• No results found

Solving the Taylor problem with horizontal viscosity

N/A
N/A
Protected

Academic year: 2021

Share "Solving the Taylor problem with horizontal viscosity"

Copied!
21
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Solving the Taylor

Solving the Taylor

problem with horizontal

problem with horizontal

viscosity

viscosity

Pieter C. Roos

Water Engineering & Management, University of Twente

Henk M. Schuttelaars

Delft Institutie of Applied Mathematics, TU Delft

(2)

Contents

Contents

1. Motivation and goal

2. Background: inviscid Taylor problem

3. Viscous Taylor problem

4. Results

– Open channel modes – Viscous Taylor solution

5. Conclusions

6. Outlook

(3)

1. Motivation and goal

1. Motivation and goal

• Understand morphodynamics of tidal basins • Tool: process-based model for tidal flow

– Smooth flow field required  add horizontal viscosity

(4)

2. Background: inviscid

2. Background: inviscid

Taylor problem

Taylor problem

• Semi-infinite rectangular basin of uniform depth – No-normal flow BC – Inviscid shallow water eqs. – Incoming Kelvin wave

Co-tidal and co-range chart

Tidal current ellipses

(5)

2. Background: inviscid

2. Background: inviscid

Taylor problem

Taylor problem

• Semi-infinite rectangular basin of uniform depth • Solution as superposition of ‘open channel modes’

– Kelvin & Poincaré waves

– Collocation method – Amphidromic system

and tidal current ellipses

Co-tidal and co-range chart

Tidal current ellipses

(6)

2. Extending inviscid Taylor

2. Extending inviscid Taylor

problem…

problem…

• Semi-infinite rectangular basin of uniform depth • Solution as superposition of

‘open channel modes’ • Extension to arbitrary

box-type geometries

– Problems for flow field at reflex angle-corners – Remedy: add viscosity

Tidal current ellipses|u|(x,y)

(7)

3. Viscous Taylor

3. Viscous Taylor

problem

problem

• Geometry and boundary conditions

– Free surface elevation ζ, depth-averaged flow (u,v)

– No slip at closed boundaries: (u,v)=0

– Incoming Kelvin wave from x=+∞

x=0 B x→ y↑ Kelvin wave Uniform depth H

(8)

3. Viscous Taylor

3. Viscous Taylor

problem

problem

• Geometry and boundary conditions

• Linearized shallow water equations –

at

O(Fr

0

)

x + ut – fv = ν[uxx+uyy] gζy + vt + fu = ν[vxx+vyy]

ζt + [Hu]x + [Hv]y = 0

– Acceleration of gravity g, Coriolis parameter f,

(9)

3. Viscous Taylor

3. Viscous Taylor

problem

problem

• Geometry and boundary conditions

• Linearized shallow water equations –

at O(Fr

0

)

• Solution method

– Find viscous ‘open channel modes’

– Write solution as a superposition of these modes

– Use collocation method to satisfy no slip BC at x=0

(10)

4. Results: open channel

4. Results: open channel

modes

modes

• General form: ζ(x,y,t) = Z(y)exp(i[ωt-kx])

+ c.c.

– Angular frequency ω, (complex) wave number k

– Transverse structure:

Z(y) = Z1e-αy + Z2e-βy + Z3eα[y-B] + Z4eβ[y-B]

– Solvability condition from BCs at y=0,B 

k, α, β, Zj x=0 B x→ y↑ Uniform depth H

(11)

4. Open channel

4. Open channel

modes

modes

(12)

4. Open channel

4. Open channel

modes

modes

inviscid viscous

(13)

4. Open channel

4. Open channel

modes

modes

• Viscous Kelvin and Poincaré

modes

– Boundary layers at y=0,B

– Interior structure similar to inviscid case

– Viscous dissipation, slight decrease in length scales

x=0 B x→ y↑ Uniform depth H viscous

(14)

4. Viscous Kelvin

4. Viscous Kelvin

mode

mode

ζ(x,y,t) u(x,y,t) v(x,y,t) viscous

(15)

4. Viscous

4. Viscous

Poincaré modes

Poincaré modes

ζ(x,y,t) u(x,y,t) v(x,y,t) viscous

(16)

4. Viscous

4. Viscous

Poincaré modes

Poincaré modes

ζ(x,y,t) u(x,y,t) v(x,y,t) viscous

(17)

4. New modes

4. New modes

viscous ζ(x,y,t) u(x,y,t) v(x,y,t)

(18)

4. Viscous Taylor solution

4. Viscous Taylor solution

• Truncated superposition of open

channel modes

– Incoming Kelvin wave and 2N+1 reflected modes

• Use collocation method to satisfy

no-slip BC at x=0

– N+1 points where u=0 and N points where v=0 x=0 x→ y↑ Kelvin wave v=0 u=0

(19)

4. Viscous Taylor

4. Viscous Taylor

solution

solution

ζ(x,y,t) u(x,y,t) v(x,y,t) viscous

(20)

5. Conclusions

5. Conclusions

• Taylor problem has been extended to

account for horizontally viscous

effects

– No-slip condition at closed boundaries

• Solution involves viscous open

channel modes

– Viscous Kelvin and Poincaré modes

– A new type of mode arises, responsible for the transverse boundary layer at x=0

(21)

6. Outlook

6. Outlook

• Details of collocation method

• Residual flow and higher harmonics

– Nonlinear M2-interactions at O(Fr1)  M0,

M4

• Geometrical extension of viscous model

– To arbitrary box-type geometries  smooth flow field

– Applications: artificial islands, inlets, obstructions

Referenties

GERELATEERDE DOCUMENTEN

BOA uses the struc- ture of the best solutions to model the data in a Bayesian Network, using the building blocks of these solutions.. Then new solutions can be extracted from

[r]

We krijgen zo’n term meerdere keren, want de volgorde van de afgeleides maakt niet uit en evenmin de volgorde van de

Immers, op het moment dat er groepen atheïstische burgers binnenkomen die deze onafhankelijke politieke ethiek niet alleen zien als een manier om het samenleven mogelijk te

Deze analyse oogt nogal somber. Toch blijkt Taylor be- trekkelijk hoopvol gestemd. Als de waarde van het leven bepaald wordt door de ervaring van het goede - het ver- bonden-zijn

the advent and spread of Christianity, the notion of personal excellence was virtually lost. Human goodness came to be defined in terms of how one treats others, not in terms

Finally, we argue that Smedinga's interpretation of an arbitrary trace structure as a specication for the communication behavior of a mechanism is not in agreement with the

By means of analytic unity, our faculties, therefore, can never, as a whole, furnish a true and demonstrated sci- ence, because, like the transcendental unity of apperception,