• No results found

Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems

N/A
N/A
Protected

Academic year: 2021

Share "Deficit irrigation and emerging fruit crops as a strategy to save water in Mediterranean semiarid agrosystems"

Copied!
14
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Contents lists available atScienceDirect

Agricultural

Water

Management

j o u r n a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a g w a t

Deficit

irrigation

and

emerging

fruit

crops

as

a

strategy

to

save

water

in

Mediterranean

semiarid

agrosystems

A.

Galindo

a,∗,1

,

J.

Collado-González

b,1

,

I.

Gri ˜

nán

c,1

,

M.

Corell

d,e,2

,

A.

Centeno

f,2

,

M.J.

Martín-Palomo

d,e,2

,

I.F.

Girón

e,g,2

,

P.

Rodríguez

h,2

,

Z.N.

Cruz

h,2

,

H.

Memmi

f,2

,

A.A.

Carbonell-Barrachina

b,2

,

F.

Hernández

c,2

,

A.

Torrecillas

i,2

,

A.

Moriana

d,e,2

,

D.

López-Pérez

f,2

aDept.ofWaterEngineering&Management,FacultyofEngineeringTechnology,UniversityofTwente,P.O.Box217,7500AEEnschede,TheNetherlands

bDepartmentofAgrofoodTechnology,FoodQualityandSafetyResearchGroup,UniversidadMiguelHernándezdeElche.Ctra.deBeniel,km3,2.E-03312

Orihuela,Alicante,Spain

cDepartmentofPlantSciencesandMicrobiology,PlantProductionandTechnologyResearchGroup.UniversidadMiguelHernándezdeElche,Ctra.de

Beniel,km3,2.E-03312Orihuela,Alicante,Spain

dDpto.CienciasAgroforestales,ETSIA,UniversidaddeSevilla,CrtadeUtreraKm1,E-41013Sevilla,Spain

eUnidadAsociadaalCSICdeUsoSostenibledelSueloyelAguaenlaAgricultura(US-IRNAS),CrtadeUtreraKm1,E-41013,Sevilla,Spain

fDepartamentodeProducciónVegetal,Fitotecnia,ETSIAAB,TechnicalUniversityofMadrid,CiudadUniversitarias/n,E-28040Madrid,Spain

gInstitutodeRecursosNaturalesyAgrobiología(CSIC),P.O.Box1052,E-41080Sevilla,Spain

hDepartmentofPhysiologyandBiochemistry,InstitutoNacionaldeCienciasAgrícolas(INCA).Ctra.deTapaste,km3.5,SanJosédeLasLajas,Mayabeque,

Cuba

iCentrodeEdafologíayBiologíaAplicadadelSegura(CSIC),P.O.Box164,E-E-30100Espinardo,Murcia,Spain

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received16May2017

Receivedinrevisedform31July2017

Accepted15August2017

Availableonlinexxx

Keywords: Jujube Loquat

Partialrootdrying

Pistachio Pomegranate

Regulateddeficitirrigation

Sustaineddeficitirrigation

Underutilizedcrops

Waterstress

Waterrelations

a

b

s

t

r

a

c

t

WaterscarcityinMediterraneanclimateareaswillbeprogressivelyaggravatedbyclimatechange, popu-lationincreaseandurban,tourismandindustrialactivities.Toprotectwaterresourcesandtheirintegrity forfutureuseandtoimprovebiodiversity,besidesfollowingadvanceddeficitirrigationstrategiesinfruit cultivation,attentioncouldwellbedirectedtowardswhatareatpresentunderusedplantmaterialsable towithstanddeficitirrigationwithminimumimpactonyieldandfruitquality.Tothisend,thestate oftheartasregardsdeficitirrigationstrategiesandtheresponseofsomeveryinterestingemerging fruitcrops[jujube(ZizyphusjujubaMill.),loquat(EriobotryajaponicaLindl.),pistachio(PistaciaveraL.) andpomegranate(PunicagranatumL.)]arereviewed.Thestrengthsandweaknessesofdeficitirrigation strategiesandthemechanismsdevelopedbytheseemergingfruitcropsinthefaceofwaterstressare discussed.Theresponseofthesecropstodeficitirrigation,withspecialattentionpaidtotheeffecton yieldbutalsoonfruitqualityandhealth-relatedchemicalcompounds,wasanalysedinordertoassess theirsuitabilityforsavingwaterinMediterraneansemiaridagrosystemsandtoanalyzetheirpotential roleasalternativestocurrentlycultivatedfruitcropswithhigherwaterrequirements.Finally,the fac-torsinvolvedinestablishinganidentitybrand(hydroSOS)toprotectfruitsobtainedunderspecificDI conditionsarediscussed.

©2017ElsevierB.V.Allrightsreserved.

1. Introduction

Mediterraneanclimatecountriesincludenot onlythose that bordertheMediterraneanSea(fromSpaintoTurkeyandCyprus andfromMoroccotoSyria)butalsootherregionsoftheplanet, includingSouthern California, Chile,South Africa and Southern

∗ Correspondingauthor.

E-mailaddress:agalindoegea@gmail.com(A.Galindo).

1 Theseauthorscontributedequallytothiswork.

2 Theseauthorscontributedequallytothiswork.

Australia.Allarecharacterizedbyhotdrysummers,mostlyrainy wintersandpartiallywetspringandautumn.Intheseregion,to ensureregularcropyieldsandfortoreduceinter-annualyield vari-ability,thescarcerainfallhastobesupplementedbyirrigationin ordertoavoidplantwaterdeficits.Indeed,waterscarcityinthese sitesisdestinedtograduallybecomeworsebecausemorefrequent andseveredroughtseventsdrivenbyclimatechange(Collinsetal., 2009).Moreover,asthepopulationincreases,leadingtoan increas-ingexpansionofurban,touristicandindustrialactivities,tension andconflictbetweenwaterusersandpressuresontheenvironment willbeintensified.

http://dx.doi.org/10.1016/j.agwat.2017.08.015

(2)

Consequently,andconsideringthatMediterraneanagrosystems areveryimportantconsumersoffreshwater,itisofparamount importancetoprotectwaterresourcesandtheirintegrityforfuture

use(Katerjietal.,2008).Inthissense,toovercometheproblems

associatedtoaboostinwaterprices,asthediscouragementof farm-ersandultimatelylandabandonment,García-Tejeroetal.(2014)

indicatedthatanalternativecouldbetoprovidecorrectincentives forfarmerstoadoptchangesintheirirrigationmethodsby imple-mentingstrategiesandtoolsforsustainablewatersaving.Among thestrategiesthatcanbeappliedtoattainwatersavingarethe useofimproved,innovativeandprecisedeficitirrigation(DI) man-agementpracticesabletominimizetheimpactoncropyieldand quality(FernandezandTorrecillas,2012).Inaddition,inorderto contributetowatersaving,fruitcultureshouldbedirectedtowards theuseofplantmaterialsthatarelesswater-demandingorableto withstanddeficitirrigationwithminimumimpactonyieldandfruit quality.

Inthislastrespect,itisimportanttoconsiderthatinhuman history, 40–100,000plantspecies have been regularlyused for food,fiber and for industrial, cultural and medicinal purposes. Today,atleast7000cultivatedspeciesareinusearoundtheworld. However,inrecentcenturies,agriculturalsystemshavepromoted thecultivationof avery limitednumber ofcropspecies.While thesehavebeenthefocusofattentionofcommerceandscientific researchworld-wide,manycropshavebeenrelegatedtothe sta-tusofneglectedorunderutilizedcropspecies,andlargelyignored

(Padulosi et al., 2001; Chivenge et al., 2015).In addition, this

reductioninthenumberofcropspeciesusedforfoodproduction throughouttheworldhasadirecteffectonbiodiversity,whichis fundamentalfor ecosystem functioning,sustainableagricultural production and theattainmentof foodand nutritionalsecurity

(ToledoandBurlingame,2006;ChappellandLaValle,2011).

There-fore,toimprovenotonlybiodiversitybutalsotosavingwaterand henceprotectingtheintegrityofwater resourcesforthefuture, itisnecessarythediversificationofproductionandconsumption habits,includingtheuseofabroaderrangeofplantspecies,in par-ticularthosecurrentlyidentifiedasunderutilizedandneedinga lowinputofsyntheticfertilisers,pesticidesandwater.Thisoption hastobecompatiblewiththeconsolidationofthecultivationof otherMediterraneantraditional crops,suchasolive,almondor grapevine,whicharelowwaterdemandingandprofitablecrops.In thissense,insomecountries,duringrecentdecadestherehasbeen acertaininterestindiversifyingfruittreeproductionby cultivat-ingspecieswithunder-exploitedpotential.Amongtheseemerging cropsmanyarecharacterizedbytheirattractivefruitsand health-relatedqualities,sothattheymayattractconsumerattentionand contributetoproducerprofitability

Forthesereasons,theaimofthisreviewwastopresentthestate oftheartofdeficitirrigationstrategiesandtheresponsetothemof someveryinterestingemergingfruitcrops[jujube(Zizyphusjujuba Mill.),loquat(EriobotryajaponicaLindl.),pistachio(PistaciaveraL.) andpomegranate(PunicagranatumL.)].Tothisend,the follow-ingaspectswereconsidered:(i)thestrengthsandweaknessesof deficitirrigationstrategies,(ii)themechanismsdevelopedbythese emergingfruitcropstoconfrontwaterstress,and(iii)theresponse ofthesecropstodeficitirrigation,payingspecialattentionnotonly totheeffectonyieldbut alsototheeffectonfruitquality and health-relatedchemicalcompounds.

2. Deficitirrigation.Conceptsandstrategies

Tocopewithwaterscarcity, Mediterraneanagrosystems are increasinglylookingtomoreefficienttechnologicalinnovationand irrigationmanagementapproaches. In thisrespect,many coun-trieshaveshiftedfromirrigating crops inorder tosatisfytheir

evapotranspirationrequirements(ETc)orfullirrigation(FI),the conventionalnormwhichseekstomaximizecropyieldperunitof land,todeficitirrigation(DI)strategies,whichinvolvereducingthe amountofwaterprovidedtothecropduringthegrowingseasonby thesoilmoisturestock,rainfallandirrigationtoalevelbelowthat neededformaximumplantgrowth.InmostofcasesDIinducesa gradualwaterdeficit,duedepletionofsoilwaterreserves, accom-paniedbyareductioninharvestableyields,especiallyinsoilswith asignificantlylowwaterstoragecapacity.

