• No results found

Battery production design using multi-output machine learning models

N/A
N/A
Protected

Academic year: 2021

Share "Battery production design using multi-output machine learning models"

Copied!
20
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Energy

Storage

Materials

journalhomepage:www.elsevier.com/locate/ensm

Battery

production

design

using

multi-output

machine

learning

models

Artem

Turetskyy

a,b,∗

,

Jacob

Wessel

a,b

,

Christoph

Herrmann

a,b

,

Sebastian

Thiede

a,b

a Technische Universität Braunschweig, Institute of Machine Tools and Production Technology, Chair of Sustainable Manufacturing and Life Cycle Engineering, Langer Kamp 19b, 38106 Braunschweig, Germany

b Battery LabFactory Braunschweig (BLB), Langer Kamp 8, 38106 Braunschweig, Germany

a

r

t

i

c

l

e

i

n

f

o

Keywords:

Lithium-ion battery cells Data mining Machine learning Multi-output modelling Production design Cyber-physical system

a

b

s

t

r

a

c

t

Thelithium-ionbattery(LiB)isaprominentenergystoragetechnologyplayinganimportantroleinthefutureof e-mobilityandthetransformationoftheenergysector.However,LiBcellmanufacturinghasstillhighproduction costsandahighenvironmentalimpact,duetocostlymaterials,highprocessfluctuationswithhighscraprates, andhighenergydemands.AlackofaprofoundknowledgeofLiBcellproductionprocessesandtheirinfluence onthequalityandtheperformanceoftheLiBcellsmakesitdifficulttoplan,controlandexecutethe produc-tion.Therefore,asystematicapproachisnecessarytoestablishanin-depthunderstandingoftheinterlinkage ofprocessesandproducts’qualityandperformance.Thispaperpresentsamulti-outputapproachforabattery productiondesign,basedondata-drivenmodelspredictingfinalproductpropertiesfromintermediateproduct features.Thegivenconceptshowshowtheapproachcanbedeployedwithintheframeworkofacyber-physical productionsystemforcontinuousimprovementoftheunderlyingdata-drivenmodelanddecisionsupportin production.

1. Introduction

Thetransformationoftheautomotivesectortowardse-mobility to-getherwiththetransformationoftheenergysectortowardsahigher shareofrenewableenergies,heavilyreliesonavailableenergystorage technologies.Lithium-ionbatteries(LiB)havebeenthestateoftheart technologyforthelastdecades.Forthelastfiveyears,thecostsforLiB (Euro/kWh)havedecreasedandareexpectedtodecreaseevenfurther toapprox.75€/kWhin2022,comparedto400€/kWhin2013)[1]. LiBcellmanufacturingcostsarehighlysensitivetoscrapandprocess deviationssincethematerialcostshaveashareofabout75%ofthe totalmanufacturingcosts[2].Scrapratescanvary fromaround6% (housingparts)to15%(collectorfoils)[3]andleadevenupto40% ofproducedLiBcellsthatareeitherdefectiveorneed tobefixed in post-production[4].LiBcellsmakeupto50%ofCO2emissionsofan electricvehicle[5]ofwhich50%areduetotheenergydemandinLiB cellmanufacturing[6].LiBcellsrejectedattheendoftheproduction chain(formationandaging)havethehighestimpactonproductioncosts duetoaccumulatedenergydemandsandresourcesandfurtherprocess productionfailures[2].Therefore,itisofgreatimportancetohavean in-depthunderstandingofLiBcellmanufacturingandappropriate qual-itymanagementtodiscoverproductionfailuresandprocessdeviations inanearlystageofproduction.Thiscanhelptomeettheincreasing

de-∗Correspondingauthor.

E-mailaddress:a.turetskyy@tu-braunschweig.de(A.Turetskyy).

mandforenergystoragesandtoachieveeconomicandenvironmental goalsoflowermanufacturingcostsandlowerenvironmentalimpact.

TheproductionofLiBcellsiscomplex,consistingofvariousdiscrete andcontinuousprocesseswithdivergingandconvergingmaterialflows fromdifferentareasofengineering(processengineering,production en-gineering,electricengineering).Furthermore,theLiBcellisitselfa com-plexelectrochemicalsystem[2].Itconsistsofanodes,cathodes, separa-tor,electrolyte,andhousingmaterials,whereeachofthepartshasarole toplayinelectrochemicalreactionsduringcharginganddischarging processes.TheLiBcell’squalitycanbecharacterizedbyvarious differ-entproperties(chargecapacityordischargecapacityatcertainC-rates, self-discharge,stateofhealth,etc.),whichareasumofallthe struc-tures/featuresoftheusedmaterials(activematerials,conductive addi-tives,binders,etc.)andtheirstructuresadjustedduringtheproduction processes(particlesizedistribution,coatinglayerdensity,coatinglayer thickness,porosity,etc.).Thisrelationiscalledthe process-structure-propertyfunctionandisdepictedinFig.1[7].Alltheseaspectsmakeit hardtohaveaconstantlyhighproductqualitycontrolinLiBcell man-ufacturing.

Recentreviews concludethatthemostprominentapproachesuse soft-sensoringanddata-drivenapplicationsforqualitycontrolinLiBcell manufacturing[8,9].Mostoftheseapproachesaredeployedinorderto identifycriticalprocesssteps,criticalprocessparameters,orthe influ-encesofintermediateproductsonthefinalproductproperties.Theylack theintegrationinarunningLiBcellproductionforcontinuous deploy-mentandonlysomeofthemfocusontheimprovementofmanufacturing [10].Therefore,thispaperpresentsaconceptofhowadata-driven ap-proachforqualitymodellinginLiBcellproductioncanberealizedand https://doi.org/10.1016/j.ensm.2021.03.002

Received4December2020;Receivedinrevisedform7February2021;Accepted1March2021 Availableonline5March2021

(2)

Fig.1. Process-structure-propertyfunctionadaptedfrom[7].

deployedcontinuously.Thedeployedapproachaimsatimprovingthe qualityofLiBcellsbyenablingabetterproductiondesignandplanning usinginsightsfromthedata-drivenmodelling.

2. Technicalbackground

2.1. Generaloverviewoflithium-ionbatterycellproduction

Theproductionchainoflithium-ionbatterycellsconsistsof mani-folddifferentprocessesfromdifferentfieldsofengineering.Aschematic depictionoftheprocesschainwithinafactoryisdepictedinFig.2.A batterycellfactoryisshownwithtechnicalbuildingservices(TBS)and aprocesschainconsistingofanodeandcathodeelectrode manufactur-ingaswellascellmanufacturing.Eachproductionstepreceivesas in-puteithermaterialsorintermediate products(IP)aswell asprocess parameters(PP)whichadjustthecorrespondingproductionmachine. Asaresultofeachprocess,anintermediateproductismanufactured. Thetaskofeachprocessistoadjustthedesiredstructures/featuresof theseresulting intermediateproducts,whicharethenresponsiblefor theproperties/qualityofthebatterycell.Thestructures/featuresofthe

intermediateproductsaremeasuredbyintermediateproductanalytics (IPA).Furthermore,certaincellproductionstepsaresituatedinadry roomtoprotectwatersensitivecompounds.

Theelectrodes,theanode,andthecathodeareproduced individ-ually.Theelectrodematerials(activematerial,binder,conductive ad-ditive)arefirstmixedandthendispersedwithasolventintoaviscous slurry.Anintensiveprocessandincreasingstressdurationresultin adhe-sionoffragmentsofconductiveadditivesonactivematerialinfluencing therheologyandtheelectricalresistanceoftheslurry[12].Electrodes coatedwiththisslurryshowlateralowerspecificdischargeathigher C-rates[13].Insufficientpre-mixingleadstoanagglomerationof con-ductiveadditivesorofactivematerialresultinginincreasedinterfacial resistance[14].Further,insufficientmixingmayleadtotheformation of blisters/agglomeratesduringthecoatingprocess[15]. Inthe fol-lowingstep,theslurryiscoatedonafoil(cathode:aluminum,anode: copper)andthendried.Increasingdryingtemperatureandincreasing dryingrateleadbinderstomigratetotheelectrodes’surface[16,17]. Aninhomogeneousbinderdistributionin ananodecausedbyahigh dryingratemayleadtodecreasedcellcapacity[17].Thenextprocess, calendering,compressesthecoatedlayeroftheelectrode.Itimproves theelectrode’smechanicalstabilityandhomogenizesthecoatedlayer byreducingcracksinthecoating[13],butreducestheporosityleading toanincreaseofionicresistance[13].Further,modestcalenderingmay improvethewettingrateoftheelectrodesduetoalignmentofthe par-ticles[18],butcalenderingbeyondanideallevelmayleadtodecreased electrolytedistribution[18,19]aswellasreducedtortuosity[20]. Al-readyatlowcompressionratesparticledeformationcan beobserved [21],leadinguptocracksinsidetheactivematerialparticles[13].On theotherhand,electrodeswith10%compressionshowbetterlongterm performanceataC-rateof1Ccomparedtonon-compressedelectrodes [21].Later,theelectrodesarecutintopropersizescorrespondingtothe batterycellformatthatwillbebuilt.Twocuttingprocessesare com-monlyused,thedie-cuttingandthelasercutting.Theseprocesses

(3)

Fig.3. Relationbetweenprocess, interme-diate product, and the final product in theproductionoflithium-ionbatterycells, basedon[11].

encetheelectrodes’edgeindifferentways.Electrodescutwithalaser showmeltformationandaheat-affectedzoneontheiredges,whereas die-cutelectrodesshowstrongdelaminationandbendingoftheedges [22].Further,lasercuttingmayleadtoaluminumspattersonthe cath-odeside,whichmightpromotedendritegrowthonthecorresponding anodeside[22].

