• No results found

The Effect of Six Antimicrobial TNO Compounds on Germination and Outgrowth of Bacillus subtilis Spores.

N/A
N/A
Protected

Academic year: 2021

Share "The Effect of Six Antimicrobial TNO Compounds on Germination and Outgrowth of Bacillus subtilis Spores."

Copied!
38
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Germination  and  Outgrowth  of  Bacillus  subtilis  Spores.  

  Bachelor  thesis  Biomedical  Sciences  by  Esther  de  Boer  

Student  number:  10324429   Supervisor:  Soraya  Omardien  MSc   Second  assessor:  Dr.  S.  A.  J.  Zaat  

Research  group:  Molecular  Biology  and  Microbial  Food  Safety   Submitted  on  July  1,  2015  

 

Abstract  

Certain   Gram-­‐positive   bacteria   can   form   spores,   which   are   metabolically   dormant   cell   types  that  are  resistant  to  harsh  conditions.  These  characteristics  also  cause  resistance  of   the  spores  to  most  of  the  currently  used  food  treatments,  which  means  spores  can  form  a   serious   threat   to   food   safety.   Even   though   spores   are   non-­‐pathogenic   and   incapable   of   causing  food  spoilage,  they  regain  these  possibilities  when  they  become  vegetative  cells   again.   At   this   moment,   there   are   no   compounds   available   that   can   inhibit   either   germination   or   outgrowth;   the   two   processes   a   spore   goes   through   to   become   a   vegetative   cell   again.   In   this   research   study,   six   antimicrobial   compounds   provided   by   TNO   were   tested   for   their   effects   on   spore   germination   and   outgrowth.   Firstly,   a   MTT   assay   was   performed   to   determine   whether   the   TNO   compounds   had   an   effect   on   the   oxidative   metabolism.   Subsequently,   time-­‐kill   assays   were   performed   to   determine   whether   the   compounds   are   bacteriostatic   or   bactericidal.   To   confirm   whether   the   compounds   inhibited   germination   or   outgrowth,   the   spores   were   visualized   using   microscopy,  after  treatment  with  the  compounds.  Propidium  iodide  staining  of  the  spores   was   also   performed,   to   determine   whether   the   compounds   cause   membrane   damage,   which  was  visualized  using  fluorescent  microscopy.    The  MTT  assay  showed  that  all  the   TNO   compounds   inhibit   the   oxidative   metabolism   of   the   spores.   The   time-­‐kill   assay   showed  that  the  six  TNO  compounds  are  bactericidal.  Lastly  the  results  obtained  from  the   microscopy  showed  that  none  of  the  TNO  compounds  inhibits  germination,  but  that  they   all   inhibit   outgrowth.   In   TNO   1   and   TNO6   this   went   along   with   a   loss   of   membrane  

(2)

 

2  

Table  of  contents  

Abstract  ...  1  

Introduction  ...  3  

Materials  and  methods  ...  6  

Results  ...  9  

Discussion  ...  20  

Appendices  ...  28  

Appendix  A:  Sporulation  protocol  ...  28  

Appendix  B:  Composition  of  MOPS  and  MOPS  medium  ...  30  

Appendix  C:  Histodenz  protocol  ...  31  

Appendix  D:  Minimal  Inhibitory  Concentrations  of  the  TNO  compounds  ...  32  

Appendix  E:  Oxidative  metabolism  ...  33  

Appendix   F:   Results,   shown   as   standard   deviation   graphs,   of   the   oxidative   metabolism   assay  for  each  TNO  compound  individually  ...  35  

Appendix  G:  Absolute  results  for  the  cell  counts  performed  on  the  microscopy  images.  ...  38    

 

 

 

 

 

 

 

 

(3)

Introduction  

Food   safety   in   the   Netherlands   has   improved   in   the   past   few   decades,   but   foodborne   infections  remain  a  persistent  issue,  with  an  estimate  of  700,000  illnesses  a  year  in  the   Netherlands  alone  (van  Kreijl,  et  al.,  2006).  In  some  industrialized  countries,  the  amount   of  food  related  illnesses  is  even  rising  (Havelaar,  Brul,  de  Jong,  de  Jonge,  Zwietering,  &  ter   Kuile,   2010),   indicating   the   necessity   of   food   safety   research.   Even   though   modern   techniques  have  ensured  the  improvement  of  food  safety,  pathogens  are  sometimes  able   to  survive  these  methods.    

Some  Gram-­‐positive  bacteria  are  capable  of  forming  spores.  A  spore  is  a  state  of  a   bacterial  cell  in  which  it  is  resistant  to  harsh  circumstances.  Therefore,  spores  are  harder   to  eliminate  from  food  than  other  bacterial  cell  types  and  thus  pose  a  novel  threat  to  food   safety  (Tewari  &  Abdullah,  2014).  Bacillus  subtilis  is  an  example  of  such  a  spore  forming   Gram-­‐positive   bacterium   that   is   capable   of   sporulating   and   can   cause   food   spoilage.   However,   unlike   other   Gram-­‐positive   spore   forming   bacteria   such   as   Bacillus   cereus,   Bacillus  anthracis   or   Clostridium  difficile,  B.  subtilis  is   a   non-­‐pathogenic   bacterium.   It   is   therefore   used   as   a   model   organism   for   spore   forming   Gram-­‐positive   bacteria   (Stein,   2005)  (Sietske  &  Diderichsen,  1991).    

Spores   are   metabolically   dormant,   which   suggests   that   there   is   no   detectable   metabolism  and  hardly  any  enzyme  action  (Setlow,  2006;  Setlow,  2003;  Cortezzo,  Setlow,   &   Setlow,   2004).   This   means   that   a   spore   can   survive   long   periods   with   little   to   no   nutrients.     An  inner  membrane,  germ  cell   wall,  cortex,  outer  membrane  and  spore  coat   surround   the   core   of   a   Bacillus   subtilis   spore,   which   contains   the   DNA,   RNA   and   ribosomes,   but   mostly   consists   of   water   and   dipicolinic   acid   (DPA)   (Figure   1).   The   (variable)  water  content  of  the  core  causes  heat  resistance  in  spores,  while  the  spore  coat   makes   them   resistant   to   toxic   chemicals.   Spores   are   also   resistant   against   radiation,   though  this  mechanism  is  poorly  understood.  These  resistant   characteristics  make  spores   a  problem  for  the  food  industry,  as  the  usual  preservation  methods,  like  heat  treatment   and   food   preservatives,   do   not   manage   to   eliminate   spores.   The   spores   itself   are   never   toxic   or   pathogenic,   but   in   the   right   circumstances   they   can   germinate   and   grow   out,   becoming  vegetative  cells  that  are  able  to  produce  toxins,  such  as  cells  of  Bacillus  cereus  

(4)

 

4  

and  Clostridium  difficile.      