Whenwaterscarcityis theconsequenceofuncontrolled fac-torsandwatersupplyisnotguaranteed,farmersfinditdifficultto scheduleanyreasonableDIstrategy.Incontrast,ifgrowershavea guaranteedwatersupplyfortheircropsduringthegrowingseason, itispossibletoimprovewaterproductivity(WP)bydrawingup DIstrategiesbasedonscientificprinciples,attemptingtoproduce near-maximumyieldsevenifcropsareprovidedwithlesswater thantheywouldotherwiseuse(maintainingcropconsumptiveuse belowitspotentialrate).Inotherwords,improvingthemarketable yieldperunitofwaterusedratherthanattainingmaximumyields

(Kijneetal.,2003;Zhang,2003)Complementaryadvantagesofthe

sameincludeareductionofnutrientlossfromtherootzoneand adecreaseinexcessivevegetativevigour,accompaniedbyalower riskofcropdiseaseslinkedtohighhumidity(GoodwinandBoland,

2002;Ünlüetal.,2006)(Table1).However,thereisashortageof

researchintotheriskofsoilsalinizationasaconsequenceofany decreaseintheleachingofsaltsandtheuseoflowqualityirrigation water(Bolandetal.,1996;Kamanetal.,2006)(Table2).

ThreemainDIstrategiescanbementioned;sustaineddeficit irrigation(SDI),inwhichirrigationwaterusedatanymoment dur-ingtheseasonisbelowthecropevapotranspiration(ETc)demand, andtwoothers,bothbasedonphysiologicalaspectsoftheresponse ofplantstowaterdeficit−regulateddeficitirrigation(RDI)and partialroot-zonedrying(PRD)(Fig.1).

2.1. Sustaineddeficitirrigation(SDI)

Attheendof1970s,trialsapplyingirrigationwateramounts belowtheETcdemandbutatveryfrequentintervalstookplace withencouragingresults.Calleddeficithigh-frequencyirrigation (DHFI),this strategyproved unsuccessfulwhenlittlewater was storedinthesoil.ItwasonlypossibletouseDHFIandobtain max-imumyieldswhenETcwasreachedthroughthecombinationof irrigationwaterappliedandsoilwaterdepletion(Fereresetal.,

1978).

Infact,theDHFIstrategyisverysimilartoSDI(Fig.1),whichis basedontheideaofallottingthewaterdeficituniformlyoverthe wholefruitseason,thusavoidingtheoccurrenceofseriousplant waterdeficitatanycropstagethatmightaffectmarketableyield orfruitquality,ordistributingtheirrigationwaterproportionally toirrigationrequirementsthroughouttheseason.

2.2. Regulateddeficitirrigation(RDI)

RDIworksonthepremisethattranspirationismoresensitive towaterdeficitthanphotosynthesisandfruitgrowth,andwater deficit-inducedroot-sourcedchemicalsignalslikeABA.Thus,fruit treescopewithareducedwatersupplybyreducingtranspiration (stomataregulationorreducingleafsurfaceareathrough reduc-ing leaf growth) (Wilkinsonand Hartung, 2009). In this sense, fruittree sensitivitytowater deficit is notconstant duringthe wholegrowingseason,andawaterdeficitduringparticularperiods maybenefitWPbyincreasingirrigationwatersavings, minimiz-ingoreliminatingnegativeimpactsonyieldandcroprevenueand evenimprovingharvestquality(Chalmersetal.,1981;McCarthy

etal.,2002;Domingoetal.,1996)(Table1).Therefore,whenaRDI

(3)

drought-Table1

Keyadvantagesofdeficitirrigation(DI)strategies:sustaineddeficitirrigation(SDI),regulateddeficitirrigation(RDI)andpartialrootdrying(PRD)withanon-exhaustivelist

ofreferences.

DIstrategy Advantage References

SDI,RDIandPRD

Maximizethewateruseefficiencyandwaterproductivity(WP) Liuetal.(2006a);Liuetal.(2006b);Saeedetal. (2008);GeertsandRaes(2009);Ahmadietal. (2010).

Minimumimpactsonyieldscanbeachievedwhenprecisiontoolsareusedto

managemildDI

García-Orellanaetal.(2007);Ortu ˜noetal. (2009)

Reducesnutrientlossfromtherootzone,improvinggroundwaterqualityand

loweringfertilizerneedsonthefield.

Ünlüetal.(2006);GoodwinandBoland(2002)

Decreasetheriskofcropdiseaseslinkedtohighhumidity GoodwinandBoland(2002);

RDI

Improveswatersavingsandevenharvestquality Chalmersetal.(1981);McCarthyetal.(2002)

Reducesexcessivevegetativevigour GoodwinandBoland(2002).

Canbescheduledusingonlytrunkdiametersensors Conejeroetal.(2011);Girónetal.(2015).

PRD

Itcanbeoperatedinfurrowordrip-irrigatedcrops Grimesetal.(1968);SamadiandSepaskhah

(1984).

Despiteareductioninstomatalconductance,cropsmaintainafavourable

waterstatus

Santosetal.(2003);KangandZhang(2004)

Thequantityandqualityoftheharvestcanbeimprovedasaconsequenceof

carbohydratespartitioningbetweenthedifferentplantorgans

KangandZhang(2004)

Table2

Keyconstraintsofdeficitirrigation(DI)strategies:sustaineddeficitirrigation(SDI),regulateddeficitirrigation(RDI)andpartialrootdrying(PRD)withanon-exhaustivelist

ofreferences.

DIstrategy Constraint References

SDI,RDIandPRD

Atalltimesitisessentialtoaccesstoaminimumquantityofwater,below whichDIhasnosignificantbeneficialeffect

Zhang(2003)

Shortageofresearchonsoilsalinizationrisksasaconsequenceofthedecrease

ofleachingofsaltsandtheuseoflowqualityirrigationwater.

Cropssustainsomedegreeofwaterdeficitandsomeyieldreductionexcept

whensoilwaterdepletionsupplementsirrigationtoreachingETc

Fereresetal.(1978);Costaetal.(2007)

SDI Yielddecreaseisduemainlytodecreaseinfruitweight CastelandBuj(1990)

RDI

Themaintenanceofplantwaterstatuswithinnarrowlimitsofwaterdeficit

duringnon-criticalphenologicalperiods.Suddenchangeinevaporative

demandrisksseverelossesofyieldandfruitquality

Jones(2004)

Newandmoreprecisecriteriafordefiningwaterdeficitareneeded,because

criteriabasedonETccanhaveunpredictablefinaleffectontherhythmof

waterdeficitdevelopmentacrossarangeofdifferentgrowingconditions

(species,weather,soildepth,fruitload,rootstock).

Shackeletal.(1997);Marsaletal.(2008)

Irrigationmanagementinheavyanddeepsoilsbecausesoilwaterdepletion

andrefillcantakeplacetooslowly

Gironaetal.(1993)

Scarcityofdetailedstudiestoknowtheeffectofwaterdeficitonbud

development

Naoretal.(2005);Marsaletal.(2008)

PRD Dofornoteachexistrootdefinitesystemsolidsidecriteriaondefiningtheoptimumtimingofirrigation Saeedetal.(2008)

Itisnotpossibletohaveabsolutecontrolofrootdryingunderfieldconditions

andhydraulicredistributionfromdeepertoshallowerrootsmaypreventthe

clearresultsthatcanbeobtainedinpottedplants

Bravdo(2005)

sensitivephenological stages (criticalperiods) offruittrees and irrigationislimitedorevenunnecessaryifrainfallprovidesa min-imumsupplyofwaterduringthedrought-tolerantphenological stages(non-criticalperiods)(Chalmersetal.,1981;Mitchelland

Chalmers,1982;GeertsandRaes,2009)(Fig.1).

Stonefruitgrowthfollowsadouble-sigmoidalpatternwithtwo periodsofrapidgrowthseparatedbyaperiodduringwhichlittleor noexpansivegrowthoccurs.Thefirstgrowthperiod,stageI,isdue tocelldivisionandcellexpansion;stageIIistheperiodinwhich sclerificationofthefruitendocarptakesplaceandfruitgrowthis extremelyslowornull,andstageIIIisthesecondperiodoffruit growth,whichisrapidduetotheexpansionofexistingcellsand extendsfromtheonsetofthissecondgrowthperioduntil matu-rity.PomeandCitrusfruitsshowonlyaphaseofrapidfruitgrowth (single-sigmoidalpattern),whichtakesplaceaftertheinitialperiod ofcelldivisionandminimalexpansion,andisduemainlytoacell expansionprocesseventhoughsomecelldivisionmayalsotake placeatthebeginning(Rodríguezetal.,2017).

Instonefruittrees,twocriticalperiodshavebeenidentified. Thefirstonecorrespondstothesecondrapidfruitgrowthperiod (stageIII),whendroughtstressinducesareductioninyielddue tothesmallerfruitsizeatharvest,andthesecondcriticalperiod istheearlypostharvestperiod,whendroughtstressaffectsflower budinductionand/orthefloraldifferentiationprocessesthatoccur atthistime.Thisleadstoalowergerminationpotentialinthepollen ofthenextbloomandencouragesyoungfruittodropinthe follow-ingseason(Uriu,1964;Ruiz-Sánchezetal.,1999;Torrecillasetal., 2000).InotherPrunusspecies,suchasalmond(Prunusdulcis(Mill.) D.A.Webb),floweringandrapidvegetativeandfruitgrowthstages (stagesIIandIII)andpostharvest(stageV)havebeenreportedas criticalperiodsbecausewaterdeficitaffectsyield(Goldhamerand

Smith,1995;GoldhamerandViveros,2000;García-Tejeroetal.,

2017).

InpomeandCitrusfruitsrapidfruitgrowthcanbeconsidered asacommoncriticalperiod.InanexperimentinFinolemon(Citrus limon(L.)Burm.fil.)treesoverfourseasons,Domingoetal.,(1996)

(4)

Fig.1. Graphicpatternoffullirrigation(FI),sustaineddeficitirrigation(SDI),regulateddeficitirrigation(RDI)andpartialrootdrying(PRD)strategiesinfruittrees.

growthphase,whenwaterdeficitcausesadelayinattaining mar-ketablefruitsize,whereasmoderatewaterdeficitappliedduring flowering-fruitset-fruitcelldivisionperiodisnotcriticalinterms ofyield.Infact,theeffectofwaterdeficitappliedduringthislast phenologicalperiod onyield isrelatednot onlywiththewater deficitlevelachievedbutalsowiththeplantspecies.InSalustiana orangetrees(Citrussinensis(L.)Osbeck)onsourorangerootstock (Citrusaurantium L.),Castel and Buj(1990)attained a decrease inyieldofonly4%,whereasGinestarandCastel(1996)observed thatClementinadeNules(CitrusclementinaHortexTan)on Car-rizocitrange(CitrussinensisOsb.×Poncirustrifoliata(L.)Raf.)were extremelysensitivetowaterrestrictions(yielddecrease)during thisperiod.

In very early maturing fruit trees, witha very short period fromfruitsettoharvestandaverylongpost-harvestphenological period,deficitirrigationshouldbeappliedonlyduringthe post-harvestperiodeventhoughavoidingaffectbudinductionandfloral differentiationprocesses(Torrecillasetal.,2000;Conejeroetal.,

2011).

