 h3

hm

e

Vi V2 V3

I

V

-

h'm In mm. degr In volt. In mm.

Ah=O.l mm. ~v=O.02 volt ~h=O.14 Mm.

7.00 4.80 4.80 5.53 4.2 1.00 1.06 1.22 1.09 5.53

..

·

.

·.

,

.

·

.

1.05 1.08 I.H 1.09 5.53 ,

.

·

.

·

,

·

, ,

.

1.11 1.06 1.11 1.09 5.53 ,

.

·

.

·.

·

.

,

.

1.16 1.01 1.11 1.09 5.53 I I

(46)

,

h 1 h 2 h3 i h m

e

V1 V2 V3

I

V

-

h'm

In mm. I degr In v0 Its In mm.

ll.h=O.1 mm. ll.v=O.02 v0 It ll.h=O.14 mm.

6.00 6.00 6.00 6.00 0.0 1.09 1.08 1.21 1.13 5.82 , , ,

.

·

.

,, ,, 1.11 1.04 1.20 1.13 5.82 ,, ,, ,, , , , , 1.08 1.05 1.24 1.12 5.15 ,,

·

. ·

.

·. .

, 1.10 1.06 1.22 1.13 5.82

I

.

, ,

.

·.

I

·

, ,, 1.05 1.11 1.21 1.12 5.15 ~ -_0 _ _.. ---h1 h2 h 3 h m

e

V1 V2 V3

I

-

V h'm In mm. degr In volt. In mm.

ll.h=O.1 mm. ll.v=O.02 vo It ll.h=O.14 mm.

-5.13 6.44 6.44 16 .00 2.5 1.13 1.04 1.21 1.13 5.82

.

,

·

. ·

,

·

.

,

.

1.11 1.08 1.19 1.13 5.82

,

.

·.

,, ,

.

,

.

1.11 1.06 1.20 1.12 5.15

(47)

r

-h1 h2 h3 h m

e

V1 V2 V3 , V ; h'm

In mm. degr i In v o l t s : I In mm.

Ah=O.1 mm. Av=O.02 v0 It Ah=O.14 mm.

0.00 0.00 0.00 0.00 0.0 0.33 0.36 0.52 0.40 0.54 , ,

.

, ,, ,, o0 0.34 0.34 0.52 0.40 0.54 0 0 o0 o , o0 o0 0.38 0.34 0.48 0.40 0.54 i h1 h2 h3 h m

e

-

hOm V1 V2 V3

I

V In mm. dellr In volts In mm.

Ah=O.1 mm. Av=O.02 v0 It Ah:O.14 mm.

10.75 10.50 10.45 10.57 0.0 1.90 1.67 1.73 1.77 10.45

o0 0 0 0 0 0 0 o0 1.83 1.65 1. 78 1. 75 10.30

(48)

vo\~a~e

(v)

• . I 1 ) • ;'. , , ) :) ,

,

, ,.,, ,, ! . . ,' I ,' ,, ,: :, , I I , I , i " ' , , : , : i i : : ; ,I ,, I , , i ,I ! I I ,!, I , , i , Ii I I i ,!I , i

i

I ~ ! I , , ! I , I I i I I I

lime

I I , I

,

, ! ! ! I I I I I I I I I I I

I

I I I I I I I I I I

..

,,---to

15

'"'Ie

"-5

t-. (I)

...,

...

!i

...,

I X .c

...,

...

;:J:

...,

Ul

...,

(I) Ul

...,

...,

(I) c... 0

...,

>. Ul

...

...,

... ...

...

::1 .0 Ul ro ~

...,

Ul U x (I)

~

o

"11-

> 0

>T

~ •T", ""'"" ... ,..'. 0

6

I

(49)

I e , ; I:I ,I " I 'I (",', I 1i 1 I '

Vi,

CltrJplil/ed

" ! " I II 1'1: ::t ; t.' " ' :iil ; :

'i ':

i !I II ' : I

1

~:~L~V::"~~~a",~,,,:'C.t.:·""~"~~:"IiIIf~'~!'i!'~'~--_.2i:;~;:;:~lt""!'~---r-~r"

:1'7'·'"

"1:"~",~:.:.,

;:.":_ - - - . , - - -..