Germination  is  the  first  step  spores  take  to  become  a  vegetative  cell  again  (Setlow,   2003).   Germination   is   usually   induced   by   the   presence   of   certain   nutrients,   called   germinants.   The   inner   membrane   of   the   B.   subtilis   spores   contains   three   germinant   receptors:  GerA,  responding  to  L-­‐alanine  and  L-­‐valine,  and  GerB  and  GerK,  responding  to   L-­‐asparagine,  D-­‐glucose,  D-­‐fructose  and  K+  (Luu,  Cruz-­‐Mora,  Setlow,  Feeherry,  Doona,  &   Setlow,   2015).   Presence   of   all   these   germinants   is   necessary   to   initiate   germination,   however   the   exact   mechanism   in   which   germination   is   activated   is   not   completely   understood.    After  activation,  the  spore  goes  through  germination  stage  I,  characterized   by   the   release   of   Ca2+-­‐DPA   and   core   hydration,   and   stage   II,   in   which   the   cortex   is   hydrolysed   and   resistance   is   lost,   before   proceeding   to   outgrowth.   Outgrowth   requires   ATP  and  is  the  last  stage  of  a  spore  turning  into  a  vegetative  cell:  in  this  stage  the  spore   gets  rid  of  the  spore  coats  and  the  (oxidative)  metabolism  is  restored  as  well  (Keijser,  et   al.,  2007).  Current  food  treatments,  like  heat  treatments,  seem  efficient  in  killing  spores   or  preventing  them  from  germinating  and  growing  out  (Setlow,  Loshon,  Genest,  Cowan,   Setlow,   &   Setlow,   2002)   (Setlow   P.   ,   2000).   In   treated   food,   changing   circumstances   in   food  transport  or  storage,  for  example,  can  still  lead  to  spore  germination  and  outgrowth.  

Figure   1:   Different   layers   of   the   B.   subtilis   spore.   From   outside   to   inside:   spore   coats,   outer   membrane,   cortex,  germ  cell  wall,  inner  membrane  and  core.  

(5)

This   indicates   the   need   for   new   methods   or   antimicrobial   compounds   to   prevent   germination  or  outgrowth.    

 

Figure   2:   Spore   outgrowth   and   germination   stages.   After   activation   by   germinants   binding   to   germinant   receptors  in  the  inner  membrane  of  the  spore,  the  spore  enters  germination  stage  I.  In  this  stage,  among  other   things,   Ca2+-­‐DPA   is   released   and   the   core   is   partially   hydrated.   In   stage   II   the   cortex   is   lost   and   the   core  

expanses   gets   hydrated   further.   After   germination   the   spore   enters   outgrowth,   where   the   metabolism   is   completely  restored  and    

Previously,  a  TNO  compound  library,  consisting  of  512  compounds,  was  screened   for   antimicrobial   activity   against   Bacillus   subtilis   spores.   The   effect   of   the   TNO   compounds   on   growth   of   the   bacteria   was   determined,   based   on   optical   density   (OD)   measurements   over   time.     Six   compounds   with   antimicrobial   activity   showed   potential   and   were   selected   for   further   analysis.   The   chemical   structure   and   minimal   inhibitory   concentration   (MIC)   of   these   compounds   is   shown   in   Appendix   D.   The   effect   of   the   compounds   on   the   oxidative   metabolism   was   studied   using   a   3-­‐(4,5-­‐dimethylthiazol-­‐2-­‐ yl)-­‐2,5-­‐diphenyltetrazolium   bromide   (MTT)   assay   and   to   determine   whether   the   TNO   compounds   are   bacteriostatic   or   bactericidal,   time-­‐kill   assays   were   performed.   Fluorescence   microscopy   was   performed   to   determine   whether   germination   or  

(6)

 

6  

outgrowth   is   inhibited   and   the   effect   of   the   TNO   compounds   on   the   membranes   using   propidium   iodide.   Based   on   the   first   screening   of   these   compounds   it   is   expected   that   they  will  have  an  inhibiting  effect  on  either  germination  or  outgrowth.  Which  of  the  two   is  affected  can  however  not  be  said  based  on  the  findings  of  the  previous  group.    

Taking   the   outcomes   of   the   experiments   into   account,   the   effect   of   the   TNO   compounds  on  germination  and  outgrowth  in  Bacillus  subtilis  is  described:  whether  they   are   bactericidal   or   bacteriostatic   and   how   they   achieve   their   effects   on   Bacillus  subtilis   spores.    

 

Materials  and  methods  

Preparation  of  Bacillus  subtilis  spores  

For   the   preparation   of   spores,   Bacillus   subtilis   strain   168   was   used.   The   method   was   followed  as  described  by  Abhyankar  et  al.  (2011)  (Appendix  A).  In  short,  one  B.  subtilis   colony  was  inoculated  in  5  ml  tryptic  soy  broth  (TSB)  and  incubated  at  37°  C,  200  rpm   until  an  OD600  of  0.3-­‐0.4  was  reached.  This  step  ensured  that  the  spores  used  were  in  the   exponential  phase.  A  serial  dilution  of  the  spores  in  MOPS  medium  (see  Appendix  B  for   composition)  was  made  from  10-­‐1  to  10-­‐7  and  incubated  at  37°  C,  200  rpm,  to  condition   the  cells  to  the  medium  used  for  spore  production.  A  dilution  with  an  OD600  of  0.3-­‐0.4  was   selected   and   1   ml   of   this   dilution   was   inoculated   in   20   ml   pre-­‐warmed   MOPS   medium   until  an  OD600  of  0.3-­‐0.4  was  reached  again.  From  this  culture,  2.5  ml  was  inoculated  in   250  ml  MOPS  medium  and  incubated  for  96  hours  at  37°  C,  200  rpm.  The  spores  were   washed  once  with  1%  Tween  to  have  a  final  concentration  of  0.01%  Tween,  after  which   the   spores   were   pelleted   at   5000   rpm   for   15   min   at   4°   C   and   the   supernatant   was   discarded.   Afterwards,   four   washes   were   done   with   sterile   MilliQ   water   in   the   same   manner   to   remove   vegetative   cells   and   debris.   An   additional   purification   step   was   performed   to   remove   remaining   vegetative   cells,   using   Histodenz   (Appendix   C).   The   spores   were   resuspended   in   750   µl   20%   Histodenz   and   then   added   to   800  µl   50%   Histodenz.  The  spores  were  pelleted  at  15000  rpm  for  1  hour  at  4°  C  and  the  supernatant   was  discarded.  The  spores  were  stored  at  4°  C  for  four  weeks.    

(7)

 

Determining   the   oxidative   metabolism   of   spores   after   treatment   with   the   TNO   compounds  

The  effect  of  the  TNO  compounds  on  the  oxidative  metabolism  of  these  spores  was  tested   using  3-­‐(4,5-­‐dimethylthiazol-­‐2-­‐yl)-­‐2,5-­‐diphenyltetrazolium  bromide  (MTT)  as  a  reagent   (Appendix   E).   Two   ml   spores   were   heat-­‐activated   at   70°   C   for   30   minutes.   The   spores   (final   OD600  of   0.2)   were   added   to   TSB,   buffered   with   MOPS   (pH   7.4),   containing   the   compounds   at   the   minimal   inhibitory   concentration   (MIC)   (Appendix   D).   Spores   (final   OD600  of  0.2)  inoculated  into  MOPS  buffer  (pH  7.4)  were  used  as  a  negative  control  for   germination.  Spores  inoculated  in  TSB  (final  OD600  of  0.2)  without  TNO  compounds  were   used   as   a   positive   control   for   germination   and   outgrowth.   Each   experiment   was   performed  with  four  experimental  repeats  and  with  one  reagent  blank.    