Takingintoconsiderationthattheeffectsofwaterdeficitdepend notonlyonthetimingbutalsoonthedurationandmagnitudeofthe same,theplantwaterstatusduringnon-criticalperiodshastobe maintainedwithincertainlevelsofwaterdeficitinordertoprevent amoderate,potentiallybeneficial,droughtstressfrombecoming toosevereandendinginreducedyield(Table2)(Johnsonetal.,

1992;KangandZhang,2004).Inthissense,problemshavebeen

foundinmaintainingacertainlevelofplantwaterdeficitbecause, whenlow amounts ofirrigationwater areapplied,adverse sit-uationssuchasasuddenincreaseintemperaturemayresultin severelossesofyieldand quality,(Table2)(Jones,2004).Other problemshavebeenfoundwhenapplyingRDIinheavyanddeep soilsbecausesoilwaterdepletionandrefillfrequentlytaketoolong

(Table2)(Gironaetal.,1993).Under this situation,thesuccess

ofRDIdependsstronglyontheappropriateuseofmicroirrigation techniquesandsensorsabletoproviderealtimeinformationon soilandplantwaterstatus(Dichioetal.,2007;Ortu ˜noetal.,2009). Inrecentyears,theuseofplant-basedwaterstatusindicators hasbecomeverypopularforplanningmorepreciseirrigation pro-grammes,becauseitisrecognizedthatthetreeitselfisthebest indicatorofitswaterstatus(Table1)(Shackeletal.,1997;

García-Orellanaetal.,2007;FernandezandCuevas,2010).Inthissense,

sensorslikelinearvariabledisplacementtransducers(LVDTs)are abletomeasuredailytrunkdiameterfluctuations(TDF)withgreat precision,generatingsensitiveparameterswhichstrongly corre-latewithestablishedplantwaterstatusparameters(Fernandezand

Cuevas,2010;Ortu ˜noetal.,2010).Themostcommonand

use-fulTDFparametersfortheirrigationschedulingofwoodycrops are maximum daily trunk shrinkage (MDS) and trunk growth rate(TGR)(Ortu ˜noetal.,2010;Morianaetal.,2013).Moreover, theoperationaladvantagesofTDFmeasurementsin adulttrees, suchasthepossibilityofconnectingremotelyoperatedirrigation automaticdevices, andtheabilitytorapidlyadjustschedulesin response tothedailysignal, makethem very suitabletools for preciseRDIscheduling(Conejeroetal.,2011;Girónetal.,2015). 2.3. Partialrootdrying(PRD)

This DI strategy, which has also been called partial root-zoneirrigation,canbeappliedthroughalternatefurrowirrigation

(Grimesetal.,1968)andbysurfaceandsubsurfacedripirrigation

(Table1)(SamadiandSepaskhah,1984),andisbasedon

irrigat-ingonlyonepartoftherootzone,leavinganotherparttodrytoa certainsoilwatercontentbeforerewettingbyshiftingirrigationto

thedryside(DryandLoveys,1998;SepaskhahandAhmadi,2010)

(Fig.1).

Thestrategyisbasedintheideathat,inPRD,rootssensesoil drying,triggeringthesynthesisoftheplanthormoneabscisicacid (ABA),whichreducesleafexpansionand stomatalconductance, while,simultaneously,theroots ofthewatered side ofthesoil absorbsufficientwatertomaintainafavourableplantwater

sta-tus(Table1)(Liuetal.,2006a;Zegbeetal.,2006;Ahmadietal.,

2010).Inaddition,othercomplementaryphysiologicalresponses toPRDcanfavourstomatalclosuresuchaslowercytokinelevels

(Stolletal.,2000;Daviesetal.,2005)andhigherxylempH(Davies

andZhang,1991;Stolletal.,2000).Otherresultsingrapevine(Vitis

viniferaL.)indicatedthatPRDmayalsoincreaserootgrowth(Dry

etal.,2000)

Currently,nodefinitivesolidcriteriaexistfordecidingthe opti-mumtimingofirrigationforeachside(Table2),probablydueto thediversityoffactorsinvolved,suchasevaporativedemand,soil

(5)

characteristics,soilwaterstatusatanyprecisemoment,crop phe-nologicalstage,etc.,anyofwhichmaydeterminetheplantresponse towettingordryingofeachsideofroots(Saeedetal.,2008).Inthis sense,thetimewhensoilwaterextractionfromthedrysideis neg-ligiblehasbeenproposedastheoptimumtimetoswitchwetting fromtheirrigatedrootsidetothenon-irrigatedside(Kriedmann

andGoodwin,2003).Also,thethresholdsoilwatercontentatwhich

themaximumxylemABAconcentrationisproducedwasproposed

byLiuetal.(2008)asacriterionforswitchingirrigation.

SomeauthorsshowedthatcropsunderPRDgavebetteryields thanthesamecropsunderDIwhenthesameamountofwateris applied.ThisresultedinhigherWPandevenbetterfruitquality

(KriedmannandGoodwin,2003;KangandZhang,2004;Liuetal.,

2006a,b).However,Wakrimetal.(2005)reportednosignificant

differenceinwateruseefficiencies(WUE)betweenPRDandDI, butasubstantialincreaseinWUEwhenPRDwascomparedwith FI.

3. Emergingfruitcropsresponsetodeficitirrigation 3.1. Jujube(ZizyphusjujubaMill.)

Jujubetree(familyRhamnaceae)isnativetoChina,where it hasbeencultivatedformorethan5000years,andto neighbour-ingareasofMongoliaandtheCentralAsianRepublics.Withtime, itscultivationhasspreadtootherregionsoftheworld,including toMediterraneancountries.Jujubefruitisanintegralpartofthe cultureandwayoflifeofmillionsofpeopleandhasalsobecome importantformanyregionsoftheworldfollowingitsintroduction

(Azam-Alietal.,2006);indeed,itcanbeconsideredaso-called

func-tionalfood,sinceithasnutritionalaswellasmedicinaluses(Choi etal.,2011).Nevertheless,untilnowjujubehasbeenconsideredof minorimportanceand,fromaresearchanddevelopmentpointof view,ithasreceivedlittleattentionfrommostgovernments.

Jujubeisabletowithstandseveredroughtduringthegrowing season(Fig.2A)andtotolerateverylowwintertemperatures dur-ingitsdormancy(Dahiyaetal.,1981;MingandSun,1986;Ming andSun, 1986). Inthis sense,jujube treesareable tomaintain leafturgorunderseverewaterdeficit(stem<−3.0MPa),

essen-tiallybydevelopingtwocomplementarymechanisms–leafactive osmoregulation(stresstolerancemechanism)andthecontrolof waterlossviatranspiration(stressavoidancemechanism),while allowingsubstantialgas exchangerates and, asa consequence, goodleafproductivity(Maetal.,2007;Cruzetal.,2012;Galindo etal.,2016).Thegradualrecoveryof leafconductanceafter re-wateringpreviously stressedplantscanalsobeconsideredasa mechanism for promoting leaf rehydration (Cruz et al., 2012). Moreover,thehighleafrelativeapoplasticwatercontent(RWCa)

levelsandthepossibilityofincreasingtheaccumulationofwater intheapoplasminresponsetowaterstresssupportsasteeper gra-dientinthewaterpotentialbetweentheleafandsoil(Cruzetal.,

2012).

Galindoetal.(2016)showedthatincontrastwiththeaxiomthat

expansivecellgrowthrequiresthepresenceofcellturgor,nodirect relationbetweenturgorand growthrateexistsinjujube fruits. Thiscouldbeduetoanenhancementofacellelasticity mecha-nism(elasticadjustment),whichwouldmaintainfruitturgoreven atseverewaterstresslevelsbyreducingfruitcellsize,ortothefact thatjujubefruitgrowthdependsonfruitgrowth-effectiveturgor ratherthanjustonturgorpressure.Theseauthorsalsoreportedthat duringmostofthefruitripeningstagewatercanenterthefruits viathephloemratherthanviathexylem.Thiscouldberelated withtheincreaseinsensitivitytodroughtduringthisphenological period,whenmoderateandseverewaterdeficitsinducea signif-icantreduction intotal marketablefruityield(numberof fruits

and/oraveragefruitweight).Incontrastwiththislastidea,Cuietal.

(2008,2009)concludedthatthejujubefruitmaturationstageisthe

optimalstagetoimplementwaterdeficitstrategiesandthatwhile waterdeficitduringthefruitgrowthslightlyreducedthegrowth rate,re-wateringhadanover-compensatoryeffect,thusreducing thenegativeinfluenceonfruitsize.

Thesameauthors(Cuietal.,2008,2009)mentionedthe rel-ativelylow waterrequirementsofaround360mmand showed thatjujubefruitmaturationcanbeadvancedandthefruityield and quality enhanced if appropriate RDI is applied at certain growthstages (budbursttoleafingandfruit maturation).Also,

Gao etal.(2014)showedthat jujubefruit respondedpositively

to irrigation practices, the concentration of some taste-related (e.g. glucose, fructose, TSS and malic acid) and health-related (e.g.catechinandepicatechin)compoundsbeinggenerallymuch higherindripirrigatedfruits.Inthissensetoo,Collado-González

et al.(2013)demonstrated that water deficitdidnotaffect the

tendencyofprocyanidinstoself-aggregatebutincreasedthe con-tentofprocyanidinsoflowmolecularmass(Table3),improving theirpotentialbioavailabilityandpossiblephysiologicaleffectson humanhealth.Theprocyanidincontentoffruitfromwell-watered treesincreasedduringdomesticcoldstorage,whereasthefruits fromtreessufferingseverewaterstresslostsomeoftheir procyani-dincontent.Moreover,in asubsequentpaper,Collado-González

etal.(2014)pointedtoacertainproportionalityintheresponse

ofjujube fruitstomoderate andseveredeficit irrigationduring fruitmaturation.So,whenplantswereexposedtomoderatewater deficit(stemfrom−1.40to−2.28MPa)duringthisphenological

periodtherewasnochangeinfruitsize,moisturecontent, firm-ness,orfruitpeelandfleshcolourcomparedwithfullyirrigated trees.Onlywhenamoreseverewaterstress(stem from−1.40

to−3.14MPa)wasreached,thereweresignificantincreasesinthe sucroseandarabinosecontentsmeasured(Table3).Inaddition,the responseoffruitaminoacidstowaterdeficitwasnotassensitive asexpected,sincetherewasnodirectrelationshipwiththe magni-tudeofthewaterdeficit.However,thedecreaseinfruitasparagine contentas aresult ofseverer waterdeficit isa positive aspect, becausethisaminoacidisthemajorprecursorofacrylamide,a potentiallytoxiccompoundformedduringtheheat-processingof someplantfoods.However,severewaterdeficitproducedsmaller fruit,withalowermoisturecontentandyield,accompaniedby changesinfirmnessandpeelandfleshcolour.