-J

!!

iI • ; : I:l ' C I, ',;, I IT , , '

'.7

r

r

,

Sf

-pz--....

----..,:---iV.~1:-;U;;I1::Ci;;;1I1;;P~/i~/~,.e.;,di--- -'-~---..;...----

..

~_.~~

~

><>

0 0 0 2 .s 7 8 12 "

'"

(50)

V

sensor

3

(~)

0,'"

, ' ': t.': ;C"' I,'i i, ' : I " ri;;I

,,- ,i

~'

;

~ c" , I. ..,

(51)

Re.su\l

of

bC\mpl

in~

-thrc,t.

~(,nsor

OtAtplAts

d.~r~~~

olrof

tt.s'=: ,

rt5l.(ltin~

in

ht.ljhl:;

'l'i>

ClmQ..

<jrCAph

oY'\

nt-xt

PG\<3c,s

• l:se .218 .2?8 TlSECJ .838 .8se U[SEHSOR 2J 'HUOLT8 1.8e 1.4e 1..ee .8ee .aee .21.8 .378 T[SEC) .21.11 .278 TlSEC] .158 .158 .898 .288 1..28 1..48 1..8e .888 .888 .488 .038 UlSENSOR 3] -.888 UlUOLTS 1.8e lv-'I'v-'V"Vv-v... l/I ~ .838 <lJ UlSEHSOR 1) ~ U[UOLTS

2

1.. 68 '0

(52)

H[MMl 1.6.8 1.2.8 8.88 4.88 .888 T[SECl

(53)

In

thiS

rio\-.

I:.h~

100

H1 -

nOIse.

has

bu,n

c. ...

nc.e.lt.d.

HtHMJ

16.8 12.8 8.88 4.88 .888

T lSEC]

0,10 O,i5 0.,2.0 0,25

(54)

, , 1.88 1.48 .688 -1 10 Il'7\ )

(55)

S~yY\rle.ot rest,de

of

(5fl.2.

PCl.'3e

18 )

.888 .838 UlSEH60R 2] UlUOLTS 1.88 1.48 1.88 .688 .288 .218 .2'18 T[SEC) • J.58 • J.58 .888 .888 .838 U[SEHSOR 3) UlUOLTS 1.88 1.48 1.88 .688 .288 .838 UlSEHSOR 1) U[UOLTS 1 • 6 8 J.--...,.__.".--.",.~w-... 1.28 .888 .488 -.888

(56)

HlMMl

16.8

12.0

8.08

Ht.-i~ht

vs

t;rn,

~rotrh re.~l-tlt.'h~

vo\~a~e.s

on pre,V\OV\5

Po.3~

from

4.08

.088

(57)

"

c.

0·'n

t

e.'O

l:.

"

5

~

m

p

1e.

ot

0 \A {;,

pLAt

"0

'tC4

j

es

~

,

\IU'\

9

of

h~\·~ht vs

l:;

ime.

Oh

rH..

Jtt

fC\~e

.200 U[SENSOR J.] U[UOLTS J. . 60 U[UOLTS 1.80 J..40 1.00 .600 . 200

l

.600 1.00 1.40 1..80 T[SEC] U[UOLTS J. . 80 J..40 J..00 .600 .200 .200 .600 U[SENSOR 2] 1. • 00 1. • 40 1. . 88 T[SEC] 1. 20 .800 .400 -.000

\

~w.-.,..,,~_~~~

...,

-'-'-'~rv-v

.200 U[SENSOR 3] .600 J..80 1.40 1..88 T[SEC]

(58)

H[HHl 16.8 12. II 8.88 4.811 .8811

(59)

5o.n'\l>\c.ot

O\At~\At

vo\tct'j"-\-\

to,·~

ht

<:'-CA \ c u

l

o..l:.

e.al

F

V'orY\

on

ne,x

h

PC\

'jes

Cl) ~ 0

""'

..., til a.

3

UlUOLTS a. 2.48 bO 2.&e e::

...

J..6e

3

'0 1.2& til .8&8

...,

e:: Cl) • J.811 S UlSENSOR 1 ] Cl)

3

U[UOLTS til 4.411 III Cl) 3.611 S c,.., 2.88 0 ..., 2.11& \ ... -...-;:j J..2& til

&!

