• No results found

It runs in the family – influenza vaccination and spillover effects

N/A
N/A
Protected

Academic year: 2021

Share "It runs in the family – influenza vaccination and spillover effects"

Copied!
19
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

ContentslistsavailableatScienceDirect

Journal

of

Health

Economics

jou rn a l h om ep a ge :w w w . e l s e v i e r . c o m / l o c a t e / e c o n b a s e

It

runs

in

the

family

Influenza

vaccination

and

spillover

effects



Nicolas

Bouckaert

a

,

Anne

C.

Gielen

b,c

,

Tom

Van

Ourti

d,∗

aBelgianHealthCareKnowledgeCentre,Brussels,Belgium;andKULeuven,Leuven,Belgium bErasmusSchoolofEconomicsandTinbergenInstitute,ErasmusUniversityRotterdam,TheNetherlands cIZA,Germany

dErasmusSchoolofHealthPolicyandManagement,ErasmusSchoolofEconomics,TinbergenInstituteandErasmusCentreforHealth

EconomicsRotterdam,ErasmusUniversityRotterdam,TheNetherlands

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received7June2019 Receivedinrevisedform 23September2020 Accepted25September2020 Availableonline18October2020 Keywords:

Influenzavaccination Familyspillovereffects Regressiondiscontinuity

a

b

s

t

r

a

c

t

Westudyapopulation-basedinfluenzavaccinationprogramintheNetherlands,andthe spilloversithaswithinfamilies.Individualsaged65yearsandoverqualifyfortheprogram andreceiveapersonalinvitationforafreeflushot,whileineligibleindividualshavetopay out-of-pocketandfaceadditionalbarrierstogettingvaccinated.Thequasi-random varia-tionatage65isexploitedtoanalyseprogramimpactonvaccinationbehaviorofcohabiting partnersandadultchildren.Wefindthattheprograminduceda10percentagepoints increaseinvaccinationcoverageamongindividualsatage65.Theprogramfurtherledtoa similareffectonvaccinationtake-upbycohabitingyoungerpartners,butspilloverson chil-drenwerenegative.Theseasymmetricpatternsofvaccinationuptakeareconsistentwith partnersandchildrenlearningaboutinfluenzamortalityrisk,targetgroupmembership, andcostandbenefitsofvaccination,aswellassalience.Weconcludethatpublichealth campaignsshouldpayattentiontotheeffectsonvoluntarypreventivecareparticipation aswithin-familyspilloversimpacttheprogram’soverallpublichealthimpact.

©2020TheAuthor(s).PublishedbyElsevierB.V.Thisisanopenaccessarticleunderthe CCBYlicense(http://creativecommons.org/licenses/by/4.0/).

 ThisprojecthasuseddataprovidedbyStatisticsNetherlandsviaaremoteaccessfacility.Asstipulatedinthedataagreement,StatisticsNetherlands pre-viewedthefindingsofthisprojectpriortopublicationtoensurethatprivacysensitive,individual-specificinformationwasnotrevealed.Thedatafrom thisstudycanonlybeappliedforthroughagovernmentdatasharingportalofStatisticsNetherlands (https://www.cbs.nl/en-gb/our-services/customised-services-microdata/microdata-conducting-your-own-research).PartoftheworkwasundertakenwhileNicolasBouckaertwasaPhDfellowoftheFWO Flanders(1174913N);AnneC.GielenaMarieCurieIntra-EuropeanFellow(PIEF-GA-2011-299133);andTomVanOurtiavisitingresearcherattheMilken InstituteSchoolofPublicHealthoftheGeorgeWashingtonUniversity.TheauthorswouldliketothanktheeditorMathiasKifmann,twoanonymous reviewers,PhilippeBeutels,AdrianBruhin,GeertDhaene,LorensHelmchen,HaleKoc¸,JürgenMaurer,AliMoghtaderi,MagneMogstad,OwenO’Donnell, ErwinOoghe,FrancescoPrincipe,SamanthaRawlings,ErikSchokkaert,ErdalTekin,JoostTimmermans,HansVanBrabandt,EllenVandePoel,Hansvan Kippersluis,GPprivatepracticeVanEerd;andseminarparticipantsatseveraluniversitiesandconferencesforusefulcommentsandsuggestions.Wehave noconflictsofinteresttodisclose,andallerrorsareourown.

∗ Correspondingauthor.

E-mailaddresses:nicolas.bouckaert@kce.fgov.be(N.Bouckaert),gielen@ese.eur.nl(A.C.Gielen),vanourti@ese.eur.nl(T.VanOurti).

https://doi.org/10.1016/j.jhealeco.2020.102386

0167-6296/©2020TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/ by/4.0/).

(2)

1. Introduction

Like with many other preventive care measures for communicablediseases,vaccinationcoverageforseasonal influenza is considered tobetoo low, and encouraging influenzavaccinationuptakeisakeypublichealth strat-egyinmanycountries.Althoughstudieshaveshownthat patient reminders, financial incentives and information provisionaboutthecostsandbenefitsofinfluenza vaccina-tionareeffectiveinincreasingvaccinationuptakeamong targeted groupsin thepopulation(Szilagyietal., 2000; Bronchettietal.,2015;NuschelerandRoeder,2016),little isknownabouttheextenttowhichthesemeasuresimpact vaccinationuptakebyindividualsthatwerenottargeted. Ifvaccinationbehaviorofotherindividualsisalsoaffected, thishasimportanthealthandeconomicimplicationssuch as the costs associated with work productivity, absen-teeism,andhealthcare.Hence,credibleidentificationof vaccinationspillovereffectsis vitaltodetermineoverall program(cost-)effectivenessofpreventivecarepoliciesfor infectiousdiseases.

ThispaperstudiesspillovereffectsofaDutchinfluenza vaccinationprogram.Everyyear,between2and20percent of theDutchpopulationisaffectedby influenza(Vrieze et al., 2016). Althoughmost peoplerecover within1–2 weeks from influenza without requiring medical atten-tion, influenza cancause severe illness and even death amongvulnerablepeople,includingtheelderly,pregnant womenand peoplewithanunderlyinghealthcondition (WHO,2019).Vaccinationistheleadingpreventive strat-egyforreducinginfectionrisk,isprotectiveafterabout2 weeks,andneedstobetakenyearly.TheNetherlandshas avaccinationpolicyinplaceaimedatdirectlyprotecting individualswhoaremostatriskofinfluenzamortality.1 Chronicallyillindividualswithspecificdisordersand indi-vidualsaged65(60asof2008)oraboveonMay1stofthe nextcalendaryearreceiveapersonalinvitationletterin September/Octoberofthecurrentcalendaryeartocollect andobtaintheirflushotfromtheGPatzerocost. Individ-ualsnottargetedbytheprogramcanalsogetvaccinated, buttheydonotreceiveaninvitation,havetopay out-of-pocketcosts,andfirsthavetocollectthevaccinefromthe pharmacybeforegoingtotheirGPtohavetheactualflu shot.

Weexploitthequasi-randomvariationatage65to iden-tifywithin-familyspilloversinvaccinationbehavior,both withinthehousehold(cohabitingpartners)andbetween households(adultchildren).Thehouseholdisanimportant transmitterinthespreadofinfluenzaaswithin-household influenza infection hasbeen shown tocontribute more toinfluenzaincidencethananyothersourceofinfection (Welliveretal.,2001;Fergusonetal.,2006),whileadult childrenareaffectedbyotherimportantinfectionsources outsidetheimmediatehouseholdsuchasindirectexposure

1MostcountriesinEuropetargettheoldandsick,butinothercountries,

includingtheUnitedStatesandtheUnitedKingdom,influenzavaccination isalsorecommendedforyoungeragegroups(exceptnewborns)withthe aimtopreventdiseasetransmissionandindirectlyprotectindividualsat risk(CDC,2010;MacDonald,2016).

viatheirownchildrenattendingchildcareorschool,direct exposure via workplace environments, or via the local neighborhood(Longinietal.,2004,2005;Chaoetal.,2010). Vaccinationuptakeamonggroupsthushasthepotential ofstronglycontainingthespreadofinfluenza,especially in a small and densely populated country, such as the Netherlands,whereparentsandadultchildrenliveinclose proximity.

Usingaregressiondiscontinuitydesign(RDD)and11 yearsofcross-sectionalHealthInterviewSurveys(HIS)for influenza seasons 1997–98 to 2007–08 which is linked toDutchadministrativedatafromStatisticsNetherlands, wefindthat spilloversinthefamily contextare almost asimportantasthedirectimpactonvaccinationuptake ofindividualsupon turning65.Wefindthatvaccination incidenceamong partnersincreaseswith10 percentage points,from25to35percent,butonlywhenthepartner isyoungerthan65andnotyetqualifiesforthe vaccina-tionprogrambasedonage.Thisspillovereffectisaslarge asthedirectprogramimpactwhichincreasesvaccination coverage from 30 to 40 percent when individuals turn 65.Wefurtherfindevidenceforsubstantialspilloverson adultchildren,butonlyupontheirolderparentturning65. Interestingly,thechildspilloversarenegative,andshow areduction invaccinationcoverage amongthechildren from9to4percent.Ourresultssuggestthatthese asym-metricspillovereffectstowardspartnersandchildrenare inlinewiththemupdatingtheirinfluenzamortalityrisk, partnerslearningaboutcostsandbenefitsofinfluenza vac-cination,andchildrenupdatingtheirbeliefsabouttarget groupmembership,butalsowiththesalienceofthe part-ner’s/paternalreceiptof theinvitationforfreeinfluenza vaccination.Whileoursamplesizeprecludescredible iden-tificationofthehealth(care)impactsofthesespillovers,a companionpaperindicatesthatthehealth(care)impacts mightbesubstantial.VanOurtiandBouckaert(2020)find that the Dutch vaccination program reduced GP visits, prescription drug use and mortality among individuals that crossthe 65age threshold.Thissuggests potential program-associatedhealth(care)effectsofthespillovers onpartners and children,although theoverall program effect ultimately depends on the positive health (care) impactsamongpartnersoutweighingthenegativeimpact onchildren.Varioussensitivity,specificationandplacebo testsunderscoretherobustnesstofourresults.

