• No results found

Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions

N/A
N/A
Protected

Academic year: 2021

Share "Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions"

Copied!
13
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV

pp collisions

Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Dufour, L.;

Mulder, M; Onderwater, C. J. G.

Published in:

Physics Letters B

DOI:

10.1016/j.physletb.2019.07.036

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date:

2019

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Aaij, R., Adeva, B., Adinolfi, M., Ajaltouni, Z., Akar, S., Albrecht, J., Alessio, F., Dufour, L., Mulder, M.,

Onderwater, C. J. G., Pellegrino, A., Tolk, S., van Veghel, M., & LHCb Collaboration (2019). Measurement

of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions. Physics

Letters B, 797, [UNSP 134789]. https://doi.org/10.1016/j.physletb.2019.07.036

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Measurement

of

the

CP -violating

phase

φ

s

from

B

0

s

J

/

ψ

π

+

π

decays

in

13 TeV

pp collisions

.

LHCb

Collaboration

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Article history:

Received26April2019

Receivedinrevisedform15July2019 Accepted15July2019

Availableonline18July2019 Editor: M.Doser

Decays of B0s and B0s mesons into J/ψ

π

+

π

− final statesare studiedinadata samplecorresponding to 1.9 fb−1 of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependentamplitudeanalysisisused todeterminethe final-stateresonancecontributions, the CP -violating phase φs= −0.057±0.060±0.011 rad, the decay-width difference between the heavier massB0

s eigenstateandtheB0mesonof−0.050±0.004±0.004 ps−1,andtheCP -violatingparameter |λ| =1.01+00..0806±0.03, wherethefirstuncertaintyisstatisticalandthesecondsystematic.Theseresults arecombinedwithpreviousLHCbmeasurementsinthesamedecaychannelusing7 TeVand8 TeVpp collisionsobtainingφs=0.002±0.044±0.012 rad,and|λ|=0.949±0.036±0.019.

©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

MeasurementsofCP violationinfinalstatesthatcanbe popu-latedbothbydirectdecayandviamixingprovideanexcellentway oflookingforphysicsbeyondtheStandardModel(SM)[1].Asyet unobservedheavybosons,light bosonswithextremelysmall cou-plings,orfermionscanbepresentvirtuallyinquantumloops,and thusaffect therelative CP phase. Direct decays into non-flavour-specificfinalstatescaninterferewiththosethatundergo B0

s

B0s mixingpriortodecay.ThisinterferencecanresultinCP violation.

In certain B0s decays one CP -violating phase that can be mea-sured,called

φ

s,canbeexpressedintermsofCabibbo–Kobayashi– Maskawa matrix elements as

2arg



VtsVtb

/

VcsVcb



. It is not predictedintheSM,butcanbeinferredwithhighprecision from otherexperimentaldatagivingavalueof

36

.

5+11..32mrad [2].This numberisconsistent withprevious measurements,whichdidnot have enough sensitivity to determine a non-zero value [3–7]. In thispaperwe presenttheresults ofa newanalysisofthe B0

s

J

π

+

π

− decay using data from 13 TeV pp collisions collected usingthe LHCbdetectorin2015and2016.1 Theexistence ofthis decayanditsuseinCP -violationstudieswassuggestedinRef. [8].

2. Detectorandsimulation

The LHCb detector [9,10] is a single-arm forward spectrome-tercoveringthe pseudorapidity range2

<

η

<

5,designedforthe

1 Inthis papermention ofaparticular finalstateimplies useofthe

charge-conjugatestate,exceptwhendealingwith

CP -violating

processes.

studyofparticles containingb or c quarks.The detectorincludes ahigh-precisiontrackingsystemconsistingofasilicon-stripvertex detector surroundingthe pp interaction region [11], a large-area silicon-stripdetectorlocated upstreamofa dipole magnetwitha bending power of about 4 Tm, andthree stations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. The tracking systemprovides a measurement of themomentum,

p,ofchargedparticleswitharelativeuncertaintythatvariesfrom 0.5% at low momentum to 1.0% at 200 GeV.2 The minimum

dis-tance of a track to a primary vertex (PV), the impact parameter (IP),ismeasuredwitharesolutionof

(

15

+

29

/

pT

)

μ

m,wherepTis

thecomponentofthemomentumtransversetothebeam,in GeV. Different types ofcharged hadronsare distinguished using infor-mationfromtwo ring-imagingCherenkovdetectors [12]. Photons, electronsandhadronsareidentified byacalorimetersystem con-sistingofscintillating-padandpreshowerdetectors,an electromag-neticandahadroniccalorimeter.Muonsareidentifiedbyasystem composedofalternatinglayersofironandmultiwireproportional chambers [13].The onlineeventselection isperformedby a trig-ger,whichconsistsofahardwarestage,basedoninformationfrom thecalorimeterandmuon systems,followed bya softwarestage, whichappliesafulleventreconstruction.

At the hardware trigger stage, events are required to have a muon with high pT or a hadron, photon or electron with high

transverseenergyinthecalorimeters.Thesoftwaretriggeris com-posedof two stages,the firstof whichperforms a partial recon-struction and requires either a pair of well-reconstructed,

oppo-2 Weusenaturalunitswhereh¯=c=1. https://doi.org/10.1016/j.physletb.2019.07.036

0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

sitely chargedmuonshavingan invariant massabove 2

.

7 GeV,or a single well-reconstructed muon with pT

>

1 GeV and have a

large IP significance

χ

2

IP

>

7

.

4. The latter is defined as the

dif-ference in the

χ

2 of the vertex fit fora given PVreconstructed

withand withoutthe considered particles. The second stage ap-pliesafulleventreconstructionandforthisanalysisrequirestwo opposite-sign muons to form a good-quality vertex that is well-separatedfromallofthePVs,andtohaveaninvariantmasswithin

±

120 MeV oftheknown J

mass [14].

Simulationisrequiredtomodeltheeffects ofthe detector ac-ceptanceandthe imposed selection requirements.In the simula-tion, pp collisionsaregeneratedusingPythia[15] withaspecific LHCb configuration [16].Decaysofunstableparticlesaredescribed by EvtGen [17], in which final-state radiation is generated us-ing Photos [18]. The interaction of the generated particles with thedetector,anditsresponse,areimplementedusingtheGeant4 toolkit [19] asdescribedinRef. [20].

