• No results found

Polymer-Based Construction Materials for Civil Engineering

N/A
N/A
Protected

Academic year: 2021

Share "Polymer-Based Construction Materials for Civil Engineering"

Copied!
3
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

Citation for this paper:

Yoo, D., Banthia, N., Gupta, R., Kim, Y. H., & Bhutta, A. (2019). Polymer-Based Construction Materials for Civil Engineering. International Journal of Polymer Science, 2019, 1-2. https://doi.org/10.1155/2019/8914073.

UVicSPACE: Research & Learning Repository

_____________________________________________________________

Faculty of Engineering

Faculty Publications

_____________________________________________________________

Polymer-Based Construction Materials for Civil Engineering

Doo-Yeol Yoo, Nemkumar Banthia, Rishi Gupta, Young Hoon Kim, & Aamer Bhutta March 2019

© 2019 Doo-Yeol Yoo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. https://creativecommons.org/licenses/by/4.0/

This article was originally published at:

(2)

Editorial

Polymer-Based Construction Materials for Civil Engineering

Doo-Yeol Yoo

,

1

Nemkumar Banthia

,

2

Rishi Gupta

,

3

Young Hoon Kim

,

4

and Aamer Bhutta

2

1Department of Architectural Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea 2Department of Civil Engineering, The University of British Columbia, 6250 Applied Science Lane, Vancouver, BC, Canada V6T 1Z4 3Department of Civil Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, Canada V8W 2Y2

4Department of Civil and Environmental Engineering, University of Louisville, Louisville, KY 40292, USA

Correspondence should be addressed to Doo-Yeol Yoo; dyyoo@hanyang.ac.kr Received 26 February 2019; Accepted 26 February 2019; Published 31 March 2019

Copyright © 2019 Doo-Yeol Yoo et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

For several decades, numerous studies on the development of polymer-based construction materials for civil engineer-ing applications have been conducted. In recent years, the polymer-based materials are mainly classified into three groups: (1) synthetic fiber-reinforced (cement) composites (FRC), (2) fiber-reinforced polymer (FRP), and (3) poly-mer concrete. The FRC includes several types of discontin-uousfibers made of polypropylene, polyethylene, polyvinyl alcohol, polyester, and so on. It can be effectively adopted for civil structures and buildings to improve postcracking tensile performance, plastic shrinkage crack resistance, fire resistance (preventing spalling), and durability of concrete. In addition, several types of FRPs, that is, FRP reinforcing bar, FRP sheet, and sprayed FRP, have been studied for reinforcing and strengthening civil structures. In spite of their many advantages such as a noncorrosive nature, high specific strength, and electromagnetic neutrality, due to some drawbacks of FRPs, such as high brittleness, poor fire resistance, weak bond characteristics, and excessive creep, their wider practical applications have not occurred. Lastly, a polymer concrete has recently gained attention from engineers to achieve excellent mechanical properties and durability.

Several numbers of experimental and numerical papers addressed new research findings with regard to FRP strengthening systems. Y. Lu et al. investigated the effects of moisture on the initial and long-term bond behavior between a carbonfiber-reinforced polymer (CFRP) and a wet concrete with a water content of 4.73%. They found an important finding that the CFRP and concrete interface under moisture

condition increased during the first few months and then decreased or fluctuated over time in terms of the shear strength and slip capacity. The models suggested by the authors well predicted the interfacial fracture energy and ultimate load of specimens. J.-Y. Lee et al. evaluated the effects of CFRP sheet, steel fiber content, and amount of shear reinforcement on the blast resistance and residual flexural performance of blast-damaged reinforced concrete beams. Using small-diameter steel bars for stirrups with small spacing could decrease the local damages more effec-tively than the large-diameter steel reinforcement. CFRP retrofitting showed insignificant enhancement in ductility of damaged specimens, but it distributed the blast load and protected debris scattering. Steelfibers resulted in increased ductility and enhanced blast resistance against local damages. Therefore, it can be concluded that replacing a damaged concrete cover with steelfiber-reinforced cement composites is adequate for repairing the blast-damaged RC members. J. Slaitas et al. studied a prediction model of crack width and load-carrying capacity of RC beams strengthened with FRP, based on fracture mechanics of solids. Since, at the ultimate stage of crack propagation, the load-carrying capacity of the element is achieved, the load capacity could also be estimated according to the ultimate crack depth. Based on a comparison of experimental and numerical results, the proposed analytical crack model can be consid-ered to be used for more precise predictions of flexural crack propagation and load-carrying capacity.