3.2. Loquat(EriobotryajaponicaLindl.)

Loquatisasubtropicalevergreentreethatbelongstothefamily Rosaceae,subtribePyrinae(formerlysubfamilyMaloideae)(Potter etal.,2007).SomeofthecommonnamesofloquatincludeJapanese plum,Japanesemedlar,Malteseplum,etc.Itisconsidered indige-noustosoutheasternChinaandpossiblysouthernJapan,becauseit issaidtohavebeencultivatedthereforover1000years.Actually, morethan30countriesinsubtropicalandmild-temperateregions oftheworldarecultivatingselectionsofloquatcultivarsperformed duringthe19thcentury(Fengetal.,2007;Ferreresetal.,2009;He

etal.,2011).

Itisimportanttopointoutthatloquatischaracterizedbyan unusualphenologythatmakesitdifferentofthetraditional tem-peratefruitcrops.Itbloomsinautumnonapicalpaniclesformedon currentyearwood,developingfruitsduringwinterandripeningin earlyspring(Fig.2B).Moreover,thisfruitasotherpomespresents asigmoidalpatternoffruitgrowth(Dennis,1988;Cuevasetal., 2003)andarrivesatmarketsbeforeanyotherspringfruit(Cuevas

etal.,2007a;HuesoandCuevas,2008).

Researchonmechanismsdeveloped byloquatplanttoresist droughtisveryscarce,mainlyatplantwaterrelationslevels. Diur-naland seasonal gasexchange values in loquatplants respond

(6)

Fig.2. Seasonalpatternoffruitandshootgrowthofjujube(Z.jujuba,cvGrandedeAlbatera)(A),loquat(E.japonica,cvAlgerie)(B),pistachio(P.vera,cvKerman)(C)and

pomegranate(P.granatum,cvMollardeElche)(D)plantsinthesoutheast(A,BandD)andcentral(C)Spainconditions.Sources:Hernándezetal.(2015),Cuevasetal.(2007a),

Memmietal.(2016b)andMelgarejoetal.(1997),respectively.

tochangesin plantwaterstatus and tochanges in evaporative demand,showingminimumvaluesinsummer.Moreover,the diur-naltrendofphotosyntheticrateinloquat,atleastduringautumn andwinter,wascharacterizedbyadouble-pickedcurve,suggesting thepredominanceofgenotypeovertheenvironmentalfactorson theloquatgasexchangebehaviour(Stellfeldtetal.,2011),because thislastbehaviourdivergesfromthatindicatedforwoody Mediter-raneanvegetation,which ischaracterizedbya maximumvalue inthemorning,decliningtowardsmidday,andremainingmore orlessconstantafterward.Recently,Zhangetal.(2015)observed someloquatdroughtstresstolerancemechanisms:i)theincrease inchlorophyllcontent,whichcanenhancesphotosynthesisunder waterdeficit,ii)theincreaseinthecontentofsolublesugarsand prolineofroots,whichincreasedtheosmoticadjustmentandthe favourablewaterpotentialgradientforwaterintotheroots,iii)the increaseintheABAcontentofleaves,whichinducedthestomata closingandimprovedthewater-useefficiency,andiv)theincrease inthelevelsofantioxidantenzymeactivitiesmainlyatleaflevel. Theabilityofloquatplantstodevelopleafactiveosmoregulation wasearliersuggestedbyGarcía-Legazetal.(2005)whostudied theeffectofsalinity onthewater relationsof loquatplantson twodifferentrootstocks. Luoetal. (2007)studiedtheresponse oftwo differentloquatcultivars towaterdeficitand concluded that‘ChanghongNo.3’,themorewaterdeficitresistantcultivar, respondstowaterdeficitwithahigherincreaseinstomataldensity andreducingstomatalsizethan‘Jiefangzhong’cultivar.Inaddition,

in‘Jiefangzhong’cultivar,leafphotosyntheticpigment concentra-tionsdecreaseinresponsetodroughtstress,whilein‘Changhong No.3’ theconcentrations ofphotosyntheticpigmentsincreased markedlyunderlightdroughtstress.

HuesoandCuevas(2008)estimatedrelativelyhighloquatwater

needsof around724mm,and demonstratedobservingthelong termresponseofthiscroptopostharvestRDIthatthiscropcan beconsideredasamodel forthecontinuousapplicationof RDI strategies,mainlyfortheeconomicbenefitsofsavingwater dur-ingsummer,increasingfruitsizeandgradingandfruitvalueand grossrevenuewithoutaffectingyield(HuesoandCuevas,2008;

Cuevasetal.,2009).ThispositiveresponseofloquattoRDIisbased

intwo mainfacts;theclearseparation betweenvegetative and reproductivegrowth,allowingtheapplicationofpostharvestRDI withoutaffectingfruit growth,and theimprovingoffruitvalue whenpostharvestRDIisappliedbecauseimportantadvancing har-vesttime inthenextseasoncanbeachieved.Inthis sense,the mostprofitableRDIstrategyisthecompletesuppressionof water-ingfromaroundonemonthaftertheendofpreviousharvest(early June)uptoreachastemvaluecirca–2.2MPa(8–9weeks),because

donot altertheformationofthefloralorgans andincreasethe advancementofbloomnextseason(Cuevasetal.,2007a,b,2009, 2012),whileprolongingthewaterdeficitperiodduringone addi-tionalmonth(August)mayimpairflowerdevelopmentinloquat

(7)

Table3

Effectofdifferentdeficitirrigation(DI)strategies(SDI,sustaineddeficitirrigation;RDI,regulateddeficitirrigation)onhealth-relatedcompoundscontent(↑,increased;↓,

decreased;≈,noaffected)intheedibleportionofjujube,pistachioandpomegranatefruitswithanon-exhaustivelistofreferences.

FruitCrop DIstrategy Compound Responseto

moderatewater deficit Responseto severewater deficit References Jujube(Ziziphus jujubaMill.) SDI/RDI Epicatechin ↑ ↑ Collado-Gonzálezetal. (2013)

TotalBtypeprocyanidins ↑ ↑

Self-aggregated procyanidins ≈ ≈ SDI/RDI VitaminC ≈ ↑ Collado-Gonzálezetal. (2014)

Sugars Sucroseorarabinose ↑ ↑

Glucose ↑ ↑

Organicacids Malicoroxalic ↑ ↑

Citric ≈ ↓

Proline ≈ ↑

Asparagine ≈ ↓

Otheraminoacids Nouniform

behaviour

Nouniform

behaviour

SDI Flavonoids Epicatechinorcatechin ↓ ↓

Gaoetal.(2014)

Procyanidins ≈ ≈

Rutin ↓ ↑

Quercetin ↑ ≈

Totalphenoliccompounds ≈ ≈

Sugars(sucrose,glucoseor

fructose)

↓ ↓

Organicacids(malic,

succinicorcitric)

↓ ↓

Ascorbicacid ≈ ≈

Pistachio(Pistacia

veraL.)

RDI Fattyacids Oleicorpalmitic ≈ ≈

Carbonell-Barrachinaetal. (2014)

Linoleic ↑ ↑

Volatilecompounds Aldehydes ↓ ↑

Pyrazinesandterpenes ↑ ↓

Pomegranate(Punica

granatumL.)

Anthocyanins ≈ ↓

Menaetal. (2013)

SDI Phenoliccompounds ↓ ↓

Punicalagin ↓ ↓

Ellagicacid ≈ ≈

DuetothefactthatresearchonloquatresponsetoRDIhasbeen alwaysfocussesonfruitearlinessduetoitsenormousimportance inloquatpriceandcommercializationandthehigh susceptibil-ityofmatureloquatfruitstomechanicaldamageduringharvest andpostharvest handling,tothebestofourknowledge,do not existpublicationsontheeffectofdeficitirrigationonloquat qual-ity.Sinceloquatis anon-climactericfruit,prematurepickingis inadvisablebecausefruitsareexcessivelyacidandtaste unpalat-abletoconsumers.Thus, researchhasbeenfocussedtostablish fruitmaturityindicesinordertooptimizeharvesting.Pinillosetal.

(2011)suggestedthatateverypickingdate,onlythosefruitswith

askincolourthatcorrespondstoaminimumTSSandTSS/TA val-uesshouldbeharvested,especiallyattheearliestharvestsofthe season.Also,aTSS/TAof0.7waspreviouslyproposedasminimum valueforharvest(Pinillosetal.,2007).Recently,Ca ˜neteetal.(2015)

showedtheconsumerspreferenceforlightorangeskinfruitsrather thanfullyripeonesduetotheirgreaterfirmness,fewerskindefects andbetterbalancebetweensweetnessandacidity,andproposed harvestingloquatfruitswithaminimumvalueofTSSof10Brixand aTSS/TAratiocloseto1.0toguaranteeeatingqualityandconsumer satisfaction.

3.3. Pistachio(PistaciaveraL.)

PistachiotreeisnativetowesternAsiaandAsiaMinor,from SyriatotheCaucasusandAfghanistan.Theyarementionedinthe OldTestament.ArchaeologicalevidencefromTurkeyindicatesthat thenutswerebeingusedforfoodasearlyas7000B.C.Pistachiois amemberoftheAnacardiaceaeorcashewfamily,andistheonly commerciallyediblenutamongtheelevenspecies inthegenus

Pistaciaandbyfarthemosteconomicallyimportant.Thepistachio wasintroducedintoItalyfromSyriaearlyinthefirstcenturyA.D., and subsequently itscultivationspread tootherMediterranean countries.

Pistachiotreesareconsideredoneofthemostdrought resis-tantfruitspecies,becausetheycansurviveunderextremedrought conditions.Spiegel-Royetal.(1977)observedthatunderdesert conditions pistachio trees were able to differentiate sufficient flowerbudstoprovideanappreciableyieldandthatrootswere uniformlyspread downtoadepthof2.40 mevenifsoil mois-tureinallthehorizonswasbelow thepermanentwiltingpoint ofsoil.Relatedwiththislastcharacteristic,someauthors,e.g.Lin

etal.(1984)andGermana(1997),suggestedthatpistachiodrought

resistancemainlydependsonextensiverootsystemdevelopment, because,despiteitcommonlybeingthoughaxerophyte,itdoes notpresentthemorphologicalcharacteristicofsuchintheleaves, showing,instead,highvaluesofnetphotosynthesis(Pn)andleaf conductance(gleaf).Furthermore,theleavescanbeconsideredas

isolateralssincetheirupperandlowerpagesarestructurally simi-lar,withalmostidenticalstomataldensityandconductance.Also,

Kanberetal.(1993)showedthatrootactivityisconfinedto

shal-lowersoildepthsinshortintervalirrigationconditions.Another singularityofpistachiotreesisthatbothyieldandthewaterstress levelregulatetheflowerbuddropthatoccursbeforethe begin-ningofkernelgrowth.So,thefollowingyear’spistachioyieldcan decreaseconsiderablyasaconsequenceofahigherpercentageof flowerbudsdroppedi)inyearsofhigheryieldorii)whenasevere waterdeficitduringfruitstageIItakesplace(Pérez-Lópezetal.,

(8)

Pistachioplants exposed to water stressalso develop stress avoidanceandstresstolerancemechanisms.Asregardthefirstsort ofmechanism,duringpistachiofruitstagesIandII(Fig.2C),when thesoilwatercontentisquitehighandtheevaporativedemand oftheatmosphereislow,theseplantsshowhigherPnandgleaf

values.Incontrast,duringfruitstageIII,atwhichtheevaporative demandoftheatmosphereis higher,thepistachioplantsshow lowerPnandgleafvalues(netal.,2011,b;Memmietal.,2016a,b).

