• No results found

Broadly tunable metal halide perovskites for solid-state light-emission applications

N/A
N/A
Protected

Academic year: 2021

Share "Broadly tunable metal halide perovskites for solid-state light-emission applications"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Broadly tunable metal halide perovskites for solid-state light-emission applications

Adjokatse, Sampson; Fang, Hong-Hua; Loi, Maria Antonietta

Published in:

Materials Today

DOI:

10.1016/j.mattod.2017.03.021

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2017

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Adjokatse, S., Fang, H-H., & Loi, M. A. (2017). Broadly tunable metal halide perovskites for solid-state

light-emission applications. Materials Today, 20(8), 413-424. https://doi.org/10.1016/j.mattod.2017.03.021

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Broadly

tunable

metal

halide

perovskites

for

solid-state

light-emission

applications

Sampson

Adjokatse,

Hong-Hua

Fang

*

and

Maria

Antonietta

Loi

*

ZernikeInstituteforAdvancedMaterials,UniversityofGroningen,Nijenborgh4,Groningen9747AG,TheNetherlands

The

past

two

years

have

witnessed

heightened

interest

in

metal-halide

perovskites

as

promising

optoelectronic

materials

for

solid-state

light

emitting

applications

beyond

photovoltaics.

Metal-halide

perovskites

are

low-cost

solution-processable

materials

with

excellent

intrinsic

properties

such

as

broad

tunability

of

bandgap,

defect

tolerance,

high

photoluminescence

quantum

efficiency

and

high

emission

color

purity

(narrow

full-width

at

half

maximum).

In

this

review,

the

photophysical

properties

of

hybrid

perovskites,

which

relates

with

light-emission,

such

as

broad

tunability,

nature

of

the

recombination

processes

and

quantum

efficiency

are

examined.

The

prospects

of

hybrid

perovskite

light-emitting

diodes

and

lasers,

and

their

key

challenges

are

also

discussed.

Introduction

Solid-state light-emitting devices suchas light-emitting diodes

(LEDs)and lasersplayimportant rolesinmoderndaylife.They

havethepotentialtoaddressurgentchallengesnotonlyrelating

togeneral lightingand displayapplicationsbutalso relatingto

energysavingandgreenhousegasemissions[1].Through

devel-opmentofmaterialsscience,avarietyoflightemittingmaterials

havebeendemonstratedsincethefirstdemonstrationof

visible-spectrumLEDsbasedongalliumarsenidephosphide(GaAsP)over

fivedecadesago[2].ThishasledtotheevolutionofvariousLED

technologies:inorganicsemiconductorLEDs[2–7],organicLEDs

(OLEDs)[8–11],polymerLEDs(PLEDs)[12,13],quantum-dotLEDs

(QLEDs)[14–19]andrecently,perovskiteLEDs(PeLEDs)[20–27].

PerovskitesareaclassofcompoundsthatadoptstheABX3

three-dimensional(3D)structuralframework(seeFig.1a),whereAandB

arecationsofvariousvalenceandionicradiiandXisananion.For

metal-halidehybrid perovskites, the A component is usually a

monovalent organic cation [typically methylammonium

(CH3NH3+=MA+) or formamidinium (HC(NH2)2+=FA+)], an

atomiccation(typicallyCs+)oramixturethereof,theB

compo-nent is often a divalent metal cation (usually Pb2+, Sn2+ or a

mixture)andXcomponentisa halideanion(typicallyCl,I,

Br ora mixturethereof) [28–36].The synthesisofthis classof

materialsisusuallyperformedinsolutionfromwhichbulk,

lay-eredornanostructuredperovskitescanbeobtained.Forexample,

Liu et al. [37] and Shi et al. [38] have shown that large-sized

perovskitesinglecrystalswithdimensionsexceeding10mmwith

highcrystallinequalitycanbegrown. Figure1bshowsa

photo-graphofarepresentativeMAPbX3(X=Cl,Br,I)perovskitesingle

crystalsgrownusingasolutionmethod[37].Thesubstitutionof

thehalogeniontransformsthecolorofthesinglecrystalsfrom

colorless (X=Cl) to orange (X=Br) and then to black (X=I).

Mohite andcolleagues[39]alsodemonstrated theformationof

continuousperovskitethinfilmswithmillimeter-scalecrystalline

grainsthataredevoidofpinholesviasolution-basedhot-casting

technique(Fig.1c).Inadditiontobulk(singlecrystalsandfilms)

perovskites, nanostructures (quantum dots, nanoplatelets and

nanowires)(Fig.1d)ofexceptionalphotophysicalpropertieshave

alsobeenreported[40–43].

Hybridperovskiteshavedemonstratedtheirsuperiorityinthe

photovoltaicfieldaslightabsorberswithcurrentcertifiedpower

conversionefficiency(PCE)of22.1%[44].Theyhavealsoshownto

havecharacteristicsthatareidealforlightemission-basedand

X-raydetectiontechnology[20,23–26,45–47].Infact,theyexhibit

tunable color emission and high quantum efficiency, making

themsuitableforthefabricationofcheapandgreen

electrolumi-nescent devices. Devices suchas light-emitting diodes [20–27],

diodelasers[20,45]andlight-emittingfield-effecttransistors[48]

RESEARC

H:

Review

*Correspondingauthors:.Fang,H.-H.(H.Fang@rug.nl),Loi,M.A.(M.A.Loi@rug.nl)

(3)

havebeendemonstrated.Thesuccessinthefabricationofthese

optoelectronicdeviceshasalsostimulatedtheinvestigationofthe

photophysics of these materials in different forms, helping to

betterunderstand their physical properties and understand the

prospectiveofthematerialsforoptoelectronics.Despitethe

out-standingmaterialspropertiesanddeviceperformancesofhybrid

perovskites,thereareconstraintsthatneedtoberesolvedinorder

toattainfulloptoelectronicapplicationsandcommercialization.

Some of these challenges include enhanced device efficiency,

long-termstabilityandtoxicity.

The rapid research progress and great strides been made by

metal halide perovskites in optoelectronics call for swift and

consistentsurveyintothestateofthefield.Therehavebeenrecent

excellentreviewpapersspanningfrombulkcrystalsto

nanocrys-tals which covers fundamental physical properties and devices

[49–53].Eachofthesecorrespondingreviewshasadifferentlineof

narrative,focus,anddepth.Forinstance,Rogach andcoworkers

summarizedthedevelopmentsonperovskiteNCsfromsynthesis

totheirapplications[52].However,reviewsfocusedonperovskite

(bothbulkandnanocrystals)lightemittingapplicationsare

limit-ed[51].Thispaperthereforecoversrecentachievements,ongoing

progressandthechallengesofperovskitesfromtheperspectiveof

bothmaterialsanddeviceswithanemphasisonlightemission.

We begin by offering recent research activitiesthat have been

gearedtowardsthe broadeningofthelightabsorption/emission

spectral rangeofmetalhalideperovskitesandthe narrowingof

their emission peaks. The subsequentsection comprehensively

reviewsthephotophysicalcharacteristicsofthesematerials.We

particularlyaddresstheiropticalpropertiesrelatedtothe

require-mentsforsolidstatelightemittingapplications.Theirexploitation

inlightemittingdiodesanddiodelasersisalsohighlighted.The

last section explores the current challenges for light emitting

applicationsofperovskitesandpresentsourperspectivesonthese

applications.

Metal

halide

perovskites

for

light

emission

Tunable

light

emission

and

high

color

purity

perovskites

Color(bandgap)tunabilityisoneoftheexceptionalcharacteristics

ofhybridperovskitescomparedtoothernon-molecular

semicon-ductors.Thecolortunabilityorbandgapengineeringinthisclass

ofmaterialsisachievedthroughtailoringofthechemical

compo-sition, nanostructuringand quantum confinement.A

consider-able number of reports have demonstrated that the emission

wavelengthsaretunablefromtheultraviolettothenear-infrared

spectralregions(390–1050nm)[25,32,34,54–57].