Thecutelectrodesaredriedinatemperaturechamberandarethen usedtobuildanelectrode-separatorassembly(ESA)duringthe assem-blyprocess.Duetothedifferentgeometriesofbatterycells,thereare threemainprocesses usedfor this,winding,stacking, andZ-folding. Duringthewindingprocess,theelectrodesheetsarewindedwiththe separatorintoanESAcalledjellyroll.Thewindingoftheelectrodes mayleadtocrackformationduetobindingstresswhichincreaseswith theelectrodes’ coatedlayerthickness[23].During thestacking pro-cess,electrodesheetsandseparatorsheetsarestackedovereachother. Theadvantageofthestackingprocesscomparedtothewinding pro-cessisamoreuniformmechanicalstressappliedtotheelectrodesheets, whichallowstheuseofthickerelectrodecoatingsandthereforehigher achievableenergydensitieswithoutpotentialcoatinglayerfailures[2]. Sincethestackingprocessisdiscrete,itisinferiorintermsof productiv-ityandprecisioncomparedtothewindingprocess[2].Further, stack-ingprocessesathigherprocessspeedsmayresultinamisalignmentof thestacked electrodesthatleadstodecreaseddischarge capacityand astrongercapacitylossovercharginganddischargingcycles[24–26]. DuringZ-folding,theelectrodesarestackedintoanendlesszigzag-shape oftheseparator.Z-foldedESAshowsalowerriskofshortsduetothe misalignmentofthestackedelectrodesheetsandstillhasthehigh en-ergydensityofanormallystackedESA[2].AftertheassemblyofESA, theelectrodearrestersareweldedtotabs(usuallyultrasonicorbylaser welding)inordertoprolongthemandtoensuretheconnectionofall electrodesofthesametypetoeachother.Mechanicalstressduring cal-enderingmayleadtowrinklingofthetabsandthereforehasanegative impactonthequalityoftheweldingprocess[27].TheESAisthenput intoacase(hardcaseorpouchbag),theso-calledhousingprocess,then filledwithelectrolyteandfinallythecaseissealed.Thebatterycellis storedinatemperature-controlledenvironmenttoensurethewettingof theporouselectrodecoatingandtheseparator.Anun-wettedelectrode materialis notusedduringcharginganddischarging,leadingto un-derutilizationoftheelectrodes’capacityandanincreaseinelectrolyte resistance[18].Thelastprocessesareformationandaging.Duringthe formation,thecharginganddischargingof thebatterycell,acertain amountoftheinitialcapacityofthebatterycellisirreversiblyconsumed inordertoformaninterfacelayerbetweentheelectrodesandthe elec-trolytecalledthesolidelectrolyteinterface(SEI)layer[28].TheSEI layeraffectscapacityloss,self-discharge,ratecapability,cyclelife,and

safetyofthebatterycell[28].Ithasbeenobservedthatanincreasing self-dischargeduringtheagingprocessmayleadtoalowermaximum capacityofthebatterycell[29].

AsimplificationofthementionedinteractionsisdepictedinFig.3. Productionprocesssteps(PS)dependingontheirsetupofPPandstate variables(SV)influencetheintermediateproductfeatures/structures (IPF)suchasparticlesizedistribution,coatinglayerthickness, overlap-pingrateoftheelectrodesheets,etc.TheseIPFsthendeterminehowthe qualityormultiplefinalproductproperties(FPP)ofthebatterycell(e.g. maximalcapacity,self-discharge,capacitylossofcyclelife,etc.)willbe. StudiesdescribetheinfluenceoftheproductionprocessesontheIPF.In order toassureandcontrolthequalityofproducedbatterycells,the influenceofIPFs,whicharemeasuredduringoraftereachproduction step,onmultipleFPPsofinterest,needtobedeterminedanddescribed. Thiswouldenableabetterassessmentofthequalityoftheintermediate productconcerningthequalityofthefinalproduct,leadingtoabetter productionunderstandingandcontrol.

2.2. Dataanalyticsregardingqualityinmanufacturing

A literaturereviewof qualitymanagement inmanufacturingwas conducted withregard toapplications of data analytics,data-driven methods,andmachinelearningmethodsforpredictingthequalityof afinalproduct.Manyofthempredictwhetherthefinalproductisokay (OK)ornot-okay (NOK)usingthemachine,sensor,andintermediate producttestingdata.Baietal.2017predictaqualityscoreof produc-tionbatchesusingadjustableandnon-adjustableprocessparametersas inputandcompare“shallow” anddeeplearningartificialneural net-works(ANN)asmodellingtechniques[30].Lieberetal.2013introduce ausecasefromthesteelindustryutilizingfeatureextraction/generation ofcontinuoussensordatabyapplyingfeatureselectionand dimension-alityreductiontobuildamodelfortheclassificationofOKandNOK steelbars[31].Weissetal.2014showanapplicationof regressions, decisiontrees,andrandomforestsforpredictingthespeedofawafer beforeitsqualitycontrolinmanufacturing.Thespeedofthewafercan beconsideredinthiscontextasanFPP.Arif,SuryanaandHussinpredict thequalityofaproductinamulti-stagemanufacturingsystemby us-inganadaptedcascadequalitypredictionmethod[32].Thisapproach predicts thequalityofeach intermediate productbyconsidering the adjustablePPofthecurrentworkstationandthequalityofitafterthe previousworkstation.Therefore,thequalityofthefinalproductis deter-minedbyallpreviousworkstationsandintermediateproductqualities. Themodellingtechniquesaredecisiontrees.Leeetal.2018deploya cyber-physicalproductionsystemwithaforecastingmodeltopredict thequality(OK/NOK)ofproductsinmetalcastingprocesses[33].The

(4)

Fig. 4. Integration of the intended goal of thisworkwithinthetechnicalbackgroundand stateofresearch.

modellingtechniquesaredecisiontrees,randomforests,andANNand thefeaturesarederivedfromtemperaturesensorsofthemold.

Recently,data-drivenapproachesforpredictingthequalityofLiB, morespecificallypredictingtheFPP ofLiB,wereintroduced.Schnell etal.2018compared linearmodels,tree-basedmodels,andANN to-wardstheirpredictabilityofthemaximalcapacityofbatterycellsbased on datafrom cellmanufacturing,excluding electrodemanufacturing [34].Theresultsshowacorrelationbetweencellmass,electrolytemass, andcellmax.capacity.Koransetal.2019performedanotherdata min-ingapproachonlyoncellmanufacturingdataalsoinordertopredict cellmax.capacity[35].Again,acorrelationbetweenelectrolytemass andthemax.capacityhasbeenidentified,butalsowiththeanodeand cathodelength.Thedifferencein thoseapproacheswas thatSchnell etal.2018usedstackingprocessesforcellassemblyandKornasetal. 2019windingprocesses,wheretheelectrodesusuallyhavelongersheets [35,36].Furthermore,Kornasetal.2019usedaprioriexpertknowledge fordataminingandmodelling[35].Turetskyyetal.2020applieddata miningondatafromthewholebatterycellmanufacturing(including electrodemanufacturingaswellascellmanufacturing)andusedsolely tree-basedmethodstopredictmax.capacityfromIPFdata.The influ-encingfactorsonthemax.capacitywereidentifiedbyfeatureselection methodsandwereevaluatedbythefeatureimportancecalculatedfrom thetree-basedmethodsandcategorizedbyproductionsteps(laser cut-ting,cellassembly,dispersing,andcalendering).Thiedeetal.2019also useddatafromthewholebatterycellmanufacturingbutusedtheIPF datatopredictnotonlythemax.capacity,butalsotheformationloss andthecapacitylossafter400charginganddischargingcycles[37]. Theinfluencingfactorswerealsoidentifiedbyapplyingfeature selec-tion,butthemodellingtechniquewaslinearregression.Theinfluencing factorswerealsocategorizedbyprocessstepsandtheirimpactswere evaluated bythecoefficient factorsofthe linearregression,andthe statisticalsignificancewasevaluatedbythep-valuecalculatedbythe T-test.

Furtherstudiesintroduced applicationsof machinelearning tech-niquesinLiBelectrodemanufacturing,withthefocusonelectrode for-mulation.Thesestudiespresentapproachescomplimentarytotheone presentedbeforepredictingthequalityofLiBcells.Cunhaetal.2020 comparedthreemachinelearningalgorithmsdecisiontrees,supporting vectormachines,anddeepneuronalnetworkstoidentifyandquantify theinterdependenciesbetweenelectrodeslurry(suspension)IPFs(e.g. viscosity,solid-to-liquidratio,etc)andcoatedelectrodeIPFs(massload andporosity)[38].AstudypresentedbyLiuetal.2020,alsofocusedon identifyingandquantifyinginterdependenciesbetweenelectrodeslurry IPFs,processparameters,andIPFsofacoatedelectrode[39].Liuetal. 2020used Gaussianprocessregression-basedmachine learning

algo-rithmswithautomaticrelevancedeterminationkernelstoquantifythe influencesofthethreeidentifiedelectrodeslurryIPFsandoneprocess parameteroncoatedelectrodemassload[39].Duquesnoyetal.2020 presentedamethodologycombiningexperimentalresults,insilico elec-trodestructures,derivedfromusingadata-drivenstochasticelectrode generator,andmachinelearningalgorithmSureIndependentScreening andSparsifyingOperator(SISSO)[40].Withthismethodology, Duques-noyetal.2020wereabletolinkanddescribetheinfluencesofelectrode structures ofuncalendered electrodestoLiBcellperformance-related electrodestructuresaftercalendaring,includingtheinfluenceof pro-cessparameters[40].

2.3. Researchdemand

Abatterycellasafinalproductischaracterizedbymorethanone quality property (FPP: max.capacity, agingbehavior, self-discharge, etc.),whichareinfluencedbyaplethoraoffeaturesandstructuresof in-termediateproducts(IPF:particledistributions,coatinglayerthickness, porosity,etc.)thatareshapedduringproductionprocesses.LiB produc-tionresearchfocusesstronglyontherelationsbetweenprocessesand IPFsandhowcertainIPFscanbeachievedthroughsuitableprocess pa-rameters(seeFig.4).Recentapplicationsofdataminingandapproaches drivenbyexpertknowledgeaimatassessingLiBcellqualityprediction, focusingonlyononetargetvaluepermodel,throughIPFandprocess parameters[11,34,35].However,inapreviousstudy,amodel predict-ingFPPbasedonIPFs,stillpredictingoneFPPpermodel,wasdeployed asaqualitygateapproachpredictingtheFPPafterupdatingthemodel withmeasuredIPFsduringLiBcellproduction[41].Nonetheless,most oftheapproachesdonotprovideautilizationordeploymentoftheir approachestoshowhowitcanbenefittheLiBcellproduction. Further-more,theyshowrelationsbetweenIPFsandFPPsinretrospectivebased onpreviouslyacquireddataanddonotderiveIPFsbasedonachieved FPPs.Therefore,thisworkpresentsamulti-outputmodelpredicting sev-eralLiBcellFPPsfromonesetofIPFsandprovidesanapproachofthe utilization/deploymentofthemulti-outputpredictionmodelinLiBcell production.Thisutilization/deploymentisachievedbypredictingIPFs basedon FPPsenablingadata-drivenbatteryproductiondesign(see Fig.4).