At  0  min,  60  min  and  120  min,  four  aliquots  of  100  µl  were  taken  for  each  TNO   compound,  the  reagent  blanks  and  the  controls  and  pipetted  on  a  96-­‐wells  plate.  These   aliquots  were  diluted  2x  and  4x  in  inhibition  mixture,  containing  D-­‐alanine,  D-­‐histidine,   MOPS  buffer  and  MilliQ  (Appendix  E).  As  L-­‐alanine  is  a  germinant  for  B.  subtilis  spores,  D-­‐ alanine  is  supposed  to  inhibit  germination.  To  each  well  50  µl  1  mg/ml  MTT  was  added.   The   96-­‐wells   plates   were   incubated   for   60   min   at   37°   C,   200   rpm.   The   dilution   in   inhibition  mixture  was  done  to  prevent  further  germination  after  the  treatment  period.   After   the   incubation   with   MTT,   100   µl   DMSO   was   added   to   each   well   to   dissolve   the   formazan  crystals.  The  plates  were  incubated  for  5  min  at  37°  C,  200  rpm.  The  OD570  was   measured  using  a  microtiter  plate  reader.    

 

Time-­‐kill  assay  of  B.  subtilis  spores  after  exposure  to  the  TNO  compounds  

Time-­‐kill  assays  were  performed  for  B.  subtilis  after  treating  the  spores  with  the  different   TNO  compounds  to  determine  whether  the  compounds  are  bacteriostatic  or  bactericidal.   Spores  were  heat-­‐activated  for  30  min  at  70°  C  and  inoculated  into  MOPS  buffered  TSB   (pH  7.4)  to  have  a  final  OD600  of  0.2.  The  TNO  compounds  were  added  to  the  medium  at   their  MICs.  Spores  inoculated  in  buffered  TSB  without  TNO  compounds  were  used  as  a   control.  The  mixtures  were  incubated  at  37°  C,  200  rpm  and  50  µl  aliquots  were  taken  at  

(8)

 

8  

0   minutes   (before   addition   of   the   compounds)   and   at   30,   60   and   120   minutes   after   addition  of  the  compounds.  The  samples  were  diluted  in  inhibition  mixture  from  10-­‐1  to   10-­‐7  (Appendix  E).    From  each  dilution  an  aliquot  of  10  µl  was  taken  twice  and  spotted  on   a  TSB  plate.  These  plates  were  incubated  at  37°  C  overnight.  The  next  day  a  CFU  count   was  performed.  From  these  data  killing  curves  were  drawn.    The  counts  were  repeated  at   day  2  and  3  to  validate  the  data.  

 

Determination  of  the  effect  of  the  compounds  on  germination,  outgrowth  and  membrane   integrity  

Fluorescence   microscopy   was   used   to   determine   how   the   TNO   compounds   effect   germination   and   outgrowth   of   the   B.   subtilis   spores.   Propidium   iodide   was   used   as   a   staining   to   determine   if   of   the   TNO   compounds   cause   a   loss   of   membrane   integrity,   preventing   outgrowth.   Propidium   iodide   can   not   pass   membranes   of   living   cells   and   shows  a  peak  in  fluorescence  when  bound  to  nucleic  acids  (Krishan,  1975).  Therefore,  a   peak   in   fluorescence   indicates   a   loss   of   membrane   integrity   or   a   damaged   membrane.   The  spores  were  incubated  with  TSB  buffered  with  MOPS  (pH  7.4)  with  a  final  OD600  of   0.2,   after   which   the   TNO   compounds   were   added   at   their   MICs.   The   samples   were   incubated  for  120  min  at  37°  C,  200  rpm.  After  this  incubation  0.75  µl  20  mM  propidium   iodide  was  added  to  each  500  µl  sample  and  incubated  in  the  dark  at  room  temperature   for  15  min.  The  samples  were  petted  using  centrifugation  at  14000  rpm  for  5  min.  One  µl   of  the  pellet  was  spotted  onto  a  2%  agarose  pad  (containing  2%  agarose  in  MilliQ)  and   examined  under  the  BX  microscope.  Propidium  iodide  has  an  excitation  spectrum  of  500-­‐ 550  nm  and  maximum  emission  at  639  nm    (Wolff,  Chien,  &  van  Winkle,  2000).  Two  UV-­‐ filters  were  used:  UV1  =  1,  UV2  =  0.068  to  take  images.  The  images  were  analysed  using   ImageJ  and  cells  were  counted  using  the  Cell  Counter  plugin.  The  images  were  divided   into  the  following  categories:  phase  bright  spores,  phase  dark  spores,  cells  in  outgrowth,   vegetative  cells  and  elongated  vegetative  cells.  This  categorisation  was  based  on  images   provided  by  Pandey,  Ter  Beek,  Vischer,  Smelt,  Brul,  &  Manders,  2013.  The  images  were   analysed   for   a   second   time,   categorizing   the   cells   in   propidium   iodide   positive   and   propidium  iodide  negative  cells.    

(9)

Results  

Oxidative  metabolism  was  measured  using  MTT  as  a  reagent  and  the  amount  of  formazan   formed   was   interpreted   as   an   indication   of   the   presence   of   oxidative   metabolism.   In   outgrowth   spores   restore   the   oxidative   metabolism   and   ATP   is   required:   absence   of   oxidative  metabolism  would  suggest  that  outgrowth  is  inhibited.  The  standard  deviation   graph   in   Figure   3   expresses   the   results   as   OD570.   The   graph   showed   an   increase   in   formazan  production  for  the  positive  control,  which  were  spores  incubated  in  TSB  with   AGFK,   indicating   that   in   the   absence   of   the   TNO   compounds   oxidative   metabolism   is   reached   in   these   test   conditions.   The   graph   showed   a   stable   OD570  for   the   negative   control,  which  where  the  spores  incubated  with  only  MOPS,  indicating  that  no  oxidative   metabolism   is   present.   The   results   obtained   for   the   six   TNO   compounds   showed   no   increase  in  OD570  after  120  minutes,  suggesting  that  formazan  was  not  produced  and  that   oxidative  metabolism  did  not  take  place.  The  absence  of  oxidative  metabolism  suggests   that  outgrowth  is  inhibited.  The  spores  were  also  diluted  in  inhibition  mixture,  to  prevent   further  germination  of  spores  and  to  enable  the  measurement  of  the  effects  directly  after   the  treatment  period.  The  results  suggested  that  there  was  no  difference  between  diluted   and  undiluted  samples;  even  though  the  absolute  OD570-­‐values  were  lower  for  the  diluted   samples,   there   is   no   difference   in   the   relative   values   (see   Appendix   F   for   the   standard   deviation  graphs  of  the  diluted  samples).    

