University of Groningen
Measurement of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV
pp collisions
Aaij, R.; Adeva, B.; Adinolfi, M.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Dufour, L.;
Mulder, M; Onderwater, C. J. G.
Published in:
Physics Letters B
DOI:
10.1016/j.physletb.2019.07.036
IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.
Document Version
Publisher's PDF, also known as Version of record
Publication date:
2019
Link to publication in University of Groningen/UMCG research database
Citation for published version (APA):
Aaij, R., Adeva, B., Adinolfi, M., Ajaltouni, Z., Akar, S., Albrecht, J., Alessio, F., Dufour, L., Mulder, M.,
Onderwater, C. J. G., Pellegrino, A., Tolk, S., van Veghel, M., & LHCb Collaboration (2019). Measurement
of the CP-violating phase phi(s) from B-s(0) -> J/psi pi(+)pi(-) decays in 13 TeV pp collisions. Physics
Letters B, 797, [UNSP 134789]. https://doi.org/10.1016/j.physletb.2019.07.036
Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).
Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.
Contents lists available atScienceDirect
Physics
Letters
B
www.elsevier.com/locate/physletb
Measurement
of
the
CP -violating
phase
φ
s
from
B
0
s
→
J
/
ψ
π
+
π
−
decays
in
13 TeV
pp collisions
.
LHCb
Collaboration
a
r
t
i
c
l
e
i
n
f
o
a
b
s
t
r
a
c
t
Article history:
Received26April2019
Receivedinrevisedform15July2019 Accepted15July2019
Availableonline18July2019 Editor: M.Doser
Decays of B0s and B0s mesons into J/ψ
π
+π
− final statesare studiedinadata samplecorresponding to 1.9 fb−1 of integrated luminosity collected with the LHCb detector in 13 TeV pp collisions. A time-dependentamplitudeanalysisisused todeterminethe final-stateresonancecontributions, the CP -violating phase φs= −0.057±0.060±0.011 rad, the decay-width difference between the heavier massB0s eigenstateandtheB0mesonof−0.050±0.004±0.004 ps−1,andtheCP -violatingparameter |λ| =1.01+−00..0806±0.03, wherethefirstuncertaintyisstatisticalandthesecondsystematic.Theseresults arecombinedwithpreviousLHCbmeasurementsinthesamedecaychannelusing7 TeVand8 TeVpp collisionsobtainingφs=0.002±0.044±0.012 rad,and|λ|=0.949±0.036±0.019.
©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.
1. Introduction
MeasurementsofCP violationinfinalstatesthatcanbe popu-latedbothbydirectdecayandviamixingprovideanexcellentway oflookingforphysicsbeyondtheStandardModel(SM)[1].Asyet unobservedheavybosons,light bosonswithextremelysmall cou-plings,orfermionscanbepresentvirtuallyinquantumloops,and thusaffect therelative CP phase. Direct decays into non-flavour-specificfinalstatescaninterferewiththosethatundergo B0
s
−
B0s mixingpriortodecay.ThisinterferencecanresultinCP violation.In certain B0s decays one CP -violating phase that can be mea-sured,called
φ
s,canbeexpressedintermsofCabibbo–Kobayashi– Maskawa matrix elements as−
2arg−
VtsVtb∗/
VcsVcb∗. It is not predictedintheSM,butcanbeinferredwithhighprecision from otherexperimentaldatagivingavalueof
−
36.