Thispaperaddstotheliteratureoninfluenza vaccina-tioninhighincomecountriesbyfocusingonspilloversin individualvaccinationbehaviorwithinthefamilycontext, andbyprovidingsuggestiveevidenceontheunderlying mechanisms.Asfarasweknow,thishasnotbeen stud-iedbeforeintheeconomicsliterature,buttherearetwo relatedstudiesestimatinghealthexternalitybenefits aris-ingfrominfluenzavaccination.2Ward(2014)documents

2 CarpenterandLawler(2019)findthatUSstatemandatesforatetanus,

diphteriaand pertussis(Tdap) booster priortomiddle school entry increasedvaccinationratesformeningococcaldiseaseandhuman papil-lomavirus(HPV)amongthesameadolescents,butdidnotaffectinfluenza vaccinationrates.Hoffmannetal.(2019)findthatpeerinfluenza vaccina-tiontake-upincreasesindividualtake-upinafieldexperimentinamajor bankinEcuador.

(3)

substantialhealthimprovementsamongalreadytargeted andvaccinatingindividualsaged65andolderinthe Cana-dianprovinceofOntario,whenfreevaccinationcoverage gotextendedtoallresidentsintheprovince.White(2020) confirmsthesehealthexternalitybenefitsfortheUnited States,inparticularwhenincreasedvaccinationratesresult fromvaccinationmandatesforhealthcareworkers.

Ourworkalsorelatestotheliteratureonspilloversin family health behaviors. Cutler and Glaeser (2010) and Fletcher and Marksteiner(2017)show thatexposureto respectively workplacesmokingbansand clinical inter-ventionsreducesspousalsmokinganddrinkingbehavior, while Cawleyet al. (2019)findnoevidence in favor of geneticnurturingdrivingthepositiveassociationbetween sibling’s body mass indices. Fadlon and Nielsen (2019) show that spouses and adult children increase statins consumptionwhentheirspouse/parentexperiencesa non-fatal, but unexpected heart attack or stroke; and draw attentiontotheunderlyingrolesoflearningabouthealth risksandsalienceofthehealthshock.Weextendthis liter-aturetobehaviorspreventinginfectiousdiseases.Ourwork is alsorelatedtothebroader literatureaboutspillovers inthehealthdomain,butavoidsthepotentialconcernof artificialsocialgroupsthatarisesinstudiesusingrandom groupassignmenttoovercomeendogenoussocialgroup formation(Duncanetal.,2005;Kremerand Levy,2008; Carrelletal.,2011;Yakushevaetal.,2011;Golbersteinetal., 2016;Bruhinetal.,2020).

Theremainderofthepaperproceedsasfollows.Section 2providesmorebackgroundoftheDutchinfluenza vac-cinationprogram,andSection3introducesthedata.We providemorebackgroundoftheage-basedRDDdesignand theexactempiricalspecificationinSection4.Sections5 and6presentourfindings;andSection7discusses poten-tial mechanisms underlying the asymmetric spillovers betweenpartners and towards adultchildren. Thefinal sectionofferssomeconcludingremarks.

2. Dutchfreeinfluenzavaccinationprogram 2.1. Dutchinfluenzavaccinationsbefore1996

IntheNetherlands,increasedinfluenzaactivityis typi-callyrecordedbetweenmid-NovemberandearlyApril,and flushots areusuallyadministeredbetweenOctober and December.TheDutchHealthcouncilandhealth authori-tiesidentifyhigh-riskgroupswhoaretargetedforinfluenza vaccination.

In theeighties, high-risk groups weredefined based exclusively on existing chronic disorders, such as dia-betes,cardiovascularandpulmonaryconditions,HIV/AIDS, renal disease and immune dysfunctions. All healthcare providersreceivedaletterannuallytoinformthemabout theinfluenzavaccineandthedefinitionofthehigh-risk groups,butthehigh-riskindividualsthemselveswerenot generallyinformedaboutthebenefitsofinfluenza vacci-nation.High-riskindividualswhowereinsuredbyasocial

sicknessfundcouldgetvaccinatedfreeofcharge.3 High-riskindividualswhowerecoveredbyaprivateinsureror individualsnotbelongingtothehigh-riskgrouphadtopay 38euros(vaccine pricein1996expressedin 2019 pur-chasingpower)toobtainthevaccinefromthepharmacy, buttheactualadministrationofthevaccinebythegeneral practitioner(GP)wasforfreeasthereisnocoinsuranceor deductibleforGPcareintheNetherlands.Throughoutthe eighties,thetake-uprateinthehigh-riskgroupwasrather constantandremainedbelow30%(Fedsonetal.,1995;van Essenetal.,2001).

In1991,thenationalhealthauthoritiesconcludedthat vaccination coverage among chronically ill and elderly individualswasinadequate.Aseriesofinterventionswas startedtoincreasevaccinationuptake.First,thegeneral publicandhigh-riskpatientswereinformedaboutthe exis-tenceandthebenefitsofinfluenzavaccination.Second,the positionoftheGP–whooccupiestheroleofgatekeeperin theDutchhealthcaresystem–wasstrengthened.TheGP wasencouragedtoregisterandpersonallyinvitehigh-risk patientsandorganizeweeklyvaccinationwalk-inswhich donotrequirearoutineappointmentandthusreducethe timecostandplanningforthevaccinerecipient(vanEssen etal.,2001).4ThecentralroleoftheGPandtheincreased publicityrapidlyincreasedinfluenzavaccinationcoverage inthehigh-riskgroupfromabout30%in1991to50%in 1995.

2.2. TheDutchinfluenzavaccinationprogramsince1996 In1996,influenzapreventionofhigh-riskindividuals effectivelyevolvedintoanationwidepreventivecare pro-gramafteramajorreformextended thetargetgroupto all(healthy)individualsaged65andaboveandmakingall targetedindividuals –includingthosecovered bya pri-vateinsurer–eligibleforfreeinfluenzavaccination.Age eligibilitywas,however,notdeterminedbycalendarage. Rather,receiptofaninvitationletterinSeptember/October dependedonone’sprogram-age definedaswhetherthe individual would be 65 on May 1st of the next cal-endar year. Hence, all individuals turning 65 between September/Octoberand May 1streceived theinvitation lettereventhoughtheiractualcalendaragewas64.

Theearlierinterventionstoincreasetake-upamongst the high-risk group – registration, personal invitation (around late September/early October) and vaccination walk-insforat-riskpatients–werecontinued.Inaddition, thereformintroducedaGPremunerationpervaccinated targetindividual,andsimplifiedtheprovisionofinfluenza

3 Intheeighties,ninetiesandupto2005,twothirdsofthe

popula-tion-whoseearnings(employmentorreplacementincome)fellbelowan incomethreshold-werecompulsoryinsuredforhealthcarebyasocial sicknessfund.Theremainingthirdcould(voluntarily)enrollinprivate insurance,andfewerthantwopercentwasuninsured.

4 ThefractionofGPsthateffectivelydidtheseadditionaltasksincreased

rapidly.Registrationofhigh-riskpatientsinacomputerprogramwas per-formedby54%oftheGPin1994and82%in1997.Personalinvitations weresentoutby40%in1994,77%in1997and95%in2000.Vaccination walk-inswereorganizedby72%in1994,86%in1997and90%in2000 (Haketal.,2000;Tackenetal.,2002).

(4)

Fig.1. Vaccinationratesandhigh-riskgroupfractionbyprogramagefor thepooledinfluenzaseasons1997–1998upto2007–2008.Note:Health InterviewSurvey,owncomputations.

vaccinationtothetargetgroup.Priortothereform,an indi-vidualfirsthadtogetaprescriptionfromtheGP,thengo tothepharmacisttobuythevaccineandthenrevisitthe GPfortheadministrationofthevaccine.Afterthereform, every GP had theirown stock of vaccines which were directlyadministeredtoeligibleindividuals.The nation-wideinfluenzaprogramdidnotdirectlyaltertheincentives foruntargetedindividuals,whostillhadtopaytoobtain thevaccineitself fromthepharmacy,butdidnot facea deductibleor coinsurance for theadministration of the shot.5

Inthis studyweexploitthediscontinuityinthefree influenzavaccinationprovisionatprogram-age65tostudy how thispreventivecareprogram hasaffected vaccina-tionbehavioroffamilymembersofindividualsthatturned 65 between 1997 and 2008. Note that throughout the studyperiod,flu-relatedcareandtreatment(i.e.prescribed drugs,physicianvisits,hospitalizations)werecoveredby compulsorysocialhealthinsuranceorprivatehealth insur-ance.

Thereformcoincidedwithasharpincreasein vaccina-tionratesofthetargetpopulationintheinfluenzaseason 1996–1997whichfurtherincreaseduntil2005,bothinthe entirepopulation(upto19%)andamongindividualsaged 65orabove(upto80%)(seeFig.1).Inthis timeperiod, theNetherlandshadoneofthehighestvaccinationratesof thetargetpopulationinEurope(Mereckieneetal.,2012, 2014)andhighervaccinationratesthanintheUS(Luetal., 2005),althoughthevaccinationrateamongthosenot tar-getedwashigherinsomeothercountries(Luetal.,2008; Blanketal.,2009).6Furthermore,Fig.1showsthat

vacci-5Notethatsomeemployersprovide(freeorsubsidized)flushotsto

theiremployees.Intheperiod1997–2008,14%oftheindividualswho werevaccinatedandwhodidnotbelongtothehigh-riskgroup, indi-catedthattheygotvaccinatedattheinitiativeoftheiremployer(own computations,healthinterviewsurveys).