Whenplantsareunderwaterdeficit,gleafvaluesdecreaseinorder

tolimitwaterlossthroughtranspiration,andatverypronounced levelsofwaterdeficit,thedailypatternofgleafismodified,showing

maximumvaluesintheearlymorninganddecreasinggradually, whereasPnvaluesremainfairlyconstantuntilsunsetbecausethis parameterisless sensitivetowaterdeficit thangleaf (D.

Pérez-López,unpublisheddata).Inthisrespect,Behboudianetal.(1986)

establishedthatpistachioplantsareabletocontinuetheir photo-syntheticactivityevenwhenleafreachesextremelylowvalues

of−5.0to−6.0MPa.Moreover,thiscrophasanoutstanding capa-bilityforleafthermoregulation,evenatseverwaterstresslevels, becausepistachiocanopiescantranspirewateratratesfarhigher thanthosenormallyfoundinmesophytes,andareabletorapidly compensatewaterlosseswithoutshowingvisiblestresscondition symptoms(Germana,1997).Inaddition,whenpreviouslywater stressedplantsarere-watered,thegradualandslowrecoveryof theplantwaterstatusobservedcanbeconsideredasamechanism forpromotingleafrehydration(Memmietal.,2016b).Asregardthe developmentofstresstolerancemechanisms,Gijónetal.(2011)

identifiedchangesintheleafbulkmodulusofelasticityduringpit hardening(stageII) andactive osmoticadjustmentatany phe-nologicalperiod.Similarly,Behboudianetal.(1986)showedthat pistachioplantsataleafvalueof−6.0MPaexhibitedveryhighp

values(3.0MPa).

Pistachio’swater relations are significantlyaffectedby root-stock. According to Gijón et al. (2010), the hybrid from crossbreedingP.atlanticaDesf.×P.veraL.maybethebest root-stockforadequatelyirrigatedpistachiossinceitinducesthehighest leafconductanceandvigour,whereasinrainfedordeficitirrigated conditions,P.terebinthusmightbeagoodchoiceforitsdrought tol-erance,asitisabletomaintainagreaterleafareathannon-stressed plantswithlowerstemandgleafvalues.However,incontrastwith

theseresultsandthewidespreadbelief,Memmietal.(2016b) sug-gested thatP.atlantica could bea suitable rootstockfor deficit irrigatedplants.

Becauseofitsreputationforbeingveryresistanttowaterstress, pistachioismainlycultivatedworldwideunderrain-fedconditions. Despitethegoodcropperformanceunderthesedrylandconditions, thereisacleartendencytoincreasetheareadedicatedto irriga-tionbecausethebenefitsderivedfromirrigationinthiscropare probablyhigherthaninothercrops.Irrigationincreasesyield,nut sizeandsplitting,reducesthealternatebearingpatternand inci-denceofblanknuts,buthasnoeffectonthehulltokernelratio

(Monastra etal.,1998;AkandAgackesen,2006).Sedaghatiand

Alipour(2006)suggestedthatearlyhull splitting,aprocessthat

decreasesthequalityoftheyieldbecausethekernel isexposed toinvasionbyfungiandinsects,isrelatedwithplantwaterstatus fromlateApriltoearlyJune.However,Gijónetal.(2009)suggested thatearlysplittingincidenceisnotrelatedtoplantwaterstatusbut totemperaturesbelow13◦C.

Pistachio’sirrigationwaterrequirementsarequitehigh, vary-ingfrom547to600mmwhencalculatedaccordingtoMemmietal.

(2016b)orKermaniandSalehi(2006)to842–1000mmwhen

cal-culatedaccordingtoTestietal.(2008)orGoldhamer(1995).Taking intoaccountthatwaterisascarceresourceandinfutureonlythe mostefficientagriculturalsystemswillreceiveinputsofirrigation water(Fereresetal.,2003),studiesintooptimizingpistachiodeficit irrigationstrategiesare inprogress.For example,Memmiet al.

(2014)studiedthepistachioresponsetodifferentlevelsofwater

deficitandtimeofapplication,concludingthatirrigationwhen ker-nelweightisincreasing(stageIII)resultsinahigherfruitsizethan whenthesameamountofirrigationwaterisdistributedbetween stagesI(rapidnutgrowth)andIII.Moreover,theseauthorsshowed thatshellhardening(stageII)startswhenthefruitreachesits max-imumexternaldiameterandfinishesashorttimebeforethekernel reachitsfinalweight,bothprocessesbeingsimultaneousattheend ofhardeningandbeginningofkernelgrowth.

Gijónetal.(2009)showedthatSDIprovidedat50and65%of

thefullyirrigatedtreesduringthegrowingseasonreducedtotal yieldandkernelsize,eventhoughdifferencesinkerneldryweight wereunaffected.Memmietal.(2016b)showedthatRDIduring stageIIorpostharvestdoesnotreduceyieldeventhoughitmay reducetreevegetativegrowth.Theseauthorsalsoindicatedthat fullirrigationandRDIinpistachiotreesgrowinginshallowsoilscan besuccessfullyscheduledusingstemmeasurements.Hence,RDI

usingastemthresholdvalueof−1.5MPaduringstageIIinduced

similaryieldandproductionvaluestofullirrigatedtrees,whereas astemthresholdvalueof−2.0MParesultedinanextensivedelay

intherecoveryofgleafvalues,withconcomitantnegativeeffectson

long-termpistachioproduction.Guerreroetal.(2005)studiedthe recoveryofpistachiowaterrelationsunderRDIandconcludedthat inordertoavoidanyadverseeffectofwaterdeficitduringstage III,irrigationshouldbeincreasedtowardtheendofstageIIorbe clearlyhigherthan100%ETcfromthebeginningofstageIII.

Pérez-Lópezetal.(2017)showedthatstagesIandIIIarecritical

becausewaterdeficitreducesthequantityandqualityoftheyield. However,theeffectsofdifferentwaterstresslevelsateachstage havenotbeensufficientlystudied.Inthissense,RDItrees(receiving 50%ofthewaterreceivedbycontroltreesduringstagesIandII,and thesameamountofwaterascontroltreesduringstageIII)provided asimilartotalyieldandpercentageofsplitnutsasfullirrigated treesanddidnotshowanalternatebearingpattern,eventhough theyreceivedaround20%lesswater(Gijónetal.,2009).

Okayand Sevin (2011a,b)studied theeffectof irrigation on

somepistachiofruitcharacteristicsandconcludedthatdifferences amongcultivarsweremoresignificantundernon-irrigated con-ditions. Irrigation increased kernel weight but did not have a significantimpact on shell and kernel colours (Guerreroet al.,

2005).Carbonell-Barrachinaetal.(2014)showedthatthemore

severethewaterstresslevelachievedduringstageII,theharder andcrunchiertheresultingpistachios.

Thekernelfattyacidcontentofpistachioisalsoaffectedbyplant waterstatus(OkayandSevin,2011a),theoleicacidcontent increas-ingandthelinoleicacidcontentdecreasinginfruitsofwellirrigated trees.Incontrast,Carbonell-Barrachinaetal.(2014)indicatedthat thefattyacidprofileofpistachiosisdominatedbythreemain com-pounds:oleicacid(∼50%),linoleicacid(∼33%),andpalmiticacid (∼13%)and showed(Table3)thatmoderate RDIduringstageII significantlyincreasedtheoilcontentofthenuts,whereasmore severeRDIreducedtheoilcontent,inducinginbothcasesa signif-icantincreaseinthecontentoflinoleicacid,whichisanessential fattyacidforhumans.TheseauthorsalsostudiedtheeffectofRDIon pistachiovolatilecompoundsandconcludedthatsevereRDI dur-ingstageIIincreasedthecontentsofaldehydes(associatedwith greenandvegetablenotes)andreducethoseofpyrazines(nutand toastednotes)andterpenes(citricnotes)(Table3).

AdescriptiveanalysisofpistachiosshowedthatmoderateRDI duringstageIIleadstoanintense“greenpistachio”colour, accom-paniedbyhigherintensitiesofnuttyandpistachionotesinharder, crunchier nuts with a longer aftertaste. Also, an international consumerstudyabouttheopinionofEuropeanconsumerson pis-tachiosgrownunderRDIindicatedthatthekernelsresultingfrom moderateRDIappliedduringstageIIobtainedahigherintensitiesof characteristicsensoryattributesandagreaterlevelofsatisfaction

(9)

amonginternationalconsumersthankernelsfromFItreesorfrom thoseexposedtosevereRDIduringstageII(Carbonell-Barrachina

etal.,2014;Noguera-Artiagaetal.,2016).

3.4. Pomegranate(PunicagranatumL.)

Pomegranate,oneoftheoldestknownediblefruitsandoneof thesevenkindsoffruitmentionedintheBible,ismainlygrown insemi-aridmild-temperatetosubtropicalclimates(Blumenfeld etal.,2000).ThisspeciesandPunicaprotopunicaarethetwospecies thatmakeupthePunicaceaefamily.P.granatumisbelievedtobe anativetothesouthernCaspianbelt(Iran)andnorthernTurkey, whereasP.protopunicaisgenerallyacceptedasbeingendemicof theSocotraIsland(Yemen)(Janick,2007).

Pomegranate is considered to be a drought-resistant crop becauseit supportsheatandthrivesinaridandsemiaridareas, evenunderdesertconditions(Aserietal.,2008),themechanisms developed by this crop to confront water stress being mainly stressavoidanceandstresstolerance(Rodríguezetal.,2012).More precisely,fromthebeginningofwaterdeficitconditions,leaf con-ductancedecreasesinordertocontrolwaterlossviatranspiration andtoavoid leafturgorloss(stressavoidancemechanism)and whenseverwaterstresslevelsarereached,activeosmotic adjust-mentistriggered,contributingtothemaintenanceofleafturgor (stresstolerancemechanism).Otherdroughttolerance character-isticscommonlyseeninxeromorphicplantscanbealsoobserved inpomegranate,suchasahighrelativeapoplasticwatercontent (42–58%),whichwouldcontributetotheretentionofwateratlow leafwaterpotentials(Rodríguezetal.,2012).