3. Approach

3.1. Overviewandframework

ThegoalistoestablishasystemfordeterminingneededIPFsderived fromdesiredFPPsoftheLiBcellsusingadata-drivenmodel(seeFig.5).

(5)

Fig.5. Basicprinciplesandgoalfortheconcept.

Fig.6.Proposedframeworkwithcyber-physicalproductionsystemlogic.

IPFsandFPPsareacquiredintheproductionofLiBcellsandareusedto buildamulti-outputdata-drivenmodelpredictingFPPsfromIPFs,the qualitypredictionmodel.ThismodelcanthenbeusedtodetermineIPFs basedonchosenFPPs,batteryproductiondesign.Thisprovidesatool forabetterunderstandingofLiBcellproductionplanninganddesign.

Toreachthedescribed goal,theapproach isbasedon the cyber-physicalproductionsystem(CPPS)logic(seeFig.6)[42].ACPPSisa frameworkcomprisingofelementsneededtodescribeinteractions be-tweentherealworld(physicalworld)andcomputer-basedapplications (cyberworld)suchassimulationordataanalytics,thatareusedto

(6)

sup-portdecisionmaking andtoenableimprovementsin thereal world. Theseelementsformafeedbackloopfromi)thephysicalworld,toii) dataacquisition,overiii)cyberworld,andiv)decisionsupportandback tothephysicalworld.Thephysicalworlddescribesthesysteminthereal world.Dataacquisitiondescribeshowthedatafromthephysicalworld isgathered,merged,andstored.Thecyberworlddescribes computer-basedapplicationsthatrunonthedataacquiredfromthephysicalworld togenerateresults.Theseresultsareusedtosupportdecisionmaking andimplementationof measuresin thephysical world.Thephysical worldwasalreadydescribedinChapter2:Technicalbackground.Data acquisitionwillbe presentedbrieflysinceithasalreadybeen exten-sivelypresentedinpreviousstudies[11,43].Themainfocuslieson Cy-berWorldwiththemulti-outputqualitypredictionmodelandthe bat-terycellproductiondesignaswellasDecisionSupportfordata-driven batteryproductiondesign.

3.2. Dataacquisition

Inthis phase,allrelevantdatasourcesareidentified.Asdepicted inFig.2,alldatacanbesubdividedintocertaindatasubsets:(1)input andoutputdata,(2)processparameters(PPs),orstatevariables(SVs)as wellas(3)IPFs.Besidestheidentificationofthedatasources,knowing thedifferentdatatypesisnecessary.Here,discreteandcontinuousdata aswellastimeseriesareofrelevance.Afteranalyzingwhichdataof whattypeandsourceistobeimplementedinlaterdeploymentphases, anacquisitionstrategyneedstobeputintoplace.Ingeneral,data ac-quisitionstrategiescan bedividedintotwotypes:(1)automaticand (2)manual.Theautomateddataacquisitionstrategycanbeenabledby automationtechnologiessuchassupervisorycontrolanddata acquisi-tionsystem(SCADA)ormanufacturingexecutionsystem(MES),which automaticallyacquiresdatafromdifferentsources,suchassensorsand programmablelogiccontrollers(PLCs).Anotherwayofautomateddata acquisitioncanbeachievedwithinformationtechnology(IT)software thatsupportsvariouscommunicationprotocols(e.g.OPCUA)andlogs thedataintoadatabase.Therearenostandardizedrestrictions con-cerningtheuseofcertaindatabases.Inindustry,SQL(StructuredQuery Language)databasesarewidelyspread,butalsotheuseofNoSQL(Not onlySQL)databasesisemerging.Alldatathatcannotbeautomatically acquiredhastobeimplementedviamanualdataacquisitionstrategies. Thiscanincludeoff-lineacquireddatafrome.g.productanalytics, op-erations,orsimulationsandcanbeintegrated,e.g.viaweb-interfaces, intothedatabase.

3.3. Cyberworld

3.3.1. Qualitypredictionmodel

Inthisphase,adata-basedmodelisderived,whichcanpredict cho-senFPPsofLiBcellsfromIPFsoftheirintermediateproducts.Therefore, thedataneedstobeprepared:transformed,cleaned,andifnecessary, thenumberoffeaturesformodeltraininganddeploymentcondensed (featureselection).Itisnecessarytobringthedataintosuchaformthat themodelscanutilizeitinthebestway.Ifthedataisnotstoredinthe appropriateform,itneedstobetransformed.Thedatacanalsohave missingorconstantvaluesorvaluesoflowvarianceandthereforecan becleanedinordertoobtainagoodqualityforthemodellingstep.Some modelscanperformbetterifthedatahasacomparablerangeandthe datacanbescaled(standardization,normalization,etc.).Models perfor-mancecanalsobeenhancediftheamountofauto-correlatedfeatures isreducedandthereforeeachfeaturecanrepresentapieceofunique unbiasedinformation.

AmodelforFPPpredictionisderivedbasedonIPFdata.Often mod-elscanperformbetterifthenumberoffeaturesmismuchsmallerthan theamountofdatasetsn(n>>m).Therefore,afeatureselectioncanbe performed,basedeitheronpurelystatisticalmethods(T-test,ANOVA, etc.)ormachinelearningmethods(forwardwrappers,backward wrap-pers,etc.).Sincethepremiseistoobtainamulti-objectiveprediction

model,amulti-objectivefeatureselectionmethodisrequiredinorderto selectasetofIPFswhicharerelevanttothemodelchosenFPPs.Machine learningalgorithmsthatarecommonlyusedforpredictionaremore of-tenspecialformsofmethodslikelinearregression,decisiontrees,and artificialneuralnetworks(ANN).Formodeltraining,twoconceptsare mostoftenused:80/20%datasplitandk-foldcross-validation.Inthe firstone,thedataissplitintotwo,adatasetwith80%ofthedatafor modeltrainingandadatasetwith20%ofthedataformodeltesting.It isnotunusual,however,tousea90/10%split,iftheamountofdatais low.Thesecondonesplitsthedataintoksets,ofwhichk-1setsareused formodeltrainingandoneformodelvalidation.Duringthisprocedure, k-modelsarebuiltandvalidated,soeverysetisusedasavalidationset once.Thebestpracticeistofirstsplitthedataintotrainingandtestset andthentousethetrainingsetfork-foldcross-validation.The cross-validatedmodelisevaluatedbasedontheindividualscorevaluesper trainedmodelorasameanscoreforthevalidationandtestdatasets.

Toenhancethepredictabilityofthemodel,ahyperparameter opti-mizationcanbeperformedduringthecross-validation. Hyperparame-tersareparametersdefiningcertainfunctionsinamodel.Thesecanbe alphas,ofaregularizationterm,thenumberofhiddenlayersinANN, orthenumberoftreesinrandomforests(RF).Hyperparametershelp tomodifymodelsandincreasetheirperformance,thoughtheycanlead toanoverfit,averyclosepredictionoftraineddatabythemodelthat leadstoapredictionlossforfurtherdata.Hyperparameterscanbe cho-senusingagridsearchoranoptimizationalgorithm.Gridsearchis suit-ableforcategoricalhyperparameterslikeactivationfunctionorsolvers, butalsointegervalueslikethenumberofneuronsinahiddenlayer. Optimizationalgorithmssuitnumericalvaluesliketheaforementioned alphas.

3.3.2. Batteryproductiondesign

In this step, the quality prediction model is used for a quality-orientedbatterycellproductiondesign.ThedesiredFPPvaluesare se-lectedandIPFvaluesaredetermined.Severaldifferentapproachescan be chosentoderivetherightvalues forIPFsinorder toachieve the desired valuesforFPPs.TheneededIPFvalues canbederivedusing variousapproaches,e.g.byusinganoptimizationalgorithmoragrid searchapproach.Kornasetal.2019usedamulti-variateoptimization withadesirabilityfunctioninordertoderivegoodvaluesof influenc-ingvariablesforbatterycapacityandbatteryweight[10]. Asimilar approachwasalsoperformedbyMeyeretal.2019formaximizingthe qualityofcutelectrodesheets[44].Anoptimizationapproachworksby definingacostfunction(e.g.desirabilityfunction)basedonthetarget valueandthevariationofinputparameterstodeterminetheoptimal subsetthatresultsintheminimalcostfunctionvalue.Thesubspaceof theparametersdoesnotneedtobedefined,butthealgorithmsusually acceptboundariesfortheparameters.Inthecaseofagridsearch,no op-timizationalgorithmisneededandthesubspaceoftheinputparameters isdefinedbyvaryingthem.Thebestparametersubsetisderivedwhen thedesiredvalueforthetargetisobtained.Theseapproachescanbe appliedtothequalitymodel,wheretheIPFsaretheinputparameters thatarevariedandthetargetsaretheFPPs.However,anFPPtarget valuewithatolerance/intervalis selected,becausethefluctuationof thebatterycellproductionprocessesmakesithardtoachievean ex-actmatchforFPPsofproducedLiBcells.WithintheintervalofFPPs, differentsubsetsofIPFscanbedetermined.Thesedifferentsubsetsare evaluatedcloselywithregardtotheusedqualitypredictionmodeland theuseddata.

3.4. Decisionsupport

This step explains howthe deploymentof thequality prediction modelandtheprocedureofbatteryproductiondesigncanbeusedto enabledecisionsupportinplanningandoperatingbatteryproduction asdepictedinFig.7.Thequalitypredictionmodelisdeployedwith ac-cesstothedatabase,whichstoresallpreviouslyacquireddataofIPFs

(7)

Fig.7.Decisionsupportinplanningandoperationofbatteryproduction.

andFPPs.Batteryproductiondesignisdeployedwithaconnectionto thequalitypredictionmodel.Furthermore,aproductionprocess simula-tionisusedtopredictPPsbasedonIPFsderivedfrombatteryproduction design.