.J.IIII U(SENSOR 3) W X Cl)

~

.31111 .388 .:Sll8 .5811 .71111 .8118 TlSKC) .711& • SIIII TlSECl

\

U[UOLTS 1..88 1..48 J..88 .6118 .2&11 . 18. .3 • • UlSENSOR 31 .5811

.7.. ....

USEe]

(60)

H(MMl 16.e 12.e 8.88 4.08 .888

.

" T(SECl

(61)

Jrt

~hi!

p14c

f:hc

100

Hz -

hoist.

ha~

been c.anc.e.led •

H

LHH]

16.8 12.8 8.88 4.8B .8B8

T

r

SEC]

(62)

U[UOLTS

11

1..301..10

(

.900 CO

to

.700 .500 2.80 3.60 .400 J..20 2.00 2.80 3.60

T[SEC] U[SEHSOR 2] TlSEC]

2.00 1.. 20 1.. 16 1.06 .96J. .86J. U[UOLTS 1.. 26 .400 U[SEHSOR 1] U[UOLTS

\:: r\

(

(\

::::

\~

j

LJ

l

I !---..-'11 ! I , I I ! , .400 1..20 2.00 2.80 3.60 U[SEHSOR 3) T[SEC)

(63)

He..''3~t. c..~\c~'o..te~

Fvorn

r

r

e,...V \ " lI\~

r

0\.5

4'-. on HlMM] 16.8 12.8 8.88

oloe.sr-a't

~troke..

bolAc...h

Vet

Ive

Stop

4.08

(64)

Annex r: Program listing MRS-MEET and manual ;: t.M 0 .~LMi=- Ii, X '- ':," .,

-

..

L '.F-:'- Mr, ( y t .."c-

-

f'L

'"

R \ 1 ,h,EAL 0 i 1'0,LAF- I

-;:; 1"',L ' 0 .( Mc-,,,,"F

F: Er

,

-

\..,. F'~,..,L 0. '-,4,l

..

F- Ap., 1"":t,,\L '. 0 L P-,F- E: 8 0 ' M ;:,~ 0 ,. ,~ p.,F: ,:.~L 0 L )

-

-F:EI'L -

-

I'-0 MLfl.,F: 1 ;:;E...L 0

-ALfl, F\ 2 ':.I," ' ) F E....L ~:.,

-

o ·ALAR ':> RE.~L -( 0 ALAR ":<1 ':, -REAL ':,:~ .~

-

A Lf:<,R S-, .:.

EEAL DIM[ 200 ARRAY H.

REAL D!rvl[ 200 AF:RAY T

REAL DIM[ 200 AF:RA y VI

REAL DIM( 2(ItJ ARRAY V2.

F,0. L [1I M[ 200 ARRAY \{ 3.

REfl.L [JHi [ '::00 ARRAY PRl

REAL DItvl [ 200 AF:RAY F'R2

15 STRING FILENAME

DIM[ 200 • 3 ] DMA.ARRAY VALUES uASH16

o

2 AID. TEMPLATE CHANNELS

VALUE'; (JMA,TEMF'LATE. BUFFER A/D.INIT vP • 1 U.U 0.6 VUPORT.ORIG 0.5 0.4 VUPORT.SIZE

v

P • :: 0.5 0.5 VUPORT.ORIG 0.5 0.4 VUPORT.SIZE

v

P • :3 0.0 0.2 VUPORT.ORIG 0.5 0.4 VUPORT.SIZE VP.4 0.5 0.2 VUPORT.ORIG 0.5 0.4 VUPORT.SIZE VP.5 0.0 0.2 VUPORT.ORIG 0.5 0.3 VUPORT.SIZE VP. Eo 0.5 0.2 VUPORT.ORIG 0.5 0.8 VUPORT.SIZE VP 0.0 0.2 VUPORT.ORIG 1.0 0.8 VUPORT.SIZE

60

SAMPLE.H·EO - 1 . 5 . F,X.F(iRi"lAT

(65)

V1

=

V"-",

=

V3 =

FREQ:,· PJI/ J':''o (:')NIjEF:~,I\)N.DEL~,Y

" [ l . I N ] ' -'.-.~ -:' ,... lV! \ ~ t.. •t- \"""t \) DP: ::'Hj 5 . [)!"1A • A L I (~N [ll.!f >UN;IG~JE[) 1