5−+11..32mrad [2].This numberisconsistent withprevious measurements,whichdidnot have enough sensitivity to determine a non-zero value [3–7]. In thispaperwe presenttheresults ofa newanalysisofthe B0s
→
J
/ψ
π
+π
− decay using data from 13 TeV pp collisions collected usingthe LHCbdetectorin2015and2016.1 Theexistence ofthis decayanditsuseinCP -violationstudieswassuggestedinRef. [8].2. Detectorandsimulation
The LHCb detector [9,10] is a single-arm forward spectrome-tercoveringthe pseudorapidity range2
<
η
<
5,designedforthe1 Inthis papermention ofaparticular finalstateimplies useofthe
charge-conjugatestate,exceptwhendealingwith
CP -violating
processes.studyofparticles containingb or c quarks.The detectorincludes ahigh-precisiontrackingsystemconsistingofasilicon-stripvertex detector surroundingthe pp interaction region [11], a large-area silicon-stripdetectorlocated upstreamofa dipole magnetwitha bending power of about 4 Tm, andthree stations of silicon-strip detectorsandstrawdrifttubesplaceddownstreamofthemagnet. The tracking systemprovides a measurement of themomentum,
p,ofchargedparticleswitharelativeuncertaintythatvariesfrom 0.5% at low momentum to 1.0% at 200 GeV.2 The minimum
dis-tance of a track to a primary vertex (PV), the impact parameter (IP),ismeasuredwitharesolutionof
(
15+
29/
pT)
μ
m,wherepTisthecomponentofthemomentumtransversetothebeam,in GeV. Different types ofcharged hadronsare distinguished using infor-mationfromtwo ring-imagingCherenkovdetectors [12]. Photons, electronsandhadronsareidentified byacalorimetersystem con-sistingofscintillating-padandpreshowerdetectors,an electromag-neticandahadroniccalorimeter.Muonsareidentifiedbyasystem composedofalternatinglayersofironandmultiwireproportional chambers [13].The onlineeventselection isperformedby a trig-ger,whichconsistsofahardwarestage,basedoninformationfrom thecalorimeterandmuon systems,followed bya softwarestage, whichappliesafulleventreconstruction.
At the hardware trigger stage, events are required to have a muon with high pT or a hadron, photon or electron with high
transverseenergyinthecalorimeters.Thesoftwaretriggeris com-posedof two stages,the firstof whichperforms a partial recon-struction and requires either a pair of well-reconstructed,
oppo-2 Weusenaturalunitswhereh¯=c=1. https://doi.org/10.1016/j.physletb.2019.07.036
0370-2693/©2019TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.
sitely chargedmuonshavingan invariant massabove 2
.
7 GeV,or a single well-reconstructed muon with pT>
1 GeV and have alarge IP significance
χ
2IP
>
7.
4. The latter is defined as thedif-ference in the
χ
2 of the vertex fit fora given PVreconstructedwithand withoutthe considered particles. The second stage ap-pliesafulleventreconstructionandforthisanalysisrequirestwo opposite-sign muons to form a good-quality vertex that is well-separatedfromallofthePVs,andtohaveaninvariantmasswithin
±
120 MeV oftheknown J/ψ
mass [14].Simulationisrequiredtomodeltheeffects ofthe detector ac-ceptanceandthe imposed selection requirements.In the simula-tion, pp collisionsaregeneratedusingPythia[15] withaspecific LHCb configuration [16].Decaysofunstableparticlesaredescribed by EvtGen [17], in which final-state radiation is generated us-ing Photos [18]. The interaction of the generated particles with thedetector,anditsresponse,areimplementedusingtheGeant4 toolkit [19] asdescribedinRef. [20].
3. Decayamplitude
TheresonancestructureinB0s andBs0
→
J/ψ
π
+π
−decayshas beenpreviouslystudiedwithatime-integratedamplitudeanalysis using7and8 TeV pp collisions [21]. Thefinal statewas foundto becompatiblewithbeingentirelyCP -odd,withtheCP -evenstate fractionbelow2.