Tunable

band-gap

by

composition

Longbefore3Dhalideperovskiteswereemployedinsolarcells,

Kitazawaetal.[58]studiedtheopticalpropertiesof

methylammo-niumleadtrihalides[CH3NH3( MA)PbX3(X=Cl,Br,I)]andtheir

mixed-halide crystals and showed that by varying the halide

composition, the bandgap can be tuned to obtain 1.55eV

(X=I), 2.23eV (X=Br) and 3.11eV (X=Cl). The bandgap of

themixed-halides yieldedvaluesthatrangebetweenthe values

ofthepurehalideperovskites.Notably,thepioneeringworkson

perovskite solar cells were based on thin films of pure halide

perovskites, MAPbI3 and MAPbBr3 with absorption onsets at

800nm and570nmrespectively[28].Snaithand co-workers

laterchemicallymodifiedtheMAPbI3bypartialsubstitutionofthe

iodidewithchlorideionswhichresultedinasmallblue-shiftinthe

absorptiononset,betterstability,andenhancedcarriertransport

thanthe pure halideperovskites [30].In order to enhance the

perovskite light harvesting capabilities, Noh et al. [59] made

MAPb(I1xBrx)3 [0x1] perovskitesby stoichiometricmixing

oftheiodidesandbromidesanddemonstratedthatthebandgapof

theperovskitethinfilmscanbechemicallytunedbycontrolling

the ratio of the halides. Thus, they showed that this class of

materialscouldabsorbinalmosttheentirevisiblespectrum.Their

findingsstimulatedbandgapengineeringofperovskitematerials

forwiderspectrumemissionandenhancedlightemission

applica-tions.

BycontrollingthehalideratioofMAPbX3(X=Cl,Br,I)

perov-skitefilms,Xingandcolleagues[20]demonstratedcontinuously

tunableamplifiedspontaneousemission(ASE)andlasingat

wave-lengthsbetween390and790nm.Subsequently,using

methy-lammonium-based perovskites, Tanetal. [27]fabricated halide

perovskite LED (PeLED) that yielded bright (luminance of

364cdm2atcurrentdensityof123mAcm2)visibleand

infra-redelectroluminescence.Also,byemployingMAPbBr3,MAPbBr2I

andMAPbI3xClx,theyobserved electroluminescenceat517nm

(brightgreen),663nm(red)and773nm(near-infrared),

respec-tively.Theseearlier workshavepaved the wayforaninflux of

perovskites with broadly tuned band gaps. Thus, several other

reportshavedemonstratedcolortunabilitythroughhalide

substi-tutionandmixingusingdifferentsyntheticmethodsandstarting

precursorsources.Forexample,Sadhanalaetal.[23]demonstrated

blue-green (3.1–2.3eV (425–570nm)) color tunability in

MAPb(BrxCl1x)3[0x1]perovskitesusingleadacetateinstead

ofthecommonlyusedleadhalidesastheleadprecursorsource.

Althoughhalidemixinghasexpandedthe choicesof

perovs-kitesforbroademission,mixed-halideperovskitesarefacedwith

thedauntingchallengeoflight-inducedinstability,whichposes

itselfasa bottlenecktotheeffectiveoperationandreliabilityof

FIGURE1

(a)Schematicmodeloftheperovskitecrystalstructure.‘A’representsthe organicorinorganiccation,‘B’representsthemetalion,and‘X’represents thehalogenion;(b)photographstakenfromtheas-grownCH3NH3PbX3 crystals.Reprintedwithpermissionfrom[37];(c)opticalmicrograph showingcontinuousperovskitethinfilmwithmillimeter-scalecrystalline grainsformedviasolution-basedhot-castingtechnique[39].Reprintedwith permissionfromAAAS;(d)photographsofthinfilmsofblue-emitting nanoplateletsandgreen-emittingnanorods,takenunderUVradiation[141]. ReprintedwithpermissionofTheRoyalSocietyofChemistry.

RESEARCH:

(4)

optoelectronicdevices.Thisinstabilityarisesfromhalide

migra-tionundercontinuouslightillumination,whichresultsinphase

segregationandformationoftrapsordomainsofthe

correspond-ingpurehalides.Eventhoughthe phenomenonisreversibleas

demonstratedbyMcGeheeandcoworkers[60],theultimate

long-termuseofmixed-halideperovskitesinoptoelectronicsrequiresa

solutiontothischallengeasproposedbySlotcavageetal.[61].

Colortuning throughcationic substitution and mixing have

alsobeen reported. The commoncations employedare

methy-lammonium(MA),formamidinium(FA)andcesium(Cs)fortheA

positionandlead (Pb)andtin (Sn)forthe Bposition.Bandgap

tuningofperovskitesbycationsubstitutionwasfirstdemonstrated

inphotovoltaicdevicesbySnaithandcolleagueswheretheyfound

that,replacingtheMAcation(2.70A˚ )inMAPbI3perovskitewith

Cs+ ion(1.81A˚ ),whichissmallerin sizeincreasesthe bandgap

from1.55eVto1.73eV,whilethereplacementwiththeslightly

largerFA cationdecreasesthe bandgapfrom1.55eV to1.48eV

[32].Althoughthechangeinwavelengthrangeissmallcompared

tothatdeterminedbytheanionicsubstitution,theirresultshowed

that as the A-cation increases in size, the bandgap decreases,

leadingtoared-shiftintheabsorptiononset.

To understand the interplay between cationic size and the

electronicproperties, Amatet al. [62]investigated the effect of

A-cationsizeonAPbI3perovskiteswithA=Cs+,MAandFAusing

first-principles calculations. They confirmed the experimental

observation that increasingthe cation size leadsto redshift in

theabsorptiononsetofthematerial.Theyalsoobservedthatthe

hydrogenbondingbetweenthecationandtheinorganic

octahe-dral networkis enhanced, resulting in the modification ofthe

ionic/covalentcharacterofthePb–Ibonds.Althoughbond

modi-ficationplaysaroleintheshiftoftheabsorptiononset,itisnotthe

primary cause. Prior to this study, several other investigations

gearedtowardsunravelingtheroleofionicsizeandorbital

con-tributionstotheelectronicpropertiesofthesematerialshavebeen

performedontypicalhalideperovskitesusingultraviolet

photo-electronspectroscopystudiesandfirst-principlescalculations.For

instance,inMAPbI3,itwasfoundthatthevalencebandmaximum

(VBM)consistedofPb6s–I 5psigma-antibonding orbitalswhile

theconductionbandminimum(CBM)consistedofPb6p–I5sand

Pb6p–I 5ppi-antibonding orbitals[63].Similarstudies on

tin-basedperovskitesrevealedthatthesamephenomenonisobserved

involvingtin(Sn)andthehalideorbitals.Inaddition,

investiga-tionbyBorrielloetal.[64]ontinhalideperovskitesshowedthat

thesizeoftheA-cationsignificantlyinfluencesstructuralstability

andelectronicpropertiesoftheperovskites.Theirstudiesrevealed

thatthebandgapwhichisdeterminedfromtheVBMandtheCBM

consistedsolelyoforbitalcontributionsfromtheinorganic

octa-hedron (BX4)6 and that the orbitals of the A-cation do not

contributetothe energybands.Furthermore,itwasfoundthat

structuralparameterssuchasin-planeB–X–BbondangleandB–X

bondlengthwhicharesignificantlymodifiedbytheA-cationare

primarilyresponsiblefortheobservedchangesintheelectronic

and optical properties of the materials [63,65–73]. This

under-standingpromptedA-cationmixinginperovskiteswiththeaimof

notonlyenhancingstructuralstabilitybutalsotuningthe

absorp-tion/emissionwavelengths.Mostresearchershavethereforeasa

designprincipleturnedtheirresearchattentiontocation

combi-nationofthemostcommonlystudiedA-cations(Cs+,MAandFA),

forming double [74] or triple [75] cation-blended perovskites.

Similarly, Hao etal. [57] have exploited the bandgap behavior

of mixed B-cation MA(Sn1xPbx)I3 [0x1] perovskites and

foundananomalousbandgaptuningbehaviorthatdeviatedfrom

the usual linear trend observed in for example mixed halide

perovskiteswherethebandgapliesbetweenthetwoextremesof

eitherofthepurematerials.Farfromtheexpectedbandgaptuning

between1.55eVforthe100%leadsample(MAPbI3)and1.35eV

for the 100% tin sample (MASnI3), they observed bandgap as

narrowas1.1eVforequalmoleratiosofPb/Sn,thereforepushing

theabsorptiononsetintothenear-infrared(1050nm).

Besides3Dhybrid perovskites,tunablelightemissionin

two-dimensional(2D)layeredperovskiteshasalsobeendemonstrated.

Forexample,byreplacingMAin3DMAPbI3withdifferent

phe-nylalkylammonium cations, Kamminga et al. [76] successfully

synthesizedlayeredhybridstructures,showingthatbyincreasing

the alkyl chain lengths, the bandgap could systematically be

increasedfrom2.12to2.48eV.Sargentandcoworkershavealso

shown that increasingthe numberof the inorganicmonolayer

sheets, that is,forming multilayered quasi-2D perovskite

struc-tures,significantlyred-shiftsthePLpeak[77].Asimilar

observa-tion was recently reported by Huang and coworkers in NFPI7

multiple quantum wells (made from precursor solution of

1-naphthylmethylamineiodide(NMAI),FAIandPbI2)[78].