Decisionsupportintheplanningofbatteryproductionstartswiththe customerandproductionplannerdefiningthedesiredFPPs/targetFPPs thatareusedbythequalitypredictionmodelandbatteryproduction designtogeneratepotentialIPFsthatareneededtoproduceabattery cellwithdesiredFPPs(seeFig.7).Theprocessexpertthatmightexclude unreasonableIPFvaluesthenverifiesthesepotentialIPFs.Thenthe po-tentialIPFsareusedinaproductionprocesssimulationtogeneratePPs thatarerequiredtoobtainneededIPFs.

Decisionsupportintheoperationofbatteryproductiontakesoff at thepointwherethefirstintermediateproductisproduced(seeFig.7). TheacquiredactualIPFsaretransferredtothequalitypredictionmodel andupdatethepredictionforFPPsthatmightresultafterfinishingthe productionthewayithasbeenplanned.Iftherehavebeenany devi-ationsfromtheplannedIPFvalues,thebatteryproductiondesigncan reevaluatethecurrentsituationusingactualIPFsasconstantvaluesand varyingtheremainingIPFsinsuchawaythattheinitiallydesired tar-getFPPscanbereached.ThenewpotentialIPFsarethenagainverified bytheprocessexpertandusedbytheproductionprocesssimulationto generatenewPPsfortheupdatedIPFs.WiththesePPs,theremaining processesareexecuteduntiltheproductionisfinishedoranew devia-tionoccurs.

4. Casestudyqualitysystem

ThecasestudywasconductedinthefacilitiesoftheBattery Lab-FactoryBraunschweig(BLB),aresearchLiBcellproductionlinewith industry-scale productionmachinesand processes,coveringall steps

frommaterialpreconditioningtoformationandaging.Allinvestigated LiBcellsweremanufacturedinBLB.

4.1. Dataacquisition

Thebasisforthelaterdeployedqualitypredictionmodelisthe ac-quiredIPFandFPPalongwiththeLiBmanufacturing.TheBLBoperates ahighlyflexibleproductionline,consistingofsemi-continuousand dis-creteproductionprocessesincludingconverginganddivergingmaterial flows.Furthermore,someprocessand(intermediate)productanalytics areperformedin-lineandothersoff-line,resultingindifferentdatatypes andsources.Therefore,ahighlyflexibledataacquisitionisrequired. Thedataacquisitionstrategyforthisworkisbuiltuponthelegacy pre-sentedin[11].Anadaptedstructureservingthepurposeofthispaper isdepictedinFig.8.Dependingonthedifferentdatatypes,presented inFig.3,aspecificdataacquisitionstrategyneedstobeapplied.

ThebottomlayerinFig.8depictstheautomateddataacquisition, consistingof sensorsandPLCs(e.g. in-linethickness). These entities representthedifferentdatasourcesaccessibleforautomatedacquisition measures.This data,includingauniqueIDandaspecifictimestamp, is acquiredviaindustrialcommunication protocolssuchasOPCUA, Profinet,ModbusbyNode.js,ajavascriptlibrary,andloggedintoa SQLdatabase,whereitisprocessedandisaccessible.Theoff-linedata fromsourcessuchasintermediateproductanalyticsandfinalproduct analyticsareacquiredmanuallyviaawebinterfaceintoanengineered datawarehouse.Thisisenabledbyawebserverwithavisualinterface. ThisprocessisdepictedintheupperlayerofFig.8.

4.2. Predictivequalitymodel

Themodellingpartwas performedonz-foldedpouch bagbattery cellswith15anodesandcathodes(ESC– electrodeseparator compos-ite)andwith10cathodesandanodes.AnodematerialwasPVDF,SFG6L,

(8)

Fig.8.ThedataacquisitionstrategyoftheBatteryLabFactoryBraunschweig(BLB)basedon[11].

GraphiteC65andSMGA4andthecathodematerialwasPVDF,SFG6L, GraphiteC65,NMC111,andNMP.Thegeometryoftheelectrodesheets was150mmx110mmforanodesand145mmx105mmforcathodes. Theseparatorwas fromSeparion (ceramicseparatord=28μm)and theelectrolytewasBra-003.AsmodellingsoftwarePython3.8.5was usedwiththefollowinglibraries:Numpy1.14.5,Pandas0.25.1[45], andscikit-learn0.21.2[46]formodelling,andhyperopt[47,48]for hy-perparameteroptimizationandSALib[49]forsensitivityanalysis.The computerusedformodellingwasaDellprecisionminitower3000­series withanIntel® CoreTM i5­6500processor(3,2GHz,6MBcache)and

32GBDDR42.133MHzRAM(Random-AccessMemory).Modellingwas solelyperformedusingtheCPU(centralprocessingunit).Forthecase study,191LiBcellswithatotalamountof1029IPFswereused.The IPFsconsistedofdatafromalltheprocessesuptotheformation.The formationandagingsetupwasnottakenintoaccount,sinceitwasnot varied.DataacquiredduringformationandagingwereconsideredFPP, e.g.chargingordischargingcapacitiesundercertainchargeordischarge rates,innerresistances,self-discharge,etc.Furthermore,theproduced LiBcellsweretheresultsofcasestudiesperformedbyvaryingcalender, lasercutting,andz-foldingprocessparameters,acasestudy investigat-ingthereproducibilityofLiBcellproduction,andacasestudyvarying theelectrolyteamount[22,25,26,29].Therefore,expectedresultswere consideredtobeheavilyinfluencedbytheperformedproduction vari-ation,meaninginfluentialIPFsofprocessessuchasmixing,dispersing andcoatingmightappearthathaveaminorinfluenceontheFPPs.

4.2.1. Developmentofthequalitypredictionmodel

Theprocessofthequalitypredictionmodeldevelopmentisdepicted inFig.9andisexplainedinthefollowing.Theacquiredrawdatawas storedinaSQL databaseandwasfurthertransformed formodelling purposesintothefirstnormalform,whereeach cellwasa rowand eachIPForFPPwasacolumn.Thus,eachcellcouldberegardedasa datasetcontainingallcorrespondinginformationofitsIPFsandFPPs. Afterthetransformationstep,themanualcleaningoftheIPFdatawas performed.IPFswereremovedthatweremeasuredduringtheprocess onlyifacorrespondingIPFexistedthatwasmeasuredrightafterthe endoftheprocess.

Afterthemanualdatacleaning,afeatureengineering/feature gen-erationstepwasperformed.Newfeaturesweregeneratedbasedonthe existingonestogiveabetterinsightintoproductiondata.Asan exam-ple,afeaturenamed‘cathodeamount activematerial[g]’was calcu-latedforeachcellbasedonthecoatinglayergrammage,thegeometry

Fig.9. Developmentprocessofthequalitypredictionmodel.

ofcutelectrodes,andthenumberofcutelectrodesinthecell.This fea-turegivesameaningfuldistinctionbetween15and10ESCbatterycells. ‘Cathode/anodetheo.capacityratio[%]’istheratioofthecalculated theoreticalcapacityofthecathodedividedbythetheoreticalcapacity oftheanodeinthebatterycell.Thetheoreticalcapacitiesarebasedon

(9)

Table1

Selectedlinearandnon-linearIPFsubsetswithcorrespondingprocessesoftheiracquisition.

Process step Linear IPF subset Non-linear IPF subset

Mixing/dispersing ‘anode mixing mean PSD [m-6]’, ‘anode suspension viscosity fitting value’, ‘anode suspension dry weight [%]’, ‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’2

‘anode mixing std PSD right [-]’, ‘anode suspension viscosity fitting value’, ‘cathode mixing PSD d10 [m ∗ 10-6]’, ‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’ 2 Coating/drying ‘cathode temperature during conductivity measurement [°C]’,

‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’ 2

‘cathode uncalendered porosity value 418-10 [-]’, ‘cathode uncalendered electrode thickness [m ∗ 10-6]’, ‘cathode amount active material [g]’ 1,

‘cathode/anode theo. capacity ratio [%]’ 2 Calendaring ‘cathode total porosity calculated [ml]’,

‘cathode total porosity measured [ml]’, ‘cathode adhesion strength [kPa]’, ‘cathode adhesion Fmin [N]’,

‘electrolyte per thickness per compartment [ml/mm/comp]’ 3∗ , ‘electrolyte porosity volume ratio’3

Laser cutting ‘anode delamination mean [m ∗ 10-6]’, ‘anode melt formation [m-6]’, ‘cathode mean pyrometer FWHM [s]’, ‘cathode mean pyrometer T150 [s]’, ‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’ 2

‘anode mean pyrometer FWHM [s]’, ‘cathode mean pyrometer FWHM [s]’, ‘anode delamination mean [m ∗ 10-6]’, ‘cathode mean pyrometer integral TS [Ks]’, ‘anode mean pyrometer T150 [s]’, ‘cathode mean chamfer angle [°]’, ‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’ 2 Assembly (Z-folding) ‘electrodes overlapping rate [%]’ 4,

‘electrodes overlapping rate manual [%]’ 5, ‘cathode amount active material [g]’ 1

‘electrodes overlapping rate [%]’ 4, ‘cathode amount active material [g]’ 1, ‘cathode/anode theo. capacity ratio [%]’ 2

Filling ‘battery cell thickness per compartment [mm/comp]’, ‘electrolyte per thickness per compartment [ml/mm/comp]’ 3, ‘electrolyte porosity volume ratio’ 3

1 ‘cathodeamountactivematerial[g]’isadjustedbytherecipeinmixing,thecoatinglayergrammageincoating/drying,thegeometryofcutelectrodesheets,

andbytheamountofESCinassembly(Z-folding)

2 ‘cathode/anodetheo.capacityratio[%]’isadjustedbytherecipeinmixing,thecoatinglayergrammageincoating/drying,thegeometryofthecutelectrode

sheets,andbytheamountofESCinassembly(Z-folding)

3 ‘electrolyteperthicknesspercompartment[ml/mm/comp]’and‘electrolyteporosityvolumeratio’areadjustedincalendaringandinelectrolytefilling 4 ‘electrodesoverlappingrate[%]’calculatedbasedonvaluesmeasuredbytheZ-folder

5 ‘electrodesoverlappingratemanual[%]’measuredmanuallyaftertheprocess

thenumberofactivematerialsofbothelectrodes.Thisfeature charac-terizesthemisbalancebetweenplannedcathodecapacityandplanned anodecapacity.Anothertwofeaturesrepresenttheinfluenceof calen-daringandelectrolytefillingvariations.‘Electrolyteperthicknessper compartment[ml/mm/comp.]’containstheinformationofhowmuch electrolyteisinthecellcomparedtoitsthicknessandthenumberofits compartments(opposinganodeandcathodesides).‘Electrolyteporosity volumeratio’isaratiooftheelectrolytevolumedividedbythevolume ofthetotalporosityofthewholeelectrodematerial(anodesand cath-odestogether).Itistherelativevalueofhowmuchmoreelectrolyteis presentinthecellthanintheelectrodematerialpores.Manyother fea-turesweregenerated,butthesewerethemostprominentchoseninthe featureselectionstep.