Despiteitsgoodresistancetodrought,pomegranatefor com-mercial production requires regular irrigation throughout the season,especiallywhenitiscultivatedinaridandsemiaridareas, toreducetheincidenceoffruitphysiopathies(e.g.fruitsplitting)

(Galindoetal.,2014b;Rodríguezetal.,2017)andtoreachoptimal

growth,yieldandfruitquality(Levin,2006;Hollandetal.,2009).In thissense,theperiodcorrespondingtotheendofpomegranatefruit growthandripeningisclearlycriticalfortheincidenceoffruit split-ting.Galindoetal.(2014b)showedthatatveryseverewaterdeficit levels,despite leafturgor being maintained, fruitturgor is lost inducingareductioninfruitexpansion.Then,whenanimportant rainfalleventtakesplace,previouslywaterstressedpomegranate fruitsarerehydratedasymmetricallybecausearilturgorincreases toamuchgreaterextentthanpeelturgor,thepressureofthearils onthepeelfavouringsplitting.

Intriglioloetal.(2013)estimatedpomegranate

evapotranspi-ration to be around 412–514mm, but reports on the effect of irrigationmanagementonpomegranatefruityieldandqualityare relativelyscarce.Thefirstresultsindicatedthatit ispossibleto controlthedesiredripeningtimeinpomegranatesbyapplying dif-ferentirrigationregimes(SonawaneandDesai,1989).Recently,

Galindoetal.(2014a)indicatedthatSDIappliedthroughoutthe

pomegranateseasontoachievepronounced waterdeficitlevels reducestotalyieldpertree,thenumberoffruitspertreeandthe sizeofthefruits;however,suchastrategycanbringforwardthe availabilityoffruitsresultingfromlateflowerings,which,despite theirsmallersize,areofgreatinterestforthepomegranate trans-formation industry due to their very highcontent of bioactive compounds.Incontrast,otherstudiesmentionambiguousresults concerningthe effect of SDI onthe chemical characteristics of pomegranatefruit.Inthissense,Mellishoetal.(2012)concluded thatSDI,undermoderatewaterstress,producedsomechangesin colourandchemicalcharacteristics,whichreflectedearlier ripen-ing.However,Menaetal.(2013)indicatedthatpomegranatejuice fromtreessubmittedtoSDI regimesthatproduceseverewater stresslevelswasoflowerqualityandlesshealthythanthejuice fromfullyirrigatedtrees.Thisreductioninqualitywasduetothe

factthatthewaterstresslevelscausedadramaticdecreasein bioac-tivephenoliccompounds,especiallyanthocyaninsandpunicalagin

(Table3);besides,thepomegranateswerelessattractivefor

con-sumersduetotheirpaleredcolour.Ontheotherhand,Laribietal.

(2013)showedthatpomegranatesfromSDItrees, submittedto

mildwaterstressduringfloweringandfruitsetandmoresevere waterstressduringthelinearstageoffruitgrowthandripening, hada redderpeelandhigherlevel oftotalsoluble solidsin the juice.

Intrigliolo et al. (2013) and Laribi et al. (2013) studied the

pomegranateresponsetoRDI involvingirrigationwater restric-tionsduringdifferentfruitstagesandconcludedthattheperiod comprisedbyfloweringandfruitsetcouldberegardedas non-critical from the yield point of view and that irrigation water restrictionduringpomegranatefruitgrowthandripeningenhances peelredness andTSS inthejuice.However,restricting the irri-gationwaterduringthelinearfruitgrowthperiodincreasedthe concentrationofmanybioactivecompoundsinthejuice,suchas anthocyanins,thatarerelatedtohealthandtaste.Recently,Galindo

etal.(2017)showedthatashortperiodofirrigationrestrictionat

theendofripeningperiodbringstheharvesttimeforward,saves irrigationwater,enhancesthefruitbioactivecompoundscontent (anthocyanins,phenoliccompounds,punicalaginandellagicacid) andincreasesthepriceofthefruitwithoutaffectingmarketable yieldandfruitsize.

StudiesontheresponseofpomegranatetreestoPRDhavebeen performedbyParvizietal.(2014,2016)andParviziandSepaskhah

(2015).Theseauthorscomparedthefollowingstrategies:SDI(50%

and75%ofETc),irrigatingonlyonesideoftrees(north) through-outthegrowingseasonandkeepingtheotherside(south)ofthe treedry,PRD(50%and75%ofETc)andFI,maintainingbothsidesof thetreewetted.ThefirstauthorsshowedthatbothSDIstrategies andPRDat50%ETcinducedadecreaseinpomegranateyield,and recommendedPRD(75%ETc)because,inadditiontosavingwater, yield,intrinsicwateruseefficiency(WUE)andtranspiration effi-ciencyincreased.Asregardpomegranatefruitqualityattributes,

ParviziandSepaskhah(2015)indicatedthatbothPRDstrategies

increasedthepomegranatefruitjuicecontentandmaturityindex anddecreasedthetitratableacidityvaluescomparedwithFIfruits, whiletheresponseoffruitstobothSDIstrategieswastheopposite ofthatobservedinresponsetoPRD.

Deficitirrigationcanbeconsideredasatoolthatsignificantly improvesthepostharvest performance ofpomegranate. Several authorsreportedthatthefruitsresultingfromSDIandRDI treat-mentsshowedbetterpostharvestbehaviourthan thosefromFI becauseofretardedchillinginjuryincidence(Pe ˜naetal.,2013), highersensoryandnutritionalqualityandlongershelflife(Laribi

etal.,2013;Pe ˜naetal.,2013;Pe ˜na-Estévez etal.,2016).

More-over, in a study of the effect of different irrigationtreatments andtheefficacyofavapourtreatment(7–10sat95◦C)andusing NaClOassanitizingagentsonthequalityandshelflifeoffresh-cut pomegranatearils,Pe ˜na-Estévezetal.(2015)observeda synergis-ticeffectofthewaterdeficittreatmentandthepostharvestthermal treatment.Bestresultswereobtainedforarilsfrompomegranates grownontreesfromwhichirrigationwaswithheldfor16or26days priortoharvest,forwhichashelflifeof18daysat5◦Cwas estab-lished.

4. Summary,conclusionsandfutureresearchneeds

Bearing in mind the characteristics of the emerging crops consideredin thisreview, itis clearthattheypresent different mechanismstoconfrontwaterdeficitsituations,andthat differ-entlevelsofresistanceareachieved.Inthissense,pistachiotrees canbeconsideredthemostdroughtresistantbecausetheycan

(10)

Fig.3.Quadraticrelationshipbetweensecondarymetabolitescontentinthefruitsandplantwaterstatus(blueline)(Horner,1990).Undermildwaterdeficit,stomatal

regulationmayleadstoareductioninplantgrowth,increasingconcentrationofnonnitrogenoussecondarymetabolites(centraltree).Whenwaterdeficitincreases(right

tree),CO2assimilationisreducedandcarbonispreferentiallyallocatedtothesynthesisofprimarymetabolites,whichdonotexceededtheamountusedforfruitgrowthto

thedetrimentofthesynthesisofcarbon-basedsecondarymetabolites.(Forinterpretationofthereferencestocolourinthisfigurelegend,thereaderisreferredtotheweb

versionofthisarticle.)

surviveunderveryextremedroughtconditions.Theirwaterstress resistanceisbasedonmorphologicalcharacteristicssuchasavery extensiverootsystemandthedevelopmentofstressavoidanceand tolerancemechanisms.Pomegranateandjujubetreesarealsoable towithstandseveredroughtduringthegrowingseasonandthe mechanismsdevelopedbythesecropstoconfrontdroughtarealso predominantlystressavoidanceandstresstolerancemechanisms. Incontrast,anentirelydifferentstrategytoconfrontwaterdeficit isshownbyloquat.Its(loquat)strategycanbeconsideredasa droughtescapemechanismbecauseitisbasedonanatypical phe-nology,completelydifferentfromthatoftraditionalMediterranean temperatefruitcrops,bloominginautumn,developingfruits dur-ingwinterandripeninginearlyspring.So,fruitgrowthaccounts whenMediterraneanclimateiswetterandevaporativedemandof theatmospherereachesminimumvalues,thusavoidingtheeffects ofhotanddrysummers.

Theirrigationwaterrequirementsoftheseemergingcropswere notrelatedwiththeresistancetowaterstress.So,loquattrees pre-sentedthehighestseasonalETc,whichwasslightlyhigherthanthat observedinpistachioandpomegranatetrees,andclearlyhigher thanthatobservedinjujubetrees.Itisclearthatloquatcanbe consideredanoutstandingcropforitsresponsetothecontinuous applicationofRDI,buttherearegoodreasonstoconcludethatthe otheremergingcropsstudiedareabletocopewithwaterscarcity duetotheirpositiveresponsetoDIstrategies,includingminimal impactonyieldsandimprovedWP.

TakingintoconsiderationtheeffectofDIstrategiesonfruit qual-ityandthehealth-relatedcompoundstheycontain,itisimportant tounderlinethatresearchneedstobedirectedatsomevery impor-tantaspectsincluding:(i)theeffectofdeficitirrigationonloquat

fruitquality,forwhich,tothebestofourknowledgenoinformation exists,and(ii)identifyingtheoptimalwaterdeficitlevel,itstiming anddurationforeachcropinordertooptimizefruitqualityand theirhealth-relatedcompoundscontent.Thislastconsiderationis basedonthefactthattheliteratureinmostcasessuggeststhatfruit qualityandthehealth-relatedcompoundscontentcanbeimproved byspecificDIstrategies,butfruitresponsetomoderateandsevere waterdeficitisnotproportionalinmanycases.Itisnotpossibleto establishalinearcorrelationbetweenwaterstressandsomefruit characteristics,especiallyinthecaseofsomesecondary metabo-lites(MattsonandHaack,1987;Gobbo-NetoandLopes,2007).In anattempttopredicttheconcentrationofphenoliccompounds asa function ofwater status, Horner(1990)proposeda model basedonaquadraticrelationshipbetweenbothvariables(Fig.3). Whenplantsareundermildosmoticstressthereisareductionin plantgrowthandtheconcentrationofnon-nitrogenoussecondary metabolitesincrease.Whenplantsareunderseverewaterstress, strongstomatalregulationtakesplaceandCO2assimilationismuch

reduced;carbonispreferentiallyallocatedtothesynthesisof pri-marymetabolites,whichdonotexceedtheamountusedforfruit growthandtothedetrimentofthesynthesisofcarbon-based sec-ondarymetabolites(Fig.3).