Tunable

band-gap

by

nanocrystal

shape

and

size

Beyondbulk perovskitecrystals,broad colortunability hasalso

been reported in perovskitenanocrystals. Bandgap engineering

andcolortuninginperovskitenanocrystalsisachievablethrough

nanostructuring(i.e.sizeandshape).Thenanostructuresthathave

been reported include nanoparticles (NPs) [79–81], nanowires

(NWs) [82] and nanoplatelets (NPLs) [83,84]. Similar to bulk

perovskite crystals, color tuning in perovskite nanostructures

by compositionalcontrol hasbeen demonstrated.Forexample,

colloidal nanocrystals of mixed-halide (octylammonium (OA):

MA)PbX3 (X=Cl, Br, I and mixture thereof)of size 5–10nm,

weredemonstratedbyPathak etal.[25]toshowacontinuously

tunablePLemission from385to770nm byvaryingthehalide

composition. The formation of nanoplatelets having excess

amount(>60%)ofOAintheA-cationmixturewasalso

demon-strated.Figure2ashowsimagesofrepresentativeperovskite

nano-crystals of (OA:MA)PbX3 with X=Cl, Br and I, stabilized in

polystyrene withemissions inblue, greenand red respectively.

Interestingly, the first composition-tunable colloidal MAPbX3

(X=Cl, Br, I or mixture thereof) perovskite nanocrystals were

fabricatedusingligand-assistedreprecipitation(LARP)technique.

The nanocrystals yielded emissionsin the wavelengthrangeof

400–750nmviathevariationofthehalidecomponents[81].The

composition-tunabilitywasfurtherdemonstratedbyembedding

MAPbX3nanocrystals(size3–5nm)inpolyvinylidenefluoride

(PVDF) composites filmswiththe aim ofenhancing

lumines-cence and materials stability besides color tuning [85].

Kova-lenko and co-workers also demonstrated successful synthesis,

colortuningandsize controlin fullyinorganicCsPbX3

nano-particles, with emissions from 410 to 700nm [40]. This was

achievedthroughcontrolled synthesisofmonodisperse

nano-cubeswithcrystalsizestunablebetween4 and15nmby

con-trollingthereactiontemperaturebetween140and2008C.The

RESEARC

H:

(5)

pictures of flasks containing color tunable colloidal CsPbX3

nanocrystalsareshowninFig.2b.

Pure

color

emission

perovskites

Colorpurityisakeypropertyfordisplayapplications.Theuseof

the CIE chromaticity diagram (introduced by the Commission

Internationaledel’Eclairage)allowstheobjectivespecificationof

colorqualitybymappingcolorsvisibletothehumaneyeinterms

ofhueandsaturation.Similarly,thespectralpurityoflight

emis-sion is often specified by full-widthat half-maximum (FWHM)

with narrowbandwidthsindicativeofhighcolor purity.Inthe

past two years, several reports have demonstrated PL and EL

emissionsinsinglecrystals,thinfilmsandnanocrystalsofhybrid

perovskiteswithultra-highcolorpuritywhichareevidentbytheir

narrow bandwidths (20nm or less) and pure hue [23,86]. A

notable example is the bright-green EL emission displayed by

CsPbBr3 NC-LEDs centered at 516nm with FWHM of 84meV

(18nm) and CIE color coordinatesof (0.09,0.76)(Fig. 2c) [86].

Friendandco-workers[23]alsoshowedthatbesidesexceptional

bandgaptuning,thecolorpurityofMAPb(BrxCl1x)3[0x1]

perovskite LEDs(PeLEDs) can be refinedby varyingthe halide

ratio.Theydemonstratedblue-greenLEDsbasedonMAPb(BrxCl1x)3

perovskites with FWHM as narrow as 34meV (5nm for 100%

chloridecontent)whichdependsontheratioofthehalide

com-position.Furthermore,asarepresentationofthe wideandpure

colorgamutprovidedbymetalhalideperovskites,Fig.2dshows

theemissionoftheCsPbX3NCsreportedasblackdotsontheCIE

chromaticitydiagram.Thecolorcoordinatesliealongthespectral

locusofthecolorgamutwitheachpointrepresentingapurehueof

monochromaticlightorpurecolor.Thediagramalsoillustrates

thecomparisonofthecolortriangleofperovskitestoothermost

commoncolorstandardsusedinconventionalLCDTVandthe

oneoftheNTSCTV(NationalTelevisionSystemCommittee),with

the perovskites encompassing more than 100% of the NTSC

standard[40,87].

Charge-carrier

recombination

and

PLQY

in

hybrid

perovskite

Themost importantfigureofmeritforhighperformance

light-emitting materials is the photoluminescence quantum yield

(PLQY)whichisdefinedasthe numberofphotons emittedper

absorbed photons of the excitation source.Photoluminescence

emissioninmaterialsisduetoradiativerecombinationprocesses,

which directly compete with non-radiative processes that are

either intrinsic or extrinsic (as a result of traps or defects).

Charge-carrierrecombinationprocessesinvolvedinhybrid

perovs-kitesaremonomolecularrecombination,bimolecularrecombination

FIGURE2

(a)Picturesofperovskitecrystal/polymercompositefilmsemittingblue(X=Cl),green(X=Br)andred(X=I)lightunderaUVlamp(365nm).Reprinted withpermissionfrom[25].Copyright2015,AmericanChemicalSociety.(b)PicturesofflaskscontainingsolutionofcolortunablecolloidalCsPbX3 nanocrystals[40].(c)NormalizedELspectraofCsPbBr3NC-LEDwithemissionpeakcenteredat516nm[40].(d)RepresentativeCIEdiagramshowingthe coordinatesofCsPbX3NCs.Reprintedwithpermissionfrom[40].

RESEARCH:

(6)

and Augerrecombination. Assuming thatboth monomolecular

recombinationandAugerrecombinationarepurelynonradiative

andonlybimolecularrecombinationisradiative,thePLQY,also

referred to asradiative efficiency is then givenby the ratio of

radiativetototalrecombinationratesandstatedmathematically

asbelow.

;ðnÞ¼ nk2

k1þnk2þn2k3

wherenisthecharge-carrierdensity,k1,k2andk3arethe

monomo-lecular,bimolecularandAugerrecombinationrateconstants,

respec-tively[88]. Experimentalevidence showed thatat lowexcitation

fluence,thecarrierrecombinationisdominatedbytrap-mediated

(monomolecular)recombination(knownasShockley–Read–Hall

re-combinationinthesolarcellcommunity)whilethebimolecularand

Augerrecombinationonlyappearsathighfluences[89].

Intheirearlierstudyin2014oftheopticalpropertiesof

solu-tion-processed MAPbI3xClx perovskite thin films, Friend and

collaborators [45] showed that the PL with a relatively narrow

bandcenteredaround1.6eVexhibitedarelativelylowPLQYat

low fluences (<25mW/cm2) which rapidly increased with

in-creased excitationdensitiesto a maximumvalueof70%. They

attributedthe rapidincreaseinPLQYto dominantradiative

re-combination at the high fluences. This claim is evidenced in

MAPbI3andMAPbI3xClxasshowninFig.3a.Thefigureillustrates

thedependenceoftime-integratedPLsignalsandQYoninjected

FIGURE3

(a)Time-integratedphotoluminescencesignalsandquantumyieldasafunctionofinjectedcarrierdensityforthetwoperovskitesamples.Reprintedwith permissionfrom[89].(b)2Dpseudo-colorplotofthenormalizedemissionspectrafromMAPbI3singlecrystalatdifferenttemperatures.Reprintedwith permissionfrom[90].(c)IntegratedPLintensityasafunctionoftemperatureinFAPbI3thinfilm.Reprintedwithpermissionfrom[91].(d)Schematicdrawing ofthedielectricconstantasafunctionoffrequencyforthelowandroomtemperaturephases.Reprintedwithpermissionfrom[142].(e)Dynamicsofthe photoluminescenceintensityunderilluminationoflaserinair.Reprintedwithpermissionfrom[101].

RESEARC

H:

(7)

carrier density. Thus, given that at low excitation fluence the

carrierrecombinationisdominatedbymonomolecular

recombi-nation,thelineargrowthinQYisattributedtoincreased

bimo-lecularradiativerecombination,whilethesaturationandeventual

dropatveryhighcarrierdensitiesisattributedtoAugerprocesses.

Thisdeductionisbasedonthescalingofthevarious

recombina-tiontermsintheradiativeefficiencyrelationdependenceonthe

injectedchargedensity.