I:, "

:;W;',t' := F'LljT.AA VALUE::,:.(':,ECT[ , 1 ]

VI. DA::H 1:,. [;MA. ,lILI (,N

VALuES XSECT[ ! , 2 ] V2. DASHI5.DMA.ALIGN ,'ALuE:; X;ECT[ : , :: j 'J:3. [i,A, ':,H 1 5 . Dr-i,1\ •ALI (;~J HE.tlDINC, ~,T,o.,F:T. r-IEA;URE BE (; I N ?i)MA.IHTIVE NOT UNTIL FLOT.AA Cf' .;; [)r·1 ARE A [, Y " f\1PRINT CR." F'RINT';' v/N" PCI<EY?[JF:(JP 8':i I F :;,CREEN. CLEAR SCREn~.PRINT THEN SCREEN.CLEAR

CREATE. DATA. FILE

FI L E. TEMPLATE

REAL DIM[ 200 ] SU8FILE

:>

TIME:;

END

FILENAME DEFER> FILE.CREATE

WRITE.DATA.FILE

FILENAME DEFER> FILE.OPEN

1 SUBFILE H. ARRAv>FILE

2 SUBFILE T. ARRAY>FILE

:; SUBFILE VI. ARRAY>FILE

4 SU8FILE V2. ARRAY>FILE

t:j ':UE;FILE V3. ,ARRAY>FILE

(66)

;:- j :-E~.f'1.,,1E [ E FER> F I L E • ':' FEN ;0fFILE H. FILE)ARR~{ _ :UEFILt T. FILE>A.FFAy .' I . F IL E

>....

F:F.M1 V1

=

IJ",'-

=

V3 :

=

,. ::.; f; F"1Lt Ij::}. F ILE

>

,A,RF A'y'

c'" ...

~·:h I..,i j\iI~

': F . ,.

r

i L EN1<.ME:'" (R

" I iH' UT F I LEN Af"1E ;': =

" E;: I, FI LEN1<.ME" ( AT F I LEN AM E ":=

(REATE.L'ATA.FILE wRITE.DATA.FILE

(IATA.READING

': R .iI F I LEN AM E.?I' C R

"INPUT FILENA,ME ":=

" B:" FILENA.tv1E "CAT FILENAME ":=

REAll.DAT.A. FILE MEA':,URE NOR.Mt;L.DI~,PLAY ~,T;:'.Cf,. CL EA.R REA [, HE, CR ." O~JE T"10rvlENT" VI. -10 10 A/D.SCALE v~. -10 10 iJ.,/[).~;~=.ALE V3. -10 10 A/D.SCALE

o

I, .' F I LENAl"lE ".= (IATA.AX

HORIZONTAL AXIS.FIT.ON GRID.OFF

VERTICAL AXIS.FIT.ON GRID.OFF

1,:1 iO AXIS.DIVI::,IONS

.lE;O .210 AXI~.• ORIG

.800 .740 AXIS.SIZE .025 .008 TICK.SIZE .100 .850 TICK.JUST LABEL.PLOT NORMAL.COOR[)S .8 .05 POSITION " T[SEC]" LABEL .01 .92 PO~,ITION II H [ MM ]II LAB E L LAB EL.PLt)T. 1 .8 .05 F'OSITION "T[~>EC]" LABEL .01.97 PO':,ITION " V[V()LT:;]" LABEL

LABEL. F'LCIT.::'

NORMAL.()OR[)S

(67)

- - - ~_. - ..

--_, r ....;. - !"""' ~ _ .: ~ :,.: l :-!- L fO i

': "7". [ j:'1 .. y ~':JF: I Z,) NI ,4,L i,,/ (:F; L[l .:,ET

-2 10 vEFT1C~L WORLD. SET

.1;0 .210 AXIS.POINI Xl. f',". I:.. F'Li)1

,-K, F:L [I • ',:(i (;F: [; S

Vi. \i2. -t I/.?'. + 3 j Cl * C2 + H . •

-I. I i . <'1. Dr',I A . PLOT

LAE:EL.PLOT LIlE; EL. PLOT. 2

(, G p' ,)SIT ION " LAE: EL HF'Rlf'~T r' .;. - I . J . FI~.F0RMAT N :.) F' 1'1,"',L • ':,e;,(jR DS (,F1-',FH I (: .[i I':.p,Li·1Y E:(:TltJl'1 vP. 1 [;ATA.;:'! vpC'RL [) • ': ()<)R DS

o

T. []MAX HORIZONTAL WORLD. SET

VI. [JMINjMAX VERTICAL WORLD.SET

N(,RMAL. CO()RD:,

.1::;,:,

.~lC' A;Y;I~;.POII\jT K\.AXI':,.F'L'.JT IIJI)RL [) •COO R

c):'