Bearinginmindallthepreviousconsiderations,itisevidentthat farmerswhoadoptspecificDIstrategies andcultivate underuti-lizedplantspeciesshouldberewardedfor(i)makingsustainable useofirrigationwater,(ii)improvingcropbiodiversity,(iii) hav-ingtoacceptaslightreductionintheirfruitandvegetableyields, and(iv)producingfruitswithhighercontentsofbioactive com-pounds.Fortunately,consumersarewillingtopayforspecialfoods, particularlythoseassociatedwithenvironmentalfriendlyfarming

(11)

Fig.4.MainagronomicandfruitqualityaspectsneededtoobtainahydroSOSfruitcertification.

practicesthatusenochemicals(Martínez-RuizandGómez-Cantó, 2016)–whichisthecaseofthefruitsandvegetablesgrownunder DI.However, consumersneed toidentify suchproducts, which shouldbeclearlylabeledanddisplayedseparatefromother prod-uctsofthesametype,otherwisetheirpotentialwillbelostinasea ofproducts.Veryfewgroupshavestudiedconsumeropinion con-cerningDIfruits(Lopezetal.,2016;Fernandes-Silvaetal.,2013),

butNoguera-Artiagaetal.(2016)evenproposedanidentitybrand

toprotectthistypeofproduct,whichmightbecalled hydroSOStain-ableor,in abbreviatedandeasiertoremember form,hydroSOS. Accordingtotheseauthors,hydroSOSproductswillhavea solid identitybasedontwomainfactors:(i)waterdeficitcanincrease theplantsecondarymetabolitecontentand,thus,thefunctionality oftheedibleproducts(Ripolletal.,2014),and(ii)theproductsare environmentallyfriendlybecauseofthesustainableuseofavery scarceresource,water(Fig.4).

Noguera-Artiagaetal. (2016)alsofoundthat consumersare

willingtopayareasonablyhigherpriceforhydroSOSpistachios,if theyareproperlylabeledandidentified.However,furtherresearch isneededtocheckwhetherthisgreaterwillingnesstopayisthe similarforallfruits.Finally,itisessentialtoestablishahydroSOS indextocertifythat theproductsusingthehydroSOSlogohave beenevaluatedfortheirsustainableuseofirrigationwaterand/or theircontentsofbioactivecompounds.Thisindexisunder con-structionandwillbebased,amongotherfactors,onfarmersand tradersbeingabletodemonstrate:(i)knowledgeofthecultural practicesinvolved,includingwatermanagementduringthe non-criticalperiods,(ii)thetiming,levelanddurationoftheapplied waterdeficit,(iii)thatsuitablemonitoringandcontrolofthestress applied hastaken place by measuring,for example, the water potential,(v)theprecisecompositionand contents ofbioactive compounds,e.g.increasedlevelsofproline(anaminoacidused asindicatorofplantwaterstress),and(vi)thegoodsensory qual-ityoftheproductinquestion.Iftheserulesarefollowed,itshould bepossibletoensureconsumersatisfaction,strengthentheir will-ingnesstopayareasonablyhigherprice,andguaranteetheirfuture fidelitytotheseproducts(Fig.4).Iftheindexcanguaranteeallthe

above,consumerdemandwillincrease,aswillthepriceofhydroSOS productsandthepossibleprofitforfarmers.Hopefully,farmerswill becomeincreasinglyconvincedabouttheeconomicbenefitsofDI anddedicatelargerareastothecultivationofevenmorecrops.

Acknowledgments

On the occasionof the retirementof Prof. Dr. Félix Moreno (IRNAS-CSIC),the authorsofthis paper shouldliketotakethis opportunitytothankhimforhisscientificknowledge,histireless activity and his willingness to help others during his profes-sionalcareer.WearealsogratefultotheMinisteriodeEconomía y Competitividad deEspa ˜na(MINECO) (CICYT/FEDER AGL2013-45922-C2-1-R, AGL2013-45922-C2-2-R, AGL2016-75794-C4-1-R andAGL2016-75794-C4-4-R)forgrantstotheauthors.AGandJC-G acknowledgethepostdoctoralfinancialsupportreceivedfromthe RamónArecesFondationandtheJuandelaCiervaprogram, respec-tively.Also,thisworkisaresultofthePRinternship(19925/IV/15) fundedbytheFundaciónSéneca–AgenciadeCienciayTecnología delaRegióndeMurcia(SenecaFoundation–AgencyforScience andTechnologyintheRegionofMurcia)undertheJiménezdela EspadaProgramforMobility,CooperationandInternationalization.

References

Ahmadi,S.H.,Andersen,M.N.,Plauborg,F.,Poulsen,R.T.,Jensen,C.R.,Sepaskhah,

A.R.,Hansen,S.,2010.Effectsofirrigationstrategiesandsoilsonfieldgrown

potatoes:gasexchangeandxylem[ABA].Agric.WaterManage.97,1486–1494.

Ak,B.E.,Agackesen,N.,2006.SomepomologicalfruittraitsandyieldofPistaciavera

grownunderirrigatedandunirrigatedconditions.ActaHort.726,165–168.

Aseri,G.K.,Jain,N.,Panwar,J.,Rao,A.V.,Meghwal,P.R.,2008.Biofertilizersimprove

plantgrowthfruityield,nutrition,metabolismandrhizosphereenzyme activitiesofPomegranate(PunicagranatumL.)inIndianTharDesert.Sci. Hortic.117,130–135.

Azam-Ali,S.,Bonkoungou,E.,Bowe,C.,deKock,C.,Godara,A.,Williams,J.T.,2006.

BerandOtherJujubes.InternationalCentreforUnderutilisedCrops, Southampton,UK,pp.289.

Behboudian,M.H.,Walker,R.R.,Törökfalvy,E.,1986.Effectsofwaterstressand

(12)

Blumenfeld,A.,Shaya,F.,Hillel,R.,2000.CultivationofPomegranate.CIHEAM:

OptionsMéditerranées(http://ressources.ciheam.org/om/pdf/a42/00600264.

pdf).

Boland,A.M.,Jerie,P.H.,Mitchell,P.D.,Irvine,J.L.,Nardella,N.,1996.Theeffectof

salineandnon-salinewatertableonpeachtreewaterusegrowth,productivity andionuptake.Aust.J.Agric.Res.47,121–139.

Bravdo,B.A.,2005.Physiologicalmechanismsinvolvedintheproductionof

non-hydraulicrootsignalsbypartialrootzonedrying–areview.ActaHort. 689,267–276.

Ca ˜nete,M.L.,Hueso,J.J.,Pinillos,V.,Cuevas,J.,2015.Ripeningdegreeatharvest

affectsbruisingsusceptibilityandfruitsensorialtraitsofloquat(Eriobotrya japonicaLindl.).Sci.Hortic.187,102–107.

Carbonell-Barrachina,A.A.,Memmi,H.,Noguera-Artiaga,L.,Gijón-López,M.C.,

Ciapa,R.,Pérez-López,D.,2014.Qualityattributesofpistachionutsasaffected

byrootstockanddeficitirrigation.J.Sci.FoodAgric.95,2866–2873.

Castel,J.R.,Buj,A.,1990.ResponseofSalustianaorangestohigh-frequencydeficit

irrigation.Irri.Sci.11,121–127.

Chalmers,D.J.,Mitchell,P.D.,VanHeek,L.,1981.Controlofpeachtreegrowthand

productivitybyregulatedwatersupply,treedensityandsummerpruning.J. Amer.Soc.Hort.Sci.106,307–312.

Chappell,M.J.,LaValle,L.A.,2011.Foodsecurityandbiodiversity:canwehave

both?Anagroecologicalanalysis.Agric.Hum.Values28,3–26.

Chivenge,P.,Mabhaudhi,T.,Modi,A.T.,Mafongoya,P.,2015.Thepotentialroleof

neglectedandunderutilisedcropspeciesasfuturecropsunderwaterscarce conditionsinsub-SaharanAfrica.Int.J.Environ.Res.PublicHealth12, 5685–5711.

Choi,S.H.,Ahn,J.B.,Kozukue,N.,Levin,C.E.,Friedman,M.,2011.Distributionoffree

aminoacids,flavonoids,totalphenolics,andantioxidativeactivitiesofjujube (Ziziphusjujuba)fruitsandseedsharvestedfromplantsgrowninKorea.J. Agric.FoodChem.59,6594–6604.

Collado-González,J.,Cruz,Z.N.,Rodríguez,P.,Galindo,A.,Díaz-Ba ˜nos,F.G.,García

delaTorre,J.,Ferreres,F.,Medina,S.,Torrecillas,A.,Gil-Izquierdo,A.,2013.

Effectofwaterdeficitanddomesticstorageontheprocyanidincontent,size andaggregationprocessinpear-jujube(Z.jujuba)fruits.J.Agric.FoodChem. 61,6187–6197.

Collado-González,J.,Cruz,Z.N.,Medina,S.,Mellisho,C.D.,Rodríguez,P.,Galindo,A.,

Egea,I.,Romojaro,F.,Ferreres,F.,Torrecillas,A.,Gil-Izquierdo,A.,2014.Effects

ofwaterdeficitduringmaturationonaminoacidsandjujubefruiteating quality.Maced.J.Chem.Chem.Eng.33,105–119.

Collins,R.,Kristensen,P.,Thyssen,N.,2009.WaterResourcesAcross

Europe-ConfrontingWaterScarcityandDrought.EuropeanEnvironment Agency,Copenhague,pp.57.

Conejero,W.,Mellisho,C.D.,Ortu ˜no,M.F.,Moriana,A.,Moreno,F.,Torrecillas,A.,

2011.Usingtrunkdiametersensorsforregulateddeficitirrigationscheduling

inearlymaturingpeachtrees.Environ.Exp.Bot.71,409–415.

Costa,J.M.,Ortu ˜no,M.F.,Chaves,M.M.,2007.Deficitirrigationasastrategytosave

water:Physiologyandpotentialapplicationtohorticulture.J.Int.PlantBiol. 49,1421–1434.

Cruz,Z.N.,Rodríguez,P.,Galindo,A.,Torrecillas,E.,Ondo ˜no,S.,Mellisho,C.D.,

Torrecillas,A.,2012.LeafmechanismsfordroughtresistanceinZizyphusjujuba

trees.PlantSci.197,77–83.

Cuevas,J.,Salvador-Sola,F.J.,Gavilán,J.,Lorente,N.,Hueso,J.J.,González-Padierna,

C.M.,2003.Loquatfruitsinkstrengthandgrowthpattern.Sci.Hortic.98,

131–137.

Cuevas,J.,Ca ˜nete,M.L.,Pinillos,V.,Zapata,A.J.,Fernández,M.D.,González,M.,

Hueso,J.J.,2007a.Optimaldatesforregulateddeficitirrigationin‘Algerie’

loquat(EriobotryajaponicaLindl.)cultivatedinsoutheastSpain.Agric.Water Manage.89,131–136.

Cuevas,J.,Romero,I.M.,Fernández,M.D.,Hueso,J.J.,2007b.Deficitirrigation

schedulestopromoteearlyfloweringin‘Algerie’loquat.ActaHort.750, 281–286.

Cuevas,J.,Pinillos,V.,Ca ˜nete,M.L.,González,M.,Alonso,F.,Fernández,M.D.,

Hueso,J.J.,2009.Optimallevelsofpostharvestdeficitirrigationforpromoting

earlyfloweringandharvestdatesinloquat(EriobotryajaponicaLindl.).Agric. WaterManage.96,831–838.