6Notethattheoverallvaccinationrateof19%isstillwellbelowtherate

wheremarginalbenefitsofadditionalvaccinationcoveragearereduced tozero.Ward(2014)estimatesthisratetobe33%inCanadaatthetime whenasimilarvaccinationprogramasthatinplaceintheNetherlands wasexpandedtothefullpopulation.

nationratesriseuptoaroundprogram-age70.Thisisin linewiththefindingsofCarmanandMosca(2014) show-ingthatindividualsabove65whostartvaccinatingagainst influenzawithinthecontextoftheDutchinfluenza pro-gramcontinuetodosointhenextyear.

In2008,thenationalhealthauthoritiesextended the populationtargetedbythenationwideinfluenza preven-tioncare program toinclude all individuals aged60 or more,thuseffectivelyloweringtheagethresholdfrom65 to60.Allotherinterventionsremainedinplace.Weuse thisthresholdinarobustnesschecksinceweonlyhaddata forfourinfluenzaseasonssince2008whichgiverisetoan underpoweredRDDdesign.

3. Data

3.1. Datasourcesandsamplerestrictions

Our main data source is the annual cross-sectional health interview survey (HIS) 1997–2008 which constitutes representative cross-sections of the non-institutionalized Dutch population and includes informationonvaccinationtake-up.Eachwave includes approximately 10,000 respondents, but only samples one individual per household.7 We therefore have no information onvaccination take-upor demographicsof familymembersofthisindividual.WemergedtheHISto administrativedataofStatistics Netherlandsinorder to adddemographicinformation(sexandageinmonths)as wellasresidentialaddressoftheparentsandpartnersof individualsincludedintheHIS.8Theformaldefinitionofa partnershipintheregistrydatarequiresthatbothpartners liveat the sameaddress and are married or registered partners.9

Atypicalinfluenza seasonintheNetherlands ranges fromSeptembertoMaywithanincreasedactivitybetween NovemberandMarch.Thisperioddoesnotcoincidewith thewaveperiod,whichfollowsthecivilyear.10Sincethe monthinwhichthesurveyquestionnairewascompleted isknown,we haverearrangedthewavesintoinfluenza seasonsthatstartinSeptemberandendinAugustinthe fol-lowingyear.Influenzaseason1996–1997isthereforeonly partlyobserved,andhencethecorrespondingobservations

7 Morespecifically:10898in1997,9323in1998,9877in1999,9922in

2000,9676in2001,9745in2002,9876in2003,11117in2004,10378in 2005,9607in2006,8741in2007,9499in2008.

8 Weonlyobserveparentsiftheywerestillalivein1995(whichis

whentheregistrystarted)andlivingintheNetherlands.Theindividuals withoutobservedparentsarepredominantlyolderindividualsand indi-vidualsofforeignorigin.Ifthedifferencebetweenachild’sandaparent’s agefallsbelow15yearsorexceeds40years,theobservationsare consid-eredasoutliersandexcludedfromtheanalysis.Therestrictionisbinding forlessthan0.5%oftheindividualswithparents,andgiventhesample agerequirementslaidoutbelow,iteffectivelyrestrictstheagerangeof theadultchildrento20–51.Theregistryallowsustolinkchildrentotheir legalparents.Exceptinalimitednumberofcases,legalparentscoincide withbiologicalparents.

9 Aregisteredpartnershipisforpartnerswhodonotwishtomarry,but

thelegalandtaximplicationsareidenticaltothoseofamarriage.

10 InterviewsintheHISareconductedovertheentireyear.Thesurvey

monthsarealmostuniformlydistributed,withaslight underrepresenta-tionofJulyandAugust,whicharethemainholidaymonths.

(5)

for 1997are dropped.We furtherdrop allobservations correspondingtoinfluenzaseason2008–2009becausethe age-eligibilitythresholdforthefreevaccinationprogram wasloweredtoage60from2008–2009onwards.Wepool allremaininginfluenzaseasons(1997–1998to2007–2008) andendupwith108,533observationsfromwhichthree samplesarederived.

Eachsampleincludesvaccinationbehaviorof individu-alsintheHIS,butmergestotheageofdifferentpeoplethat areinclosevicinitytotheagediscontinuityinducedbythe freeinfluenzavaccinationprogram,i.e.thepersonitself,his orherpartner,andhisorherparents.LinkageofHIS indi-vidual’svaccinationtake-uptoownageisusedtoestimate the direct policyeffects onthose turning65. The sam-pleofHISindividualswhosepartner’sageisderivedfrom theadministrativerecordsallowsestimatingthespillovers betweenpartners.Weconsiderpartnerswithandwithout children,butremoveindividualswhosepartnerdiffersless than12monthsinage,anddo notconsiderorlink age-ineligible(i.e.programagelowerthan65)andage-eligible (i.e.program-age65orabove)individualstothe program-ageoftheiryoungerandolderpartner,respectively.Third, spilloversfromparentstochildrenareestimatedonthe sampleofHISindividualsforwhomatleastoneparentin closevicinitytothe65program-agethresholdcanbe iden-tifiedfromtheadministrativerecords.Moredetailsonthe exactidentificationstrategyforallthreesamplesandthe reasonsforthesamplerestrictionsareprovidedinSection 4.

Allthreesampleswererestrictedtoobservationswithin awindowof±2yearsaroundthe65program-agecut-off of therelevant individual(partner, parentor individual her/himself)11 andobservations withoutinformationon thedependentvariablesand/orcontrolswereremoved.12 Thisleaves 3183observations forthe estimation ofthe direct effects, 2068for thepartnerspillovers,and 3766 observationsfortheparent-to-childspillovers.

3.2. Variabledescriptionandsummarystatistics

ThemostimportantindicatorsintheHISforour anal-yses are the individual’s month and year of birth and vaccination history. Vaccination history includes infor-mationonwhethertheindividualevergot aninfluenza vaccination,andreportsmonthandyearofthelastflushot. Wecreatedadummyvariablethatequalsone[zero]ifthe individualdid[not]getvaccinatedagainstinfluenza

dur-11ThecriterionbyImbensandKalyanaraman(2012)indicatesan

opti-malbandwidthof±2yearsforthespilloversbetweenpartnersandthe directeffects;andanoptimalbandwidthof±1.4yearsforthespillovers tochildren.Weusethe±2yearbandwidthforallanalyses,butshow robustnesstoanotherbandwidthinsection5.2.

12Weremoved1.0,0.8and0.3percentoftheobservationsduetomissing

inthesamplesforrespectivelythedirecteffects,thepartnerspilloversand thechildspillovers.RDDmodelswithabinarydependentvariable indi-catingwhethertheobservationwasremovedduetomissingdependent and/orcontrolvariablescouldnotrejectthenullhypothesisthatthose missingarerandom.TherespectiveRDDestimatesare0.032(p-value: 0.237;n=4009)forthedirecteffects,0.005(p-value:0.419;n=2085)for thepartnerspillovers,and0.008(p-value:0.760;n=4688)forthechild spillovers.

ingtheinfluenzaseason.However,since mostshotsare reportedtobetakenintheperiodSeptembertoJanuary,13 individuals interviewed in this period might reportnot havingtakenaflushot,butmightstillgetvaccinatedinthe nearfuture.Forthisparticulargroup,thedummyequals oneif theygotvaccinated in thepastinfluenza season, sincethisisbyfarthebestpredictorforarenewedvaccine take-up(CarmanandMosca,2014).14

The HIS also provides us with additional control variables: sex, educational attainment (primary, lower secondary,uppersecondary,post-secondary),household composition (single, couple, household with children, other),numberofhouseholdmembers,influenzaseason (dummyforeachseason),populationdensityofplaceof residence(500,500–2500,2500+inhabitantspersquared kilometer),existingmedicalconditions(inorderto iden-tifyindividualswhobelongtothehigh-riskgroupbased onchronicdisorders),andpresenceofachronicillness.15

Table1presentssummarystatisticsforeachofthethree differentsamples.16Thecolumn‘directeffect’showsthat around40%ofthepopulationbetween63and66yearsold gotvaccinatedduringthecurrentinfluenzaseason.About halfsufferfroma chronicillnessandonequarter quali-fiesforfreeinfluenzavaccinationbasedonexistingmedical disorders.Thesesharesaresimilarforthepartners(column ‘partner-to-partner spillover’).17 The column ‘parent-to-child spillover’ shows theaveragecharacteristicsof the adultchildrenwhose olderparents’agefallswithinthe 63–66program-age bandwidth.Whenboth parents can beidentifiedfromtheadministrativerecords,weusethe ageoftheolderparenttoguarantee thatnoother par-entalreadyqualifiesforfreeinfluenzavaccinationbased onage-eligibility;whenonlyoneparentcanbeidentified,

13 Morespecifically,95%ofallreportedinfluenzashotsarereportedto

betakeninthisperiod,and86%inOctoberandNovember,whichisthe recommendedvaccinationperiod.4.5%inSeptember,2%inDecemberand 2%inJanuary.

14 Notunexpectedly,thisprocedurehasthebiggesteffectonindividuals

surveyedinthemonthSeptember,andamuchsmallereffectin October-January.Whileitcouldleadtonon-randommeasurementerrorinour dependentvariable,wescrutinizethisinSection5.2andfindthatthere islittlereasonforconcern.

15 Presenceofachronicillnessisabinaryindicatorforreportinga

long-termillness,infirmityorhandicap.Existingmedicalconditionsisabinary indicatortakingonewhenanindividualreportsatleastoneofthe follow-ingconditions:(a)asthma;(b)heartdisease;(c)liverdisease;(d)kidney disease;(e)diabetes;(f)rheumatism;and(g)cancer.Theinformationon liverdiseaseisnotavailableafter2000.

16 TableA.1providesadditionalsummarystatisticsfora±3year

band-width.