T. 1,11. XY.[)ATfl.. PLOT N0 F: MAL • C0 (. RD':: LAE;EL.F'LOT.l

.O~, .O~, PO::.ITION

" V [::,EN':.OR 1]" LAB EL

VP.2

DA,TA. f>.X

WOF-:L D . COO R D:3

o

T. []MAX HORIZONTAL WORLD.SET

V2. []MIN/MAX VERTICAL WORLD.SET

NORMAL.COORDS .180 .210 AXIS.POINT Xy'.AXIS.PLOT ~-JORLD.COORD:; T. V2. Xi.DATA.PLOT NORMAL. COORD::. LA8EL.PLOT.1 .l15 .05 F'OSITION \I V['.:.EN:::OR 2]" L,4,BEL vP .3 D/ITA.AX WORLD.COORDS

b

() T. []M/l,X HORIZONTAL WORLD.SET

.3

V3. []MIN/MAX VERTICAL WORLD.SET

N ()f::MAL.<: ()0 RD~;

.180 .210 AXIS.POINT

XY.AY,I';.PLOT

(68)

N0 F:,'1i-<,L .,= (; (;Rc); LA Et L . FL ':'T • 1 '.'[:ti'J:,(,F :]" LPEEL ':' ,=, F'=J :'i T i () N ,I L::'.E: EL 1"0'1i=-F I!\JT tv]El'JU CR CK

CR YOUR CHOICE I :PLOT HEIGHT VS TIME

CR ;:MEASURE CR 5:READ A MEASUREMENT <:F T YP E T ,., l:, AN [) [E NT EF: j )" #INPUT XX := A MEN U i X X I F P 1 THEN 2 XX j F P2 THEN j F MEA;URE T. []Rf<,jvlF' T. FREO lClOI) " ! T. THEN 4 /, X I F Or Y THEi~ 5 X,i, IF DATA. READING THEN b XX = I F DATA.WRITiNG THEN B 1 Y Y : = BEGIN 1 yy

=

WHILE A REPEAT

2:PLOT VOLTA(~E~; VS TIME" 4:QUIT"

(69)

MANUAL ASYST-PROGRAM MRS-MEET. COM

This program is meant to be used in dynamic measurements, using the transducer with three magnetoresistive sensors. It can easily be adjusted to other configurations (e.g. height measurements with force-and/or pressure-measurements). The program is to be executed using ASYST, version 1.53.

After loading the program with "LOAD B: MRS-MEET. COM" you start it by entering "B". Then a menu is plotted on screen:

YOUR CHOISE 1: PLOT HEIGHT VS TIME 3: MEASURE

5: READ A MEASUREMENT TYPE 1 TO 6 AND [ENTER] >

2:PLOT VOLTAGES VS TIME 4: QUIT

6:SAVE A MEASUREMENT

1: PLOT HEIGHT VS TIME

This option plots the data from arrays H. (height) and T. (time) using DATA.AX (which plots the axes), LABEL. PLOT (which plots the labels at the axes) and P1 (which calculates the height and plots it).

In this calculation the scalars C1 and C2 have to be known, so before this a calibration must be executed (e.g. with CALIBRAT.COM).

2: PLOT VOLTAGES VS TIME

This option plots the data form arrays V1., V2. and V3. vs T. in three seperate graphs (using P2 and LABEL.PLOT.2).

In options 1 and 2 the program asks whether you want the plot(s) on screen to printed or not (using MPRINT). If you want to get hard copies of the plots, you must load the program ASYST.CON before you start up this program.