3. Decayamplitude

TheresonancestructureinB0s andBs0

J

π

+

π

−decayshas beenpreviouslystudiedwithatime-integratedamplitudeanalysis using7and8 TeV pp collisions [21]. Thefinal statewas foundto becompatiblewithbeingentirelyCP -odd,withtheCP -evenstate fractionbelow2

.

3%at95%confidencelevel,whichallowsthe de-terminationofthe decaywidthofthe heavy B0s masseigenstate,



H.The possible presenceofa CP -evencomponentistakeninto

accountwhendetermining

φ

s[22]. Thetotaldecayamplitude fora

( ) B0

s mesonatdecaytimeequal to zero is assumed to be the sum over individual

π

+

π

− reso-nanttransversityamplitudes[23],andonenonresonantamplitude, witheach transversity componentlabelledas Ai ( Ai). Because of the spin-1 J

meson in the final state, the three possible po-larizations of the J

generate longitudinal (0), parallel (



) and perpendicular (

) transversity amplitudes.When the

π

+

π

− pair formsaspin-0statethefinalsystemonlyhasalongitudinal com-ponent,andthusisapure CP eigenstate.Theparameter

λ

i

qp

Ai

Ai,

relates CP violation in the interference between mixingand de-cayassociated withthe polarizationstate i for eachresonance in the final state. Here the quantities q and p relate the mass and flavoureigenstates, p

≡ 

B0

s

|

BL



,andq

≡ 

B0s

|

BL



,where

|

BL



isthe

lightermasseigenstate [1].Thetotalamplitudes

A

and

A

canbe expressedasthesumsoftheindividual

( ) B0s amplitudes,

A

=



Ai and

A =



qpAi

=



λ

iAi

=



η

i

i

|

e i

sAi,with

ηi

beingtheCP

eigenvalue of the state. For each transversity state i there is a

CP -violating phase

φ

si

≡ −

arg

(

η

i

λ

i

)

[24]. Assuming that CP vio-lationin thedecay isthe same forall amplitudes,then

λ

η

i

λ

i and

φ

s

≡ −

arg

(λ)

.Using

|

p

/

q

|

=

1,thedecayratesforB0s and B0s intothe J

π

+

π

−finalstateare3

( )

 (

t

)

e−st



|

A

|

2

+ |

A

|

2 2 cosh



st 2

±

|

A

|

2

− |

A

|

2 2 cos

(

mst

)

R

e

(

A

A

)

sinh



st 2

I

m

(

A

A

)

sin

(

m st

)



,

(1)

where the – sign before the cos

(

mst

)

term and

+

signbefore the sin

(

mst

)

term apply to

(

t

)

,



s

≡ 

L

− 

H is the

decay-width difference between the light and the heavy mass eigen-states,

ms

mH

mL isthe correspondingmassdifference, and



s

≡ (

L

+ 

H

)/

2 istheaverageB0s mesondecaywidth [26].

3 ThelatestLHCbmeasurementdetermined|p

/q|2=1

.0039±0.0033 [25].

For J

decays to

μ

+

μ

− final states the Ai amplitudes are themselves functionsoffourvariables:the

π

+

π

− invariant mass

mππ , and three angular variables

≡ (

cos

θ

π π

,

cos

θ

J/ψ

,

χ

)

, de-fined in the helicity basis. These angles are defined as

θ

π π

be-tween the

π

+ directioninthe

π

+

π

− restframe withrespect to the

π

+

π

− directionin the B0

s restframe,

θ

J/ψ betweenthe

μ

+ directioninthe J

restframe withrespecttothe J

direction in the B0

s rest frame,and

χ

betweenthe J

and

π

+

π

− decay planesintheB0

s restframe[22,24].(Thesedefinitionsarethesame for B0s and B0s,namely,using

μ

+and

π

+ todefine theanglesfor both B0s and B0s decays.)The explicitforms ofthe

|

A(

mππ

,

)

|

2,

|

A(

mππ

,

)

|

2, and

A

(

mππ

,

)A(

mππ

,

)

terms in Eq. (1) are giveninRef. [22].

The analysis proceedsby performing an unbinned maximum-likelihoodfittothe

π

+

π

− massdistribution,thedecaytime,and helicityanglesofB0s candidatesidentifiedasB0s orB0s bya flavour-taggingalgorithm[27].4 ThefitprovidestheCP -evenandCP -odd

components, and since we include the initial flavour tag, the fit also determines the CP -violating parameters

φ

s and

|λ|

, andthe decaywidth.Inordertoproceed,weneedtoselectacleansample of B0s decays,determineacceptancecorrections,performa calibra-tionofthedecay-timeresolutionineacheventasafunctionofits uncertainty,andcalibratetheflavour-taggingalgorithm.

4. Selectionrequirements

The selection of J

π

+

π

− right-sign (RS), and wrong-sign (WS) J

π

±

π

± final states, proceedsintwo phases. Initiallywe impose loose requirements and subsequently use a multivariate analysisto furthersuppressthecombinatorial background.In the first phase we requirethat the J

decaytracks beidentified as muons, have pT

>

500 MeV, and form a good vertex with

ver-tex fit

χ

2 lessthan16.The identifiedpions are requiredtohave

pT

>

250 MeV,notoriginatefromanyPV,andforma goodvertex

withthemuons.Theresulting B0s candidateisassignedtothePV forwhichithasthesmallest

χ

2

IP.Furthermore,werequirethatthe

smallest

χ

2

IPisnotgreaterthan25.TheB 0

s candidateisrequiredto haveitsmomentumvectoralignedwiththevectorconnectingthe PVtothe B0s decayvertex,andtohaveadecaytime greaterthan 0.3 ps.Reconstructedtrackssharingthesamehitsarevetoed.

Inaddition,backgroundfromB+

J

K+ decays,5 wherethe K+ is misidentified as a

π

+ and combined witha random

π

−, is vetoed by assuming that each detected pion is a kaon, com-puting the J

K+ mass, andremoving thosecandidates that are within

±

36 MeV of theknown B+ mass [14]. Backgrounds from

B0

J

K+

π

− or B0s

J

K+K− decays with misidentified kaons result inmasses lower than the B0s peak andthus do not needtobevetoed.