3%at95%confidencelevel,whichallowsthe de-terminationofthe decaywidthofthe heavy B0s masseigenstate,H.The possible presenceofa CP -evencomponentistakeninto
accountwhendetermining
φ
s[22]. Thetotaldecayamplitude fora( ) B0
s mesonatdecaytimeequal to zero is assumed to be the sum over individual
π
+π
− reso-nanttransversityamplitudes[23],andonenonresonantamplitude, witheach transversity componentlabelledas Ai ( Ai). Because of the spin-1 J/ψ
meson in the final state, the three possible po-larizations of the J/ψ
generate longitudinal (0), parallel () and perpendicular (⊥
) transversity amplitudes.When theπ
+π
− pair formsaspin-0statethefinalsystemonlyhasalongitudinal com-ponent,andthusisapure CP eigenstate.Theparameterλ
i≡
qpAi
Ai,
relates CP violation in the interference between mixingand de-cayassociated withthe polarizationstate i for eachresonance in the final state. Here the quantities q and p relate the mass and flavoureigenstates, p
≡
B0s
|
BL,andq≡
B0s|
BL,where|
BListhelightermasseigenstate [1].Thetotalamplitudes
A
andA
canbe expressedasthesumsoftheindividual( ) B0s amplitudes,
A
=
Ai andA =
qpAi=
λ
iAi=
η
i|λ
i|
e−iφ isAi,with
ηi
beingtheCPeigenvalue of the state. For each transversity state i there is a
CP -violating phase
φ
si≡ −
arg(
η
iλ
i)
[24]. Assuming that CP vio-lationin thedecay isthe same forall amplitudes,thenλ
≡
η
iλ
i andφ
s≡ −
arg(λ)
.Using|
p/
q|
=
1,thedecayratesforB0s and B0s intothe J/ψ
π
+π
−finalstateare3( )
(
t)
∝
e−st|
A
|
2+ |
A
|
2 2 coshst 2
±
|
A
|
2− |
A
|
2 2 cos(
mst)
−
R
e(
A
∗A
)
sinhst 2
∓
I
m(
A
∗A
)
sin(
m st)
,
(1)where the – sign before the cos
(
mst)
term and+
signbefore the sin(
mst)
term apply to(
t)
,s
≡
L−
H is thedecay-width difference between the light and the heavy mass eigen-states,
ms
≡
mH−
mL isthe correspondingmassdifference, ands
≡ (
L+
H)/
2 istheaverageB0s mesondecaywidth [26].3 ThelatestLHCbmeasurementdetermined|p
/q|2=1
.0039±0.0033 [25].
For J
/ψ
decays toμ
+μ
− final states the Ai amplitudes are themselves functionsoffourvariables:theπ
+π
− invariant massmππ , and three angular variables
≡ (
cosθ
π π,
cosθ
J/ψ,
χ
)
, de-fined in the helicity basis. These angles are defined asθ
π πbe-tween the
π
+ directionintheπ
+π
− restframe withrespect to theπ
+π
− directionin the B0s restframe,
θ
J/ψ betweentheμ
+ directioninthe J/ψ
restframe withrespecttothe J/ψ
direction in the B0s rest frame,and
χ
betweenthe J/ψ
andπ
+π
− decay planesintheB0s restframe[22,24].(Thesedefinitionsarethesame for B0s and B0s,namely,using
μ
+andπ
+ todefine theanglesfor both B0s and B0s decays.)The explicitforms ofthe|
A(
mππ,
)
|
2,|
A(
mππ,
)
|
2, andA
∗(
mππ,
)A(
mππ,
)
terms in Eq. (1) are giveninRef. [22].The analysis proceedsby performing an unbinned maximum-likelihoodfittothe
π
+π
− massdistribution,thedecaytime,and helicityanglesofB0s candidatesidentifiedasB0s orB0s bya flavour-taggingalgorithm[27].4 ThefitprovidestheCP -evenandCP -oddcomponents, and since we include the initial flavour tag, the fit also determines the CP -violating parameters
φ
s and|λ|
, andthe decaywidth.Inordertoproceed,weneedtoselectacleansample of B0s decays,determineacceptancecorrections,performa calibra-tionofthedecay-timeresolutionineacheventasafunctionofits uncertainty,andcalibratetheflavour-taggingalgorithm.4. Selectionrequirements
The selection of J
/ψ
π
+π
− right-sign (RS), and wrong-sign (WS) J/ψ
π
±π
± final states, proceedsintwo phases. Initiallywe impose loose requirements and subsequently use a multivariate analysisto furthersuppressthecombinatorial background.In the first phase we requirethat the J/ψ
decaytracks beidentified as muons, have pT>
500 MeV, and form a good vertex withver-tex fit
χ
2 lessthan16.The identifiedpions are requiredtohavepT
>
250 MeV,notoriginatefromanyPV,andforma goodvertexwiththemuons.Theresulting B0s candidateisassignedtothePV forwhichithasthesmallest
χ
2IP.Furthermore,werequirethatthe
smallest
χ
2IPisnotgreaterthan25.TheB 0
s candidateisrequiredto haveitsmomentumvectoralignedwiththevectorconnectingthe PVtothe B0s decayvertex,andtohaveadecaytime greaterthan 0.3 ps.Reconstructedtrackssharingthesamehitsarevetoed.