Cuevas,J.,Pinillos,V.,Ca ˜nete,M.L.,Parra,S.,González,M.,Alonso,F.,Fernández,

M.D.,Hueso,J.J.,2012.Optimaldurationofirrigationwithholdingtopromote

earlybloomandharvestin‘Algerie’loquat(EriobotryajaponicaLindl.).Agric. WaterManage.111,79–86.

Cui,N.,Du,T.,Kang,S.,Li,F.,Zhang,J.,Wang,M.,Li,Z.,2008.Regulateddeficit

irrigationimprovedfruitqualityandwateruseefficiencyofjujubetrees.Agric. WaterManage.95,489–497.

Cui,N.,Du,T.,Du,T.,Li,F.,Tong,L.,Kang,S.,Wang,M.,Liu,X.,Li,Z.,2009.Response

ofvegetativegrowthandfruitdevelopmenttoregulateddeficitirrigationat differentgrowthstagesofpear-jujubetree.Agric.WaterManage.96, 1237–1246.

Dahiya,S.S.,Dhankar,O.P.,Khera,A.P.,1981.Studiesontheeffectofsoilsalinity

levelsonseedgerminationofber(Ziziphusrotundifolia).HaryanaJ.Hortic.Sci. 10,20–23.

Davies,W.J.,Zhang,J.H.,1991.Rootsignalsandtheregulationofgrowthand

developmentofplantsindryingsoil.Ann.Rev.PlantPhysiol.PlantMol.Biol. 42,55–76.

Davies,W.J.,Kudoyarova,G.,Hartung,W.,2005.Long-distanceABAsignalingand

itsrelationtoothersignalingpathwaysinthedetectionofsoildryingandthe mediationoftheplant’sresponsetodrought.J.PlantGrowthRegul.24, 285–295.

DennisJr.,F.G.,1988.Fruitdevelopment.In:Tesar,M.B.(Ed.),PhysiologicalBasisof

CropGrowthandDevelopment.AmericanSocietyofAgronomy,Madison,pp. 265–289.

Dichio,B.,Xiloyannis,C.,Sofo,A.,Montanaro,G.,2007.Effectsofpostharvest

regulateddeficitirrigationoncarbohydrateandnitrogenpartitioning,yield qualityandvegetativegrowthofpeachtrees.PlantSoil290,127–137.

Domingo,R.,Ruiz-Sánchez,M.C.,Sánchez-Blanco,M.J.,Torrecillas,A.,1996.Water

relations,growthandyieldofFinolemontreesunderregulateddeficit irrigation.Irrig.Sci.16,115–123.

Dry,P.R.,Loveys,B.R.,1998.Factorsinfluencinggrapevinevigourandthepotential

forcontrolwithpartialrootzonedrying.Aust.J.GrapeWineRes.4,140–148.

Dry,P.R.,Loveys,B.R.,Düring,H.,2000.Partialdryingoftherootzoneofgrape:II.

Changesinthepatternofrootdevelopment.Vitis39,9–12.

Feng,J.J.,Liu,Q.,Wang,X.D.,Chen,J.W.,Ye,J.D.,2007.Characterizationofanew

loquatcultivar‘Ninghaibai’.ActaHortic.750,117–124.

Fereres,E.,Amry,B.,Faci,J.M.,Kamgar,A.,Henderson,D.W.,Resende,M.,1978.A

closerlookatdeficithigh-frequencyirrigation.Calif.Agric.32,4–5.

Fereres,E.,Goldhamer,D.A.,Parsons,L.R.,2003.Irrigationwatermanagementof

horticulturalcrops.Hortscience38,1036–1042.

Fernandes-Silva,A.A.,Falco,V.,Correia,C.M.,Villalobos,F.J.,2013.Sensoryanalysis

andvolatilecompoundsofoliveoil(cv.Cobranc¸osa)fromdifferentirrigation regimes.GrasasAceites64,59–67.

Fernandez,J.E.,Cuevas,M.V.,2010.Irrigationschedulingfromstemdiameter

variations:areview.Agric.For.Meteorol.150,135–151.

Fernandez,J.E.,Torrecillas,A.,2012.Forabetteruseanddistributionofwater.An

introduction.Agric.WaterManage.114,1–3.

Ferreres,F.,Gomes,D.,Valentão,P.,Gonc¸alves,R.,Pio,R.,Chagas,E.A.,Seabra,R.M.,

Andrade,P.B.,2009.Improvedloquat(EriobotryajaponicaLindl.)cultivars:

variationofphenolicsandantioxidativepotential.FoodChem.114,1019–1027.

Galindo,A.,Calín-Sánchez,Á.,Collado-González,J.,Ondo ˜no,S.,Hernández,F.,

Torrecillas,A.,Carbonell-Barrachina,Á.A.,2014a.Phytochemicalandquality

attributesofpomegranatefruitsforjuiceconsumptionasaffectedbyripening stageanddeficitirrigation.J.Sci.FoodAgric.94,2259–2265.

Galindo,A.,Rodríguez,P.,Collado-González,J.,Cruz,Z.N.,Torrecillas,E.,Ondo ˜no,S.,

Corell,M.,Moriana,A.,Torrecillas,A.,2014b.Rainfallintensifiesfruitpeel

crackinginwaterstressedpomegranatetrees.Agric.ForestMeteorol.194, 29–35.

Galindo,A.,Cruz,Z.N.,Rodríguez,P.,Collado-González,J.,Memmi,H.,Moriana,A.,

Torrecillas,A.,López-Pérez,D.,2016.Jujubefruitwaterrelationsatfruit

maturationinresponsetowaterdeficits.Agric.WaterManage.164,110–117.

Galindo,A.,Calín-Sánchez,A.,Rodríguez,P.,Cruz,Z.N.,Girón,I.F.,Corell,M.,

Martínez-Font,R.,Moriana,A.,Carbonell-Barrachina,A.A.,Torrecillas,A.,

Hernández,F.,2017.Waterstressattheendofpomegranatefruitripening

producesearlierharvestingandimprovesfruitquality.Sci.Hortic.https://doi.

org/10.1016/j.scienta.2017.08.029.

Gao,Q.H.,Yu,J.G.,Wu,C.S.,Wang,Z.S.,Wang,Y.K.,Zhu,D.L.,Wang,M.,2014.

Comparisonofdrip,pipeandsurgespringrootirrigationforjujube(Ziziphus

jujubaMill.)fruitqualityintheloessplateauofChina.PLoSOne9,e88912,

http://dx.doi.org/10.1371/journal.pone.0088912.

García-Legaz,M.F.,LópezGómez,E.,MataixBeneyto,J.,Torrecillas,A.,

Sánchez-Blanco,M.J.,2005.Effectsofsallnityandrootstockongrowth,water

relations,nutritionandgasexchangeofloquat.J.Hort.Sci.Biotechnol.80, 199–203.

García-Orellana,Y.,Ruiz-Sánchez,M.C.,Alarcón,J.J.,Conejero,W.,Ortu ˜no,M.F.,

Nicolás,E.,Torrecillas,A.,2007.Preliminaryassessmentofthefeasibilityof

usingmaximumdailytrunkshrinkageforirrigationschedulinginlemontrees. Agric.WaterManage.89,167–171.

García-Tejero,I.F.,Durán-Zuazo,V.H.,Muriel-Fernández,J.L.,2014.Towards

sustainableirrigatedMediterraneanagriculture:implicationsforwater conservationinsemi-aridenvironments.WaterInt.39,635–648.

García-Tejero,I.F.,Moriana,A.,Rodríguez-Pleguezuelo,C.R.,Durán-Zuazo,V.H.,

Egea,G.,2017.Sustainabledeficit-irrigationmanagementinalmonds(Prunus

dulcisL.):differentstrategiestoassessthecrop-waterstatus.In:García-Tejero, I.F.,Durán,V.H.(Eds.),WaterScarcityandSustainableAgricultureinSemiarid Environment:Tools,StrategiesandChallengesforWoodyCrops.Elsevier(in press).

Geerts,S.,Raes,D.,2009.Deficitirrigationasanonfarmstrategytomaximizecrop

waterproductivityindryareas.Agric.WaterManage.96,1275–1284.

Germana,C.,1997.Theresponseofpistachiotreestowaterstressasaffectedby

twodifferentrootstocks.ActaHortic.449,513–519.

Gijón,M.C.,Guerrero,J.,Couceiro,J.F.,Moriana,A.,2009.Deficitirrigationwithout

reducingyieldornutsplittinginpistachio(PistaceaveracvKermanonPistacia terebinthusL.).Agric.WaterManage.96,12–22.

Gijón,M.C.,Giménez,C.,Pérez,D.,Guerrero,J.,Couceiro,J.F.,Moriana,A.,2010.

Rootstockinfluencestheresponseofpistachio(PistaciaveraL.cvKerman)to waterstressandrehydration.Sci.Hortic.125,666–671.

Gijón,M.C.,Giménez,C.,Pérez-López,D.,Guerrero,J.,Couceiro,J.F.,Moriana,A.,

2011.Waterrelationsofpistachio(PistaciaveraL.)asaffectedbyphenological

stagesandwaterregimes.Sci.Hortic.128,415–422.

Ginestar,C.,Castel,J.R.,1996.Responseofyoung‘Clementine’incitrustreesto

waterstressduringdifferentphenologicalperiods.J.Hortic.Sci.71,551–559.

Girón,I.F.,Corell,M.,Martin-Palomo,M.J.,Galindo,A.,Torrecillas,A.,Moreno,F.,

Moriana,A.,2015.Feasibilityoftrunkdiameterfluctuationsinthescheduling

ofregulateddeficitirrigationfortableolivetreeswithoutreferencetrees. Agric.WaterManage.161,114–126.

Referenties

GERELATEERDE DOCUMENTEN

The synesthesia cross-activation theory can also be interpreted as a functional mechanism where hyperactivity within or between sensory cortical areas is related to the

Een piramide systeem heeft geen of weinig onderliggende waarde, geen of weinig bedrijfsactiviteiten, het is speculatief en het stort in elkaar als er te weinig nieuwe

Dat er geen pogingen werden ondernomen van om een standbeeld van Willem Barends op te richten en dat er ook geen stijging was van het aantal verkochten gedichten van Tollens

The behavior of these predictions for both the single-agent and multi-agent environment is shown in figures 13 and 14, for the low and high theta treatment respectively (notice

Consequently, in the present paper we shall investigate how the negative binomial charts from the simple homogeneous case can be adapted to situations where risk adjustment is

Tydens die laaste konsert van die Musiekvereniging vir 1946 het Dolly Heiberg, sowel as vyf ander baie bekende orreliste van Bloemfontein, hul verskyning in die Tweetoringkerk

Our long-term research aim is to begin to develop grounded theory around how university researchers, specifically those working in education contexts, can conduct educational