For the multivariate part of the selection, we use a Boosted DecisionTree,BDT [28,29],withtheuBoostalgorithm [30].The al-gorithmisoptimizedtonotfurtherbiasacceptanceonthevariable

cos

θ

π π .ThevariablesusedtotraintheBDTarethedifference

be-tween themuon andpionidentifications forthemuon identified withlowerquality,the pT oftheB0s candidate,thesumofthe pT

of the two pions,and thenatural logarithms of: the

χ

2 IP of each

ofthepions,the

χ

2 ofthe B0

s vertexanddecaytreefits[31],and the

χ

2

IP oftheB 0

s candidate.Inthefit,the B0s momentumvectoris constrainedtopointtothePV, thetwomuonsareconstrainedto

4 Weutilizethesamelikelihoodconstructionthatweusedtodetermineφ

sand

|λ|in

B

0

sJ/ψK+K−decayswith

K

+K−abovetheφ(1020)massregion [6].

5 Whendiscussingflavour-specificdecays,mentionofaparticularmodeimplies

(4)

Fig. 1. Results ofthesimultaneousfittothe J/ψπ π massdistributionsRS(black points)andWS(greypoints)samples.Thesolid(blue)curveshowsthefittothe RSsample,thelongdashed(red)curveshowsthesignal,thedot-dashed(magenta) curveshows

B

0Jπ+πdecays,thedot-long-dashed(brown)curveshowsthe

combinatorialbackground,thedotted(black)curveshowsthesumof

B

0

sJ/ψη

andΛ0b background,whilethedot-dot-dashed(green)curveshowsthefittoWS

sample.

the J

mass,andallfourtracksareconstrainedtooriginatefrom thesamevertex.

ImplementinguBoostrequiresatrainingprocedure.Data back-groundin the J

π

+

π

− massinterval between200to 250MeV abovethe B0

s massandsimulatedsignalare firstused.Then, sep-aratesamples are used to test the BDT performance. We weight thetraining simulationsamplestomatchthetwo-dimensional B0s

p and pT distributions,andsmearthevertexfit

χ

2,tomatchthe

background-subtractedpreselecteddata.Finally,theminimum re-quirementforBDTpointischosentomaximizesignalsignificance,

S

/

S

+

B,whereS

(

B

)

istheexpectedsignal(background)yields inarangecorrespondingto

±

2

.

5 timesthemassresolutionaround theknownB0s mass [14].

Todeterminethesignal andbackgroundyields wefitthe can-didate B0

s mass distribution. Backgrounds include combinatorics, whoseshape is estimatedusing WS J

π

±

π

± candidates mod-elled by an exponential function, B0s

J

η

(

ρ

0

γ

)

decays

withthe

γ

ignored,and

Λ

0b

J

p K− decayswithbothhadrons misidentified as pions. The latter backgrounds are modelled us-ingsimulation.The B0s signalshapeisparameterizedbyaHypatia function [32], wherethesignalradiative tailparametersare fixed to values obtained from simulation. The same shape parameters are used for the B0

J

π

+

π

− decays, with the mean value shiftedby theknown B0

s and B0 mesonmassdifference [14]. Fi-nally,we fitsimultaneouslybothRSandWScandidates,usingthe simulatedshapefor B0s

J

η

(

ρ

0

γ

)

whoseyieldis allowed

tofloat,andfixingboththesizeandshapeofthe

Λ

0b

J

p K

component. The results of the fit are shown in Fig. 1. We find 33530

±

220 signalB0s within

±

20 MeV oftheB0s masspeak,with apurityof84%.Thesedecaysareusedforfurtheranalysis.Multiple candidatesinthe sameeventhavea rateof0.20%ina

±

20 MeV intervalaroundthe B0s masspeak,andareretained.

Tosubtract thebackground inthe signal region inthe ampli-tude fit we add negatively weighted events from the WS sam-pleto the RSsample, also accountingforthe differing

π π

mass anddecay-timedistributions.Theweightsaredeterminedby com-paring the RS and WS mass distributions in the upper mass sideband (5420

5550 MeV). In addition, a small component of

B0s

J

η

(

η

ρ

0

γ

)

decaysisalsosubtracted,sinceitisabsent

intheWSsample.

5. Detectorefficiencyandresolution

The correlated efficiencies in mππ and angular variables

are determined fromsimulation. Weweight the simulatedsignal eventstoreproducethe B0

s meson pT and

η

distributionsaswell

as the track multiplicity of the events. The latter may influence theefficienciesofthetrackingandparticleidentification.The cal-culatedefficienciesareshowninFig.2alongwiththedetermined efficiency function. The four-dimensional efficiency is parameter-ized by a combination of Legendre and spherical harmonic mo-ments[33],as

ε(

mπ π

,

cos

θ

π π

,

cos

θ

J/ψ

)

=



a,b,c,d



abcdPa

(

cos

θ

π π

)

Ybc

J/ψ

)

Pd



2mπ π

m min π π mmaxπ π

mmin π π

1

,

(2)

where Pa andPd areLegendrepolynomials,Ybc arespherical har-monics,mminπ π

=

2mπ+ andmmaxπ π

=

mB0

s

mJ/ψ, and



abcd are ef-ficiencycoefficientsdeterminedfromweightedaveragesofdecays generateduniformlyoverphasespace [6].

The model gives an excellent representation of the simulated data.Theefficiencyisuniformwithin about

±

4%forcos

θ

J/ψ and about 10% for

χ

variables; however the mππ and cos

θ

π π

vari-ablesshowlargeefficiencyvariationsandcorrelations(seeFig.3), due to the

χ

2

IP

>

4 requirements on the hadrons. The loss of

efficiencyinthelowermππ regioncanbe interpretedasthe pro-jectionof the effectsof cutson

χ

2

IP. Events atcos

θ

π π

= ±

1 and mππ

0

.

6

0

.

8 GeV areatthekinematicboundaryofm2

J/ψπ+.One

ofthepionsisalmostatrestin B0s restframe,andthus thepion points to the PV, resultingin a very small

χ

2

IP forthispion.The

χ

2

IP variableisthemostusefultool tosuppresslarge pion

combi-natorialbackgroundfromthePV.

The reconstruction efficiency is not constant as a function of

B0

s decay time due to displacement requirements applied to the hadronsintheofflineselectionsandon J

candidatesinthe trig-ger.Itisdeterminedusingthecontrolchannel B0

J

K

(

892

)

0,

with K

(

892

)

0

K+

π

−, which is known to have a lifetime of

τ

B0

=

1

.

520

±

0

.