Asmentionedabove,thephotoexcitationsinbulkhybrid

per-ovskites (for example,MAPbI3 crystals[90]) have been

demon-stratedtoleadtomostlyfreecarriersatroomtemperature.Thisis

becauseofexcitonscreeningbycollectiveorientationalmotionof

theorganiccations,leadingtolowexcitonbindingenergyatroom

temperature (Fig. 3b–d). The radiative recombination is thus

mainlydominatedby bimolecularrecombinationat room

tem-perature whileWannier-like excitonsareevidencedatlow

tem-perature[91].Thisnatureoftheradiativerecombinationleadsto

relativelylowphotoluminescenceintensityatlowexcitation

flu-enceatroomtemperaturebutsignificantlyincreaseswith

decreas-ing temperature. As shown in Fig. 3c, the PL intensity in

formamidiniumleadiodide(FAPbI3)thinfilmat5Kisabout25

timesgreaterthanthatat295K.Therefore,trap-assisted

recombi-nation, which is highly dependent on materials quality (trap

density) needto bewell addressed fordevices operated at low

carrierdensity.Ithasbeenshownthatthetrapdensityin

perov-skitethinfilmsvariesfrom1014to1017cm3[92–94]resultingina

widerangeofcharge-carrierlifetimes.Ontheotherhand,insingle

crystals,muchlowertrapdensities(109–1010cm3)areobserved

[38].Recenttheoreticalstudiesonbothiodide-andbromide-based

perovskitesrevealedthatthedefectsinthesematerialshavelow

formation energies thatcreate onlyshallow levels [95–97], and

thatthesetrapscanbepassivatedeffectively[98,99].Noeletal.[78]

usedLewisbasesthiopheneandpyridinetopassivatethe

perov-skiteanddemonstratedanenhancedPLlifetimeintheorderof

2ms.Furthermore,Zhangetal.[93]showedthattheadditionof

hypophosphorousacid(HPA)intheprecursorsolution

significant-lyimprovedthefilmquality,bothelectronicallyand

topological-ly.Similarimprovementin filmqualityandsurface passivation

was recently demonstrated using amine functional molecules,

leading to enhancement in photovoltaic performance and

air-stability [100].Also, lasertreatment incontrolled environment

hasbeendemonstratedasawayofsuppressingtrapstates.Such

‘Light curing’ effects in perovskites have been experimentally

observed independently by Fang et al. and deQuilettes et al.

[101,102] and theoreticallydemonstratedin MAPbI3 by Filippo

DeAngelisandcoworkers[103].AsshowninFig.3e,the

photo-luminescence intensity isenhanced more than 140times after

continuousultravioletlaserillumination[101].Veryrecently,we

also demonstrated that the surface trap statein

methylammo-nium-leadtribromide(MAPbBr3)singlecrystalscanbereducedto

108cm2uponexposuretooxygenandwatervapor,leadingtoan

unusuallylowsurfacerecombinationvelocity(SRV)of4cm/s,and

extremely long photoluminescence lifetime above 4ms (Fig. 4)

[104].

Toovercomethelimitationofthebimolecularrecombination

and ensureenhancedPLatlowexcitation,oneofthestrategies

adoptedwastheformationofnanostructureswithreduced

dimen-sionalitiesfor quantumconfinement.This leadsto a transition

fromcontinuous to discrete energy levels with the energy gap

inverselyproportionaltotheparticlesize.Comparedtothebulk

halideperovskites,perovskitenanocrystalshave been shownto

exhibithigherPLQYduetoquantumconfinementeffect,which

promotesefficientradiativerecombination.Forexample,colloidal

MAPbX3NPs(X=Cl,Br,I)fabricatedusingligand-assisted

repre-cipitation(LARP)methodhavebeenshowntoexhibitPLQYinthe

rangeof50–70%atroomtemperatureatlowexcitationfluences

[81].ThePLQYoftheNPswerefoundtobesize-dependent,with

thesmallestMAPbBr3 NP(3.3nm)yieldingthehighestPLQY.

ModificationoftheabovetechniquewithincreasedMABr/PbBr2

ratioalsoledtoanenhancedPLQYofabout83%.Furthermore,by

fine-tuning the LARP technique, MAPbBr3 NPs synthesized at

different temperatures of 0–608C have been demonstrated to

exhibit size-tunablebandgap (475–520nm)for particle sizesin

therangeof1.8–3.6nmandexceptionalPLQYvaluesof84–93%

respectively[79]. The FWHM of the emission bands arein the

rangeof128–198meVwithshortradiativelifetimesof13–27ns

comparedtothebulkmaterialsthathavelifetimesoftheorderof

100ns.Similarly,Huangetal.[105]employedemulsionsynthesis

methodto synthesize MAPbBr3 NPs with the use ofcontrolled

amountsofdemulsifiertotunethenanoparticlesizeintherange

of2–8nmwhichyieldedPLQYbetween80and92%.Althoughthe

size-dependentPLQYisnotveryobviousforparticleslargerthan

2.6nm due to weakconfinement effect, the highestPLQY was

obtainedforthe smallestNP.Additionally,itwasillustrated

re-centlythatbyembeddingnanocrystalsofsizes3–5nminaPVDF

compositefilm,thePLQYisenhancedto95%[85].Besideshigh

PLQYinthe hybridperovskitenanocrystals,Kovalenkoand

co-workers have also demonstrated nanoparticle size-dependent

PLQY values in the range of 50–90% in inorganic perovskite

CsPbX3NPs(4–15nm)preparedusingthehot-injectiontechnique

attemperaturesof140–2008C[40].Thenanoparticlesalso

exhib-itednarrowemissions(88–106meV)[40].Itisimportantto

un-derline that in nanoparticles, the PLQY is enhanced not only

becauseoftheconfinementbutalsobecauseofthesurface

passiv-ation.Forexample,using aninorganic–organic hybridion pair

such as didodecyl dimethylammonium sulfide (S2–DDA+) to

passivate surface defects in perovskite CsPbBr3 quantum dots,

theradiativerecombinationisenhanced,resultinginanincrease

inPLQYfrom49%to70%[106].Thedevicesalsoexhibited

air-andphoto-stability.

FIGURE4

(a)Two-dimensional(2D)pseudocolorplotsofTRPLspectraofaMAPbBr3 singlecrystaltakeninair.(b)PLlifetimeinMAPbBr3singlecrystalsasa functionofsurfacerecombinationvelocityforvariouscarrierdiffusion coefficientsandbulklifetimes.Reprintedwithpermissionfrom[104].

RESEARCH:

(8)

Itisworthnotingthatbeyondnanoparticles,highPLQYvalues

havebeen demonstratedinother nanostructuressuchas

nano-wires,nanoplateletsandnanorods[40,43,84,107,108].

Addition-ally,multilayeredmultiphased quasi-2Ddimensionalperovskite

solids[PEA2(MA)n1PbnI3n+1,wherePEA=C8H9NH3andn=

num-beroflayers]havebeenemployedtoconfinechargecarrierswithin

themulticomponent emissivelayer. Inthisway,the perovskite

emissivelayeralsoservesaschargecarrierconcentrator,guiding

thechargecarrierstothesmallerbandgapemittingregionsand

enablingefficientradiativerecombinationevenatrelativelylow

fluences. This leads to efficient PeLED with EQE of 8.8% and

radianceof80Wsr1m2[77].

For laser applications where the device operates under high

chargecarrierdensity (>1018cm3),Augerrecombination

com-peteswithradiativerecombination,henceoughttobetakeninto

consideration. Saba et al. [89] showed that the maximum PL

quantumyieldinMAPbI3andMAPbI3xClxisachievedforcarrier

density range of n0=0.5–31018cm3 and that non-radiative

Augerprocesses dominated at higher excitations(>1019cm3

).

Thisisanimportantconditionforpotentiallasingapplications,

whererapidAugerprocessescompetewithpopulationinversion.

Dependingontheelectronicproperties,theAuger-recombination

rateconstantsinperovskitefilmshavebeenshowntovaryinthe

range0.99–13.51028cm6s1[109–111].Thesevaluesareofthe

sameorderofmagnitudeasforbulkPbSe(C81028cm6s1)

[112].Interestingly,ithasbeenshownbyZhuetal.[43]thatthe

Augerrecombination in MAPbI3 nanowires is negligible at the

lasingthreshold.Itiscompetitiveonlywhenthecarrierdensityis

103timeshigherthanthelasingthreshold.Thesefeaturesmake

organometallicperovskitesverypromisingfortherealizationofa

solution-processedelectricallydrivenlaser.