Inaddition,backgroundfromB+
→
J/ψ
K+ decays,5 wherethe K+ is misidentified as aπ
+ and combined witha randomπ
−, is vetoed by assuming that each detected pion is a kaon, com-puting the J/ψ
K+ mass, andremoving thosecandidates that are within±
36 MeV of theknown B+ mass [14]. Backgrounds fromB0
→
J/ψ
K+π
− or B0s→
J/ψ
K+K− decays with misidentified kaons result inmasses lower than the B0s peak andthus do not needtobevetoed.For the multivariate part of the selection, we use a Boosted DecisionTree,BDT [28,29],withtheuBoostalgorithm [30].The al-gorithmisoptimizedtonotfurtherbiasacceptanceonthevariable
cos
θ
π π .ThevariablesusedtotraintheBDTarethedifferencebe-tween themuon andpionidentifications forthemuon identified withlowerquality,the pT oftheB0s candidate,thesumofthe pT
of the two pions,and thenatural logarithms of: the
χ
2 IP of eachofthepions,the
χ
2 ofthe B0s vertexanddecaytreefits[31],and the
χ
2IP oftheB 0
s candidate.Inthefit,the B0s momentumvectoris constrainedtopointtothePV, thetwomuonsareconstrainedto
4 Weutilizethesamelikelihoodconstructionthatweusedtodetermineφ
sand
|λ|in
B
0s→J/ψK+K−decayswith
K
+K−abovetheφ(1020)massregion [6].5 Whendiscussingflavour-specificdecays,mentionofaparticularmodeimplies
Fig. 1. Results ofthesimultaneousfittothe J/ψπ π massdistributionsRS(black points)andWS(greypoints)samples.Thesolid(blue)curveshowsthefittothe RSsample,thelongdashed(red)curveshowsthesignal,thedot-dashed(magenta) curveshows
B
0→J/ψπ+π−decays,thedot-long-dashed(brown)curveshowsthecombinatorialbackground,thedotted(black)curveshowsthesumof
B
0s→J/ψη
andΛ0b background,whilethedot-dot-dashed(green)curveshowsthefittoWS
sample.
the J
/ψ
mass,andallfourtracksareconstrainedtooriginatefrom thesamevertex.ImplementinguBoostrequiresatrainingprocedure.Data back-groundin the J
/ψ
π
+π
− massinterval between200to 250MeV abovethe B0s massandsimulatedsignalare firstused.Then, sep-aratesamples are used to test the BDT performance. We weight thetraining simulationsamplestomatchthetwo-dimensional B0s
p and pT distributions,andsmearthevertexfit
χ
2,tomatchthebackground-subtractedpreselecteddata.Finally,theminimum re-quirementforBDTpointischosentomaximizesignalsignificance,
S
/
√
S+
B,whereS(
B)
istheexpectedsignal(background)yields inarangecorrespondingto±
2.
5 timesthemassresolutionaround theknownB0s mass [14].Todeterminethesignal andbackgroundyields wefitthe can-didate B0
s mass distribution. Backgrounds include combinatorics, whoseshape is estimatedusing WS J
/ψ
π
±π
± candidates mod-elled by an exponential function, B0s→
J/ψ
η
(
→
ρ
0γ
)
decayswiththe
γ
ignored,andΛ
0b→
J/ψ
p K− decayswithbothhadrons misidentified as pions. The latter backgrounds are modelled us-ingsimulation.The B0s signalshapeisparameterizedbyaHypatia function [32], wherethesignalradiative tailparametersare fixed to values obtained from simulation. The same shape parameters are used for the B0→
J/ψ
π
+π
− decays, with the mean value shiftedby theknown B0s and B0 mesonmassdifference [14]. Fi-nally,we fitsimultaneouslybothRSandWScandidates,usingthe simulatedshapefor B0s
→
J/ψ
η
(
→
ρ
0γ
)
whoseyieldis allowedtofloat,andfixingboththesizeandshapeofthe
Λ
0b→
J/ψ
p K−component. The results of the fit are shown in Fig. 1. We find 33530
±
220 signalB0s within±
20 MeV oftheB0s masspeak,with apurityof84%.Thesedecaysareusedforfurtheranalysis.Multiple candidatesinthe sameeventhavea rateof0.20%ina±
20 MeV intervalaroundthe B0s masspeak,andareretained.Tosubtract thebackground inthe signal region inthe ampli-tude fit we add negatively weighted events from the WS sam-pleto the RSsample, also accountingforthe differing
π π
mass anddecay-timedistributions.Theweightsaredeterminedby com-paring the RS and WS mass distributions in the upper mass sideband (5420−
5550 MeV). In addition, a small component ofB0s
→
J/ψ
η
(
η
→
ρ
0γ
)
decaysisalsosubtracted,sinceitisabsentintheWSsample.