17 Thepartner-to-partnersamplecontainsasmall,butnon-zeroshare

ofsinglepersons.Thishappensbecausethepartner-to-partnersampleis createdbasedonthehouseholdcompositionregisteredinadministrative recordson1Octoberatthestartoftheinfluenzaseason.Thisdatewas deliberatelychosen,becauseitcorrespondscloselytothedateofreceipt oftheinvitationlettertothevaccinationprogram.AsHISinterviewsare evenlyspreadthroughoutthecalendaryear,thisdate,however,differs formostindividualsfromthemonthofinterview.Hencemaritalstatusas reportedintheHISmightdifferfromtheadministrativerecordsas individ-ualsmighte.g.divorcebetweenOctoberandthemonthofHISinterview. Alternatively,asmaritalstatusisself-reportedintheHIS,therecouldbe adifferenceininterpretation,e.g.individualscouldbelegallymarriedat thetimeoftheHISinterview,butintheprocessofdivorceorseparation andthereforereporttoliveinasinglehousehold.

(6)

Table1

Summarystatistics.

Parent-to-childspillover Partner-to-partnerspillover Directeffect

63–66 63–66 63–66

Binaryvariables(0=no;1=yes)

Vaccinationrate 0.06 0.44 0.40

Educationlevel:primary 0.06 0.23 0.23

lowersecondary 0.18 0.33 0.31

uppersecondary 0.44 0.25 0.27

post-secondary 0.32 0.18 0.19

Householdtype:singleperson 0.12 0.01 0.20

couple 0.20 0.89 0.72

householdwithchildren 0.67 0.10 0.07

other 0.01 0.00 0.01

Populationdensity:<500inhabitants/km2 0.14 0.15 0.15

500≤inhabitants/km22500 0.68 0.72 0.70

2500<inhabitants/km2 0.18 0.13 0.16

Male 0.49 0.46 0.51

High-riskgroup 0.07 0.26 0.25

Chronicillness 0.26 0.45 0.47

Olderparentmale 0.64

Continuousvariables

Ownprogramage 35.83(4.39) 64.07(6.00) 64.93(1.15)

Numberofhouseholdmembers 3.14(1.31) 2.12(0.49) 1.89(0.57)

Olderparent’sprogramage 64.98(1.14)

Otherpartner’sprogramage 64.93(1.12)

Numberofobservations 3766 2068 3183

Note:Allcellsshowweightedsamplemeans.Standarddeviationsinparenthesesforcontinuousvariables.

weusetheageofthatparent.6%oftheindividualsinthat

samplegotvaccinatedduringthecurrentinfluenzaseason.

Abouthalfaremale,theiraverageprogram-ageis36,and

aquartersuffersfromachronicillness.7%belongstothe

high-riskgroup,whoqualifiesforfreeinfluenza

vaccina-tionbasedonexistingdisorders.

4. Identificationstrategy

4.1. Age-basedRDDdesign

Ourempiricalapproachexploitsthefactthatthe

nation-wideinfluenzapreventionprogramreducesthebarriersto

vaccinationtake-upexactlyatprogram-age65.Weexploit

thisagediscontinuitytoestimatehowvaccinationtake-up

wasimpactedamongthosedirectlyaffectedbythe

pro-gramuponturning65,andusethesamequasi-exogenous

variationtoidentifyspillovereffectsonvaccination

take-up of partners (within household) and adult children

(across households, except for those adultchildren

liv-ingwiththeirparents).Theidentifyingassumptionofthe

age-basedRDDimposesthatthediscontinuityatage65

doesnotcorrelatewithanydiscontinuityinthe

observ-ableorunobservabledeterminantsofvaccinationuptake.

We showthis assumptionis crediblefor thedirect and

bothspillovereffects,andreportasetofinternalvalidity

checksinSection5.2.Here,wehighlightthemost

impor-tantconceptualargumentsinfavorofourage-basedRDD identificationstrategy.

Sinceagecannotbemanipulated,age-triggeredRDD’s maybeinvalidwhen(1)theage-cut-offalsodetermines eligibilityforotherprogramswhichcouldaffectthe out-comeofinterest,(2)thepolicyimpactontheoutcomeis notimmediate,and(3)individualsanticipatethe

program-agecut-off (LeeandLemieux,2010).Eligibilityforother programsshouldnotmatterforthedirectimpactofthe Dutchinfluenzavaccinationpolicy,sinceprogramagefor theinfluenzaprogramisdifferentfromcalendaragewhich matters for eligibility for other social programs in the Netherlands. The program eligible ageof individuals is computed on May1st, at the end of an influenza sea-son,and determines whetheran individualwillreceive aninvitationinSeptember/Octoberoftheprecedingyear. Therefore,newlyinvitedindividualsatthemarginaround the 65 program-age threshold on May 1st are in fact 64 years old when they receive theirfirst invitationin September/October.Thisfeatureof thevaccination pro-gram removes much of the concern that eligibility for otherbenefitsthatstartonthedayone turns65in the Netherlands(e.g.pensionclaims,benefitsfortheelderly) interfereswitheligibilityforinfluenzavaccination.18 Eli-gibilityforotherprogramsneitheraffectstheestimation ofspillovereffectsasthesamplerestrictionsensurethat partnersdonotcrosstheprogram-agecut-off andadult childrenarebetween20and51yearsold(seealsoSection 3.1andfootnote14).Theothertwoconcerns–immediate effectandnoanticipation–shouldbesmallforthedirect andspillovereffectssinceinfluenzavaccinationis protec-tiveafterabout2weeks,it needstobetakenyearly as

18 IntheNetherlands,thehealthinsurancesystemwasdramatically

reformedin2006.However,neitherbefore2006norafter2006,there hasbeenadiscontinuityinthecoverageofmedicalcareinsurance(in generalandforflushots)attheageof65(MossialosandThomson,2002; RoosandSchut,2008).OnlyforDutchretireesactuallylivingoutsidethe Netherlands(inanotherEUcountry)thereformhasledtoareductionin generosity,whichwasonlylateracknowledgedbytheEuropeanCourt ofJustice(caseC-345/09,October14th,2010).NotethatDutchretirees residingoutsideoftheNetherlandsarenotpartofoursample.

(7)

antibodiesdeclinewithintheyear,andtheinfluenzavirus mutateseveryyear.

Theagediscontinuityfurtheraddressesseveral poten-tialbiases,suchasensuringthatherdimmunityfacedby individuals and theirfamily membersshouldbesimilar just right and leftof theprogram-age cutoff. The same shouldbetrueforsharedfamilygenesandhabitsbetween familymembers,andtheagediscontinuityalsosafeguards againstpotentialbiasresultingfromassortativematingand endogenoussocialgroupformationthatmightapplywhen studyingspilloverstopartnersandchildren(Becker,1973, 1974;Manski,1993;Moffitt,2001).19

4.2. Empiricalspecification

Let us first consider the effect of the nationwide influenzapreventivecareprogramamongallindividuals (withandwithoutpartnersand/orchildren)thatreachthe 65program-ageeligibilitycutoff.InourRDDsetting,their vaccinationbehaviorcanbelinearlymodelledas

Vi=˛+g (agei−65)+h (agei−65) Di+Di+Xiˇ+εi(1)

whereViisabinaryvariableindicatingwhether

individ-ualigetsvaccinated,˛isaconstant,ageiisher/hisageon

May1stin yearsandmonths,Diisa treatmentdummy

that equals one if agei≥65, g(.) and h(.) are unknown

functionalforms,εiareunobservablevariables,andthere

arenotimesubscriptsaseachindividualisonlyobserved onceinoursetofpooledcross-sections.Wealsoinclude a vectorof observablecontrolvariables Xi (with

associ-atedparametervectorˇ)toincreaseprecision,andwhich includessex,educationalattainment,householdsizeand composition,influenzaseason,populationdensityofplace ofresidence,memberofhigh-riskgroupbasedonchronic disorders,andpresenceofachronicillness(seealsoSection 3.2).Thechangeinvaccinationtake-upatthethreshold –thedivergenceinvaccinationratesbetweenindividuals just left and right of the program-age cutoff – is cap-tured by which measures thecombined effectof the programincentives.20Highriskindividualsunder65with existing chronic disorders also qualify for the vaccina-tionprogram,andmightnotortoalesserextentadjust theirvaccinationtake-upwhenturning65.Suchtreatment heterogeneityisruledoutinthedescriptionofall empir-icalspecificationsinthissectionbutwillberevisitedin Section5.

ParameterinEq.(1)informsonthedirectimpactof theprogram-agecutoffat65,butalsohelpsgaugingthe relative magnitude ofspillovers ontopartners and chil-dren.ThespilloversonthepartnersaremodelledasinEq. (1),buthereweincludetheprogram-ageofone’spartner (agePri )insteadofownage.Weconsiderindividualswith

19Thealternativeidentificationstrategyofrelyingonrandomsocial

groupassignment(Duncanetal.,2005;KremerandLevy,2008;Yakusheva etal.,2011;Carrelletal.,2011)oftenraisesconcernsaboutthepotentially artificialnatureofthesocialgroup.

20Inasensitivityanalysisthatisavailablefromtheauthorsuponrequest,

wefindasimilareffectsizeestimateusingalogitmodel.

andwithoutchildren: Vi=˛Pr+gPr



agePri −65



+hPr



ageiPr−65



DiPr+PrDPri +XiˇPr+GiPrPr+k (agei)+εPri (2)

wherethesuperscriptPrrefersto’partner’,DPr

i isa

treat-mentdummythatequalsoneifone’spartnerturns65on May1st,GPr

i (andassociatedparameterPr)referstoone’s

partner’ssexandk(.)isanunknownfunctionalform. Inclu-sionofownageovercomesapotentialbiasinthespillover effectprinEq.(2)resultingfromcorrelationbetween part-ner’sages.Ownage–i.e.k (agei) –isincludedasasetof

3-monthlydummies,exceptintheloweranduppertailof theagedistributionwhereweusedwideragedummies. AsmentionedinSection3.1,wedeleteallpartnerswhose program-agesdifferlessthan12monthstoavoidboth part-nersreceivingthefirstinvitationforinfluenzavaccination inthesameinfluenzaseasonwhichmakesitimpossible todistinguishthespillovereffectfromthedirect effect. Wealsodeleteage-eligibleindividualswhoseolder part-neralsoqualifiesforafreevaccination,andage-ineligible individualswhoseyoungerpartneralsofallsbelowtheage cutoffof65.Thisensuresthattheage-eligibilitystatusof individualsintheHISisindependentoftheage-eligibility oftheirpartner,andthatwecanestimatethespilloverin isolationfromthedirecteffects.21

Thespilloversontheadultchildrenareobtainedby link-ingindividualstotheirolder(oronly)parent’sageonMay 1st(agePti ): Vi=˛Pt+gPt



agePti −65



+hPt



agePt i −65



DPt i +PtDPti +XiˇPt+GPti Pt+l (agei)+εPti (3)

wheresuperscriptPtrefersto’parent’,DPt

i isatreatment

dummythatequalsoneifagePt

i ≥65,GPti referstotheolder

(oronly)parent’s sexandl(.)isan unknownfunctional form.Ownage– i.e.l (agei) –is includedasa setof

3-monthlydummies,exceptintheloweranduppertailof theagedistributionwhereweusewideragedummies.