004 ps [14].ThesimulatedB0eventsareweighted

toreproducethedistributions inthedatafor pT and

η

ofthe B0

meson,andtheinvariantmassandhelicityangleofK+

π

−system, aswellasthetrackmultiplicityoftheevents.Thesignalefficiency iscalculatedas

ε

B0s data

(

t

)

=

ε

B0 data

(

t

)

·

ε

B0 s sim

(

t

)/

ε

B0 sim

(

t

)

,where

ε

B0 data

(

t

)

is

the efficiency of the control channel asmeasured by comparing data with the known lifetimedistribution, and

ε

B0s

sim

(

t

)/

ε

B

0

sim

(

t

)

is

theratio ofefficienciesofthe simulatedsignal andcontrolmode after the full triggerand selection chain havebeen applied. This correctionaccountsforthesmalldifferencesinthekinematics be-tweenthesignalandcontrolmodes.Thedetailsofthemethodare explainedinRef. [4].

The acceptance is checked by measuring the decay width of

B+

J

K+ decays. The fitted decay-width difference between the B+ and B0 mesons is



B+

− 

B0

= −

0

.

0475

±

0

.

0013 ps−1,

where the uncertainty is statistical only, in agreement with the knownvalueof

0

.

0474

±

0

.

0023 ps−1[14].

From the measured B0

s candidate momentum and decay dis-tance, the decay time and its event-by-event uncertainty

δ

t are calculated. The calculated uncertainty is imbedded into the res-olution function, which is modelled by the sum of three Gaus-sian functionswithcommonmeansandwidthsproportional toa quadraticfunctionof

δ

t.Theparametersoftheresolutionfunction are determined witha sample of putative prompt J

μ

+

μ

(5)

Fig. 2. Overall efficiencynormalizedtounityfor(a)

m

π π,(b)cosθπ π,(c)cosθJ/ψ and(d)χobservables.Thepointswitherrorbarsarefromthe

B

0sJ/ψπ+π−simulation,

whilethecurvesshowtheprojectionoftheefficiencyfunction.

Fig. 3. Overall efficiencyfor(a)

m

π πvscosθπ πand(b)

m

2J/ψπ+vs

m

2

π π.Theinefficiencyisatthekinematicboundaryof

m

2J/ψπ+wherethepionisalmostatrestinthe

B

0

s

frame.

decays combinedwith two pions ofopposite charge. Taking into account the decay-timeuncertainty distributionof the B0s signal, theaverageeffectiveresolutionisfoundtobe41.5 fs.Themethod isvalidatedusingsimulation;weestimatetheaccuracyofthe res-olutiondeterminationtobe

±

3%.

6. Flavourtagging

Knowledge of the

( )

B0s flavour at production is necessary. We use informationfrom decaysof the other b hadron in the event (opposite-side,OS)andfragmentsofthejetthatproducedthe

( ) B0s mesonthat contain a charged kaon,called same-sidekaon (SSK) [27].TheOStaggerinferstheflavouroftheotherb hadroninthe event from the charges of muons, electrons, kaons, and the net chargeoftheparticlesthatformreconstructedsecondaryvertices. The flavour tag,

q

, takes values of

+

1,

1 or 0 if the signal mesonistaggedasB0s,B0soruntagged,respectively.Thewrong-tag probability,

y

,isestimatedevent-by-eventbasedontheoutputofa

neuralnetwork.Itissubsequentlycalibratedwithdatainorderto relateittothetruewrong-tag probabilityoftheeventbyalinear relationas

ω(y)

=

p0

+

p0 2

+

p1

+

p1 2

· (y − y);

ω(y)

=

p0

p0 2

+

p1

p1 2

· (y − y),

(3)

where p0, p1,

p0 and

p1 arecalibrationparameters,and

ω

(y)

and

ω

(y)

are the calibratedprobabilities for a wrong-tag assign-ment for B0

s and B0s mesons, respectively. The calibration is per-formed separately for the OS and the SSK taggers using B+

J

K+ and B0s

Ds

π

+ decays, respectively. When events are tagged by both the OS and the SSK algorithms, a combined tag decisionisformed.Theresultingefficiencyandtaggingpowersare listedinTable1.

(6)

Table 1

Taggingefficiency,εtag,andtaggingpowergivenasthe

efficiency timesdilution squared, εtagD2, where D =

(1−2ω) for each categoryand the total. The uncer-taintiesonεtagarestatisticalonly,andthoseforεtagD2

containbothstatisticalandsystematiccomponents. Category εtag(%) εtagD2(%)

OS only 11.0±0.6 0.86±0.05 SSK only 42.6±0.6 1.54±0.33 OS and SSK 24.9±0.6 2.66±0.19 Total 78.5±0.7 5.06±0.38 Table 2 Resonanceparameters.

Resonance Mass (MeV) Width (MeV) Source

f0(500) 471±21 534±53 LHCb[38] f0(980) Varied in fits f2(1270) 1275.5±0.8 186.7+22..25 PDG [14] f0(1500) Varied in fits f2 (1525) 1522.2±1.7 78.0±4.8 LHCb [6] f0(1710) 1723+65 139±8 PDG [14] f0(1790) 1790+4030 270+ 60 −30 BES [37]

7.Descriptionofthe

π

+

π

−massspectrum

Wefittheentire

π

+

π

−massspectrumincludingtheresonance contributions listed in Table 2, and a nonresonant (NR) compo-nent.We use an isobarmodel [21]. All resonances are described by Breit–Wigner amplitudes, exceptfor the f0

(

980

)

state, which

ismodelledbya Flattéfunction [34].The nonresonantamplitude istreatedasbeingconstantinmππ .Other theoreticallymotivated amplitude models are also proposed to describe this decay [35, 36]. Theprevious publication [21] usedan unconfirmed f0

(

1790

)

resonance,reported by theBES collaboration [37], instead ofthe

f0

(

1710

)

state.Wetestwhichonegivesabetterfit.

The amplitude AR

(

mππ

)

, generally represented by a Breit– WignerfunctionoraFlattéfunction,isusedtodescribethemass lineshapeofresonanceR.TodescribetheresonancefromtheB0s

decays,theamplitudeiscombinedwiththe B0s andresonance de-caypropertiestoformthefollowingexpression

A

R

(

mπ π

)

=

2 JR

+

1

PRPBF(BLB)FR(LR)AR

(

mπ π

)

×

PB mB

L

B

P R m0

L

R

.