5. Detectorefficiencyandresolution
The correlated efficiencies in mππ and angular variables
are determined fromsimulation. Weweight the simulatedsignal eventstoreproducethe B0
s meson pT and
η
distributionsaswellas the track multiplicity of the events. The latter may influence theefficienciesofthetrackingandparticleidentification.The cal-culatedefficienciesareshowninFig.2alongwiththedetermined efficiency function. The four-dimensional efficiency is parameter-ized by a combination of Legendre and spherical harmonic mo-ments[33],as
ε(
mπ π,
cosθ
π π,
cosθ
J/ψ,χ
)
=
a,b,c,dabcdPa
(
cosθ
π π)
Ybc(θ
J/ψ,χ
)
Pd 2mπ π−
m min π π mmaxπ π−
mmin π π−
1,
(2)where Pa andPd areLegendrepolynomials,Ybc arespherical har-monics,mminπ π
=
2mπ+ andmmaxπ π=
mB0s
−
mJ/ψ, andabcd are ef-ficiencycoefficientsdeterminedfromweightedaveragesofdecays generateduniformlyoverphasespace [6].
The model gives an excellent representation of the simulated data.Theefficiencyisuniformwithin about
±
4%forcosθ
J/ψ and about 10% forχ
variables; however the mππ and cosθ
π πvari-ablesshowlargeefficiencyvariationsandcorrelations(seeFig.3), due to the
χ
2IP
>
4 requirements on the hadrons. The loss ofefficiencyinthelowermππ regioncanbe interpretedasthe pro-jectionof the effectsof cutson
χ
2IP. Events atcos
θ
π π= ±
1 and mππ0
.
6−
0.
8 GeV areatthekinematicboundaryofm2J/ψπ+.One
ofthepionsisalmostatrestin B0s restframe,andthus thepion points to the PV, resultingin a very small
χ
2IP forthispion.The
χ
2IP variableisthemostusefultool tosuppresslarge pion
combi-natorialbackgroundfromthePV.
The reconstruction efficiency is not constant as a function of
B0
s decay time due to displacement requirements applied to the hadronsintheofflineselectionsandon J
/ψ
candidatesinthe trig-ger.Itisdeterminedusingthecontrolchannel B0→
J/ψ
K∗(
892)
0,with K∗
(
892)
0→
K+π
−, which is known to have a lifetime ofτ
B0=
1.
520±
0.
004 ps [14].ThesimulatedB0eventsareweightedtoreproducethedistributions inthedatafor pT and
η
ofthe B0meson,andtheinvariantmassandhelicityangleofK+
π
−system, aswellasthetrackmultiplicityoftheevents.Thesignalefficiency iscalculatedasε
B0s data(
t)
=
ε
B0 data(
t)
·
ε
B0 s sim(
t)/
ε
B0 sim(
t)
,whereε
B0 data(
t)
isthe efficiency of the control channel asmeasured by comparing data with the known lifetimedistribution, and
ε
B0ssim
(
t)/
ε
B0
sim
(
t)
istheratio ofefficienciesofthe simulatedsignal andcontrolmode after the full triggerand selection chain havebeen applied. This correctionaccountsforthesmalldifferencesinthekinematics be-tweenthesignalandcontrolmodes.Thedetailsofthemethodare explainedinRef. [4].