Eqs.(1)–(3)allowintention-to-treatestimationofthe policy’sdirectimpactandspillovers:reflectsthe com-bineddirecteffectsofallprogramincentives,butPrand

Pt do not distinguishbetween competing mechanisms

driving thespillovers as only program-age and not the actualvaccinationtake-upofthoseturning65isknown.For

21 Weaddressthefactthateachpartnerfacestwoagediscontinuities

i.e.theindividualreachingprogram-age65(directeffect)andthepartner reachingprogram-age65(spillovereffect)–bycombiningfourfeatures: (1)separateRDDmodelsinpartner’sageforthespilloveranddirect effects,i.e.Eqs.(1)and(2);(2)removingpartnersdifferinglessthan twelvemonths;(3)ensuringindependentage-eligibilitystatusofboth partners;and(4)usingaflexiblespecificationforownagetoaccount forpotentialcorrelationbetweenownandpartner’sage.Analternative identificationstrategy,whichwetermdoubleRDD,relatesanindividual’s vaccinationtake-uptotrendsinownandpartnerprogram-ageateither sideoftherelevantagethresholds,i.e.basicallyreplacingk (agei) inEq.(2)

byg (agei−65)+h (agei−65) Di+Di.Thisallowsestimatingthedirect

andspillovereffectsfromonespecificationbutatthecostofimposing atrade-offbetween(1)sufficientagedifferencebetweenbothpartners toidentifyspilloversseparatelyfromdirecteffects;and(2)focusingon asufficientlynarrowwindowaroundtheagediscontinuitiesinownand partner-programagetosatisfyRDDidentifyingassumptions.

(8)

example,wecannotdistinguishbetweenparentalprogram eligibilitydrivingchildspilloversonlyviathatparent’s vac-cinationtake-upversuschildspilloversbeingdrivenbythe vaccinationuptakeofbothparents,i.e.boththevaccination take-upoftheindividualturning65andthevaccination take-upoftheotherpartnerduetothespillovereffect.It isneverthelessfeasibletogetadeeperunderstandingof thenatureofparent-to-childspilloversbyexploitingthe factthata childhastwoparentswhoeach will eventu-allycrosstheprogramagethreshold,exceptwhentheydie before.Wethereforeperformsubgroupsensitivity analy-sesamongthosechildrenforwhomwecanidentifyboth parents:children’svaccinationtake-upcanbelinkedtothe olderparent,whilelinkingtotheyoungerparentimplies thattheadultchildhasalreadybeenexposedtotheolder parentturning65.Thedifferencebetweenbothestimates providesindirectevidenceontheunderlyingmechanisms drivingthespillovers.Parent-to-childspilloversmightalso differwhenparentsresponddifferentlytothevaccination policydependingonwhethertheyarethefirstorsecond inthehouseholdtoqualifyforfree vaccination,and we explore this byre-estimating ourmodelsseparately for thesubpopulationsofolderandyoungerpartners,butalso byallowingfortreatmentheterogeneityinthespillovers betweenpartners(i.e.fromoldertoyoungerpartnerand viceversa)(seeSection6).22

Finally, power calculations with power 0.8 as in Schochet(2009)confirmthatthepooledsamplesforEq.(1), (2)and(3)havesufficientpowertoidentifyage discontinu-itiesinvaccinationtake-upofrespectively8.1,10.2and3.7 percentagepoints(seeSection3.1forexactsamplesizes). Theanalysesbasedontheolder/youngersubdivisionhave inevitablylesspower,inparticularthesubsamplesusedfor thespilloversbetweenpartnersandthedirecteffects.23We thereforefirstpresentourmainanalysesderivedfromthe pooledsamplesandcheckrobustnessoftheseestimatesin Section5.Estimatesallowingfortheolder-younger hetere-ogeneityarediscussedinSection6.

5. Directpolicyeffectsandspilloverstopartners andchildren

5.1. Mainanalyses

Let’sfirst considerthedirect policyeffect atage 65. Panel A in Fig.2 shows an RDDgraph ofthe influenza

22NotethatwedonotuseatwosampleIVestimator(Angristand Krueger,1992)toscalethespillovereffectfromparenttochild(and partnertopartner)bythedirecteffectatage65asthetwo-sampleIV estimatorisinappropriatewhenthevaccinationpolicyaffectschildren’s (partner’s)vaccinationdecisionsviabothitsdirectimpactonthe vacci-nationbehaviouroftheparent(partner)andtheindirectspilloverimpact onhis/herpartner(child)whichisanuntestablepossibilityinoursetting. Inaddition,thereistheconcern–duetothetime-invariantnatureofthe parent-childrelationship,andthepossibilitythatparentsseparateand formnewpartnerships–thattheolder/youngerparentofthechildmight nolongerbetheolder/youngerpartner.

23Wecandetectagediscontinuitiesof13.2–15.8percentagepointsfor

thedirecteffects,13.7–14.7percentagepointsforthepartner-to-partner subsamples,and4.7–4.9percentagepointsfortheparent-to-child sub-sampleswithpower0.8.

vaccinationtake-upofindividualsaroundthe65program agecut-off groupedin 3-monthagebins.24 Vaccination rates jump from just above 30% to around 45% at the cut-off,anddisplayanincreasingslopewithageamong age-eligibleindividualsmostlikelyduetoafurtherinflux into the immunization program and a negligible drop-out rate(Carmanand Mosca,2014).The corresponding RDDestimate of 9.8 percentage points (p-value: 0.002; n=3183)inthefinalcolumnofTable2–whichassumes linear,but differenttrends oneitherside of thecut-off –isprecisely estimated,andcorrespondstoa30% rela-tiveeffectsize.Thisestimateisobtainedaftercontrolling foreligibilityforfreevaccinationbasedonexisting med-ical conditions, but assumes homogeneity with respect tothiseligibility criterium.Thismightbeanunrealistic assumption since those with existing chronic disorders alreadybenefitfromthevaccinationprogramand there-foremight not (or differently) updatetheir vaccination behavior. Estimates obtained from subsamples of indi-viduals with and without existing medical conditions, confirmthatthehomogeneoustreatmenteffectinTable2 is mostly driven by low-risk individuals, i.e. their vac-cination uptake increases with 10.5 percentage points (p-value:0.005;n=2376)whiletheRDDestimateis sub-stantiallysmallerandinsignificantforthosebelongingto thehigh-riskgroup(0.058,p-value:0.370;n=807).25We furtherfindnoevidenceforheterogeneityofthedirect pro-gramimpactbetweenindividualswithandwithoutadult children.Restrictingthesample toparentsonlyyieldsa pointestimateof9.6 percentagepoints(p-value: 0.005; n=2831),whilefurtherrestrictingthesampletoolder par-ents(single or olderparentina couple)–which is the subsamplemostlikelyresemblingtheparentsinvolvedin theparent-to-childspillovers–leadstoasimilarresultof 8.5percentagepoints(p-value:0.036;n=1843).

PanelBinFig.2presentstheRDDgraphforthe vaccina-tionbehaviorofindividualsaccordingtotheprogram-age oftheirpartner–groupedin3-monthprogram-agebins. Thesepartner-to-partnerspilloversincludethespillovers thatarisebothwhentheolderpartnerturns65aswellas whentheyoungerturns65.Thefigureshowsnosupportfor spilloversinvaccinationratesamongpartners,which cor-respondstotherelativelysmallandimpreciselyestimated RDDestimateof0.037(p-value:0.377;n=2068)reported incolumn‘partner-to-partnerspillover’inTable2.Leaving outindividualswithexistingmedicalconditionsdoesnot changetheresult,althoughthismightalsoreflectthe rea-sonablysmallnumberofindividualswithexistingmedical conditions(n=546);andanalyzingtreatment

heterogene-24 Theproceduredescribedin(LeeandLemieux,2010)indicateda

3-monthbinsizeforthetargetandpartnerspilloversample,buta6-month binsizeforthechildrenspilloversample.Toeasevisualcomparisonof RDDgraphsacrosssamples,weuse3-monthbinsizesforallpanelsin

Fig.2.AppendixFigureA.1showsthecorrespondingRDDgraphsfora±3 yearprogram-agebandwidthforpanelsA–C.

25 Thisisfurthercorrobaratedbyagediscontinuitiesinthereasonfor

vaccinationamongindividualsthatgotvaccinated.Low-riskindividuals weremorelikelytobeinvitedbytheirGP,andlesslikelytogetvaccinated onownrequest;whilethereisnosuchdiscerniblepatternamong high-riskindividuals.Resultsavailableuponrequest.