(4)

HerePB isthe J

momentumintheB0s restframe, PR isthe mo-mentumofeitherofthetwohadronsinthedihadronrestframe,

mB is the B0s mass, m0 is the mass of resonance R,6 JR is the spin of the resonance R, LB is the orbital angular momentum betweenthe J

meson and

π

+

π

− system, and LR the orbital angularmomentuminthe

π

+

π

− system,andthusisthesameas thespin of the

π

+

π

− resonance.The terms F(LB)

B and F (LR)

R are theBlatt–Weisskopfbarrierfactors forthe B0s mesonand R

reso-nance,respectively [39].Theshapeparametersforthe f0

(

980

)

and

f0

(

1500

)

resonancesareallowedtovary.

6 Equation (4) ismodifiedfromthatusedinpreviouspublications [4,21] and

fol-lowstheconventionsuggestedbythePDG[14].

8. Likelihooddefinition

Thedecay-timedistributionincludingflavourtaggingis

R

t

,

mπ π

,

, q

|y) =

1 1

+ |q|

[1

+ q (

1

2

ω(y))

]

(ˆ

t

,

mπ π

,

)

+

[1

− q (

1

2

ω(y))

¯

]1

+

AP 1

AP

¯(ˆ

t

,

mπ π

,

)



,

(5)

where

ˆ

t isthetruedecaytime,

(–)



isdefinedinEq. (1), and AP is

theproductionasymmetryofB0

s mesons.

Thefitfunction forthesignal ismodifiedto takeintoaccount thedecay-timeresolutionandacceptanceeffectsresultingin

F

(

t

,

mπ π

,, q

|y, δt

)

=



R

t

,

mπ π

,

, q

|y) ⊗

T

(

t

− ˆ

t

|δt

)



ε

B0s

data

(

t

)ε(

mπ π

,),

(6)

where

ε

(

mππ

,

)

istheefficiencyasafunctionofmππ and angu-larvariables, T

(

t

− ˆ

t

t

)

isthedecay-timeresolutionfunction,and

ε

B0s

data

(

t

)

isthedecay-timeacceptancefunction.Thefreeparameters

inthefitare

φ

s,

|λ|

,



H

− 

B0,themagnitudesandphasesofthe

resonances amplitudes, and the shape parameters of some reso-nances.Theotherparameters,including

ms,and



L,arefixedto

theknownvalues[14] orothermeasurementsmentionedbelow. The signal function is normalized by summing over

q

values andintegratingoverdecaytimet,themassmππ ,andtheangular variables,

,giving

N

t

)

=

2



[(ˆ

t

,

mπ π

,

)

+

1

+

AP 1

AP

¯(ˆ

t

,

mπ π

,

)

]

T

(

t

− ˆ

t

|δt

B0s data

(

t

)ε(

mπ π

,)

dmπ πd

dt

.

(7)

Weassume noasymmetries inthetaggingefficiencies,whichare accountedforinthesystematicuncertainties.Theresultingsignal PDFis

P

(

t

,

mπ π

,, q

|y, δt

)

=

1

N

t

)

F

(

t

,

mπ π

,, q

|y, δt

).

(8)

ThefitterusesatechniquesimilartosPlot [40] tosubtract back-groundfromthelog-likelihoodsum.Eachcandidateisassigneda weight,Wi

= +

1 fortheRSeventsandnegativevaluesfortheWS events.Thelikelihoodfunctionisdefinedas

2 ln

L

= −

2 sW



i

Wiln

P

(

t

,

mπ π

,

, q

|y, δt

),

(9)

wheresW



iWi

/



iWi2 isaconstantfactoraccountingforthe effectofthebackgroundsubtractiononthestatisticaluncertainty.

The decay-time acceptance is assumed to be factorized from other variables,butduetothe

χ

2

IP cuton thetwo pions,the

de-caytimeiscorrelatedwiththeangularvariables.Toavoidbiason thedeterminationof



Hfromthedecay-timeacceptance,the

sim-ulated B0s signal isweightedinordertoreproducethemππ reso-nantstructure observedindataby usingthepreferredamplitude modelthatisdeterminedbytheoverallfit.Aniterativeprocedure isperformedtofinalizethedecay-timeacceptance.Thisprocedure converges in three steps beyondwhich



H doesnot vary. When

weapply thismethodtopseudoexperimentsthatincludethe cor-relationmentionedbefore,thefitterreproducestheinputvaluesof

(7)

Table 3

Likelihoodsofvariousresonancemodelfits.Positiveornegativeinterferences(Int) amongthecontributingresonancesareindicated.TheSolutionsareindicatedby#.

# Resonance content Int −2 lnL

I f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525)+NR − −4850 II f0(980)+f0(1500)+f0(1710)+f2(1270)+f2 (1525)+NR + −4834 III f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525)+NR + −4830 IV f0(980)+f0(1500)+f0(1790)+f2(1270)+f2 (1525) − −4828 V f0(980)+f0(1500)+f0(1710)+f2(1270)+f2 (1525) − −4706 Table 4

Fitresultsforthe

CP -violating

parametersforSolutionI.Thefirstuncertaintiesare statistical,andthesecondsystematic.Thelastthreecolumnsshowthestatistical correlationcoefficientsforthethreeparameters.

Fit result Correlation

Parameter H− B0 |λ| φs

H− B0 ( ps−1) −0.050±0.004±0.004 1.000 0.022 0.038

|λ| 1.01+00..0806±0.03 0.022 1.000 0.065

φs(rad) −0.057±0.060±0.011 0.038 0.065 1.000

9. Fitresults

Wefirstchoosethe resonancesthatbestfitthemππ

distribu-tion. Table 3 lists the different fit components and the value of

2ln

L

.In thesecomparisons,themassandwidthofmost reso-nancesarefixed tothecentralvalueslistedinTable2,exceptfor the f0

(

980

)

and f0

(

1500

)

resonances, whose parameters are

al-lowedtovary.Wefindtwotypesoffitresults,onewithapositive integratedsumofallinterferingcomponentsandonewitha nega-tiveone.ThefirstlistedSolutionIisbetterthanSolutionIIbyfour standard deviations, calculated by taking the square root of the

2ln

L

difference. We take Solution I for our measurement and IIforsystematicuncertaintyevaluation.Themodelscorresponding toSolutionsIandIIareverysimilartothosefoundinourprevious analysisofthesamefinalstate [21].

Fig. 5. Data distributionof

m

π πwiththeprojectionoftheSolutionIfitresult

over-laid.Thedataaredescribedbythepoints(black)witherrorbars.Thesolid(blue) curveshowstheoverallfit.

ForthefitweassumethattheCP -violationquantities(

φ

s i,

i

|

) arethesameforalltheresonances.Wealsofix

mstothecentral value of the world average 17

.