Colony   forming   units   (CFU)   were   counted   after   the   treatment   at   various   time   points   to   determine   whether   the   TNO   compounds   have   a   bacteriostatic   or   bactericidal   effect.   Figure   4   shows   the   results   of   the   CFU   counts   for   the   six   TNO   compounds   and   a   blank  (without  antimicrobial  compounds).  No  effect  of  the  compounds  was  observed  in   the  first  hour,  but  after  120  minutes  a  90%  or  stronger  decline  in  CFU/ml  was  found.  As   these  results  showed  that  all  six  TNO  compounds  caused  a  decline  in  CFU/ml,  these  data   suggest  that  the  TNO  compounds  have  a  bactericidal  effect  rather  than  a  bacteriostatic   effect.  It  also  appears  that  TNO1  is  the  most  effective  compound.  This  bactericidal  effect   was  found  when  the  spores  were  incubated  with  each  TNO  compound  for  120  minutes.    

The   oxidative   metabolism   results   suggested   that   germination   or   outgrowth   was   inhibited;  therefor  microscopy  was  employed  to  confirm  these  findings.   Phase  contrast  

(10)

 

10  

microscopy   was   employed   to   determine   if   germination   or   outgrowth   was   inhibited.   Propidium  iodide  staining  was  then  performed  to  see  if  the  membrane  damage  was  the   cause  of  the  inhibition  of  outgrowth.  In  Figure  6  to  Figure  15  the  overlay  images  of  the   microscopy  are  shown,  in  which  the  phase  contrast  images  and  the  fluorescence  images   are  combined.  Phase  bright  spores  are  spores  did  not  germinate,  while  phase  dark  spores   are  germinated  spores.  Also  vegetative  cells  are  found  in  the  images,  which  are  cells  that   have   gone   through   both   germination   and   outgrowth.   Figure   18   and   Figure   17   show   graphs  for  the  different  stages  of  germination  and  outgrowth  and  the  propidium  iodide   staining  have  been  quantified  from  the  images  (for  the  absolute  cell  counts  see  Table  1   and  Table  2  in  Appendix  G).  The  image  taken  after  incubation  in  H2O  and  the  negative   control   (Figure   5   &   Figure   6)   both   show   phase   bright   spores,   indicating   that   the   experimental   conditions   do   not   promote   spore   germination   and   outgrowth.   Figure   7   shows   the   positive   control,   for   which   vegetative   cells   are   found,   confirming   that   the   culturing  conditions  are  sufficient  for  spore  germination  and  outgrowth.    

The   results   after   treatment   with   TNO1   shows   that   95   per   cent   of   the   cells   are   phase  dark  spores,  the  remaining  cells  are  phase  bright  spores  (Figure  8  &  Figure  18).   This  indicates  that  germination  does  take  place,  but  outgrowth  is  inhibited.  91  per  cent  of   the   cells   show   a   propidium   iodide   positive   staining,   which   indicates   loss   of   membrane   integrity  (Figure  17).    For  TNO6  a  similar  effect  is  found,  but  with  only  65  per  cent  of  the   cells  showing  a  propidium  iodide  positive  staining  (Figure  15  &  Figure  17).  The  results   for   TNO4   also   show   that   91   per   cent   of   the   cells   is   a   phase   dark   spore,   but   after   this   treatment  the  remaining  cells  are  also  phase  dark  spores,  in  which  outgrowth  is  initiated,   but  not  continued  (Figure  13  &  Figure  18).  This  suggests  that  TNO4  and  TNO6  also  do  not   affect   germination   and   inhibit   outgrowth,   although   with   less   or   without   effect   on   the   membrane  integrity.    

TNO2  treated  spores  were  in  phase  dark  in  96  per  cent  of  the  cells,  which  suggest   spore  germination  is  not  affected.  Two  per  cent  of  the  cells  are  phase  dark  spores  that   have  lost  their  original  shape,  but  seem  unable  to  grow  out  into  vegetative  cells  (Figure   10,   Figure   9   &   Figure   18).   Germinated   spores   treated   with   TNO2   showed   propidium   iodide  positive  staining  in  35  per  cent  of  the  cells  (Figure  17).    TNO3  treated  spores  are  

(11)

phase  dark  spores  for  36  per  cent  and  phase  dark  spores  attempting  to  grow  out  in  59   per  cent.  Two  per  cent  of  the  cells  consists  of  elongated  vegetative  cells  (Figure  18).  The   spores  are  propidium  iodide  negative  for  88  per  cent    (Figure  12,  Figure  11  &  Figure  17).   Most   notable   is   the   image   for   TNO5,   which   shows   spores   that   have   lost   their   original   shape  for  74  per  cent  (Figure  14  &  Figure  18).  The  cells  are  all  phase  dark  and  some  of   them  have  already  shed  the  spore  coat  (Figure  14  &  Figure  16).  The  shed  coats  can  be   seen  in  the  images  as  a  small  appendix  to  the  spores.  The  remaining  cells  are  phase  bright   or  phase  dark  spores  that  have  not  proceed  to  outgrowth.  There  are  no  vegetative  cells,   which   suggests   that   complete   outgrowth   is   inhibited.   The   cells   are   propidium   iodide   positive  for  96  per  cent.  These  results  together  indicate  a  homogenous  effect  treatment   TNO1,  TNO2,  TNO4  and  TNO6,  with  more  than  91  per  cent  of  the  cells  in  the  same  stage.  

 

 

(12)

 

12  

 

Figure  4:  Standard  deviation  curves  of  the  time-­‐kill  assay  Bacillus  subtilis.  The  CFU  count  at  t=0  min  is  used  as  a   reference   to   determine   the   relative   growth   of   B.  subtilis   after   treatment   with   the   different   TNO   compounds,   showing  the  relative  CFU  count  in  %  at  a  log2-­‐scale.      

-­‐0,2   0   0,2   0,4   0,6   0,8   1   1,2   1,4   1,6   1,8  

0  min   60  min   120  min  

O p ti ca l  d en si ty  a t  5 7 0  n m   Time  (min)  

OD

570

:  oxidative  metabolism  

MOPS  only   TSB  only   TNO1   TNO2   TNO3   TNO4   TNO5   TNO6  

Figure   3:   Standard   deviation   graph   depicting   the   oxidative   metabolism   assay   results   for   the   six   TNO   compounds,  the  positive  control  with  TSB  only  and  the  negative  control  with  MOPS  only.    OD570  was  measured  

over  time  (t=0,  60  &  120  min)  for  all  samples:  this  graph  shows  the  average  value  of  experimental  repeats  for   each  time  point.  