Inautomatedcleaning,IPFswithahighamountofmissingvaluesor entirelyconsistingofconstantvalueswereremovedinordernottoaffect themodellingnegatively.LiBcellswithahighamountofmissingvalues wereremovedaswellsincethesedatasetsalsomighthaveanegative influenceontherelevanceofsomeIPFs.FPPoutlierswereremoved ex-ceeding1.5timestheinterquartilerangeiftheycouldnotbeexplained bytheIPFdatasincetheyrepresentanunexplainablevariancewithin FPPdata.AllFPPandIPFdataweremin-max-scaledbetween0and1, inordertoachievebettercomparabilitybetweenIPFs.IPFswithalow variancewereremoved,astheyrepresentdatawithasmallvariation andthereforewereconsideredtohaveaninsignificantinfluenceon tar-getvalues.ThecorrelationofIPFswithinthedatasetswasdetermined usingPearson’sr.Withinthecorrelationcoefficients,29clusterswitha thresholdofr≥0.68wereidentified,meaningthatwithintheclusters theIPFsstronglycorrelatetoeachother(r≥0.68).ThreeFPPswere se-lectedforthecasestudy:maximaldischargecapacityobtainedafterthe thirddischargecycle(max.capacity),self-dischargeduringtheaging step(self-discharge)andstateofhealthafter400chargeanddischarge cycles(SOHafter400cycles).Foreachcluster,oneIPFwaschosenwith

thehighestcorrelationtooneoftheFPPs,leadingtoasubsetof50IPFs. Aftertheseprocedures,theresultingdataconsistedof155LiBcellsand 50 IPFs.Datapreparationstepswiththebiggestdatareductionwere manual datacleaning(508removed IPFs),removalof columnswith ahighamountofmissingvalues(142removedIPFs),andremovalof highlyco-correlatedIPFs(234removedIPFs).

FortheselectionofthemostrelevantIPFsabackwardwrapperwas used, arecursivefeatureelimination(RFE)algorithm[50]. The algo-rithmworksiteratively.Duringeachiterationstep,apredefined num-beroffeatureswasexcludedbasedonafeaturerankingattribute.Two differentapproacheswereadoptedusingtheRFE,selectionof anIPF subsetwithlinearinterrelationtotheFPPs,andselectionofanIPF sub-setwithanon-linearinterrelationtotheFPPs.Fortheselectionofthe linearfeaturesubset,thefeaturerankingattributeswerethecoefficients oftheLasso-Larsregression(leastabsoluteshrinkageandaselection op-eratormodelwithaleast-angleregressionfit).Fortheselectionofthe non-linearfeaturesubset,thefeature-rankingattributewasthefeature importanceprovidedbyanRFregressor,adecisiontree-based ensem-blelearningalgorithm.Inordertoachievethemulti-objectivityofthe featureselection,featureselectionwasperformedforeachFPP sepa-ratelyon thegivenIPF data. ChosenIPFs weremergedandthe du-plicates wereremoved. Thepredefinednumber of featurestobe se-lectedforeachFPPwassetto6inordertokeepthetotalamountof selected featureslowfor modelling(n>>m).Thenumberoffeatures above 6resultedin anincreaseof totalfeaturestobetoolargeboth forlinearandnon-linearsubsets,withnofurthermodelperformance increase.Thenumberoffeaturesbelow6resultedinlowermodel per-formance.ThefinalsubsetsoflinearIPFsconsistedof17featuresandfor non-linearIPFsof16.TheseIPFsubsetsarelistedinTable1.Though highlycorrelatedIPFswereremoved,somecanbe seeninthelinear IPF subset. This is due totheselectionof IPFs toeach of thethree FPPs from theclusters of thehighly correlatedIPFs. Insome cases,

(10)

Table2

ModelhyperparametersformodelsbasedondifferentIPFsubsets.

IPF subset Model Hyperparameters Hyperparameter values

LLR Linear Alpha 0.0001 ∗

Non-linear Alpha 0.0001 ∗

RF Linear Number of trees 32

Non-linear Number of trees 32

ANN Linear Activation functionSolverAlphaToleranceHidden layer neurons ReLUL-BFGS0.0014 ∗0.0005 (13,35,29) Non-linear Activation functionSolverAlphaToleranceHidden layer neurons ReLUL-BFGS0.0292 ∗0.0007 (16,11,42) roundedto10-4

forallthreeFPPsthesamefeaturewasselected,andinsomedifferent IPFs.

Afterthefeatureselection,IPFandFPPdataweresplitinto90/10 %withtrainingandvalidationdatabeingwithin90%and10%for latermodeltesting.Thissplitwaschosenduetothelowamountofdata. Lasso-Larsregression(LLR),RF,andANNmulti-layerPerceptron regres-sorswereusedwith5-foldcross-validation(CV)asatrainingapproach formodelling.These modelswereused fordemonstrationreasonsas theyrepresentthemoststandardmachinelearningpredictionmodels currentlyused.Specialformsofthesemodelsfitthesameapplication.

Asafurthersteptoimprovethemodels,hyperparametersofthe mod-elswereoptimizedduringcross-validationusingapossibly-stochastic functionwiththeTreeofParzenEstimators(TPE)asasearchalgorithm [51].Onlyfortwohyperparameters,tobeexplainedlater,agridsearch algorithmwasused. Aslossfunction,minimizedfortheoptimization algorithms,therootmeansquareerrorwaschosen(RMSE).Thespace fortheoptimizationwaskeptconsiderablysmall,toeasepossible modi-ficationofdatapreparationandmodellingstepsandtokeepthemodels frombecomingtoocomputationallyexpensive.ForLLR,the regulariza-tionparameteralphawasoptimizedwithinthespacebetween0.0001 and0.1.Lowervalueswouldleadtoareducedregularizationand there-forecouldleadtoanoverfitandhighervaluescouldleadtoan under-fit,bothinsufficientforthepredictionofdata.ForRF,thenumberof treeswasoptimizedwithinthespacebetween1and50.Basedonthe authors’experience,RFisacomputationallyexpensivealgorithmand thenumberoftreesshouldbelimitedifthealgorithmsshouldbeused forfurtherinvestigation.ForANN,theactivationfunction,solverfor weightsoptimization,theregularizationparameteralpha,thetolerance fortheANNweightsoptimization,andthenumberofneuronsinthe hiddenlayerswerechosenashyperparametersforfurtheroptimization. Theactivationfunctionandthesolverwerechosenusingagridsearch. Fortheactivationfunction,rectifiedlinearunit(ReLU),tanh,anda sig-moidfunctionwereconsidered.Forthesolver,thefollowingalgorithms wereconsidered:astochasticgradientdescent(sgd),aniterative op-timizationalgorithmapproximatinggradientdescentstochastically,an AdaptiveMomentEstimation(adam),aspecialversionofsgdfor ma-chinelearningapplications,anda limited-memory Broyden-Fletcher-Goldfarb-Shannonalgorithm(L-BFGS),aquasi-Newtonoptimization al-gorithm.TheregularizationparameteralphaandthetoleranceforANN weightsoptimizationwereoptimizedwithinthespacebetween0.0001 and0.1.Thenumberofhiddenlayerswaschosentobe3,butthe num-berof neuronsineach hiddenlayerwas optimizedwithinthespace between1and50.Table 2showsthehyperparametervalues chosen forthecorrespondingmodels.BesideshyperparametersofANN, hyper-parametersofLLRandRFarealmostsimilarforlinearandnon-linear featuresubsets.ThedifferencebetweenhyperparametersinANNlinear andnon-linearsubsetsisduetothedifferentnumberoffeaturesinthe IPFsubsetsandbecausetheANNperformsdifferentlyifitsnumberof neuronsinthehiddenlayersischanged.

Forthe evaluationof the models, theirprediction is depictedin Fig.10.Ithelpstounderstandhowgoodthepredictiononthelevel ofsinglebatteriesis,tofindweaknessesofthecorrespondingmodels. Forexample,thepredictionofmax.capacityofthelast13cellsispoorly fortheLLR,slightlybetterforANN,andmuchbetterforRF.Itisnotan

indicatorthatRFisoverallbetter,butitcouldmeanthatRFpredictsthe max.capacityof10ESCcellsbetterthantheothermodels.Furthermore, thisdepictioncangiveafirstglimpseintohowgoodamodel general-izesorwhetheritmighthaveanoverfit.Table3showsthemeanmodel scoresanderrorsofthevalidationdatasetsofthe5-foldCVandthetest datasets.Thescore displayedisthecoefficientofdetermination(R2),

whichreflectsthevarianceofthepredictedtargetvaluesbasedonthe inputvaluesofthemodel.Theerrorsarethemostcommonerrorsused in modelling,meanabsoluteerror (MAE)andRMSE.Additionally,it showsthepredictiontimefor100datasetsforeachmodel.Thesescores anderrorshelptounderstandthequalityofthemodel.Thescoresand theerrorsarethemeanvaluesof 5different validationdatasetsthat werecreatedduringCVandofthetestdataset.Theyshowhowgood amodelisbasedondifferenttrainingandvalidationdata.Amongthe validationdata,thescoresanderrorsshowlittledifferencebetweenthe modelswiththeANNbuiltonthenon-linearfeaturesubsethavinga betterperformancebyasmallmargin.LLRshows,asalreadyseenin Fig.10,clearlowerperformanceforR2.Thefeaturesusedtobuildthe

LLR areall putintolinearrelationwithinthemodel,contrarytoRF andANN.ItindicatesthatthebatterycellIPFsmighthaveanon-linear interrelationwithitsFPPsandthattheLLRismissingoutonthis infor-mation.Theresultsofthetestdatashowintotalforallmodelsaslightly betterperformance.Thiscouldhappenbecauseoftherandomizedsplit oftrainingandtestdata.Sincebatterycellsareproducedinbatches, theIPFsofthesebatterycellsareoftensimilarforthewholebatch(e.g. slurryIPFslike viscosity,coatedlayerthicknessof anelectrodecoil, etc.).Ifthemodellearnshowtopredictabatterycellbatch,theycan betterpredictbatterycellsfromthesamebatchinthetestdataset.For thetestdata,thebestmodelappearstobetheRFwithalinearfeature subset.Nonetheless,theANNwithanon-linearfeaturesubsetshowsa constantlygoodperformance.Additionally,thepredictiontimeshows thatLLRandANNpredictthefastest,0.02sand0.03srespectively.RF needsforthesameamountofdataalmost20timeslonger.Forfurther investigations, theANNmodelbasedon anon-linear IPFsubsetwas used.