757

±

0

.

021 ps−1 [14], and fix



L

tothecentralvalueof0

.

6995

±

0

.

0047 ps−1 fromtheLHCb B0

s

J

K+K− results [6].

The fit valuesandcorrelations ofthe CP -violating parameters are shown in Table 4 for Solution I. The shape parameters of

f0

(

980

)

and f0

(

1500

)

resonancesare foundtobeconsistentwith

our previous results [21]. The angular anddecay-time fit projec-tionsareshowninFig.4.Themππ fitprojectionisshowninFig.5, wherethecontributionsoftheindividualresonancesarealso dis-played.AllsolutionslistedinTable3giveverysimilarfitvaluesfor

φ

s and



H.Wealsofind thatthe CP -odd fractionisgreater than

97% at95% confidencelevel.The resonantcontent forSolutions I andIIarelistedinTable5.

(8)

Table 5

FitresultsoftheresonantstructureforbothSolutionsIandII.Theseresultsdonot supersedethoseinRef. [21] fortheresonantfractionsbecausenosystematic un-certaintiesarequoted.Thesumoffitfractionisnotnecessary100%duetopossible interferencesbetweenresonanceswiththesamespin.

Component Fit fractions (%) Transversity fractions (%)

0  ⊥ Solution I f0(980) 60.09±1.48 100 − − f0(1500) 8.88±0.87 100 − − f0(1790) 1.72±0.29 100 − − f2(1270) 3.24±0.48 13±3 37±9 50±10 f2 (1525) 1.23±0.86 40±13 31±14 29±25 NR 2.64±0.73 100 − − Solution II f0(980) 93.05±1.12 100 − − f0(1500) 6.47±0.41 100 − − f0(1710) 0.74±0.11 100 − − f2(1270) 3.22±0.44 17±4 30±8 53±10 f2 (1525) 1.44±0.36 35±8 31±12 34±17 NR 8.13±0.79 100 − − 10. Systematicuncertainties

ThesystematicuncertaintiesfortheCP -violatingparameters,

λ

and

φ

s,aresmallerthanthestatisticalones.Theyaresummarized inTable6alongwiththeuncertaintyon



H

−

B0.Theuncertainty

onthedecay-timeacceptanceisfoundbyvarying theparameters ofthe acceptancefunction within their uncertainties and repeat-ing the fit.The same procedure is followedfor the uncertainties onthe B0 lifetime,

ms,



L,mππ and angularefficiencies, reso-nancemassesandwidths,flavour-taggingcalibration,andallowing fora2%productionasymmetry [41];thisuncertaintyalsoincludes anypossibledifferenceinflavourtaggingbetweenB0s andB0s. Sim-ulationisusedtovalidatethemethodforthetime-resolution cali-bration.Theuncertaintiesoftheparametersofthetime-resolution modelareestimatedusingthedifference betweenthesignal sim-ulation andprompt J

simulation. These uncertainties are var-ied to obtain the effects on the physics parameters. Resonance modelling uncertainty includes varying the Breit–Wigner barrier factors, changing the default values of LB

=

1 for the D-wave resonances to one or two, the differencesbetween the two best solutions,and replacingthe NR component by the f0

(

500

)

reso-nance.Furthermore,includinganisospin-violating

ρ

(

770

)

0 compo-nentinthefit,resultsinanegligiblecontributionof

(

1

.

1

±

0

.

3

)

%. Thelargest shiftamongthe modellingvariations is takenas sys-tematicuncertainty.Theinclusion of

ρ

componentsresultsinthe largestshiftsofthethreephysicsparameters quoted.The process

B+c

π

+B0

s canaffectthemeasurementof



H

− 

B0.Anestimate

ofthefractionofthesedecaysinoursampleis0.8% [5].Neglecting theB+c contributionleadstoabiasof0.0005 ps−1,whichisadded asasystematicuncertainty.Otherparametersareunchanged.

Correctionsfrompenguinamplitudesareignoredbecausetheir effects are known to be small [42–44] compared to the current experimentalprecision.

11. Conclusions

Using B0s and B0s

J

π

+

π

− decays, we measure the CP

-violatingphase,

φ

s

= −

0

.

057

±

0

.

060

±

0

.

011 rad,thedecay-width difference



H

− 

B0

= −

0

.

050

±

0

.

004

±

0

.

004 ps−1, and the

pa-rameter

|λ| =

1

.

01+00..0806

±

0

.

03,wherethequoteduncertaintiesare statistical and systematic. These results are more precise than

Table 6

Absolutesystematicuncertaintiesforthephysicsparameters.

Source H− B0 |λ| φs

[ fs−1] [×10−3] [mrad]

Decay-time acceptance 2.0 0.0 0.3

τB0 0.2 0.5 0.0

Efficiency (mπ π,) 0.2 0.1 0.0

Decay-time resolution width 0.0 4.3 4.0 Decay-time resolution mean 0.3 1.2 0.3

Background 3.0 2.7 0.6 Flavour tagging 0.0 2.2 2.3 ms 0.3 4.6 2.5 L 0.3 0.4 0.4 B+c 0.5 – – Resonance parameters 0.6 1.9 0.8 Resonance modelling 0.5 28.9 9.0 Production asymmetry 0.3 0.6 3.4 Total 3.8 29.9 11.0

those obtainedfromthe previous studyofthismodeusing7 TeV and 8 TeV pp collisions (Run 1) [4]. To combine the Run-1 re-sults with these, we reanalyze them by fixing

ms

=

17

.

757

±

0

.

021 ps−1fromRef. [14],and



L

=

0

.

6995

±

0

.

0047 ps−1fromthe

LHCb B0s

J

K+K− results [6]. We remove the Gaussian con-strainton



s andlet



Hvary.Insteadoftakingtheuncertainties

offlavourtagginganddecay-timeresolutionintothestatistical un-certainty,weplacethesesourcesinthesystematicuncertaintyand assume100%correlationwithournewresults.Theupdatedresults are:

φ

s

=

0

.

075

±

0

.

065

±

0

.

014 radand

|λ|

=

0

.

898

±

0

.

051

±

0

.

013 with a correlation of 0

.

025. We then use the updated

φ

s and

|λ|

Run-1 results as a constraintinto our new

φ

s fit.7 The com-bined resultsare



H

− 

B0

= −

0

.

050

±

0

.

004

±

0

.

004 ps−1,

|λ|

=

0

.

949

±

0

.

036

±

0

.

019, and

φ

s

=

0

.