3: MEASURE

This option starts a DMA data acquisition. It asks for the sample frequency you want (enter it in kHz). The actual sampling rate is three times this entry, since only one channel (voltage) can be read at a time (SAMPLE.FREQ). When DMA is done and the 3x200 DMA-buffer is filled, the

(70)

program continues by putting these data in seperate named arrays: V1., V2. and V3. (PLOT. AA). The data are then converted from digital to analog values (MEASURE).

4: QUIT

This option allows you to leave the program and return to ASYST. 5: READ A MEASUREMENT and 6 : SAVE A MEASUREMENT

These options allow you to save and read data files to and from disk. It asks for the filename of the file to be treated. The filename is a word of max. 15 signs, e.g. filename.dat (parts used: CREATE. DATA. FILE, WRITE. DATA. FILE, READ. DATA. FILE, DATA. WRITING and DATA. READING).

(71)

i'ROG-~AMI-\ ST \~

Go

,...., = C1'" \;' ;3.:-rn ~

l

~·1>~ '/ -; II :::'~': ~.~FuTI:1 ~f~1\·iJ d #!NFUT (~' (f.,L CF ." n FE H be q i n [~1r'1] "

CR ," IN A PUMF -HIS THE HEIGHT OF THE STOP MINUS THE VALVES THICKNESS "

CR. " TYF'E H .,.nd P"1I'1j"

CR .• ' ] N A PUlJiP .HI S I',~ THE THI CKNE'':,'3 (IF THE RUBBER DISK

ttlNPUT H2 := '3 ':::1 +::,2 + ::: / AA := ~;.:; 1. ...;2. + :, / SE; .-HI HZ - {J,p., E:8 - / C1 := HI AA HI HZ - AA BE - / • - C2 AUTO.CAL.l

VI. ';UE:[ 1;;:0 , 1(I ] !·1EMJ A,A

.-\/i.;UE[ 1;iC; • 1lJ J ~1EAN B8

AF. t:E - AE: :;, C,.i,l

>

IF VI :,UE [ 1'3I) , 5 ] MEAN AA \;1 '.:.\_\ E.L 135

:,

J 1"lEAtJ 8E; -AP- 88

-

At;;

o.

01

>

T r-, r

:: F ." NO CALI 8 RAT I ON PI) SS I 8 LE"

MANUAL.

en

CL::,E

..

v

; ' - l l r [ 1'3(; :1_,\c' \;

..

:,UEl 1,:1I)

v

-' :,UE [ 13(I 10 r"1E AN ,".:1 •

-10 MEAN '; I ,

.

-10 MEAN ~'i ~~.

en

THEN EL ':;E Vl. V? ~

.

V3. CAL THEN SU8[ H:O SUB[ 1:::0 SUB[ 180 • 20 ] MEAN c',oJ. : = 20

J

MEAN 51-

.

-20 ) MEAN 52. AUTO. CAL.::: V1. SU8( (1,10] MEAN AA := Vl. SUB[ 10 • 10 ] MEAN BB := AA BE: - ABS 0.01

>

IF

VI. SUEr 0 • 5 ] MEAN AA VI. 8J8[ 5 • 5 ] MEAN BB AA B8 - ABS 0.01 ) !F J1 .:,UE: L i)

.

" - ':,1.1E;r i ! ,~ l V-;, ':,U8 ( (J 1;:: I(I 10 r~EAN ::; -f"1EAN ':·1 -1'1EAN c·") -.,/~

(72)

;' -.

.::'-[

_ i)

.-iE~.:.J _....

C~ :r-Ier'~ E:re 1..1f..·C Nay.:. i'-l ,vhi\:,!-, you can calil:\rate. il CR

1_r'

r

ir- ::. ': yc~II c.a n U:,e F'r- e\!i(lU ':. me a'5Ureme nt.:=. (:r (.a1c:LJ1at;I)n sII

\.·i\ t.l:' \j~~E'rrl1in-=: the valut:',:. of C1 and C2, which qive thell

I.t"<, linE'cH relat;l)n heiqht Ii:, v<:,lta';le:,." CR

Cf;' ':,e,:cndl y' y'C'U :an u::,e a new trleaSur-elllent and this proqram"

,=R t '::. y--j t (1 dn ci t:: '2 1.(I Pre~·e nt (:.)nd .:, ti<)tl::.. I:

CR "In this case, hC1wevet-, it is required that at the beginning" CF: "and at the end of tho:- mea5ureillent there are interval:,"