Applications:

LED

and

lasing

Perovskite

light-emitting

diodes

(PeLEDs)

Thedemonstrationofelectroluminescenceinhalideperovskites

wasfirstobservedinlayeredperovskitesatcryogenictemperatures

in the early1990s [113–115] and later at room-temperatureby

incorporating a specially modified quaterthiophene dye in the

hybridperovskitesheet[116].Althoughresearchactivitiesinthis

field were inactive for over a decade, recent interest has been

rekindled by the interesting photoluminescence properties

ob-servedinsolution-processed3Dperovskites.

ThedevicearchitectureofPeLEDcanbeclassifiedinto

multi-layeredand single-layereddevicestructures. Atypical

multi-lay-eredPeLEDdeviceconsistsofafronttransparentelectrode

(typi-callyFTOorITO),ann-typehole-blockinglayer(HBL),ap-type

electron-blocking layer (EBL), a perovskite emitter and a back

electrode. The perovskite active layer is sandwiched between

theHBLand theEBLtoformadouble-heterojunctionstructure

inordertoconfinetheinjectedchargesforbetterlightemission.

Under applied voltage, the electrodes inject charge carriers

throughthe transportinglayersintothe perovskiteactivelayer

where they recombine radiatively, emitting light. In general,

multi-layeredPeLEDshavetwomaindevicegeometries:the

con-ventional (HBL/perovskite/EBL) and inverted (EBL/perovskite/

HBL)configurations.Theseconfigurationsareadaptedfromthe

basicdevicestructuresemployedinsolarcells.Thetypical

sche-matic diagrams of the device geometries (conventional and

inverted) and some of the reported carrier blocking layers are

showninFig.5a–c.Alternatively,thesingle-layeredPeLEDdevice

is composedofa perovskitecomposite sandwichedbetweenan

anodeandacathode.Themostcommonlyusedperovskite

emit-tersarebasedonMAPbX3andCsPbX3(X=Cl,Br,Ioramixture

thereof)familyofhalideperovskites,althoughrecentreportsalso

demonstratedtheuseofmixed-cationPeLEDs[117].

The first single-layered PeLED consisted of a composite of

MAPbX3(X=Cl,Br,I)andpoly(ethyleneoxide)(PEO)sandwiched

betweenindium-dopedtinoxide(ITO)astheanodeandIn/Gaor

Au as cathode. The best performing device which is based on

PEO:MAPbBr3(0.75:1weightratio)displayedgreenemissionwith

maximum luminance of 4064cdm2 at 5.5V, comparable to

earlier results of the multi-layered devices [118]. By replacing

the emissivelayerwitha mixtureofCsPbBr3,PEO and

poly(vi-nylpyrrolidone)(PVP), thedeviceperformancehasbeen

signifi-cantlyenhanced,yieldinggreenluminescencewithluminanceof

591,197cdm2at4.8VandEQEof5.7%[119].

Similarly, thefirstreported multi-layered3D perovskiteLEDs

displayed near-infrared, greenand red emissionsby employing

MAPbI3xClx,MAPbBr3andMAPbBr2Iastheemittinglayers.The

opticalabsorption,photoluminescenceandelectroluminescence

spectraoftheseearlydevicesareillustratedinFig.5d[27].Dueto

thedifferentenergylevelsoftheperovskiteemittersandforthe

purposesofeffectivechargeinjectionandconfinement,the

MAP-bI3xClx was sandwiched between titanium dioxide (TiO2) and

poly(9,9-dioctylfluorene)(F8)layerswhichfunctionedasHBLand

EBLrespectivelywhileinthecaseofthegreenandredemissions,

theperovskiteemittersweresandwichedbetweenPEDOT:PSSand

F8 which functioned as EBL and HBL respectively. With these

configurations,external quantum efficiency(EQE) of0.1% and

maximum luminance of 364cdm2 for the green-emitting

devices,werereported.Aboutthesametime,Kimetal.[120]also

reporteda green-emittingPeLEDwithslightlyimprovedEQEof

0.125%andluminanceof417cdm2bysandwichingthe

perov-skiteMAPbBr3betweenaself-organizedbufferhole-injectionlayer

(Buf-HIL) that is composed of PEDOT:PSS and a perfluorinated

polymericacid,

tetrafluor-oethylene-perfluoro-3,6-dioxa-4-meth-yl-7-octene-sulfonicacid copolymer(PFI)and thehole-blocking

material, 2,20,200

-(1,3,5-benzinetriyl)-tris(1-phenyl-1-H-benzimid-azole)(TPBI).Theseearlierworkspavedthewayforfurther

explo-rationofthisclassofmaterialsforenhancedPeLEDs.Throughthe

enhancement of perovskite processing and/or film formation,

materials and interface engineering, use of various interfacial

layerswithtailoredbandalignmentsandtheselectionof

appro-priate electrodes, the PeLEDs device performances have been

greatlyenhancedoverthepasttwoyears.Forexample,the

forma-tionofmetalliclead(Pb)inMAPbBr3thathasbeenshowntolimit

the electroluminescence efficiency through exciton quenching

has been reduced through the modification of the perovskite

composition by slightly increasingthe MABr molarproportion

inthePbBr2/MABrmixture[22].Inaddition,MAPbBr3nanograins

havebeen createdtoconfinetheexcitons,leadingtoenhanced

luminescencewithcurrentefficiencyandEQEof42.9cdA1and

8.53%respectively[22].Morerecently,PeLEDsbasedon

solution-processedself-organizedmultiplequantumwellshavebeen

dem-onstratedtoexhibitarecordEQEof11.7%atacurrentdensityof

100mAcm2 [78].Although thesevalues arebelow the record

RESEARC

H:

(9)

valuesofsolution-processedOrganicLEDs(OLEDs)andQuantum

Dots LEDs(QLEDs)(EQE>20%),PeLEDsshowhighpromiseas

the future ofsolid-statelight emittingapplications.Besides red

andgreenemissions,blueemission[23]hasalsobeen

demonstrat-ed, leadingto the firstdemonstration ofperovskite white-light

LEDbySnaithandco-workers[25],whichwasachievedby

blend-ingperovskitenanocrystalswithdifferentemissionwavelengths

in a polymer host. Using mixtures of multiple color-emitting

CsPbX3nanocrystalpowders,downconversionwhitelight-emitting

devices weredemonstrated [121].The CsPbX3 nanocrystals were

coated with waterresistant polyhedral oligomericsilsesquioxane

(POSS),whichpreventsanionexchangebetweenperovskite

nano-crystalsofdifferentcompositionsandpreservetheirdistinct

emis-sionspectra.InadditiontoPeLEDs,electroluminescencehasalso

been demonstratedin field-effecttransistors (FETs)at low

tem-peratures(<200K).Usingbottom-gatebottom-contact

configura-tionwithheavilyp-dopedSi asthegate contact and Auasthe

source-draincontact,Sociandcoworkersdemonstratedambipolar

charge injection and gate-dependent electroluminescence in

MAPbI3-based FETs.Theemittedlightwasonlyobservedinthe

ambipolar regime at low temperatures (78–178K).The authors

also found that the charge mobility increased by 2 orders of

FIGURE5

(a,b)SchematicdiagramsofthePeLEDarchitecturesintheconventionalandinvertedconfigurationrespectively.(c)Energylevelalignmentofvarious materialsusedasperovskites,ETLsandHTLsinthePeLEDsthathavebeenreported.(d)Opticalabsorptionisshownwiththeblackline.Normalized electroluminescenceandphotoluminescencespectraofMAPbBr3perovskiteareshowninsolidanddashedgreenlinesrespectively.Theredlineisthe normalizedelectroluminescencespectrumofMAPbBr2Imixedhalideperovskite.Insetimage:uniformgreenandredelectroluminescencefromMAPbBr3and MAPbBr2IPeLEDs,respectively.Reproducedwithpermission[27].Copyright2014,NaturePublishingGroup.

RESEARCH:

(10)

magnitudewhenthe temperaturewasloweredfromroom

tem-perature to 78K [48], a characteristic that is consistent with

phonon scattering-limited transport of conventional inorganic

semiconductors.

Perovskite

halides

for

lasing

Observationofamplifiedspontaneousemission (ASE)isadirect

criterionforidentifyingintrinsicgainpropertiesoflasermaterials.