002

±

0

.

044

±

0

.

012 rad. The correlation coefficientsamongthe fitparameters are 0.025

(

ρ

12

)

,

0

.

001

(

ρ

13

)

,and0.026

(

ρ

23

)

.

OurresultsstillhaveuncertaintiesgreaterthantheSM predic-tion and are slightly more precise than the measurement using

B0s

J

K+K− decays,based only on Run-1 data, which hasa precisionof0.049 rad [5].Hencethisisthemostprecise determi-nationof

φ

s todate.

Acknowledgements

We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MINECO (Spain); SNSF andSER (Switzerland);NASU (Ukraine); STFC (United King-dom);NSF (USA). We acknowledgethe computingresources that are provided by CERN, IN2P3 (France),KIT andDESY (Germany), INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United King-dom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-sourcesoftwarepackagesonwhichwe depend.Individual groups or members have received support from AvH Foundation (Ger-many); EPLANET,MarieSkłodowska-Curie ActionsandERC (Euro-peanUnion);ANR,LabexP2IOandOCEVU, andRégion

Auvergne-7 Wedonotincludeanaveragevalueof

Hsincenosystematicuncertaintywas

(9)

Rhône-Alpes (France); KeyResearch Program ofFrontier Sciences ofCAS,CASPIFI,andtheThousandTalentsProgram(China);RFBR, RSFandYandexLLC(Russia);GVA,XuntaGalandGENCAT(Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed ResearchandDevelopment program of LANL (USA).

References

[1]I.I.Y. Bigi, A.I. Sanda, CP violation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.

9 (2000) 1.

[2] CKMfittergroup,J.Charles,etal.,CurrentstatusoftheStandardModelCKMfit andconstraintson F=2 newphysics,Phys.Rev.D91(2015)073007,arXiv: 1501.05013,updatedresultsandplotsavailableathttp://ckmfitter.in2p3 .fr/. [3]CDF collaboration, T. Aaltonen, et al., First flavor-tagged determination of

bounds on mixing-induced CP violation in B0

sJ/ψφdecays, Phys. Rev. Lett.

100 (2008) 161802, arXiv:0712 .2397;

D0 collaboration, V.M. Abazov, et al., Measurement of B0

s mixing parameters

from the flavor-tagged decay B0

sJ/ψφ, Phys. Rev. Lett. 101 (2008) 241801,

arXiv:0802 .2255;

CDF collaboration, T. Aaltonen, et al., Measurement of the CP -violating

phase

βsJ/ψ φin B0sJ/ψφdecays with the CDF II detector, Phys. Rev. D 85 (2012)

072002, arXiv:1112 .1726;

D0 collaboration, V.M. Abazov, et al., Measurement of the CP -violating

phase

φsJ/ψ φusing the flavor-tagged decay B0sJ/ψφ in 8 fb−1of p p collisions,

Phys. Rev. D 85 (2012) 032006, arXiv:1109 .3166.

[4]LHCb collaboration, R. Aaij, et al., Measurement of the CP -violating

phase

φsin

B0

sJ/ψπ+π−decays, Phys. Lett. B 736 (2014) 186, arXiv:1405 .4140.

[5]LHCb collaboration, R. Aaij, et al., Precision measurement of CP violation

in

B0

sJ/ψK+K−decays, Phys. Rev. Lett. 114 (2015) 041801, arXiv:1411.3104.

[6]LHCb collaboration, R. Aaij, et al., Resonances and CP violation

in

B0

sand B0s

J/ψK+K−decays in the mass region above the φ(1020), J. High Energy Phys. 08 (2017) 037, arXiv:1704 .08217.

[7]ATLAS collaboration, G. Aad, et al., Measurement of the CP -violating

phase

φs

and the B0

s meson decay width difference with B0sJ/ψφdecays in ATLAS,

J. High Energy Phys. 08 (2016) 147, arXiv:1601.03297;

CMS collaboration, V. Khachatryan, et al., Measurement of the CP -violating

weak phase φs and the decay width difference s using the B0s

J/ψ φ(1020)decay channel in pp collisions at √s=8 TeV, Phys. Lett. B 757 (2016) 97, arXiv:1507.07527.

[8]S. Stone, L. Zhang, S-waves and the measurement of CP violating phases in Bs

decays, Phys. Rev. D 79 (2009) 074024, arXiv:0812 .2832.

[9]LHCb collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J.

In-strum. 3 (2008) S08005.

[10]LHCb collaboration, R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys.

A 30 (2015) 1530022, arXiv:1412 .6352.

[11]R. Aaij, et al., Performance of the LHCb vertex locator, J. Instrum. 9 (2014)

P09007, arXiv:1405 .7808.

[12]M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys.

J. C 73 (2013) 2431, arXiv:1211.6759.

[13]A.A. Alves Jr., et al., Performance of the LHCb muon system, J. Instrum. 8 (2013)

P02022, arXiv:1211.1346.

[14]Particle Data Group, M. Tanabashi, et al., Review of particle physics, Phys. Rev.

D 98 (2018) 030001.

[15]T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High

En-ergy Phys. 05 (2006) 026, arXiv:hep -ph /0603175;

T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710 .3820.

[16]I. Belyaev, et al., Handling of the generation of primary events in Gauss, the

LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.

[17]D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum.

Meth-ods A 462 (2001) 152.

[18]P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections

in Z andW decays,

Eur. Phys. J. C 45 (2006) 97, arXiv:hep

-ph /0506026.

[19]Geant4 collaboration, J. Allison, et al., Geant4 developments and applications,

IEEE Trans. Nucl. Sci. 53 (2006) 270;

Geant4 collaboration, S. Agostinelli, et al., Geant4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.

[20]M. Clemencic, et al., The LHCb simulation application, Gauss: design, evolution

and experience, J. Phys. Conf. Ser. 331 (2011) 032023.

[21]LHCb collaboration, R. Aaij, et al., Measurement of resonant and CP

com-ponents in B0

sJ/ψπ+π− decays, Phys. Rev. D 89 (2014) 092006, arXiv:

1402 .6248.

[22]L. Zhang, S. Stone, Time-dependent Dalitz-plot formalism for B0

qJ/ψh+h−,

Phys. Lett. B 719 (2013) 383, arXiv:1212 .6434.

[23]A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Angular distributions and lifetime

differences in B0

sJ/ψφdecays, Phys. Lett. B 369 (1996) 144, arXiv:hep -ph /

9511363.