The acceptance is checked by measuring the decay width of
B+
→
J/ψ
K+ decays. The fitted decay-width difference between the B+ and B0 mesons isB+
−
B0= −
0.
0475±
0.
0013 ps−1,where the uncertainty is statistical only, in agreement with the knownvalueof
−
0.
0474±
0.
0023 ps−1[14].From the measured B0
s candidate momentum and decay dis-tance, the decay time and its event-by-event uncertainty
δ
t are calculated. The calculated uncertainty is imbedded into the res-olution function, which is modelled by the sum of three Gaus-sian functionswithcommonmeansandwidthsproportional toa quadraticfunctionofδ
t.Theparametersoftheresolutionfunction are determined witha sample of putative prompt J/ψ
→
μ
+μ
−Fig. 2. Overall efficiencynormalizedtounityfor(a)
m
π π,(b)cosθπ π,(c)cosθJ/ψ and(d)χobservables.ThepointswitherrorbarsarefromtheB
0s→J/ψπ+π−simulation,whilethecurvesshowtheprojectionoftheefficiencyfunction.
Fig. 3. Overall efficiencyfor(a)
m
π πvscosθπ πand(b)m
2J/ψπ+vsm
2π π.Theinefficiencyisatthekinematicboundaryof
m
2J/ψπ+wherethepionisalmostatrestintheB
0s
frame.
decays combinedwith two pions ofopposite charge. Taking into account the decay-timeuncertainty distributionof the B0s signal, theaverageeffectiveresolutionisfoundtobe41.5 fs.Themethod isvalidatedusingsimulation;weestimatetheaccuracyofthe res-olutiondeterminationtobe
±
3%.6. Flavourtagging
Knowledge of the
( )
B0s flavour at production is necessary. We use informationfrom decaysof the other b hadron in the event (opposite-side,OS)andfragmentsofthejetthatproducedthe
( ) B0s mesonthat contain a charged kaon,called same-sidekaon (SSK) [27].TheOStaggerinferstheflavouroftheotherb hadroninthe event from the charges of muons, electrons, kaons, and the net chargeoftheparticlesthatformreconstructedsecondaryvertices. The flavour tag,
q
, takes values of+
1,−
1 or 0 if the signal mesonistaggedasB0s,B0soruntagged,respectively.Thewrong-tag probability,y
,isestimatedevent-by-eventbasedontheoutputofaneuralnetwork.Itissubsequentlycalibratedwithdatainorderto relateittothetruewrong-tag probabilityoftheeventbyalinear relationas
ω(y)
=
p0+
p0 2
+
p1+
p1 2
· (y − y);
ω(y)
=
p0−
p0 2
+
p1−
p1 2
· (y − y),
(3)where p0, p1,
p0 and
p1 arecalibrationparameters,and
ω
(y)
and
ω
(y)
are the calibratedprobabilities for a wrong-tag assign-ment for B0s and B0s mesons, respectively. The calibration is per-formed separately for the OS and the SSK taggers using B+
→
J/ψ
K+ and B0s→
D−sπ
+ decays, respectively. When events are tagged by both the OS and the SSK algorithms, a combined tag decisionisformed.Theresultingefficiencyandtaggingpowersare listedinTable1.Table 1
Taggingefficiency,εtag,andtaggingpowergivenasthe
efficiency timesdilution squared, εtagD2, where D =
(1−2ω) for each categoryand the total. The uncer-taintiesonεtagarestatisticalonly,andthoseforεtagD2
containbothstatisticalandsystematiccomponents. Category εtag(%) εtagD2(%)
OS only 11.0±0.6 0.86±0.05 SSK only 42.6±0.6 1.54±0.33 OS and SSK 24.9±0.6 2.66±0.19 Total 78.5±0.7 5.06±0.38 Table 2 Resonanceparameters.