(9)

Fig.2. Influenzavaccinationrateaccordingtoown/otherpartner’s/olderparent’sprogram-age(bandwidth=63–66).Note:3183(panelA),2068(panelB), 3766(panelC)observationsfromthepooleddataoftheinfluenzaseasons1997–1998to2007–2008areused.Therunningvariableisown(panelA),the otherpartner’s(panelB),theolderparent’sprogram-age(panelC).Diamondsrepresenttheweightedaverageinfluenzavaccinationrateoftheindividuals (panelA),partners(panelB)oradultchildren(panelC),groupedin3-monthlybinsbasedontherunningvariable.Theredlineshowsalineartrendbased ontheobservations.Thedottedlinesrepresentthe95%confidenceintervals.Theverticallinerepresentstheagethreshold.

(10)

Table2

PooledRDDestimatesofthe(spillover)effectofthevaccinationpolicyattheagethreshold.

Parent-to-childspillover Partner-to-partnerspillover Directeffect

63–66 63–66 63–66

Treatmenteffect −0.025*(0.015) 0.037(0.042) 0.098***(0.032)

Numberofobservations 3766 2068 3183

Notes:SeetextandSection3and4fordetailsontheRDDset-up.Theestimatesarebasedonpooleddataoftheinfluenzaseasons1997–1998to2007–2008 thatisrestrictedtoa±2yearwindowaroundtheagethreshold.Lineartrendsinprogramage–thatcandifferateachsideofthecutoff–areused. Controlvariablesincludedummiesforsex,memberofriskgroupbasedonexistingdisorders,populationdensity,chronicillness,educationlevel,number ofhouseholdmembers,householdtype,andinfluenzaseason.Theparent-to-childspilloversadditionallycontrolfortheolderparent’ssexandchildage. Thepartner-to-partnerspilloversadditionallycontrolforpartner’sageandtheotherpartner’ssex.OLSregressionestimatesarereportedthatusesampling weights.Clusteredstandarderrorsatthewave-municipalityleveltomimicthesamplingdesignarebetweenbrackets.*p<0.10,**p<0.05,***p<0.01.

itywithrespecttoone’spartnerprogrameligibilitybased onmedicalconditionsisnotfeasibleastheadministrative dataonlyrecordsprogram-age,sexandresidentialaddress ofpartners(seealsosection3).

Panel C in Fig. 2 presents an RDD graph of the vaccination behavior of adult children according tothe program-ageoftheirolderparent–groupedin3-month program-agebins.Wefindadeclineinvaccinationuptake fromaround8percentto5percent,whichisa substan-tialdropinrelativeterms.Thisnegativeparent-to-child spilloverisconfirmedbytheRDDregressionestimateof −2.5percentagepoints(p-value:0.094;n=3766)in col-umn‘parent-to-childspillover’ofTable2.Oursamplehas insufficientpowertochecktreatmentheterogeneityacross programeligibilitybasedonmedicalconditions–only7 percent (n=281) of the adultchildren reports existing medicalconditions–,butitisreassuringthatthespillover effectobtainedfromthesubsampleofadultchildren with-outexistingmedicalconditionswasonlymarginallylarger (−0.021,p-value:0.095,n=3485),andnotsmallerasone wouldexpectwhenthosewithexistingmedicalconditions donotnotaltertheirvaccinationtake-upwhentheirolder parentcrossestheagethreshold.Treatment heterogene-itywithrespecttoexistingmedicalconditionsofparents isnotfeasibleasprogrameligibilityforthisreasonisnot recordedintheadministrativedata.

Overall,ourestimatesprovidenoevidenceinfavorof spilloversbetweenpartners,butdoindicatenon-negligible parent-to-child spillovers in comparison to the direct impactofthevaccinationpolicyatage65whichis simi-larforindividualswithandwithoutchildren.Wefurther findthatprogrameligibilitybasedonmedicalconditions weakensthedirectpolicyimpact,whilespilloversdonot strongly depend on these partners and adult children alreadyqualifyingfortheprogrambasedonmedical con-ditions.

5.2. Robustnessandinternalvalidity

Aseriesofchecksisdonetoconfirmtheinternalvalidity of ourRDDestimates. Afirst setof testsconcerns sen-sitivitytotheassumptionsimposedtocapturetrendsin vaccination take-up, i.e.the choiceof window size and theparametricformusedtomodeltrendsoneitherside ofthecutoff.Appendix TableA.2showsthat theeffects are stable or slightly larger for a +/- 3 year window, whilequadratictrendsmainlyreducetheprecisionofthe estimated effects. We furtherconfirm thatour baseline

findingsusinglineartrendsarerobusttotheexclusionof controlvariables, andtotheinclusion of provincefixed effectsforeachinfluenzaseasonwhichcaptureunobserved regionaldifferencesandtrendsin,forexample,GP med-icalpractices,intensityandspreadofpreviousinfluenza seasons,incidenceofotherinfectiousdiseases,information campaigns,etc.Next,clusteringattheleveloftherunning variable–own/partner/parentalprogram-ageinmonths– ascomparedtoclusteringatthemunicipality-wavelevel increasestheprecisionoftheestimates.Finally,werestrict theanalysistothesurveymonthsFebruarytoAugust,i.e. thosesurveymonthsforwhichweknowexactlywhether someonegotvaccinatedornot(seefootnote14).Forthe directeffectatage65,theimputationprocedurefor vacci-nationtake-upforthemonthsSeptembertoJanuarymay leadtoanunderestimationofthetrueeffectatage65since thevaccinationdummyforthenewlyinvitedindividuals (i.e.thosethatare65onMay1st)inthosemonthsispartly basedontheirvaccinationbehaviorinthepreviousyear whentheydidnotyetqualifyforfreeinfluenzavaccination. ThepointestimatesinAppendixTableA.2increaseafter restrictingthesampletothemonthsFebruarytoAugust, butdonotdiffersignificantlyfromthosebasedonasample whenobservationsforSeptembertoJanuaryareincluded. For thespillovers, restrictingto February-Augustwould onlymakeadifferenceifthemonthinwhichthechildrenor partnersareinterviewedmattersforvaccinationtake-up. OurresultsinAppendixTableA.2donotprovideevidence forthis.

TheestimatesinTable2representintentions-to-treat (ITT).TheseITT’sare internallyvalidwhentreatmentis random,i.e.whentheonlydiscontinuouschangewithina smallwindowaroundthe65program-agethresholdisthe changeineligibilityforthevaccinationpolicy.Asdiscussed inSection4.1,thereislittleapriorireasontoquestionthis assumption:agecannotbemanipulatedandanticipation makeslittlesenseasinfluenzavaccinationonlyprotects foroneyear.Moreover,programage-eligibilitydoesnot coincidewithcalendarage,sothatcalendar-agetriggered eligibilityfor otherprograms(suchas pensionbenefits) cannotexplainthefounddirectandspillovereffects;and for the spillovers onto children there is the additional safeguardthatchildren cannotchoosetheirparents.We didfive additional tests that confirm therobustness of ourfindings.First,wefindthatthecontrolcovariatesare reasonablybalancedaroundthe65program-age thresh-old.Theonlyexceptionishouseholdtype(seeAppendix

(11)

TableA.3)althoughitisreassuringthatinclusionor exclu-sionhardlyaffectstheestimates(seeAppendixTableA.2). Second,thep-valuesofMcCrary’stest,respectively0.83, 0.14,and0.24forthedirecteffects,partner-to-partnerand parent-to-childsubsamples,indicatesmoothprogram-age densitiesandtherebyremove anyconcernsabout heap-ingbias,orage-relatedattrition(McCrary,2008).Third,as partofaplacebocheck,wefindnodiscontinuousjumps invaccinationtake-upwhentheprogram-agecutoffisset atvalue62,68or60wherenojumpwouldbeexpected (seeAppendixTableA.4).26Whilethesethreeadditional testssupporttheinternalvalidityofourresults,onemight stillworrythat,duetotheirITT-nature,thespillovereffects reflectthetotaleffectofparents/partnersbecoming eligi-bleforthevaccinationprogram,andnotjusttheimpacts ofpartner’s/parent’sincreasedlikelihoodtogetvaccinated (seealsofootnote22).Whenparentsorpartnersupdate theirvaccinationbehaviorbutalsochangeotherbehaviors –suchaspreventivebehavior–asaresultofbecoming eli-gibleforthevaccinationprogram,ourspilloverestimates willreflectbothchannels.Wetestforthispossibilityby runningplaceboRDDmodelsonbehaviorsofindividuals at age65in thedomainsof prevention,healthy behav-ior,altruismandadherencetoalternativemedicineasa changeinanyofthesemightalsoaffectthevaccination behavioroftheiradultchildrenorpartners.Ourestimates in Appendix Table A.5 provideno evidencefor this.27 . The fifth and final set of falsification/robustness checks confirm,although inevitablywithfarlesspower dueto muchsmallersamplesizes,that(1)crossingthe program-agethresholdof65 incalendaryears 1992–1996,when program-ageplayednoroleinqualifyingforfreeinfluenza vaccination(see Section2), didnot affectown vaccina-tiontake-up(comparerows Aand Cin AppendixTable A.6);and that(2)crossingtheprogram-agecutoffof 60 (therelevantprogram-agecutoffinplacesince2008)led tosomewhatlarger(inabsolutesize)butotherwisesimilar directandspillovereffectsininfluenzaseasons2008–2009 to2011–2012(comparerowsAandBinAppendixTable A.6).28

26Theartificialprogram-agecutoffsof62and68avoidthatthetrue

programcutoffageof65iswithinthewindow,and60istheprogram-age cutoffthatappliedfrominfluenzaseason2008–2009onwards.