Room temperatureASE was firstreported in MAPbI3 thin films

[20],with a thresholdcarrier density of 1.71018cm3.The

thresholdiscomparablewithstate-of-the-artcavity-free

solution-processed polymer films such as

poly[9,9-dioctylfluorene-co-9,9-di(4-methoxyphenyl)-fluorene] (F8DP). Notably, Deschler

et al. [45] constructed and demonstrated the operation of an

opticallypumpedverticalcavity lasercomprisinga layerof

pe-rovskite between a dielectric mirror and evaporated gold top

mirrors.ThephotoexcitationofMAPbI3xClxmixed-halide

perov-skiteresultsinfreechargecarrierformationwithin1psandthese

freechargecarriersundergobimolecularrecombinationontime

scalesoftenstohundredsofns.Throughvariablestripelength

measurements,anetpeakgainvalueof12522cm1andagain

bandwidthof5014meVhasbeendeterminedinMAPbI3thin

films[122].Sargentandcoworkersalsoshowedthat theoptical

gaincanbeashighas3200830cm1[123].InCsPbX3

perov-skite nanocrystals, values of gain from 450 to 500cm1 were

reported[124].Valuesofthismagnitudearecomparabletothose

obtainedincolloidalquantumwells(600cm1)[125]andhigher

thansomepolymergainvalues(forexample,netgainof18cm1

wasreportedinconjugatedpolymer)[126].Inaddition,gainin

perovskitethinfilmhasbeenshowntolastaslongas200ps.These

superior properties make perovskite materials ideally suitedfor

lasingoperation.

As mentioned, hybrid perovskite thin films are processable

eitherfromsolutionorbyevaporation,whichenable

microstruc-turingtoimposeanopticalresonatorasshowninFig.6a–d.Very

recently,vertical cavitysurface emitting (VCSEL) and photonic

crystal(PhC)lasershavebeendemonstratedusingperovskites.For

example,Riedeetal.[127]evaporatedperovskiteontoa

nanoim-printedpolymerresisttocreateaperovskiteDFBcavity.Thelasing

wavelengthwastunedbetween770and793nmsimplybyvarying

thegratingperiodicity.Giebinketal.[128]fabricatedmetal-clad

MAPbI3 distributed feedback lasers by a one-step spin coating

process. The laser operated at a pump intensity threshold of

5kW/cm2fordurationsofupto25nsunderInGaNdiodelaser

excitation.Nurmikkoetal.[129]alsooptimizedthesynthesisof

thethinfilmtoformauniformdistributionofperovskite

nucle-ates,followedbythermalannealingtocompletethecrystalgrowth.

Withthissynergisticmaterialsanddeviceapproach,

programma-ble, spatially patterned single mode lasing froma 2D pixelated

perovskitephotoniccrystal(PePhC)laserarraywasrealized.

Similarly,lasingfrommicro/nanocrystalsofperovskitesisalso

intensivelyinvestigated.Opticallypumpedlaserswithmicro/nano

wire,microdisk,andmicroplateletstructurehavebeenfabricatedby

chemicalvapor depositionor solutiongrowthmethods.Cleanly

FIGURE6

Perovskitelaserdevicewithvariedopticalresonators.(a)AFMimageofaMAPbI3xClxperovskitedistributedfeedback(DFB)cavity[127].(b)SEMimageof photoniccrystalopticalresonatorwithMAPbI3perovskitefilmasactivemedia.Reprintedwithpermissionfrom[129].Copyright2016,AmericanChemical Society.(c)Scanningelectronmicrographofametal-clad,secondorderdistributedfeedback(DFB)MAPbI3perovskitelaserconstructedonasilicon substrate.Reprintedwithpermissionfrom[43].Copyright2016,AmericanChemicalSociety.(d)ImageofmicrospherecoatedwithMAPbI3perovskite. Reprintedwithpermissionfrom[122].Copyright2014,AmericanChemicalSociety.(e)FluorescenceimagesofasingleMAPbBr3NWabovelasingthreshold

[143].(f,g)OpticalimagesoftypicalMAPbI3nanoplateletsundertheilluminationofwhitelight.Reprintedwithpermissionfrom[130].Copyright2014,

AmericanChemicalSociety.

RESEARC

H:

(11)

cleavedperovskitefacetshavealsobeenobtainedbymakinguseof

theirwell-definedcrystallinestructureto forma self-laser-cavity.

These properties makeperovskites attractivefor potential

appli-cations as miniaturized solid-state lasers for sensing, quantum

information processing, and on-chip photonics integration.

In-terestingly,single-crystalMAPbX3(X=Cl,Br,orI)nanowireswith

smooth end-facets have been fabricated with a surface-initiated

solution growth strategyusing a lead acetate(PbAc2) solidthin

filmdepositedonglasssubstrateandincontactwithahigh

con-centrationofCH3NH3Xinisopropanol[43].EachoftheNWsserved

asa waveguidealongtheaxialdirectionand thetwoend-facets

formed a high quality (Q3600) Fabry–Perot cavity foroptical

amplification. The reported lasing threshold (carrier density,

1.51016cm3)ismuchlowerthanthatofthinfilmcounterparts,

highlightingtheversatilityandprospectsofperovskitesfor

light-emissionapplications.Byusingchemicalvapordeposition

meth-ods, Xiong et al. [130] successfully synthesized polygonal lead

halidenanoplatelets,andthen convertedthemintoMAPbI3xXx

(X=I,Br,Cl)perovskitenanoplatelets.Theas-grownnanoplatelets

showedwell-definedtriangularorhexagonalshapeswithnanoscale

thickness (10–300nm)and edgelengthofseveralto tensof

mi-crometer,ableofformingwhispering-gallery-mode(WGM)

nano-cavities.Notably,laser-diodearraysare essentiallightsources for

sensing, displayingandother applications. Thus,patterned laser

arraysandposition-controlledgrowthareessentialforintegrated

optoelectronicchips.Inthisregard,Liuetal.[131]recently

dem-onstratedperovskitemicroplateletarrays,whicharefabricatedon

siliconwithapre-patternedsinglelayerhexagonalboronnitride

(h-BN)bufferlayer.Interestingly,Fengetal.[43]developeda

control-lable dewetting technique for fabricating perovskite crystals by

using a wettability-mediated micropillar-structured silicon

tem-plate.Nucleationandgrowthoftheperovskiteswererestrictedin

thesemicrodomains,generatingsingle-crystallineperovskitesquare

microplate (SMP) arrays with precise positioning. This further

expandsthepotentialapplicationoftheseperovskitemicrolasers

inintegratedphotonicchips.

Conclusion

and

perspectives

Organic–inorganichybridperovskiteshaveshownpromising

fea-turesforsolid-statelightingand laserapplications.PeLEDswith

emissionsacrossthevisibletonear-infraredandopticallypumped

laserswithlowthresholdhavebeenachieved.However,as

previ-ouslyindicated,beforethesedevicescanapproach

commerciali-zation,therearesomechallengesthatneedtobeaddressed.

Regardingperovskitelightemittingdiodes,thefirstthrustisto

improve thedeviceefficiency. Asdiscussedabove, the

photolu-minescence quantum yield (PLQY) of MAPbX3 perovskite thin

filmsaredependentontheexcitationintensityandreacheshigher

valuesathighexcitationphotonfluences.InLEDdevice

applica-tions, the injected carrier density is typically about 1011–

1013cm3,whichistoolowtofillthetrapstatescompletely.As

a result,the actualPLQYunder normaloperatingconditions is

low. Thus,trap-mediated non-radiativerecombination playsan

important role in determining the device performance when

operating under low carrier injection. Increasing the radiative

recombinationatlowexcitationisthereforecriticalforLED

appli-cations.Besidessurfacepassivationofperovskitethinfilms,new

strategiessuchasthe recently developedtechniqueto spatially

confine the injected charges within perovskite nanograins are

paramount[22].Asaforementioned,thereducedgrainsizeaids

inincreasingtheradiativerecombinationrate,whichleadstoan

enhancedPLQY.Oneinterestingstrategyinvolvesthesynthesisof

trap-freeperovskitequantumdots,whichwillyieldhighefficient

PeLED.However,itwillrequirethebalanceofsurfacepassivation

andcarrierinjectionusingsuitableligands.Anotheraspectthat

hastobethoroughlyaddressedistoreduceleakagecurrentsthat

demands perovskite thin films with better surface coverage.

Rogachet al.demonstratedthatthe introductionofpolyhedral

oligomericsilsesquioxanetothesolutionincreasesthesolubility

ofperovskiteNCsandisafeasiblewaytoformdenserandthicker

films[132].

Anotherchallenge that requires much attention is the

long-term material and device stability. As observed in the case of

perovskitesolarcells,thedevicessufferdegradationupon

expo-suretoforexamplemoisture,heatandlight.Thisisrelatedtoboth

perovskitestabilityaswellastheinterfaciallayersinthedevice.

Sincethedegradationmechanismsarenotfullyunderstoodinthis

materialsand/ordevices,furtherresearchisparamounttouncover

theunderlyingmechanismsinordertodevisemeansofmitigating

thedegradationprocessesandenhancingthelong-termstability.