TobetterunderstandtheinfluenceofIPFsthatwereusedtomodel theFPPs,intheANNmodelbasedonanon-linearIPFsubset,aSobol sensitivityanalysis[52–54]wasperformedtocalculatefirst-, second-orderandtotal-ordersensitivityindices.Thesensitivityindicesofthe first-order describethecontributionofasinglemodelinputvariable (single IPF) to the variance of a single model output (single FPP). Second-orderindicesdescribethejoint contributionoftwomodel in-putvariables(twoIPFs)tothevarianceofasinglemodeloutput(single FPP).Total-orderindicesdescribethecontributionofasinglemodel in-putvariable(singleIPF)tothevarianceofasinglemodeloutput(single FPP)includingthefirst-,second-andallhigher-orderinteractions.The indicesaresetbetween0and1,with1havingaverystronginfluence and0havingnoinfluenceatall.Thesesensitivityindicesaredepicted foreachIPFandFPPinFig.11.Eachheatmaprepresentsthesensitivity indicestothecorrespondingFPPasdescribedinthetitle.The diago-nallaneofeachheatmap,whereIPFrowsandIPFcolumnsareequal (e.g.row1andcolumn1arebothIPF1),arethesensitivityindicesof thetotal-order,describingthetotalinfluenceoftheIPFonthe corre-spondingFPP.Valuesabovethediagonalline,whererowsdonotequal

(11)

Fig.10. BatterycellsandpredictionsofLasso-Larsregression(LLR)inthefirstrow,randomforestregressor(RF)inthesecondrowandartificialneuralnetwork (ANN)inthethirdrowusingalinearandanon-linearIPFsubsetformax.capacity,self-dischargeandstateofhealth(SOH)after400cycles.

columns,arethesensitivityindicesofthesecond-orderdescribingthe influenceofthetwoIPFsonthecorrespondingFPP.Insteadof depict-ingthefirst-orderindices,thesensitivityanalysiswasperformedlater onbyvaryingoneinputvariableatatime.ThechangesintheFPPsare displayedseparatelyinFig.12.

Thestrongestinfluencesthatcan beseenaremostly ofthe total-orderwithsensitivityindicesvaluesofupto0.74,whereasthe second-ordersensitivityindicesareonlyupto0.14.Mostnotableinfluenceson themax.capacity(indicesabove0.1)aretheIPF15(0.74),amountof cathodeactivematerial(‘cathodeamountactivematerial[g]’)andIPF 2(0.09),themeanvalueofthefullwidthathalfmaximum(FWHM) temperaturepeakmeasuredwithapyrometerduringlasercuttingof cathodesheets(‘cathodepyrometerFWHM[s]’).Forthemax. capac-ity,itisclearthatthemoreactivematerialisinthebatterycellthe higheristhepotentialcapacityandthataninfluenceoncathodesheets likeduringlasercuttingmightimpact thecapacityaswell.Most no-tableinfluencesontheself-discharge(indicesaroundorabove0.1)are

IPF2(0.11),IPF4(0.09),IPF5(0.16),IPF7(0.27),IPF8(0.1),IPF 13(0.25),IPF15(0.4),IPF16(0.08)andasecond-orderinfluenceof IPF7andIPF15(0.14).IPF4isthemeanvalueofthedelamination ofcutanodesheets(‘anodedelaminationmeanm-6’).IPF5isthe in-tegraloftemperaturepeakovertimemeasuredwithapyrometer dur-inglasercuttingofcathodesheets(‘cathodemeanpyrometerintegral TS [Ks]’).IPF7is theamountof electrolytedividedbybatterycells’ thicknessandthenumberofitscompartments(‘electrolyteper thick-nesspercompartment[ml/mm/comp.]’).IPF8istheratiobetweenthe electrolytevolumeandthetotalbatterycellelectrodeporosityvolume (‘electrolyteporosityvolumeratio’).IPF13istheoverlappingrate be-tweencathodeandanodesheetsmeasuredinpercentageduringthe z-foldingprocess(‘electrodesoverlappingrate[%]’).IPF16istheratio betweenthetheoreticalcapacitiesofcathodesincomparisontoanodes of thewhole batterycell(‘cathode/anode theo.capacityratio[%]’). TheseIPFsindicateapotentialinfluenceoftheelectrodecutting pro-cessontheself-dischargeofbatterycells.Thesecond-orderinfluenceis

(12)

Table3

Meanscoresanderrorsofvalidationandtestdatasubsetsofthe5-foldCVformodelsbasedondifferent IPFsubsets.R2– coefficientofdetermination,RMSE– rootmeansquareerror,MAE– meanabsoluteerror.

Model IPF subset 5-fold CV validation data Test data Time of predicting 100 datasets R 2 RMSE MAE R 2 RMSE MAE

LLR Linear 0.74 0.09 0.06 0.80 0.08 0.06 0.02s Non-linear 0.76 0.09 0.06 0.78 0.08 0.06 0.02s RF Linear 0.81 0.08 0.05 0.88 0.06 0.04 0.42s Non-linear 0.80 0.08 0.05 0.84 0.07 0.05 0.43s ANN Linear 0.81 0.07 0.05 0.83 0.07 0.05 0.03s Non-linear 0.84 0.07 0.05 0.85 0.07 0.05 0.03s

Fig.11. ResultsofthesensitivityanalysisoftheANNbasedonnon-linearIPFsubsetsusingsensitivityindices.Total-ordersensitivityindicesareonthediagonal laneswhereIPFnumbersareequal,thesecond-orderindicesareinthefieldsoftheuppertrianglerepresentingthesecond-orderinteractionbetweenIPFsinthe columnsandtherows.

(13)

Fig.12. ResultsofthesensitivityanalysisforallFPPsoftheANNmodelwithnon-linearIPFsubsetsbyvaryingonevariableatatime.

between‘electrolyteperthicknesspercompartment[ml/mm/comp.]’ and‘cathodeamountactivematerial[g]’.Sincethecompressionrateof thecathodeswasvariedforsomebatterycellswithinthecasestudy, theporosityisdifferentforthosecells.Theamountofelectrolytewas variedaswell,leadingtotheassumptionthatthewettingdegreeand theabundanceofelectrolyteinrelationtotheamountofcathode ma-terialmayinfluencetheself-dischargeaswell.Mostnotableinfluences ontheSOHafter400cycles(indices aroundorabove0.1) areIPF4 (0.08),IPF10(0.09),IPF12(0.08),IPF13(0.64)andIPF16(0.11).IPF 10istheuncalenderedcathodethickness(‘cathodeuncalendered elec-trodethickness[m-6]’).IPF12istheD10oftheparticlesizedistribution (PSD)ofcathodeslurrymeasuredduringthemixingprocess(‘cathode mixingPSDd10[m-6]’)meaningthat10%ofparticleshavesmaller and90%ofparticleshavelargerdiametersthanD10.Asindicatedby insilicowork,PSDmayimpacttheperformanceandthedegradationof batterycells[55].Furthermore,itwasshownexperimentallythat de-creasingelectrodes’overlappingrate(orelectrodedepositionaccuracy) influencethebatterycells’dischargecapacitynegatively[25].High dis-proportionsbetweenanodeandcathodecapacitiesplayaroleinaging processesofcapacitydegradation[56].

ThoughthesensitivityindicesshowwhethercertainIPFsinfluence theFPPs,theyonlyshow whetheritisastronginfluenceornot.The informationonwhethertheinfluenceisapositiveone(increasingIPF valuesleadtoanincreaseinFPPvalues)oranegativeone(increasing

IPF valueslead toadecrease inFPP values)isnotgiven. Therefore, theinputdatafortheANNmodelbasedonanon-linearIPFsubsetwas variedwithonevariableatatime(seeFig.12)toseetheirinfluence onallFPPs.Thediagramsshowthenon-linearnatureofsomeIPFsand underlinetheirimpactontheFPPs.ThisdepictionofFPPsensitivity to-wardsvariousIPFscanbeusedtofurtherstrengthentheunderstanding ofmodelledinterrelationsandhelptoevaluatethemodel.Itcanalready provideaglimpseofwhethertheinterrelationsappearastheywere ex-pectedorwhetherthemodel,althoughithasagoodscoreandalow errorrate,representstheinterrelationswrongly.

InfluencesofIPFsonFPPsmodelledbytheANNbasedona non-linearfeaturesubsetaredepictedinFig.12.Theyshow,asalready de-scribedbythesensitivityindices,stronginfluencesof‘cathodeamount activematerial[g]’onmax.capacityandself-discharge,of‘electrodes overlappingrate[%]’ onself-dischargeandSOHafter400cycles,of ‘Cathode meanpyrometerFWHM [s]’on max. capacity, of ‘cathode meanpyrometerintegral[Ks]’onself-discharge,andof‘electrolyteper thicknesspercompartment[ml/mm/comp.]’onself-discharge.The ‘an-odedelaminationmean[m-6]’showsinthissensitivityanalysisan in-fluenceonmax.capacity,despiteasensitivityindexof0.04,although thesensitivityindicesof0.09and0.08indicateits influenceon self-dischargeandSOHafter400cyclesrespectively. ‘Electrolyteporosity volumeratio’,‘cathodeuncalenderedelectrodethickness[m-6]’, ‘cath-ode mixingPSD d10[m-6]’and‘cathode/anode theo.capacityratio

(14)

Fig.13. Processofbatteryproductiondesign.