0,015625   0,0625   0,25   1   4   16   64   256   1024  

0  min   30  min   60  min   120  min  

Rel at ive   CF U  co u nt  ( %)   Time  (min)  

Time-­‐kill  assay  

Blank   TNO1   TNO2   TNO3   TNO4   TNO5   TNO6  

(13)

         

 

             

Figure  6:  Fluorescence  image  of  B.  subtilis  spores  in  1x  MOPS,  stained  with  propidium   iodide.  The  image  shows  phase  bright  spores.  

Figure  5:  Fluorescence  image  of  B.  subtilis  spores  in  H2O,  stained  with  propidium  iodide.  

The  image  shows  phase  bright  spores.    

(14)

  14                                                          

Figure  7:  Fluorescence  image  of  B.  subtilis  spores  in  TSB,  stained  with  propidium  iodide.   The  image  shows  elongated  vegetative  cells  that  have  not  divided  yet.

 

Figure   8:     Fluorescence   image   B.   subtilis   spores   incubated   with   TNO1,   stained   with   propidium  iodide.  The  image  shows  fluorescent,  phase  dark  spores.  

(15)

   

Figure   10:   Fluorescence   image   of  B.  subtilis   spores   incubated   with   TNO2,   stained   with   propidium  iodide.  The  image  shows  phase  dark  spores  with  some  fluorescence  and  also   some   odd   shaped   phase   dark   spores.   These   might   be   germinated   cells   attempting   to   grow  out.  

 

Figure   9:   Close-­‐up,   obtained   from   a   fluorescence   image   stained   with   propidium   iodide,   of   two   spores   that   have   lost   their   original   shapes   under  influence  of  TNO2.  

(16)

 

16  

     

Figure   12:   Fluorescence   image   of   B.  subtilis  spores   incubated   with   TNO3,   stained   with   propidium  iodide.  The  image  shows  phase  dark  spores  and  an  elongated,  non-­‐dividing   vegetative  cell.

 

Figure   11:   Close-­‐up   of   B.   subtilis   spores   incubated   with   TNO3   that   have  lost  their  original  shape  and  (partly)  shed  their  coats,  obtained   from  a  fluorescence  image  stained  with  propidium  iodide.  

(17)

       

 

 

 

 

 

Figure  14:  Fluorescence  image  of  B.  subtilis  spores  incubated  with  TNO5,  stained  with   propidium   iodide.   The   image   shows   phase   dark   spores   that   have   lost   their   original   shape,  probably  due  to  too  much  water  uptake.  

Figure  13:  Fluorescence  image  of  B.  subtilis  spores  incubated  with  TNO4,  stained  with   propidium  iodide.  The  image  shows  dark  phase  spores  with  some  fluorescence.  

(18)

 

18  

 

   

Figure  15:  Fluorescence  image  of  B.  subitlis  spores  incubated  with  TNO6,  stained  with   propidium  iodide.  The  image  shows  phase  dark  spores  and  some  fluorescence.  

Figure  16:  Close  up  of  three  B.  subtilis  spores,  incubated  with  TNO5  and  stained  with   propidium  iodide.  This  image  shows  three  spores  that  have  already  shed  their  coat,   but  got  stuck  in  this  stage  of  outgrowth.  

(19)

 

Figure   18:   Cell   count   of   all   the   images   of   the   fluorescence   microscopy,   sorted   by   TNO   compound.   In   all   the   images  cells  were  counted  and  categorised  in  different  stages:  phase  bright  spores,  phase  dark  spores,  cells  in   outgrowth,  vegetative  cells  and  elongated  vegetative  cells.

 

Figure  17:  Graph  showing  the  relative  amount  of  PI  positive  cells  in  all  the  samples,  calculated  after  cell   count  on  all  images  was  performed  using  the  Cell  Counter  plugin  in  ImageJ.

 

  0   10   20   30   40   50   60   70   80   90   100  

TNO1   TNO2   TNO3   TNO4   TNO5   TNO6   TSB   MOPS  

R el at iv e   am ou n t  o f  _ lu or esc en t  c el ls   in   %   Samples  

Relative  _luorescence  

(20)

 

20  

Discussion  

Six   TNO   compounds   were   tested   for   their   effect   on   B.   subtilis   spore   germination   and   outgrowth  using  an  oxidative  metabolism  assay,  killing  curves  based  on  CFU  counts  and   fluorescence  microscopy  using  a  propidium  iodide  staining.  The  hypothesis  was  that  the   TNO  compounds  would  inhibit  either  germination  or  outgrowth,  but  which  stage  would   be  affected  was  unknown.  

Initially   to   determine   whether   the   TNO   compounds   affect   germination   or   outgrowth,  the  oxidative  metabolism  of  the  spores  after  treatment  with  the  compounds   was  determined,  using  MTT  as  a  reagent.  MTT  can  be  converted  into  purple  formazan  by   bacteria   using   NAD(P)H-­‐dependent   oxidoreductases.   As   this   conversion   requires   the   presence  of  NAD(P)H,  it  gives  an  indication  of  the  presence  and  activity  of  an  oxidative   metabolism.   Given   that   formazan   is   a   purple   molecule,   an   OD570-­‐measurement   can   be   used  to  determine  the  amount  of  formazan  formed  and  therefore  the  amount  of  oxidative   metabolism  present  (Berridge,  Herst,  &  Tan,  2005)  (Twentyman  &  Luscombe,  1987).  The   results   obtained   from   the   oxidative   metabolism   assay   showed   no   increase   in   OD570  for   each  of  the  six  TNO  compounds.  This  means  that  no  formazan  was  formed  and  thus  no   oxidative   metabolism   was   present.   However,   it   is   not   possible   to   conclude   about   the   effects   of   the   TNO   compounds   on   germination,   based   on   these   outcomes.   It   can   be   concluded  that  the  TNO  compounds  all  inhibit  the  oxidative  metabolism.    

To  determine  whether  the  compounds  are  bactericidal  or  bacteriostatic,  a  killing   curve   was   conducted   by   counting   the   colony   forming   units.   This   count   was   performed   after  different  incubation  times  with  the  six  TNO  compounds.  The  results  showed  that  all   six   TNO   compounds   caused   a   decline   in   colony   forming   units,   suggesting   that   the   compounds   are   bactericidal.   This   bactericidal   effect   was   found   after   120   minutes   of   incubation   with   the   TNO   compounds.   TNO1   seems   to   be   the   most   effective   in   it’s   bactericidal  effect.    For  shorter  incubation  times,  no  consistent  results  were  found.  This   suggests  that  it  takes  the  TNO  compounds  at  their  MIC  120  minutes  to  be  active  and  have   an  bactericidal  effect.    

To  find  out  whether  the  TNO  compounds  affect  germination  and  outgrowth  and  to   distinguish  between  the  effects  of  the  different  TNO  compounds,  microscopy  was  used  to  

(21)

take   images   of   the   spores   after   exposure   to   the   TNO   compounds   for   120   minutes.   The   results  show  that  most  of  the  spores  are  in  the  dark  phase:  this  shows  that  germination  is   not   affected,   but   that   outgrowth   is.   The   results   obtained   after   treatment   with   TNO1,   TNO4   or   TNO6   showed   that   these   TNO   compounds   completely   inhibit   outgrowth.   This   prevention  of  outgrowth  might  be  due  to  the  inhibitory  effect  these  compounds  have  on   the  oxidative  metabolism,  which  is  needed  for  outgrowth.    