Inthecaseofmoisture-induceddegradation,oneofthesimplest

approachesistoencapsulatethedevice.Alternatively,asalready

demonstratedby usingwater-resistingdodecyltrimethoxysilane,

hydrophophictertiaryandquaternaryalkylammonium[133,134]

orfluorinatedpolymers[135]insolarcelldevices,theperovskite

LEDstabilitycanbeimprovedbytreatingthesurfacewithbetter

multifunctional material coatings which are moisture-resisting

and canwithstandlightand thermalstress [136].For example,

underrealoutdooratmosphericconditions,fluorinatedpolymer

coatedperovskitesolarcellshavebeenshowntoexhibitveryhigh

stability, maintaining 96% of their initial PCE after 3 months

whereastheuncoatedreferencedevicefailedwithin1montheven

underonlyUVradiationandAratmosphere[135].Ifthecoating

materialactsasanenergydown-converterforthePeLED,

convert-ingsomeoftheemittedhighenergyblueluminescencetolower

energyyellow-redlight,thisstructurecouldsimultaneously

deliv-erahighqualitywhiteoutput.The introductionof

low-dimen-sionalperovskitesintothe3Dstructurehasbeenshowntopossibly

increasevanderWaalsinteractionsbetweentheorganicmolecules

andtheperovskitelattice,therebyenhancingthestructural

stabil-ity.Forinstance,ithasbeendemonstratedthatsolarcellsbasedon

2Dperovskiteexhibitsbetterphotostability,retaining70%oftheir

initialPCEafter3monthscomparedtothe3Dperovskitewhich

degradedto10%oftheirinitialvalue[39].Thus,thedevelopment

ofrobustperovskiteactivelayersisatopprioritytoimprovethe

devicestability.Furthermore,theincorporationofsuitablecations

ormoleculesthatrelaxesthelatticestrainoftheperovskitecrystal

structurecanleadtoanoverallstabilizationofthematerial.

Theotherchallengeto overcomeisreplacingleadbased

per-ovskiteswithenvironmentallyfriendlyalternatives.This

motiva-tion has already stimulated development of novel lead-free

materials,suchasmethylammonium/cesiumtinhalideperovskites

[137],methylammoniumbismuth(III)halideperovskites[138]and

double perovskite Cs2BiAgCl6 [139] asalternate light absorbers.

Althoughthedeviceperformances ofsolarcellsfabricatedusing

these materials do not compare with those based on Pb-based

RESEARCH:

(12)

materials,theyholdahighpromiseasaviablealternative.

There-fore,theoptoelectronicpropertiesofthesePb-freehalide

perovs-kitesneedtobeexploredfurtherforlightemittingapplications.

For electrically pumped laser devices, a much higher carrier

injection is required in comparison to LEDs. In an optically

pumped perovskite laser, the threshold of photon density to

realizelasingistypicallyaround1011cm2.Fromthis,the

mini-muminjectioncurrentdensityrequiredtoreachthelasing

thresh-oldforelectricallypumpedlaserisestimatedtobearound1000A/

cm2.This impliesthatundersuchextremecondition,thermal

effectsleading to lattice degradation and shortening of device

lifetimeneedtobetakenintoconsideration.Nurmikkoand

co-workersrecently show that laseroutput ofthe perovskite laser

devicemaintains its approximate original valuefor4h (total

lasershots>107)underthequasi-steady-statenanosecondpump

conditions [140].However, forcommercialapplications, longer

laserlifetimeisrequired.Therefore,sincetheconsequenceofshort

devicelifetimesaremainlyrelatedtomaterialsqualityand

stabili-tyunderintenselasingconditions,thermalmanagementandthe

proposedmaterialsstabilizationstrategiesoutlinedaboveshould

betailoredforoperationsunderhighlasingpower.

Inconclusion,metal-halide perovskitespromisecolorful and

betterlightemittingapplicationsgiventhattheyexhibitabroadly

tunablebandgap.LEDsrangingfromUVtoNIRwithpurecolor

havebeen achieved andwhite lightdevicesareplausible. They

holdthekey to agreat and widemarketin public,indoorand

architecturalsolid-statelighting.

Acknowledgements

Weapologizethatmanyexcellentpaperswerenotincludeddueto

spaceconstraints.Wewouldliketoacknowledgefundingfromthe

EuropeanResearchCouncil(ERCStartingGrant‘Hy-SPOD’No.

306983)andtheFoundationforFundamentalResearchonMatter

(FOM),whichispartoftheNetherlandsOrganizationforScientific

Research(NWO),undertheframeworkoftheFOMFocusGroup

‘NextGenerationOrganicPhotovoltaics’.S.Adjokatse

acknowledgesfinancialsupportfromtheNWOGraduateSchool

funding.

References

[1]A.DeAlmeida,etal. Renew.Sustain.EnergyRev.34(2014)30.

[2]N.Holonyak,etal. Appl.Phys.Lett.1(1962)82.

[3]R.N.Hall,etal. Phys.Rev.Lett.9(1962)366.

[4]H.Amano,etal. Appl.Phys.Lett.48(1986)353.

[5]G.E.Ho¨fler,etal. Electron.Lett.34(1998)1781.

[6]M.R.Krames,etal. IEEE/OSAJ.Disp.Technol.3(2007)160.

[7]H.P.Maruska,etal. Mater.Res.Bull.7(1972)777.

[8]C.W.Tang,etal. Appl.Phys.Lett.51(1987)913.

[9]E.Bellmann,etal. Chem.Mater.10(1998)1668.

[10]T.R.Hebner,etal. Appl.Phys.Lett.72(1998)519.

[11]F.J.Duarte,etal. Opt.Lett.30(2005)3072.

[12]J.H.Burroughes,etal. Nature347(1990)539.

[13]J.Bharathan,etal. Appl.Phys.Lett.72(1998)2660.

[14]W.KiBae,etal. Nanotechnology20(2009)75202.

[15]W.K.Bae,etal. Adv.Mater.21(2009)1690.

[16]W.K.Bae,etal. NanoLett.10(2010)2368.

[17]Y.Shirasaki,etal. Nat.Photonics7(2013)13.

[18]X.Dai,etal. Nature515(2014)96.

[19]B.S.Mashford,etal. Nat.Photonics7(2013)407.

[20]G.Xing,etal. Nat.Mater.13(2014)476.

[21]J.Wang,etal. Adv.Mater.27(2015)2311.

[22]H.Cho,etal. Science350(2015)1222.

[23]A.Sadhanala,etal. NanoLett.15(2015)6095.

[24]O.A.Jaramillo-Quintero,etal. J.Phys.Chem.Lett.6(2015)1883.

[25]S.Pathak,etal. Chem.Mater.27(2015)8066.

[26]R.L.Z.Hoye,etal. Adv.Mater.27(2015)1414.

[27]Z.-K.Tan,etal. Nat.Nanotechnol.9(2014)687.

[28]A.Kojima,etal. J.Am.Chem.Soc.131(2009)6050.

[29]H.-S.Kim,etal. Sci.Rep.2(2012)591.

[30]M.M.Lee,etal. Science338(2012)643.

[31]J.Burschka,etal. Nature499(2013)316.

[32]G.E.Eperon,etal. EnergyEnviron.Sci.7(2014)982.

[33]J.H.Heo,etal. Nat.Photonics7(2013)486.

[34]J.H.Noh,etal. NanoLett.13(2013)1764.

[35]N.J.Jeon,etal. Nat.Mater.13(2014)897.

[36]W.S.Yang,etal. Science348(2015)1234.

[37]Y.Liu,etal. Adv.Mater.27(2015)5176.

[38]D.Shi,etal. Science347(2015)519.

[39]H.Tsai,etal. Nature536(2016)312.

[40]L.Protesescu,etal. NanoLett.15(2015)3692.

[41]Y.Hassan,etal. Adv.Mater.28(2016)566.

[42]L.C.Schmidt,etal. J.Am.Chem.Soc.136(2014)850.

[43]H.Zhu,etal. Nat.Mater.14(2015)636.

[44]NREL,http://www.nrel.gov/ncpv/images/efficiency_chart.jpg(2016). [45]F.Deschler,etal. J.Phys.Chem.Lett.5(2014)1421.

[46]H.Wei,etal. Nat.Photonics10(2016)333.

[47]S.Yakunin,etal. Nat.Photonics9(2015)444.

[48]X.Y.Chin,etal. Nat.Commun.6(2015)7383.

[49]M.Peng,etal. Sci.ChinaChem.59(2016)653.

[50]S.Stranks,etal. Nat.Nanotechnol.10(2015)391.