27Weconsidermammographyscreening,bodymassindex,blood

dona-tion,consumptionofalternativemedicine,andvisitinganacupuncturist, naturopathicdoctororpsychichealer.Wefoundnodiscontinuousjumps atprogram-age65foranyoftheseindicators.Thiswasalsothecaseforan indicatorofexercising,whichhaspreviouslybeenshowntoincreaseupon earlyandnormalretirementinGermanyandtheUnitedStates(Eibich, 2015;KampfenandMaurer,2016)

28TheHISbeforeandafter1996arenotperfectlycomparable.First,we

limittotheyears1992–1996sinceHISdoesnotrecordinfluenza vaccina-tiontake-uppriorto1992.Second,weonlyreportdirecteffectsatage65 (andnotthespillovers)sincetheadministrativerecordsarenotlinkedto theHISpriorto1996whichisrequiredtoidentifyparentalandpartners program-age.Third,theHISpriorto1996doesnotrecordtheinterview monthwhichisnecessarytoconstructinfluenzaseasons.Insteadwework withcalendaryearsandreplacethecontrolsforinfluenzaseasonwith controlsforcalendaryear.Absenceofinformationoninterviewmonth alsoimplicatesthedependentvariable:thevaccinationbinarydependent variableforyearttakesonewhentheindividualreceivedaninfluenza vaccinationinyeartorinthemonthsSeptembertoDecemberofyear t−1(seeSection3.2).Fourth,weuserobuststandarderrorsanddonot

6. Spilloverslinkedtoolderversusyounger parent/partner

Inthissectionwestudyhowvaccinationtake-upamong partnersand childrendiffersdependingonwhetherthe olderoryoungerpartner/parentcrossesthe65 program-agecutoff.Wefirstconsiderwithin-householdspillovers onto partners. Younger partners differ fromtheir older partnerinsomesystematicways,i.e.theytendtobefemale andarelowereducated (seerows‘male’and ‘education level’ in column ‘Spillover from older/younger to other partner’inTable3).Theyarealsofarlesslikelytoget vac-cinated(see row‘vaccinationrate’).29 Column‘Spillover from...toother partner’in Table 4 (andpanelC and D inFig.3)revealsthattheyoungerpartnerbecomes10.2 percentage points(p-value:0.064;n=1108) morelikely togetvaccinatedwhentheolderpartnercrossesthe65 program-agecutoff,whiletheolderpartner’svaccination behaviordoesnotchangewhentheyoungerpartnerturns 65.30 Thelack of a spilloverfrom young toold is per-hapsnotthat surprisingsincetheolderarealready age eligiblefortheinfluenzavaccinationprogram,whichisin linewithCarmanandMosca(2014)whoshowthat indi-vidualscontinuevaccinatingassoonhastheyhaveever respondedtotheinvitationfrom theDutchvaccination program.Moreinterestingly,thespillovereffectfromolder toyoungerinpanelIIisofsimilarmagnitudeasthedirect effectatage65(seecolumn’Directeffectamong...parent’ inTable4),despitethefactthattheyoungerpartnersdo notfacereducedbarrierstoinfluenzavaccination.

Thevaccinationpolicymightalsodifferentiallyaffect adultchildrendependingonwhethertheolderoryounger parentcrossestheage-threshold.Incontrasttothe partner-to-partnerspillovers,weneedtoimposeadditionalsample restrictionsonthepooledsampleinTable1beforewecan estimateseparatechildspilloversderivingfromtheolder oryoungerparentturning65.Weadditionally(a)remove childrenforwhomonlyoneparentcouldbeidentifiedas wedon’tknowwhetherthisistheolderoryounger

par-accountforclusteringatthelevelofthemunicipalitysincetheHISdoes notrecordmunicipalityofresidencebefore1996.Fifth,replicationofthe baselinedirecteffectestimatesinrowAusingcalendaryears,calendar yeardummies,alternativedependentvariabledefinitionandno cluster-ingatthemunicipalitylevel(seerowDofAppendixTableA.6)confirms thatthedifferencebetweenthebaselineestimates(rowA)andthe fal-sificationtestusingdataof1992–1996(rowC)cannotbeattributedto differencesinmethodology.

29 Thehighernumberofavailableobservationstoestimatespillovers

fromolder-to-youngerversusyounger-to-olderpartnersmerelyreflectsa survivaleffect:bothrunningvariablesequalonaverageapproximately65, butownprogramageislower(higher)forspilloverstowardstheyounger (older)partner(seerow‘ownprogramage’).Thissurvivaleffectderives from(a)olderindividualshavinghighermortalityrates,(b)older indi-vidualsmoreoftenlivinginsinglepersonhouseholds,and(c)oursample restrictionswhichimposethatbothpartnersdifferatleastoneyearin ageandthatthepartnerwhoisaffectedbytheinfluenzaprogramviaa spilloverhasthesameeligibilitystatusaroundthecutoff(youngerthan65 forspilloversontheyoungerpartner,andolderthan65forthespillovers ontheolderpartner).

30 Theproceduredescribedin(LeeandLemieux,2010)indicateda

3-monthbinsizepanelsAandBofFig.3,buta6-monthbinsizeforpanels C-F.ToeasevisualcomparisonofRDDgraphsacrosssamples,weuse 6-monthbinsizesforallpanelsinFig.3.

(12)

Table3

Summarystatistics:older-youngersubsampleswithin63–66program-agebandwidth.

Adultchildrenlinkedto...parent Spilloverfrom...tootherpartner Directeffectamong...parent

Older Younger Older Younger Older Younger

Binaryvariables(0=no;1=yes)

Vaccinationrate 0.06 0.06 0.24 0.67 0.37 0.43

Educationlevel:primary 0.05 0.05 0.24 0.21 0.19 0.26

lowersecondary 0.17 0.18 0.39 0.26 0.26 0.40

uppersecondary 0.45 0.45 0.22 0.30 0.31 0.23

post-secondary 0.32 0.32 0.15 0.23 0.24 0.11

Householdtype:singleperson 0.13 0.11 0.01 0.01 0.01 0.01

couple 0.21 0.16 0.85 0.93 0.88 0.93

householdwithchildren 0.66 0.73 0.13 0.06 0.11 0.05

other 0.01 0.00 0.00 0.00 0.00 0.00

Populationdensity:<500inhabitants/km2 0.14 0.15 0.15 0.15 0.16 0.18

500≤inhabitants/km22500 0.68 0.70 0.73 0.71 0.71 0.71 2500<inhabitants/km2 0.18 0.16 0.12 0.15 0.13 0.11 Male 0.49 0.51 0.14 0.84 0.85 0.14 High-riskgroup 0.07 0.07 0.22 0.31 0.26 0.24 Chronicillness 0.26 0.26 0.45 0.46 0.44 0.47 Parentmale 0.84 0.16 Continuousvariables

Ownprogramage 35.00(4.10) 38.13(3.96) 60.03(4.86) 68.84(2.94) 64.78(1.11) 65.06(1.12) Numberofhouseholdmembers 3.09(1.30) 3.37(1.36) 2.17(0.58) 2.07(0.34) 2.14(0.49) 2.05(0.30)

Numberofobservations 2310 2045 1108 960 1185 828

Note:Allcellsshowweightedsamplemeans.Standarddeviationsinparenthesesforcontinuousvariables.Thesummarystatisticsincolumn’Older’ areobtainedafterlinkingtotheolderparent/partner/ownprogram-age,makingsurethattheotherparent/partnercanbeidentifiedandassertingthat theyoungerparent/partner’sprogram-ageissmallerthan65.Thesummarystatisticsincolumn’Younger’areobtainedafterlinkingtotheyounger parent/partner/ownprogram-age,makingsurethattheotherparent/partnercanbeidentifiedandassertingthattheolderparent/partner’sprogram-age is65orolder.

ent; (b)remove children whoseparents differless than

12monthsinagetoavoidcontaminationbybothparents

receivingthefirstinvitationinthesameinfluenzaseason;

and(c)ensurethattheeligibilitystatusofthe‘untreated’

parentsisthesameoneithersideoftheprogram-agecutoff

(cf.Section3.1).Next,wesubdividetheremainingsample

intwosubsampleswhereweeitherlinktotheiryounger orolderparent.SummarystatisticsinTable3reveal lit-tle differencebetweenchildren linked totheirolder or youngerparent,exceptthatadultchildrenlinkedtotheir youngerparentare3yearsolderandhavemorechildren themselves.31TheresultingRDDestimatesarepresented incolumn‘Adultchildrenlinkedto...parent’inTable4and correspondingRDDgraphsarepresentedinpanelEand FofFig.3.32TheresultsinPanelIIshowthatadult

chil-31Thesamereasoningasinfootnote29explainswhymoreadultscanbe

linkedtotheirolderparentthantotheiryoungerparent.Notefurtherthat thesamechildmightappearinbothsubsampleswhenbothparentsare withinthe63–66agerangewhichexplainswhythecombinednumberof observationsincolumns’AdultchildrenlinkedtoOlder/Youngerparent ofTable3surmountsthatincolumn’Parent-to-childspillover’ofTable1, eventhoughthelatterincludesallbaselineobservations.Thisisdifferent inthepartner-to-partnersubsamples:anindivdiualonlyfeaturesinone ofbothsubsamplesbecausetheHISsurveyonlyinterviewsonehousehold member.

32AllRDDestimatesandgraphsinTable4andFig.3arereplicated

witha+/-3yearbandwidthinAppendixTableA.8andAppendix Fig-ureA.2.Wealsopresentsummarystatisticswitha+/-3yearbandwithin AppendixTableA.7.AppendixTableA.8alsopresentsestimatesobtained afterexcludingallparentsdifferinglessthan24monthsinagewhich confirmsrobustnesstoamechanicalcompositioneffectthatoccurswhen onlyexcludingparentsdifferinglessthan1year.Inthelattercase,theage differenceis12monthsormoretotheleftofthecutoffandforthefirst yeartotherightofthecutoff–whenlinkingtotheolderparent–,butthe

drenare4.5percentagepoints(p-value:0.015;n=2310) lesslikelytogetvaccinatedwhentheirolderparentturns 65.Thisisalmostdoubletheeffectsizeobtainedinthe baseline analysisin Table2. Atthe sametime, we find noevidencethatadultchildrenupdatetheirvaccination behaviorwhentheyoungerparentturns65(PanelIII).This suggeststhatspilloversofthevaccinationprogramonthe adultchildrencruciallydifferdependingonwhethertheir parentisthefirstor secondin thefamilytoreceive an invitationforafreeinfluenzavaccination.Ourdatadonot allowtestingwhetherthis differenceisrelated toolder parentstypicallybeingmale,butwedonotrejectthenull hypothesisofsimilarlysizedspilloverstowardsdaughters andsons.33Thedifferentspilloverbetweenfirstand

sec-minimumagedifferencelinearlyincreasesfrom12to24monthsforthe secondyeartotherightofthecutoff.Asimilarreasoningapplieswhen linkingtotheprogram-ageoftheyoungerparent.