[24]LHCb collaboration, R. Aaij, et al., Measurement of CP violation

and the

B0

s

meson decay width difference with B0

sJ/ψK+K− and B0sJ/ψπ+π

decays, Phys. Rev. D 87 (2013) 112010, arXiv:1304 .2600.

[25]LHCb collaboration, R. Aaij, et al., Measurement of the CP asymmetry

in

B0

s–B0s

mixing, Phys. Rev. Lett. 117 (2016) 061803, arXiv:1605 .09768.

[26]U. Nierste, Three lectures on meson mixing and CKM phenomenology, arXiv:

0904 .1869.

[27]LHCb collaboration, R. Aaij, et al., Opposite-side flavour tagging of B mesons at

the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022, arXiv:1202 .4979; LHCb collaboration, R. Aaij, et al., A new algorithm for identifying the flavour of B0

s mesons at LHCb, J. Instrum. 11 (2016) P05010, arXiv:1602 .07252;

D. Fazzini, Flavour tagging in the LHCb experiment, PoS LHCP2018 (2018) 230.

[28]L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression

Trees, Wadsworth International Group, Belmont, California, USA, 1984.

[29]Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning

and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.

[30]J. Stevens, M. Williams, uBoost: a boosting method for producing uniform

se-lection efficiencies from multivariate classifiers, J. Instrum. 8 (2013) P12013, arXiv:1305 .7248.

[31]W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum.

Meth-ods A 552 (2005) 566, arXiv:physics /0503191.

[32]D. Martínez Santos, F. Dupertuis, Mass distributions marginalized over

per-event errors, Nucl. Instrum. Methods A 764 (2014) 150, arXiv:1312 .5000.

[33]LHCb collaboration, R. Aaij, et al., Observation of the decay B0

s

J/ψ (2S)K+π−, Phys. Lett. B 747 (2015) 484, arXiv:1503 .07112.

[34]S.M. Flatté, On the nature of 0+mesons, Phys. Lett. B 63 (1976) 228. [35]J. Daub, C. Hanhart, B. Kubis, A model-independent analysis of final-state

in-teractions in B0d/sJ/ψπ+π−, J. High Energy Phys. 02 (2016) 009, arXiv:

1508 .06841.

[36]S. Ropertz, C. Hanhart, B. Kubis, A new parametrization for the scalar pion form

factors, Eur. Phys. J. C 78 (2018) 1000, arXiv:1809 .06867.

[37]BES collaboration, M. Ablikim, et al., Resonances in J/ψ → φπ+π− and

φK+K−, Phys. Lett. B 607 (2005) 243, arXiv:hep -ex /0411001.

[38]LHCb collaboration, R. Aaij, et al., Analysis of the resonant components in B0

J/ψπ+π−, Phys. Rev. D 87 (2013) 052001, arXiv:1301.5347.

[39]LHCb collaboration, R. Aaij, et al., Analysis of the resonant components in B0

s

J/ψπ+π−, Phys. Rev. D 86 (2012) 052006, arXiv:1204 .5643.

[40]M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions,

Nucl. Instrum. Methods A 555 (2005) 356, arXiv:physics /0402083;

Y. Xie, sFit: a method for background subtraction in maximum likelihood fit, arXiv:0905 .0724.

[41]LHCb collaboration, R. Aaij, et al., Measurement of B0, B0

s, B+ and Λ0b

pro-duction asymmetries in 7 and 8 TeV proton-proton collisions, Phys. Lett. B 774 (2017) 139, arXiv:1703 .08464.

[42]R. Fleischer, Theoretical prospects for B physics, PoS FPCP2015 (2015) 002,

arXiv:1509 .00601.

[43]LHCb collaboration, R. Aaij, et al., Measurement of the CP -violating

phase

βin

B0Jπ+πdecays and limits on penguin effects, Phys. Lett. B 742 (2015)

38, arXiv:1411.1634.

[44]LHCb collaboration, R. Aaij, et al., Measurement of CP violation

parameters and

polarisation fractions in B0

sJ/ψK∗0decays, J. High Energy Phys. 11 (2015)

082, arXiv:1509 .00400.

LHCbCollaboration

R. Aaij

29

,

C. Abellán Beteta

46

,

B. Adeva

43

,

M. Adinolfi

50

,

C.A. Aidala

77

,

Z. Ajaltouni

7

,

S. Akar

61

,

P. Albicocco

20

,

J. Albrecht

12

,

F. Alessio

44

,

M. Alexander

55

,

A. Alfonso Albero

42

,

G. Alkhazov

41

,

P. Alvarez Cartelle

57

,

A.A. Alves Jr

43

,

S. Amato

2

,

Y. Amhis

9

,

L. An

19

,

L. Anderlini

19

,

G. Andreassi

45

,

M. Andreotti

18

,

J.E. Andrews

62

,

F. Archilli

29

,

J. Arnau Romeu

8

,

A. Artamonov

40

,

M. Artuso

63

,

Referenties

GERELATEERDE DOCUMENTEN

Natuurlijk is het nog beter om niet te veel producten buiten de Schijf van Vijf te eten of drinken.. • Heb je ongeveer een

Het is echter niet nodig of wenselijk dat leerlingen bijvoorbeeld calorieën gaan tellen als ze gewoon eten kiezen uit de Schijf van Vijf..

Per stal (k=1, 2) en per meting (i=1, 2, …, 6) werd de fijnstofemissie bepaald voor de dagen waarop het ionisatiesysteem in werking was (E_AAN ki ; dag 1–2 van elke meting) en voor

Samen met het overheidsfonds voor de rurale sector FOCIR wil het Nederlandse kennis beschikbaar maken voor de diverse Mexicaanse deelstaten.. ‘Neem nou deze kas in

Recent heeft de Minister van Landbouw van Noord Rijn Westfalen (Duitsland) aangekondigd wetgeving te zullen ontwikkelen, die het doden van haantjes verbiedt 3. De discussie over

• Behandeling met experimenteel oxidatief product geeft een even goede bestrijding van echte meeldauw als een standaard chemische bestrijding.. En bij toepassing meermalen per

Van deze enzymatische zetmeelbepaling bestaan veel varianten, in het onderzoek is gekozen voor twee ervan ; de DMSO-methode waarbij het zetmeel opgelost wordt in

In het voorjaar van 1991 werden 5 nieuwe rassen kropsla op hun gebruikswaarde voor de praktijk beproefd.. Norden, Flora en Panama werden als vergelijkingsrassen aan de