[51]S.A.Veldhuis,etal. Adv.Mater.28(2016)6804.

[52]H.Huang,etal. NPGAsiaMater.8(2016)e328.

[53]P.Gao,etal. EnergyEnviron.Sci.7(2014)2448.

[54]N.Pellet,etal. Angew.Chem.Int.Ed.53(2014)3151.

[55]C.C.Stoumpos,etal. Inorg.Chem.52(2013)9019.

[56]A.Sadhanala,etal. J.Phys.Chem.Lett.5(2014)2501.

[57]F.Hao,etal. J.Am.Chem.Soc.136(2014)8094.

[58]N.Kitazawa,etal. J.Mater.Sci.37(2002)3585.

[59]J.Noh,etal. NanoLett.13(2013)1764.

[60]E.T.Hoke,etal. Chem.Sci.6(2015)613.

[61]D.J.Slotcavage,etal. ACSEnergyLett.1(2016)1199.

[62]A.Amat,etal. NanoLett.14(2014)3608.

[63]T.Umebayashi,etal. Phys.Rev.B67(2003)155405.

[64]I.Borriello,etal. Phys.Rev.B77(2008)235214.

[65]I.B.Koutselas,etal. J.Phys.Condens.Matter8(1996)1217.

[66]J.Chang,etal. J.Mater.A4(2016)887.

[67]Y.Chang,etal. J.KoreanPhys.Soc.44(2004)889.

[68]E.Mosconi,etal. J.Phys.Chem.C117(2013)13902.

[69]J.Even,etal. J.Phys.Chem.Lett.4(2013)2999.

[70]T.Baikie,etal. J.Mater.Chem.A1(2013)5628.

[71]L.Huang,etal. Phys.Rev.B88(2013)165203.

[72]F.Brivio,etal. APLMater.1(2013)042111.

[73]J.L.Knutson,etal. Inorg.Chem.44(2005)4699.

[74]J.P.CorreaBaena,etal. EnergyEnviron.Sci.8(2015)2928.

[75]M.Saliba,etal. EnergyEnviron.Sci.9(2016)1989.

[76]M.E.Kamminga,etal. Chem.Mater.28(2016)4554.

[77]M.Yuan,etal. Nat.Nanotechnol.11(2016)872.

[78]N.Wang,etal. Nat.Photonics10(2016)699.

[79]H.Huang,etal. Adv.Sci.2(2015)1500194.

[80]M.F.Aygu¨ler,etal. J.Phys.Chem.C119(2015)12047.

[81]F.Zhang,etal. ACSNano9(2015)4533.

[82]D.Zhang,etal. J.Am.Chem.Soc.138(2016)7236.

[83]Q.A.Akkerman,etal. J.Am.Chem.Soc.138(2016)1010.

[84]Y.Bekenstein,etal. J.Am.Chem.Soc.137(2015)16008.

[85]Q.Zhou,etal. Adv.Mater.28(2016)9163.

[86]X.Zhang,etal. NanoLett.16(2016)1415.

[87]S.Ye,etal. Mater.Sci.Eng.R:Rep.71(2010)1.

[88]M.B.Johnston,etal. Acc.Chem.Res.49(2016)146.

[89]M.Saba,etal. Nat.Commun.5(2014)5049.

[90]H.-H.Fang,etal. Adv.Funct.Mater.25(2015)2378.

[91]H.-H.Fang,etal. LightSci.Appl.5(2015)e16056.

[92]S.D.Stranks,etal. Phys.Rev.Appl.2(2014)34007.

[93]W.Zhang,etal. Nat.Commun.6(2015)10030.

[94]E.M.Hutter,etal. J.Phys.Chem.Lett.6(2015)3082.

[95]W.-J.Yin,etal. Appl.Phys.Lett.104(2014)63903.

RESEARC

H:

(13)

[96]W.-J.Yin,etal. J.Phys.Chem.C119(2015)5253.

[97]X.Deng,etal. J.Phys.Chem.C120(2016)2542.

[98]N.K.Noel,etal. ACSNano8(2014)9815.

[99]R.J.Stewart,etal. J.Phys.Chem.Lett.7(2016)1148.

[100]F.Wang,etal. Adv.Mater.28(2016)9986.

[101]H.-H.Fang,etal. Adv.Funct.Mater.26(2016)4653.

[102]D.W.deQuilettes,etal. Nat.Commun.7(2016)11683.

[103]E.Mosconi,etal. EnergyEnviron.Sci.9(2016)3180.

[104]H.-H.Fang,etal. Sci.Adv.2(2016)e1600534.

[105]H.Huang,etal. ACSAppl.Mater.Interfaces7(2015)28128.

[106]J.Pan,etal. J.Phys.Chem.Lett.6(2015)5027.

[107]W.Zhang,etal. Nat.Energy1(2016)16048.

[108]Y.Ling,etal. Adv.Mater.28(2016)305.

[109]M.Saba,etal. ACSNano7(2013)229.

[110]M.Cadelano,etal. Adv.Opt.Mater.3(2015)1557.

[111]C.Wehrenfennig,etal. Adv.Mater.26(2014)1584.

[112]P.C.Findlay,etal. Phys.Rev.B58(1998)12908.

[113]M.Era,etal. Appl.Phys.Lett.65(1994)676.

[114]X.Hong,etal. SolidStateCommun.84(1992)657.

[115]T.Hattori,etal. J.Chem.Phys.Lett.254(1996)103.

[116]K.Chondroudis,etal. Chem.Mater.11(1999)3028.

[117]J.Byun,etal. Adv.Mater.28(2016)7515.

[118]J.Li,etal. Adv.Mater.27(2015)5196.

[119]J.Li,etal. J.Phys.Chem.Lett.7(2016)4059.

[120]Y.H.Kim,etal. Adv.Mater.27(2015)1248.

[121]H.Huang,etal. Chem.Sci.7(2016)5699.

[122]B.R.Sutherland,etal. ACSNano8(2014)10947.

[123]B.R.Sutherland,etal. Adv.Mater.27(2015)53.

[124]S.Yakunin,etal. Nat.Commun.6(2015)8056.

[125]C.She,etal. NanoLett.14(2014)2772.

[126]M.McGehee,etal. Phys.Rev.B58(1998)7035.

[127]M.Saliba,etal. Adv.Mater.28(2016)923.

[128]Y.Jia,etal. NanoLett.16(2016)4624.

[129]S.Chen,etal. ACSNano10(2016)3959.

[130]Q.Zhang,etal. NanoLett.14(2014)5995.

[131]X.Liu,etal. Adv.Sci.3(2016)1600137.

[132]H.Huang,etal. J.Phys.Chem.Lett.7(2016)4398.

[133]W.Li,etal. BeilsteinJ.Org.Chem.12(2016)1401.

[134]S.Yang,etal. Nat.Energy1(2016)15016.

[135]F.Bella,etal. Science354(2016)203.

[136]Z.Shi,etal. NanoLett.17(2017)313.

[137]T.C.Jellicoe,etal. J.Am.Chem.Soc.138(2016)2941.

[138]R.L.Z.Hoye,etal. Chemistry22(2016)2605.

[139]M.R.Filip,etal. J.Phys.Chem.Lett.7(2016)2579.

[140]S.Chen,etal. Adv.Mater.(2017)1604781.

[141]O.Vybornyi,etal. Nanoscale8(2016)6278.

[142]J.Even,etal. J.Chem.Chem.C118(2014)11566.

[143]A.Fu,etal. Nat.Mater.14(2015)557.

RESEARCH:

Referenties

GERELATEERDE DOCUMENTEN

Een factor die bij deze percentages meespeelt is dat op bovengenoemde wegen het aantal doden niet daalt, terwijl dat voor andere wegen wel geldt (andere

vragenlijst 'The School Subject Technology' opgenom e n met een over zic ht van de deskundigen van wie de antwoorden zijn ontvangen en verwerkt in dit

Een oefening die je met je team kunt doen om de sterke kanten van jezelf en van je collega’s te ontdekken.. Voorbereiding

Op basis van Australisch onderzoek zou dysenterie beperkt kunnen worden door rantsoenen met een laag gehalte oplosbaar NSP en een laag gehalte RS (en met name door een rantsoen

In de geest van de Omgevingswet wordt geëxperimenteerd met een nieuwe vorm van beleid maken waarbij niet langer het initiatief bij de overheid ligt om plannen te maken voor

Onderzoek naar departementale reorganisaties kan voorts nog versterkt worden door, bij voorkeur per beleidsdomein, de structuurveranderingen binnen ministeries te koppelen

Since respondents considered both OCTV and CCTV as surveillance technologies, it is important to question which constitutive parts of these hybrid collectives they