The   results   obtained   for   TNO2,   TNO3   and   TNO5   showed   that   outgrowth   is   initiated  but  not  completed.  The  results  for  TNO2  showed  phase  dark  spores  that  have   lost  their  original  shape.  This  might  imply  that  the  spores  attempting  to  grow  out,  but  can   not  complete  outgrowth.  It  might  also  mean  that  the  spores  are  continuing  water  uptake   after   germination   has   completed,   which   distorts   their   shape.   Similar   results   were   obtained   in   the   results   for   TNO3   and   TNO5.   However,   in   these   results   the   phase   dark   spores   have   shed   their   coat   as   well   and   thus   have   proceeded   to   outgrowth,   but   seem   unable   to   develop   into   a   vegetative   cell.   It   can   be   assumed   that   these   two   compounds   target   a   different   process   than   TNO2.   The   process   inhibited   would   have   to   take   place   after  shedding  of  the  spore  coat.    It  can  be  concluded  that  after  treatment  with  TNO3  and   TNO5  outgrowth  is  initiated,  but  not  completed.  Lastly,  the  results  after  treatment  with   TNO3  also  show  some  vegetative  cells.  This  might  indicate  two  situations:  either  TNO3   does  not  have  an  effect  on  outgrowth  at  all,  or  it  is  a  slower  acting  compound.  It  seems   unlikely   that   TNO3   does   not   have   an   effect   on   outgrowth,   as   the   killing   curves   and   oxidative   metabolism   assay   show   opposing   results.   This   suggests   more   strongly   that   TNO3  is  a  slow  acting  compound,  which  would  allow  for  some  spores  to  germinate  and   grow  out  before  the  compound  starts  working.  Interestingly,  the  vegetative  cells  found   after  incubation  with  TNO3  do  not  divide.  Whether  this  is  due  to  the  general  habit  of  B.   subtilis  spores  to  take  some  time  over  division  or  due  to  an  effect  of  TNO3  is  not  known.   This  implies  the  need  for  repetition  of  this  experiment  for  TNO3  with  an  incubation  time   of  more  than  120  min,  to  determine  whether  the  elongated  vegetative  cells  divide  in  the   end.  To  research  if  TNO3  prevents  the  division  of  daughter  cells,  the  use  of  a  DNA  and  a   cell  membrane  dye  in  a  future  experiment  could  be  employed.  The  combination  of  two   such  dyes,  for  example  DAPI  and  Nile  Red,  would  be  able  to  determine  whether  there  is  

(22)

 

22  

DNA   replication   or   initiation   of   the   division   into   daughter   cells.   This   also   indicates   a   general   shortcoming   of   this   experiment:   after   120   minutes   an   effect   of   the   TNO   compounds   is   found,   but   it   is   unknown   what   happens   when   the   incubation   time   is   extended.   These   results   might   also   explain   why   the   TNO   compounds   only   show   their   effect  after  120  minutes  in  the  oxidative  metabolism  assay  and  the  time-­‐kill  assay:  before   the  time  point  of  120  minutes,  germination  has  not  yet  taken  place.  As  the  compounds   show  their  effect  in  the  outgrowth  stage,  it  makes  sense  that  no  effects  would  be  found   after  60  min  (Pandey  R.  ,  Ter  Beek,  Vischer,  Smelt,  Brul,  &  Manders,  2013).  A  hypothesis   to   explain   the   effect   on   outgrowth   and   not   on   germination   might   be   that   the   TNO   compounds  can  not  pass  the  spore  cortex.  As  the  spore  cortex  is  lost  in  germination,  the   spores   might   only   be   susceptible   to   the   compounds   after   germination.   In   conclusion   it   can  be  said  that  all  the  TNO  compounds  inhibit  outgrowth,  but  that  they  do  not  all  have   the  same  effect  on  this  process.  

To   find   out   more   about   how   the   TNO   compounds   affect   the   spore,   a   propidium   iodide   staining   was   done.   A   peak   in   fluorescence   indicates   that   the   membrane   is   damaged.  If  the  membrane  is  damaged  the  membrane  potential  will  be  lost,  which  means   that  the  cells  become  less  efficient  in  their  metabolism,  as  the   electron  transport  chain   can   not   take   place.   This   means   that   not   all   the   available   ATP   can   be   harvested   from   nutrients.   The   results   show   fluorescence   in   most   of   the   spores   treated   with   TNO1   and   TNO6.  This  indicates  that  the  membrane  integrity  is  compromised  after  treatment  with   these  TNO  compounds.  Whether  the  membrane  is  the  target  of  the  compounds  or  that  it   gets   compromised   as   a   result   of   other   processes   being   targeted,   can   not   be   said   from   these  images.  It  can  not  be  concluded  therefor  that  the  compounds  target  the  membrane.   However,  the  results  show  that  with  TNO2,  TNO3,  TNO4  and  TNO5  the  membrane  is  still   intact  in  the  majority  of  the  cells.  Therefore  further  research  is  needed  to  determine  how   these   compounds   affect   the   spores,   as   the   results   of   the   oxidative   metabolism   assay   showed   that   the   oxidative   metabolism   is   affected.   It   would   also   be   useful   to   do   this   experiment   again,   as   in   this   research   study   only   one   biological   repeat   was   done.   Also   more  cells  could  be  counted  when  this  experiment  would  be  repeated,  leading  to  more  

(23)

representative  results.  It  might  be  useful  to  do  a  repeat  of  this  experiment  using  SYTOX   Green  as  a  staining,  to  validate  the  results  obtained  using  propidium  iodide  as  a  staining.         The  results  for  the  cell  count  show  that  treatment  with  TNO1,  TNO2,  TNO4  and   TNO6   shows   a   homogenous   effect.   This   makes   these   compounds   especially   interesting   for   the   food   industry,   where   homogenous   effects   are   desired.   Heterogeneous   effects   might  lead  to  the  presence  of  spores  that  are  not  affected  and  can  germinate  and  grow   out   in   a   later   stadium   anyway.   However,   the   images   taken   and   counted   might   not   be   representative  for  the  entire  cell  population,  because  prior  to  the  taking  of  the  images,   areas  with  a  large  amount  of  cells  were  selected.  A  repeat  of  this  experiment,  focused  on   representative  counting,  would  be  useful  to  determine  how  homogenous  the  effects  of  all   the  compounds  really  are.      