A novel polymer-based repairing system for RC struc-tures has been developed by T. Abe et al. They particularly

Hindawi

International Journal of Polymer Science Volume 2019, Article ID 8914073, 2 pages https://doi.org/10.1155/2019/8914073

(3)

adopted a novel polymer repairing system for enhancing fatigue resistance of RC slabs. In the repair method, two types of adhesives, i.e., a penetrable adhesive and a high-durability adhesive, were applied, and the fatigue resistance of repaired RC slabs was evaluated using wheel load running tests. The repair method proposed provided significantly better fatigue resistance than the conventional construction method, and this study thus proposed two wet repair cycles and one dry repair cycle with reinforcement measures to improve the load-bearing performance.

Discontinuous polymericfibers were also considered for enhancing the mechanical properties of concrete by T.-F. Yuan et al. They investigated the effects of polyethylene (PE) and steelfibers on the compressive and flexural perfor-mance of no-slump high-strength concrete (HSC) and reported that the hybrid use of steel and short PEfibers in the no-slump HSC was most effective in improving the com-pressive and flexural strengths, energy absorption capacity, andfiber synergy.

Lastly, H.-S. Jung et al. have conducted experimental and numerical studies on evaluating the feasibility of using concrete-filled steel tube (CFT) columns from Korean Build-ing Code (KBC2016). They adopted a high-strength steel with a yield strength of 800 MPa and a steelfiber-reinforced high-strength concrete and reported that due to the relatively large contribution of steel to strength, afilled concrete did not to bring any significant changes of strength and strain. In addition, the maximum strain of a core concrete increased and became larger than that of the steel tube as 100 MPa concrete and steelfibers were used. The maximum permissi-ble width-to-thickness ratio of CFT was found to decrease as the concrete strength increased and increased after steel fiber reinforcement.

We hope that readers of this special issue can obtain use-ful experimental and numerical results and discover recent research trends with regard to polymer-based construction materials for civil engineering. Hopefully, their academic curiosities and difficulties can also be solved by the valuable research results in this special issue.

Conflicts of Interest

The editors declare that they have no conflicts of interest regarding the publication of this special issue.

Acknowledgments

We would like to thank all authors who contributed to this special issue. This publication would not be possible without the participation of our expert reviewers, who provided vital constructive feedback and criticism through-out the review process.

Doo-Yeol Yoo Nemkumar Banthia Rishi Gupta Young Hoon Kim Aamer Bhutta

Referenties

GERELATEERDE DOCUMENTEN

In conclusion, a viable biodegradable interior packaging was designed and tested that fits the die- cutting and folding-gluing production process at Van de Steeg... 66 In order

In this paper, chemical composition uniformity in amorphous/nanocrystallization medical-grade stainless steel (ASTM ID: F2581) sintered with a Mn–Si additive was studied via

processen, die ор hun beurt weer de procesgroepen van het onderliggende niveau vormen. De procesgroepen

In this paper a new clustering model is introduced, called Binary View Kernel Spectral Clustering (BVKSC), that performs clustering when two different data sources are

De totale kosten per jaar gedeeld door 12 levert de kosten per maand op.. Bij een nieuwe auto is A groter, G zal kleiner zijn bij een

We computed the Pearson’s product moment correlation coefficients between the three dimensions of burnout (emotional exhaustion, depersonalisation and personal accomplishment)

As shown, only the variables knowledge about correct condoms use and sexual risk behaviour were associated with the respective outcome variable (condom use versus condom refusal) in

Di Fabio and Palazzeschi (2009) confirmed their hypothesis that scholastic success can be predicted through the addition of personality traits to fluid intelligence. In