[%]’,donotshowinthisanalysisdespitetheirsensitivityindicesshow noinfluencesonself-dischargeorSOHafter400cycles.However,the sensitivityindicesdepictedinFig.11donothavetomatchthe influ-encesshowninFig.12,becausethesensitivityindicesareofthe total-orderandthereforeincludethefirst-orderinfluenceaswellasall higher-orderinfluences.ThismeansthattheseIPFsnotshowingstrong influ-encesinFig.12probablyhavestronginteractionswithotherIPFs. Fur-thermore,itisimportanttounderstandthateventhoughsome interre-lationsappearlogicalandcomprehensible,othersarederivedbasedon availabledata.ThismeansthatiftheIPFswerenotvariedtotheirfull range,theinterrelationbetweentheseIPFsandtheFPPsmightbe mod-elledwithastrongbias.Therefore,anyinterpretationofthedepicted interrelationsbetweennotvariedIPFsandFPPsshouldberegardedas anindicationofapossibleinterrelationwithintherangesofthedata.

Thedevelopedmodelsshow,likemostmachinelearningmodels,a limitationinitspredictabilitytonewandunexperienceddata.Contrary tophysicalmodels,thequantitativeinterrelationbetweeninputand out-putdataislearnedwithinthetrainingprocessofamachinelearning model.Itishighlyinfluencedbythemodels’architecture,inputand tar-getvaluescales,andtheirvariablespace.Variationofinputdatacanbut doesnothaveto,covertheentirevariablespaceofthatinput,whereas anunvariedinputdatamightslightlyfluctuatearoundcertainvalues. Whenvariedandunvariedinputdataistransformedandrescaled,itis difficultforthemodeltodistinguishwhichinputreallyvariesstrongly andwhichdoesnot.Therefore,inorderforthemodeltopredictnew dataornewvariations,thesevariationsneedtobefirstintroducedtothe model.Thesamerecommendationistruefortheextensionofvariable spaces.Eventhebestmachinelearningmodel,givenalimitedamount ofdata,mightnotextrapolatethepredictionwellenoughtopredictdata outsideknownvariablespace.

4.2.2. Batteryproductiondesign

TheprocessofbatteryproductiondesignisdepictedinFig.13and describedinthefollowing.ItrequiresboththerangeofIPFsthatisbased onexistingdataaswellasthetargetvaluesandtherangefordesired FPPs.TherangeofIPFsis neededtogeneratebatterysamplesbased onacombinationofpossibleIPFvalues.Targetvaluesandranges of desiredFPPsareneededtoselectthegeneratedbatteriesthatliewith theirpredictedFPPswithinthoseranges.Furtherclusteringisusedto consolidatesampledbatterycellswithsimilarIPFvalues.Theseclusters arethencomparedtorealbatterycells.

AgridsearchapproachwaschosentogenerateIPFdataandtouse thisdatatopredictFPPs.SincenotallparametersoftheLiBcell

pro-ductionwerevariedandthereforenotallpossiblecombinationsofthe selectedIPFswereavailabletothemodel,theparametersubspacewas restricted.Aquantiletransformerwasusedtotransformunivariate dis-tributedIPFdataintothedatasubspaceofavailableIPFs.Thenthe trans-formedIPFvalueswereusedtopredicttheFPPs.Intotal10800datasets ofLiBcellsamplesweregenerated.InFig.14,thegeneratedandthereal batterycellsaredepicted.Twoclustersofrealbatterycellscanbeseen veryclearly,onewithcellsthathave15ESCandtheotheronewithcells thathave10ESC.Althoughthequantiletransformerhelpstoreproduce therestrictedparametersubspace,somenewbatterycells’ character-isticscanbeseenofthegeneratedbatterycellsarrangedbetweenthe twoclustersoftherealbatterycells.Thesenewcharacteristicscanbe newcombinationsofdifferentIPFvaluesthatdonotappearinthe orig-inaldata.Incasethesenewcharacteristicsareofinterest,itneedsto beverifiedbyprocessandbatteryexpertswhethertheyarephysically plausible.

Toprovidecomparabilityandanevaluationoftheconcept,seven batterycells wereexcludedfrommodeltraining andtesting,i.e. the modelhasno informationofthese cells.Four of thesecells have15 cathode-anodecompartmentsandthreeofthemonly10.Basedonthese cells,thetargetvaluesforFPPsandtheirtolerance/intervalwere cho-sen.Thetargetvaluesweresettothemeanvaluesofthecellsandthe tolerance/intervaltoplusthreetimesthestandarddeviationandminus threetimesthestandarddeviation(seeTable4).Basedonthiscriterion, generatedcellswhoseFPPvaluesliewithinthedefinedintervalwere selectedforfurthersteps.

TheirIPFsweredeterminedandcomparedtotheIPFsfortheseven LiBcells.ThiscomparisoncanbeseeninFig.15,ahistogramforeach IPF depictinggeneratedandrealbatterycells.Fig.15shows10 ESC generated batterycellsin blue,15ESCgeneratedbatterycellsin or-ange,10ESCrealbatterycellsingreen,and15ESCrealbatterycellsin gray.Intotal54generatedbatterycellswerefoundwithinthedefined intervals:26for15ESCand28for10ESC.Itcanbeseenthat,though somegeneratedbatterycellsshowsimilarIPFvaluestorealbatterycells, notallofthemdo.Thisdepictionofrealandgeneratedbatterycellsin Fig.15 showsthatthegenerated batterycellsaretightlydistributed aroundspecificvalues,partiallyupto12or25perhistogram.This in-dicatesapossiblepatternwithinthedataofgeneratedbatterycells.

TheIPFvaluesofthegeneratedLiBcellsthatwerefoundwithinthe intervalsdonotentirelycorrespondtotheIPFvaluesofthewithheld LiBcells.Thisisduetothefactthatthemodelisabletopredict sim-ilaroutputvaluesbasedondifferentinputvalues,i.e.whenoneinput variableislower,itcanbecompensatedbyanotheronebeinghigher. Therefore,therecanbedifferentarrangementsofIPFvaluesleadingto almostsimilarresults.Thiswasinvestigatedbyidentifyingthree clus-tersfor15ESCcellsandtwofor10ESCcellsusingaGaussianmixture modelontheIPFdata.Thebestamountofclusterswasidentifiedusing theBayesinformationcriterion.Theidentifiedclustersforcellswith15 ESCarec_0_15ESC,c_1_15ESCandc_2_15ESCandforcellswith10ESC arec_0_0ESCandc_1_10ESC.Intotalthereare26chosencellswith15 ESC(_0_15ESC:10cells,c_1_15ESC:12cellsandc_2_15ESC:4cells)and 28with10ESC(c_0_0ESC:14cellsandc_1_10ESC:13cells).

TheIPFsofeachclusterandofthesevenwithheldLiBcellsare de-pictedinFig.16 forvalidation purposes.Inordertoutilizethe pro-cedureofbatteryproductiondesign,thegeneratedclustersofpotential IPFsneedtobevalidated.Outgoingfromtheavailabledatabase,itneeds tobeevaluatedwhethertheIPFvaluesarecomprehensibleorwhether itisnotpossibletoachievethiscombinationofvalues.Incomparison torealcells(thewithholdcells),itshowsthatindeedsomeoftheIPF valuesweremetbythegeneratedLiBcellsintheclusters,butalsothat some haveslightlydifferentvaluesdue tothecompensationthrough otherIPFs.Forexample,the‘cathodeuncalenderedelectrodethickness [m∗10-6]’valuesofc_0_15ESCandc_1_15ESCdonotfitthevaluesof

realbatterycellsandthevaluesofall15ESCclustersdonotentirely fittherealbatterycellvaluesfor‘cathode/anodetheo.capacity[%]’. Further deviationsof c_0_15ESCfromrealbatterycellsarein‘anode

(15)

Fig.14. PredictedFPPs(max.capacity,self-discharge,andSOHafter400cycles)ofgeneratedIPFdata.

Table4

FPPrangesoftheexcludedbatterycells.

FPP cells with 15 cathode-anode compartments cells with 10 cathode-anode compartments mean standard deviation range mean standard deviation range

max. capacity [Ah] 9.115 0.011 9.080 – 9.148 5.83 0.040 5.705 – 5.946

self-discharge [%] 0.151 0.016 0.102 – 0.199 0.229 0.005 0.214 – 0.243

SOH after 400 cycles [%] 0.929 0.003 0.921 – 0.937 0.870 0.002 0.866 – 0.875

mixingPSDright[-]’and‘anodesuspsension viscosityfitting value’. Deviationsofc_1_15ESCfromrealbatterycellscanbeseenin‘cathode uncalenderedporosityvalue418-10[-]’andin‘cathodemeanchamfer angle[°]’.Theclusterc_2_15ESChasthehighestdeviationsin‘cathode meanpyrometerFWHM[s]’,‘cathodeuncalenderedporosityvalue 418-10[-]’and‘anodemixingstdPSDright[-]’.Theclusterswith10ESC showalsoonlytwohigherdeviationsfromreal10ESCbatterycellsin ‘cathodeuncalenderedporosityvalue418-10[-]’and‘anode

suspsen-sionviscosityfittingvalue’.Itfurtherneedstobeconsideredthatnotall oftheIPFvaluesthatareusedinthequalitypredictionmodelwere var-ied.Thismeansthattheirrangeanddistributionistheresultofprocess fluctuation.Inordertoruleoutthestrongsensitivitytothesevalues completely,thesevaluesneedtobevaried.Anothermeasurecouldbe thescalingofthesevaluesduringthedatapreprocessingbetweenthe realminimumandtherealmaximumtoindicatethattheirfluctuation isminimalcomparedtotherealvaluerange.

(16)

Fig.15. IPFsofthegeneratedFPPswithinthedefinedintervalsandtheIPFsofthesevenwithheldLiBcells.

4.3. Decisionsupport

Thoughthemodelandtheaccesstothedatabasearepurely pro-grammedinpython,themodelisdeployedonaweb-basedplatform. Themanual data cleaninghasbeen applieddirectly tothe accessed data,i.e.not allavailabledataisaccessed,onlythedesiredone. All further steps run within thepython script automatically,giving the modellingprocedure thepossibility tobe deployedin anautomated way.Theexecutionofthemodellingprocedurecanbedonemanually orcan be triggeredbytime-dependingevents,e.g. aftera fullbatch of batterycells is producedand alldata is availableor periodically at certaintime points.The visualization of modelresults is embed-ded in a web-basedapplication displaying theperformance andthe scoresofmodels.Theselectionoftheseeminglybestmodelcanbedone manually orautomated,e.g. whencertainscore criteriaarefulfilled orbyselectingthebestperformingmodeldepending onthescore of choice.Thebatteryproductiondesignisappliedonthesameweb-based platform.