 

Future  research  

In  further  research,  different  stainings  might  be  used  to  see  how  the  TNO  compounds  are   affecting  the  spores.  Firstly  a  DiOC6  staining  could  be  used  to  show  membrane  potentials   (Laflamme,   et   al.,   2005).   All   the   compounds   damage   the   spores’   oxidative   metabolism,   which   suggests   that   the   membrane   potential   might   be   lost.   However,   the   PI   staining   shows   that   there   is   no   loss   of   membrane   integrity   for   some   of   the   TNO   compounds.   A   possible   explanation   could   be   that   the   membrane   is   still   integer,   but   has   lost   its   membrane  potential.  Laflamme  et  al.  also  suggest  that  one  of  the  first  events  to  happen  in   germination  is  the  activation  of  the  membrane  potential:  production  of  ATP  was  detected   3-­‐4   minutes   after   the   start   of   germination   (2005).   An   advantage   of   using   the   DiOC6   staining  is  that  it  works  quickly  and  is  able  to  detect  these  quick  effects.    If  the  membrane   potential  is  indeed  damaged  by  some  of  the  TNO  compounds,  this  means  that  a  process  in   germination  is  affected,  but  that  its  effects  are  only  found  in  the  outgrowth  stage.  

Secondly,   it   is   important   to   find   out   what   the   toxic   effects   of   the   used   TNO   compounds  are  on  humans.  This  was  already  proven  to  be  important  by  Robert  Koch  in   the  19th  century:  after  discovering  that  mercuric  is  effective  in  killing  Bacillus  anthracis   spores,  he  treated  animals  infected  with  such  spores  by  injecting  mercuric  chloride.  This   however  caused  the  death  of  the  treated  animals  because  of  mercury  poisoning  (Franklin  

(24)

 

24  

&  Snow,  2005).  As  this  project  focused  on  researching  antimicrobial  compounds  for  the   food  industry,  it  should  be  researched  if  and  in  which  concentrations  these  compounds   can  safely  be  ingested.    

Lastly,  it  would  be  interesting  to  research  whether  these  TNO  compounds  affect   germination  and/or  outgrowth  in  other  spore  forming  bacteria  as  well.  Especially  their   effect  on  pathogenic  bacteria,  like  Clostridium  difficile  or  Bacillus  cereus,  is  of  interest,  as   these  kind  of  pathogenic  bacteria  pose  the  greatest  threat  to  food  safety.  The  experiments   that  should  be  done  to  investigate  this  would  be  similar  to  the  experiments  used  in  this   research  study.    

 

Conclusion  

In   conclusion   can   be   said   that   the   TNO   compounds   show   promising   effects   for   the   inhibition   of   outgrowth   in   B.   subtilis   spores.   The   effects   of   all   the   compounds   are   bactericidal.   TNO1,   TNO2,   TNO4   and   TNO6   show   homogeneity   in   the   inhibition   of   outgrowth.  This  is  desirable  for  a  treatment  used  in  the  food  industry,  as  prevention  of   outgrowth  hinders  the  formation  of  vegetative  cells  that  could  lead  to  food  spoilage  or   produce  toxins.    The  current  results  seem  promising  and  future  research  might  lead  to   the  application  of  these  antimicrobial  compounds  in  the  food  industry.    

                       

(25)

References  

Abhyankar,  W.,  Ter  Beek,  A.,  Dekker,  H.,  Kort,  R.,  Brul,  S.,  &  de  Koster,  C.  G.  (2011).  Gel-­‐ free  proteomic  identification  of  the  Bacillus  subtilis  insoluble  spore  coat  protein  fraction.   Proteomics  ,  11(23),  4541-­‐4550.  

 

Berridge,  M.  V.,  Herst,  P.  M.,  &  Tan,  A.  S.  (2005).  Tetrazolium  dyes  as  tools  in  cell  biology:   New  insights  into  their  cellular  reduction.  .  Biotechnology  Annual  Review  ,  11,  127-­‐152.    

Cortezzo,  D.  E.,  Setlow,  B.,  &  Setlow,  P.  (2004).  Analysis  of  the  action  of  compounds  that   inhibit   the   germination   of   spores   of   Bacillus   species.   Journal   of   Applied   Microbiology   ,   96(4),  725–741.  

 

Franklin,   T.   J.,   &   Snow,   G.   A.   (2005).   The   development   of   antimicrobial   agents   past,   present  and  future.  In  T.  J.  Franklin,  &  G.  A.  Snow,  Biochemisry  and  Molecular  Biology  of   Antimicrobial  Drug  Action  (pp.  1-­‐15).  New  York:  Springer  Science  &  Business  Media.    

Havelaar,  A.  H.,  Brul,  S.,  de  Jong,  A.,  de  Jonge,  R.,  Zwietering,  M.  H.,  &  ter  Kuile,  B.  H.  (2010).   Future   challenges   to   microbial   food   safety.   International  Journal  of  Food  Microbiology   ,   130,  S97-­‐S94.  

 

Keijser,  B.  J.,  Ter  Beek,  A.,  Rauwerda,  H.,  Schuren,  F.,  Montijn,  R.,  van  der  Spek,  H.,  et  al.   (2007).  Analysis  of  Temporal  Gene  Expression  during  Bacillus  subtilis  Spore  Germination   and  Outgrowth.  Journal  of  Bacteriology  ,  189  (9),  3624-­‐3634.  

 

van  Kreijl,  C.  F.,  Knaap,  A.  G.,  Raaij,  J.  M.,  Busch,  M.  C.,  Havelaar,  A.  H.,  Kramers,  P.  G.,  et  al.   (2006).   Our   foud,   our   health   -­‐   healthy   diet   and   safe   food   in   the   Netherlands.   National   Institute  for  Public  Health  and  Environment,  Bilthoven.  

 

Krishan,   A.   (1975).   Rapid   flow   cytofluorometric   analysis   of   mammalian   cell   cycle   by   propidium  iodide  staining.  The  Journal  of  Cell  Biology  ,  66  (1),  188-­‐193.  

(26)

 

26  

Luu,   S.,   Cruz-­‐Mora,   J.,   Setlow,   B.,   Feeherry,   F.   E.,   Doona,   C.   J.,   &   Setlow,   P.   (2015).   The   Effects  of  Heat  Activation  on  Bacillus  Spore  Germination,  with  Nutrients  or  under  High   Pressure,  with  or  without  Various  Germination  Proteins.  81  (12),  2927-­‐2938.  

 

Laflamme,   C.,   Ho,   J.,   Veillette,   M.,   de   Latrémoille,   M.-­‐C.,   Verreault,   D.,   Mériaux,   A.,   et   al.   (2005).   Flow   cytometry   analysis   of   germinating   Bacillus   spores,   using   membrane   potential  dye.  Archives  of  Microbiology  ,  183  (2),  107-­‐112.  

 

Pandey,  R.,  Ter  Beek,  A.,  Vischer,  N.  O.,  Smelt,  J.  P.,  Brul,  S.,  &  Manders,  E.  M.  (2013).  Live   Cell   Imaging   of   Germination   and   Outgrowth   of   Individual   Bacillus   subtilis   Spores;   the   Effect  of  Heat  Stress  Quantitatively  Analyzed  with  SporeTracker.  PLOS  ONE  ,  8  (3).  