'_1\ \;-vith ,,,:,)n5tar-;t 'v/()ltaqe value::.. An e;.;ample of .such a measurementtl

CR 'i:, save;;! in f'ile b:t.e:st':,.dat, which you can see u:sing"

CR "F'r:>'~fO:Hn r"F: ':, -r·jEET .C01"1 (y(l1j <:a11 ·s t aI't i t byeIIt e rinq 8"

.!"\ I' after Y'Ol/ have left thi:. pr":;~;lrarn).jl CR

'.~, n;:E: T,=, ,=ALIE; F: AIE I NTH E FIR '; T WAY DE':: CRI E:ED"

,=Fc, 71=J CALIEf\,;TE IN THE SECCiND WAY DE'::CRIBED"

- •.., r r -.~,.~~,. -,... • '~r·,I... .:.C:f' ,... 1 .:. :.H '.i~1. , C 1I ThEN IF ,;UTO. CAL. 2 THEN ?' XX;;, IF (I YYY THEN CALI8RATION 1 YYY := BEGIN 1 YYY v-JHl LE CALI8RATION.;;: REPEAT

68

(73)

MANUAL ASYST PROGRAM CALIBRAT.COM

This program is to be used with program MRS-MEET. COM. Part of the variables is defined in this program. It is necessary to load MRS-MEET before CALIBRAT. After you have loaded the program with "LOAD B: CALI BRAT . COM" you can start it by entering CALIBRATION.

Also in this program a menu appears on screen:

TYPE 1: TO CALIBRATE IN THE FIRST WAY DESCRIBED 2: TO CALI BRAT IN THE SECOND WAY DESCRIBED 3: TO LEAVE CALIBRATION PROGRAM

Option 1: This is the manual calibration option. The program prompts you to enter the values of Cl and C2, to get the linear equation:

hm

=

Cl·Vgem+ C2. This option should only be used when you are sure that the previous measurements (and/or calculat ions) which give Cl and C2 are done under the same circumstances.

Option 2: This is the automatic calibration option. As stated in chapter

7. the signal must have intervals of constant voltage values at the beginning and at the end of the measurement. The program continues as follows:

(74)

Imenu I IIV 1[o,10]-V2[10,10]1<0.01?1

At'

'1t 5 =V [0,20] 1 51=V [0,20] \IV 1[O,5]-V1[5,5] 1<0.01? "It manual 2 option 52=V [0,20] 3

~

5 =V [0,10] 1 51=V [0,10] 2 52=V [0,10] 3 \IV 1[180, 10]-V1[190,10] 1<0. 01?

I

~

?t 5. =V [180,20] 1 51.=V [180,20]

II

V 1[190, 5]-V1[195,5] 1<0. 01?

F

manual 2 option 52. =V [180,20] 3

1

5. =V [190,10] 1 51. =V [190,10] 2 52. =V [190,10] 3

I

calculation of Cl and C2

I

I

menu

I

Referenties

GERELATEERDE DOCUMENTEN

Participating in this study may not benefit you directly, but this could help teachers and other people working with youth, to understand township-dwelling youth in a better

In de ontwikkelingsfase van het programma moet gekeken worden naar het gedrag en de doelgroep waarop het programma zich richt, de leerdoelen en de didactische aanpak.. De evaluatie

Schillers `speeldrift’ heeft weliswaar alles met het esthetische en het schone te maken, maar voor een kunstwerk komt nog veel meer kijken, waar Schiller in zijn brieven `niet

Dit is belangrik dat die fokus van hierdie studie van meet af aan in die oog gehou sal moet word: dit handel primêr oor liturgiese vernuwing, en hoe daar binne die ruimte van die

In this study, CFA was used to confirm the factor structure of each of the variables (transformational leadership, past leadership, job resources, past job resources

Given the fact that Grade 12 learner results had declined steadily from 2011 to 2013, in which the majority of learners could not access higher education or employment after Grade

van deze overdrachtfunctie een amplitude- en fasediagram laten zien Voor bet bepalen van een systeemoverdracht in het frequentiedomein wordt vaak een bepaald

that MG joins a rational rotation curve as well as the condition that such a joining occurs at the double point of the curve. We will also show,that an