33 Absence(presence)ofspilloversfromyounger(older)parentstoadult

childrenmightdependonchildren’ssex(forexample,Carpenterand Lawler(2019)findthatgirlsreactstrongertoschoolmandatesthanboysin US).Thispossibilityisanalyzedwitht-testsofthedifferenceintreatment effectsasderivedfromRDDmodelsusingsex-specificandyounger/older parent-specificsubsamples.Wefindthatspilloversfromolderparentsto bothfemaleandmaleadultchildrenarenegativeandtheestimatefor femalechildrenisonly0.010percentagepointslargerthanthatformale children(p-value=0.788).Spilloversfromyoungerparentstofemaleand maleadultchildrenarenotsignificantlydifferentfromzero(p-valuesof 0.315and0.500;andthespillovertofemalesis0.048percentagepoints largerthanthattomales(p-value=0.234)).Treatmentheterogeneityof children’sspilloversbyparentalsex,andtreatmentheterogeneityofthe directeffectsandpartnerspilloversbysexofthepartners/parentswas notanalyzedbecausetherelevantsubsamplesaretoosmallasmentend tobetheolderpartnerinaround85percentofcouples(seerow“male” incolumns“spilloversfrom...”and“directeffect...”inTable3).

(13)

ondparentreachingthe65program-agecutoffcouldin principlealsoresultfromastrongerdirectresponsetothe vaccinationpolicyamongtheolderversusyoungerparent. We find noevidencein the HISsample thatolder par-entsrespondmorevigorouslywhenbecomingeligiblefor freeinfluenzavaccinationcomparedtotheyounger par-ents(seecolumn‘Directeffectamong...parent’andpanel AandBinFig.3).34InSection7wefurtherdiscusspotential mechanismsunderlyingthesefindings.

7. Furtherevidenceanddiscussion

Inthissectionwefurtherexplorethepotential mech-anisms underlying the asymmetric spillovers between partnersandfromparentstochildren.Wealready estab-lishedinsections5and6thatneitheranticipatingone’s 65th birthday, changes in parental prevention, health behavior,altruism,adherencetoalternativemedicineor genderheterogeneitiesarelikelymechanismsunderlying thespillovers. Thedata alsodoesnot supportany con-foundingbyregionaland/ortimevariationinGPmedical practices,spreadofinfluenzaandotherinfectiousdiseases, orinformationcampaigns.Inthissection,wemostly fol-low Kremer andMiguel (2007)and Fadlon and Nielsen (2019),anddiscusstherelevanceofthefollowing mech-anismsinlightoftheresultspresentedinsections5and 6:(a)epidemiologicalexternalities(andtherelated con-cept of cross-protection); (b) information transmission, covenience, updating of target group membership and riskperceptions,(c)perceivedshortagesofvaccines;(d) salience; and (e) we also reflect on the health impact of thespillovereffects. Additionalempiricalevidence is presentedinthissection,butshouldbeinterpreted cau-tiouslysince(a)statisticalpowerweakenswhenchecking treatmentheterogeneityonincreasinglysmaller subpop-ulations(seeSection4.2),(b)wecannotfollowinfluenza vaccination behavior of the same individual over time, and(c)unfortunatelythedataprovidenoinformationon whetherthelinkedpartners/parentsaregettingvaccinated beforeandafterreachingthe65 program-agethreshold

34Comparedtothebaselineanalysesinrow’baseline’ofTable4,we

additionallyremoved(a)childlesspeoplebelongingtothe63–66age bandwidth;(b)singleparents,(c)parentsdifferinglessthanoneyearin age,and(d)ensuredthattheeligibilitystatusof’untreated’parentsisthe sameoneithersideofthecutoff.Sinceparentscanonlyappearinthe youngeroroldersubsample,thesesamplerestrictionsleadstoalower combinednumberofobservationsinpanelsIIandIIIcomparedtothe numberofobservationsinthebaslineanalysisinpanelIofTable4. Sum-marystatisticsincolumn‘directeffectamong...parent’ofTable3indicate thatolderparentsaremorelikelymaleandhighereducatedcompared toyoungerparents.Inaddition,thereasoninginfootnote29partially explainsthelargersamplesizefor’directeffectamongolder(versus younger)parent’,butthereisanadditionalmechanismthatincreasesthe differenceinsamplesizebetweenolderandyoungerparents:allareon average65yearsold(allarewithinthe63–66ageinterval),buttheir partnersarerespectivelyonaverage60and69yearsold.Thisaffects householdcompositionbecauseolderindividualsaremorelikelytobe theolderpartner.Henceatage69individualsaremorelikelytobethe olderpartnerthanatage65(n=960vsn=828inrow‘Numberof obser-vations’ofTable3),andthereverseargumentholdsforages60and65(n =1108vsn=1185inthesamerowofTable3).

whichwouldberequiredtogobeyondITTestimates(more discussioninSection4.2andfootnote22).

Negativeepidemiologicalexternalitiesarisewhen indi-viduals realize theirprobability to be infected depends negativelyonthevaccinationbehaviorofother individ-uals theyfrequently interact with. An individualmight therefore stop gettingvaccinated when their parentor partnertakesupvaccinationasitreducestheirmarginal benefitofgettingvaccinated(KremerandMiguel,2007). Wecannottestthishypothesisdirectlybecausewe can-notfollowinfluenza vaccinationbehavior overtime,we do not observe partner’s/parent’s vaccination behavior, andourdatadonotinformonthefrequencyof interac-tionsbetweendifferentfamilymembers.However,wecan do anindirecttest,as onewould expectmorefrequent contact,andthusabiggerrolefornegative epidemiolog-ical externalities, between family members that belong tothesamehousehold (within-householdspillovers) as comparedtothosethat arepartofdifferenthouseholds (between-householdspillovers).Thiswouldimplythatthe spillover-estimatesinTables2and4shouldbesmallerfor thepartner-to-partnerthantheparent-to-childspillovers. Thisisexactlyoppositetowhatwefindsuggestingthat, ifanything,negativeepidemiologicalexternalitiesmatter fortheparent-to-childspillovers,inparticularwhenthe olderparentturns65,butnotforthespilloversbetween partners.We scrutinize this possibility byproxying fre-quencyofcontact betweenparentsand children bythe geographicaldistancebetweentheirresidentialaddresses whichshouldbeareasonableproxysincetheNetherlands is a small and densely populated country,35 and test whetherparent-to-childspilloversaremorenegativefor parentsandchildrenlivinginclosevicinitycomparedto those living furtherapart. However,when estimating a modelallowingforaninteractionbetweenthe disconti-nuityandparent-childrenproximity36wecouldnotreject homogeneityofthetreatmenteffect(p-value=0.374). Fur-thermore,theabsenceofaspillovereffectfromtheyounger parenttothechildisfurtherevidenceatoddswith nega-tiveexternalitiesexplainingtheparent-to-childspillovers. Analternative,butrelatedexplanationfornegativechild spilloversmightbepositiveepidemiologicalexternalities. Such cross-protectioneffects consistof children altruis-tically getting vaccinated to protect theirparents from gettingtheflu.Whenparentsturn65andgetvaccinated themselves, children might no longersee the need for gettingvaccinated. Thiscouldinprincipleplay arolein theDutchcontextsincechildrenprovidinginformalcare fortheirparentsarerecommended toobtaina flushot, althoughlackofdataoninformalcaregivingprohibits

test-35 ForeachindividualintheHISandtheirparentsintheadministrative

register,wehaveanencryptedaddresslocationwhichallowscalculating thedistancebetweenchildren’sandparent’smunicipalitiesofresidence. AsvaccinationinvitationlettersaresentoutbytheendofSeptember,we taketheaddressesonOctober1stforeachinfluenzaseason.

36 Inoursample,3.63percentoftheadultchildrenco-habitwiththeir

parents,45.29percentliveseparatelybutstillwithinthesame municipal-ity,23.25percentliveinadifferentmunicipalitybutstillwithin20km, 13.64percentwithin20-60km,andtheremaining14.19percentlivemore than60kmapart.

Referenties

GERELATEERDE DOCUMENTEN

toetsen voor de bepaling van sulfonamiden in mengvoeders en dierlijke produkten. Verantwoordelijk: drs

In 2011 is er bij biologisch teler Ruud van Schie in Ens bij tomaat een speciaal systeem aangelegd, wat toegepast kan worden in de grondteelt. De luchtkasten zijn hoog in de

6 De volgende vraag staat centraal in dit onderzoek: ‘In welke mate is er sprake van vraagsturing in het voortgezet onderwijs in de provincies Gelderland en Noord-Brabant?’ Om

Gezien de veelal negatieve verbanden die gevonden zijn tussen uitdagend opvoedgedrag van vader en angst bij het kind, werd verwacht dat uitdagend opvoedgedrag van vader gedurende

samenwerkingsstructuren die zowel voor de leerlingen als de leerkracht een houvast geven tijdens het samenwerkend leren (Ebbens &amp; Ettekoven, 2009).. Berends (2008) stemt hiermee

Transcatheter tricuspid valve-in-ring placement: complex valve obstruction by hypo-attenuating leaflet thickening, hypo-attenuation affecting motion, and native tricuspid

Using Water Wars theory and Resource Curse theory to discover if water scarcity played a role in causing the Darfur conflict and the.. environmental conflicts

By engaging with certain demographic theories which correlated population with economic growth and their participation in interna- tional conferences on population policy,