 

Pandey,  R.,  Ter  Beek,  A.,  Vischer,  N.  O.,  Smelt,  J.  P.,  Kemperman,  R.,  Manders,  E.  M.,  et  al.   (2015).  Quantitative  analysis  of  the  effect  of  specific  tea  compounds  on  germination  and   outgrowth  of  Bacillus  subtilis  spores  at  single  cell  resolution.  Food  Microbiology  ,  45A,  63-­‐ 70.  

 

Setlow,  B.,  Loshon,  C.,  Genest,  P.,  Cowan,  A.,  Setlow,  C.,  &  Setlow,  P.  (2002).  Mechanisms  of   killing   spores   of   Bacillus   subtilis   by   acid,   alkali   and   ethanol.   Journal   of   Applied   Microbiology  ,  92  (2),  362-­‐375.  

 

Setlow,  P.  (2003).  Spore  germination.  Current  Opinion  in  Microbiology  ,  6(6),  550-­‐556.    

Setlow,  P.  (2006).  Spores  of  Bacillus  subtilis:  their  resistance  to  and  killing  by  radiation,   heat  and  chemicals.  Journal  of  Applied  Microbiology  ,  101(3),  514–525.  

 

Setlow,  P.  (2000).  Resistance  of  Spores.  In  G.  Storz,  &  R.  Hengge-­‐Aronis,  Bacterial  Stress   Responses  (pp.  217-­‐230).  Washington,  D.C.:  ASM  PRESS.  

(27)

Sietske,   A.,   &   Diderichsen,   B.   (1991).   On   the   safety   of   Bacillus   subtilis   and   B.   amyloliquefaciens:  a  review  .  Applied  Microbiology  and  Biotechnology  ,  36(1),  1-­‐4.  

 

Stein,  T.  (2005).  Bacillus  subtilis  antibiotics:  structures,  syntheses  and  specific  functions.   Molecular  Microbiology  (56(4)),  845-­‐857.  

 

Twentyman,  P.  R.,  &  Luscombe,  M.  (1987).  A  study  of  some  variables  in  a  tetrazolium  dye   (MTT)  based  assay  for  cell  growth  and  chemosensitivity.  British  Journal  of  Cancer  ,  56  (3),   279-­‐285.  

 

Tewari,  A.,  &  Abdullah,  S.  (2014).  Bacillus  cereus  food  poisoning:  international  and  Indian   perspective.  Journal  of  Food  Science  and  Technology  ,  1  (12),  2500-­‐2511.  

 

Wolff,   R.   A.,   Chien,   G.   L.,   &   van   Winkle,   D.   M.   (2000).   Propidium   Iodide   Compares   Favorably   with   Histology   and   Triphenyl   Tetrazolium   Chloride   in   the   Assessment   of   Experimentally-­‐induced   Infarct   Size.   Journal   of   Molecular   Cell   Cardiology   ,   32   (2),   225-­‐ 232.    

 

 

             

(28)

 

28  

Appendices  

Appendix  A:  Sporulation  protocol   Day  1:  

-­‐ Streak  out  bacterial  culture  on  a  TSB  solid  medium  and  incubate  overnight  at  37°   C.  

  Day  2:  

-­‐ Select  a  single  colony  and  transfer  it  to  5  ml  TSB  (pH  adjusted  to  7.5)   -­‐ Incubate  culture  at  37°  C,  200  rpm  until  the  OD600  reaches  0.3-­‐0.4.    

-­‐ Make  a  serial  dilution  of  the  culture  ranging  from  10-­‐1  to  10-­‐7  in  MOPS  medium   (pH  7.5).  Incubate  the  cultures  at  37°  C,  200  rpm  overnight  and  pre-­‐warm  a  20  ml   MOPS  culturing  medium  in  the  37°  C  incubater  for  the  next  day’s  inoculation.      

Day  3:  

-­‐ Select  one  of  the  dilutions,  incubated  the  previous  day,  with  an  OD600  of  0.3-­‐0.4.     -­‐ Inoculate  1  ml  of  this  culture  intho  the  pre-­‐warmed  20  ml  MOPS  medium.    

-­‐ Incubate   20   ml   of   the   culture   at   37°   C,   200   rpm   until   an   OD600  of   0.3-­‐0.4   was   reached.  

-­‐ Inoculate  2.5/5  ml  culture  into  250/500  ml  MOPS  medium.    

-­‐ Incubate  the  final  sporulation  culture  at  37°  C,  200  rpm  for  96  hours.      

Day  7:  

-­‐ Determine   the   sporulation   yield.   A   99.9%   spore   yield   is   desired   (spores/vegetative  cells).    

-­‐ Pellet  the  spores  at  5000  rpm  for  15  min  at  4°  C.  Discard  the  supernatant.     -­‐ Resuspend  the  pellet  in  40  ml  sterile  MilliQ  water.  Add  1%  (v/v)  Tween.     -­‐ Pellet  the  spores  at  5000  rpm  for  15  min  at  4°  C.  discard  the  supernatant.    

-­‐ Resuspend  the  pellet  in  40  ml  sterile  MilliQ  water.  Determine  the  spore  harvesting   yield.    

(29)

-­‐ Pellet  the  spores  at  5000  rpm  for  15  min  at  4°  C.  Discar  the  supernatant.  Repeat   this  wash  2  to  3  times.    

-­‐ Finally  resuspend  the  spore  pellet  in  40  ml  1x  MOPS  and  store  at  4°  C  for  4  weeks.   Aliquotes  of  the  spores  can  be  stored  at  -­‐80°  C  for  8  weeks.    

                                                 

Referenties

GERELATEERDE DOCUMENTEN

Hoewel de overeenkomst niet per- fect is (zie voornamelijk de eerste meetgolf), kan men er vrede mee hebben, De voorspelde draagpercentages voor alle cellen zijn

Unlike for cell autonomous effects, the non-cell autonomous protection evoked by DNAJB6 expression in astrocytes is not associated with a reduction in the load

Het negeren van de groep met infectie en milde sepsis door het herdefiniëren van sepsis in de nieuwe Sepsis-3 definities zal niet lijden tot betere uitkomsten bij deze patiënten.

Akinleye SO, Falade CO, Ajayi IO (2009) Knowledge and utilization of intermittent preventive treatment for malaria among pregnant women attending antenatal clinics in primary

treat* OR treatment seeking behav* OR health seeking behav* OR care seeking behav* OR treatment seeking practice* OR health seeking practice* OR care seeking practice* OR

It is clear that of the 17 galaxies in the DA 240 group, 11 lie along the major axis of the radio source, i.e., three in the eastern lobe, five in the western lobe, the cen- tral

Liberal Approach to Fluid Therapy of Septic Shock in Intensive Care (CLASSIC) trial, which was designed to evaluate whether either restrictive or (more) liberal fluid

qRT-PCR shows a clear decrease in expression of HDAC1, 2, 3 and 8 at mRNA level with knockdown levels in DLD-1 being better than in WiDr (Fig. Apoptotic cells induced by knockdown