Forafurtherexplanation,theclustersc_0_15ESC,c_1_15ESC,and c_2_15ESCandthewithheldrealbatterycellswith15 ESCareused. Fig.17depictstheseclustersandtherealbatterycellsforcomparison asradarcharts(realbatterycellswith15ESCinFig.17A,c_0_15ESC

inFig.17B,c_1_15ESCinFig.17C,andc_2_15ESCinFig.17D).This representationofthepotentialIPFvaluessupportstheevaluationof ob-tainedresultsbytheprocessexperts.Processexpertscanusethe avail-abledatabasisandtheinformationaboutthevariedIPFsinorderto maketheirdecisionwhetherthosevaluesarecomprehensibleornot.As anexample,valuesofthefeature‘cathodeamountactivematerial[g]’ (IPF15),werevariedandarecomprehensible.Moreactivematerialwill leadtoahighercapacityofthecell.ThisIPFisalmostthesameforthe 15ESCcells(generatedandreal).Ontheotherhand,thevaluesofthe feature‘cathodeuncalenderedelectrodethickness[m∗10-6]’(IPF10)

werenotvariedandthereforethesevaluesneedtoberegarded care-fully.JudgingbythegeometryoftheradarchartareasinFig.17, clus-terc_1_15ESCshowsthebiggestdifferencecomparedtotherealcells, c_0_15ESCandc_2_15ESC,withc_2_15ESCevenfewerdifferencesthan c_0_15ESC,thesmallestone.Theclusterc_2_15ESCshowsonlyafew IPFshavingsmallerdifferencescomparedtorealbatterycells,withthe biggestofthembeinginvariedvalues‘CathodemeanpyrometerFWHM’ (IPF2),‘cathodeuncalenderedporosityvalue418-10[-]’(IPF3),‘anode mixingstdPSDright[-]’(IPF6),‘electrolyteperthicknessper compart-ment[ml/mm/comp]’(IPF7),‘cathodeuncalenderedelectrode thick-ness[m∗10-6]’(IPF10)and‘cathode/anode theo.capacity[%]’ (IPF

(17)

Fig.16. IPFsofthefiveidentifiedclusterswiththecorrespondinggeneratedcellsandthewithheldLiBcells.

similarityoftheradarchartareashapes,thecomparisonbetweenthe valuescanbetterbevisualizedbyFig.16.

Aftertheverificationbytheprocessexperts,thechosenIPFsfrom thebatteryproductiondesigncannowbeusedinproductionprocess simulationinordertoderiveandachievetheneededprocess parame-ters[57].Basedontheproductionprocesssimulation,theuncertainties ofachievableIPFscanbederivedandbedirectlytransferredbyusing thequalitypredictionmodeltouncertaintiesofachievableFPPs[58]. Furthermore,apredictionofenergyandmaterialflowscanbemadeto planfurtherdetailsoffuturebatterycellproduction,allowingto uti-lizenotonlyproductqualitygoalcriteriabutalsoenvironmentaland economicgoalcriteria[59,60].

WiththestartoftheproductionusingthederivedPPs,thecontrolof theIPqualitywithregardtodesired/targetFPPsisachievedby utiliz-ingthemethodologyofdata-drivencyber-physicalsystemsforquality gates[41].Thismethodologyusesthequalitypredictionmodelandthe allowedtolerancesforIPFstopredictarangewithinwhichthevaluesfor targetFPPslie.Thismethodologyneedstobeupdatedwiththe multi-outputqualitypredictionmodelpresentedinthiswork.Witheverynew intermediateproduct,therangeoffutureFPPsnarrows.IftheIPFvalue

liesoutsidethetolerance,thequalitypredictionmodelupdatesits pre-dictionwithnewlysetIPFvaluesandthebatteryproductiondesignfinds suitablevaluesforremainingIPFsthatwerenotadjustedyet.Afterthe newIPFsareverifiedbytheprocessexpert,theproductionsimulation modelgeneratesnewPPsfortheremainingprocesses,leadingtheIP qualitybacktothedesireddirection.Ifnoneof thenewlygenerated IPFsarereasonable,thentheproductionmanagercandecidetocancel theproductionandsavethefurthercostsofproducingaproductwith undesiredquality.

5. Summaryandoutlook

This paper presented an approach for battery production design based onamachinelearningmodelforthedeterminationof IPFsin ordertoobtaindesiredFPPsoflithium-ionbatterycells.Thepurposeof theapproachistodetermineneededIPFs/intermediateproduct struc-turesfortheprocessstepsinordertoachieveacertainqualityofthefinal product,thebatterycell.Theconceptaimstoutilizetheapproachwithin theframeworkof a cyber-physicalproductionsystem forcontinuous dataacquisitionandmodellearningtoenhancethemodel’s

(18)

predictabil-Fig.17. Radarchartofidentifiedclustersincomparisontorealbatterycells.

ityandthereforetoimprovetheprecisionoftheapproach.Theconcept wasappliedtoacasestudywithinthepilotlineoftheBattery LabFac-toryBraunschweig.Intotal155lithium-ionbatterycellswereusedto buildanartificialneuralnetworkmodelforthepredictionoffinal prod-uctpropertiesfromintermediateproductfeatures.10800batterycell samplesweregeneratedinsilicoandusedtodeterminetheneeded in-termediateproductfeaturevaluesthatwerecomparedtoseven(4with 15ESCsand3with10ESCs)lithium-ionbatterycellsthatwere with-heldfromthemodelling.Itcouldbeshownthatthemodelpredicts bat-terycellsthatwerevalidatedwithrealcellsandshownewintermediate productfeaturesubsetsthatmayleadtobatterycellswithcomparable performance.

Thoughthemodelisbasedonacomparablylowamountof data, theapproachshowsautilizationofmachinelearningmethodsfor bat-terycellmanufacturingimprovementbysupportingproduction plan-ningandoperation.Themodelneedsfurthervalidationandtraining withmoreavailabledatainordertoshowsignificantresults. Neverthe-less,itshowsgreatpotentialfordeploymentinbatterycellproduction helpingtocontrolandtovaryproductionprocessestowardsmore cus-tomizablebatterycells.

Althoughtheapproachwasappliedtopouch bagbatterycells,it appliestoallotherbatterycellgeometries.Furthermore,theapproach appliestoacertainextendtosimilartasksinotherareasofproduction engineeringinwhichthequalityofthefinalproductcanbedetermined initsperformance,purity,etc.ratherthanbydistinctionwhetheritis OKandNOK(e.g.semiconductors).

Furtherresearchwillfocusonproducingmorebatterycellsand im-provingthemodel.Specifically,thenextstepswillfocusondetermining IPFsthatwouldleadtoanimprovementofoneormoreFPPsand vali-datingtheseresultsbyproducingthebatterycellswiththedetermined IPFs.Theinfluenceofthenon-variedinputofthemodelalsoneedsto befurtherinvestigatedandvalidated.Additionally,thevariablespace ofalreadyacquiredIPFswillbeextendedtobetterunderstandtheir in-fluencesandtobetterquantifythem.Morefinalproductpropertiesand

theusageofdifferentmaterialsneedtobeaddedtothemodel,tohave highercustomizability.Concerningsustainability,suchtargetvaluesas energydemandandcostscouldbeusedtoextendthemodel,butlead toanevenhigherdatademand.

Authorcontributions

ArtemTuretskyy:conceptualization,methodology,formalanalysis, investigation,resources,datacuration,writing-originaldraft, writing-reviewandediting,visualization,fundingacquisition;

Jacob Wessel: conceptualization, methodology, writing-original draft,writing-reviewandediting,visualization;

ChristophHerrmann:writing-reviewandediting,funding acquisi-tion,supervision,projectadministration;

SebastianThiede:conceptualization,methodology,writing-review andediting,fundingacquisition,supervision;

DeclarationofCompetingInterest

Theauthorsdeclarethattheyhavenoknowncompetingfinancial interestsorpersonalrelationshipsthatcouldhaveappearedtoinfluence theworkreportedinthispaper.

Acknowledgments

TheauthorsthanktheBMWI-FederalMinistryofEconomicAffairs andEnergyforsupportingtheprojectDALION4.0-DataMiningas Ba-sisforcyber-physicalSystemsinProductionofLithium-ionBatteryCells (03ETE017A).Theauthorsextend their gratitudetotheir colleagues from theDALION4.0teamforrunningtheexperimentsand produc-ingbatterycells.Further,theauthorswouldliketothankOlafWojahn forsupportingtheminquestionsandchallengesregardingautomation andIT.

Referenties

GERELATEERDE DOCUMENTEN

Also clustering the images based on the prediction scores can give valuable insights in the contents of a confiscated phone by looking at the anoma- lies and generated labels.

The idea was that especially domestic democratic norms like a strong parliament and controlled executive would influence the adoption of democratic norms on an international

These elements served as a basis to design Iter: a carpooling application prototype that was tested with students of the Costa Rica Institute of Technology in order to

laagconjunctuur de groei van het aantal zzp’ers in de werkende beroepsbevolking verklaart. Verder is er ook gekeken naar de verschillen in geslacht. Bij de regressie OLS 5 met

Deze procedure wordt telkens 500 keer herhaald en voor beide technieken wordt bijgehouden welke variabelen er zijn opgenomen in het model en welke Mean Squared Errors er

Vervolgens het die EAV(S.A.) suksesvol druk op die EDRR geplaas om toe te sien dat toetsuitslae vinniger bekend gemaak word deurdat gevalle van laat

Het voorstel is in 50 % van de nieuwe bosgaten dood stamhout achter te laten, bij voorkeur geconcentreerd aan de zuidzijde of aan noord- en zuidzijde (ontstaan van contrast van

In 2004 is de totale exportwaarde van snijbloemen, pot- en tuinplanten gestegen met 2,3% tot 4.663 miljoen euro (tabel 8.3).. Dat geldt niet voor pot-en tuinplanten waar in