Resonance Mass (MeV) Width (MeV) Source
f0(500) 471±21 534±53 LHCb[38] f0(980) Varied in fits f2(1270) 1275.5±0.8 186.7+−22..25 PDG [14] f0(1500) Varied in fits f2(1525) 1522.2±1.7 78.0±4.8 LHCb [6] f0(1710) 1723+−65 139±8 PDG [14] f0(1790) 1790+−4030 270+ 60 −30 BES [37]
7.Descriptionofthe
π
+π
−massspectrumWefittheentire
π
+π
−massspectrumincludingtheresonance contributions listed in Table 2, and a nonresonant (NR) compo-nent.We use an isobarmodel [21]. All resonances are described by Breit–Wigner amplitudes, exceptfor the f0(
980)
state, whichismodelledbya Flattéfunction [34].The nonresonantamplitude istreatedasbeingconstantinmππ .Other theoreticallymotivated amplitude models are also proposed to describe this decay [35, 36]. Theprevious publication [21] usedan unconfirmed f0
(
1790)
resonance,reported by theBES collaboration [37], instead ofthe
f0
(
1710)
state.Wetestwhichonegivesabetterfit.The amplitude AR
(
mππ)
, generally represented by a Breit– WignerfunctionoraFlattéfunction,isusedtodescribethemass lineshapeofresonanceR.TodescribetheresonancefromtheB0sdecays,theamplitudeiscombinedwiththe B0s andresonance de-caypropertiestoformthefollowingexpression
A
R(
mπ π)
=
2 JR+
1 PRPBF(BLB)FR(LR)AR(
mπ π)
×
PB mBL
BP R m0L
R.
(4)HerePB isthe J
/ψ
momentumintheB0s restframe, PR isthe mo-mentumofeitherofthetwohadronsinthedihadronrestframe,mB is the B0s mass, m0 is the mass of resonance R,6 JR is the spin of the resonance R, LB is the orbital angular momentum betweenthe J
/ψ
meson andπ
+π
− system, and LR the orbital angularmomentumintheπ
+π
− system,andthusisthesameas thespin of theπ
+π
− resonance.The terms F(LB)B and F (LR)
R are theBlatt–Weisskopfbarrierfactors forthe B0s mesonand R
reso-nance,respectively [39].Theshapeparametersforthe f0
(
980)
andf0
(
1500)
resonancesareallowedtovary.6 Equation (4) ismodifiedfromthatusedinpreviouspublications [4,21] and
fol-lowstheconventionsuggestedbythePDG[14].
8. Likelihooddefinition
Thedecay-timedistributionincludingflavourtaggingis
R
(ˆ
t,
mπ π,
, q
|y) =
1 1+ |q|
[1
+ q (
1−
2ω(y))
](ˆ
t,
mπ π,
)
+
[1− q (
1−
2ω(y))
¯
]1+
AP 1−
AP¯(ˆ
t,
mπ π,
)
,
(5)where
ˆ
t isthetruedecaytime,(–)
isdefinedinEq. (1), and AP is
theproductionasymmetryofB0
s mesons.
Thefitfunction forthesignal ismodifiedto takeintoaccount thedecay-timeresolutionandacceptanceeffectsresultingin
F
(
t,
mπ π,, q
|y, δt
)
=
R(ˆ
t,
mπ π,
, q
|y) ⊗
T(
t− ˆ
t|δt
)
ε
B0sdata
(
t)ε(
mπ π,),
(6)where
ε
(
mππ,
)
istheefficiencyasafunctionofmππ and angu-larvariables, T(
t− ˆ
t|δ
t)
isthedecay-timeresolutionfunction,andε
B0sdata
(
t)
isthedecay-timeacceptancefunction.Thefreeparametersinthefitare
φ
s,|λ|
,H
−
B0,themagnitudesandphasesoftheresonances amplitudes, and the shape parameters of some reso-nances.Theotherparameters,including
ms,and
L,arefixedto
theknownvalues[14] orothermeasurementsmentionedbelow. The signal function is normalized by summing over
q
values andintegratingoverdecaytimet,themassmππ ,andtheangular variables,,giving
N
(δ
t)
=
2[(ˆ
t,
mπ π,
)
+
1+
AP 1−
AP¯(ˆ
t,
mπ π,
)
]
⊗
T(
t− ˆ
t|δt
)ε
B0s data(
t)ε(
mπ π,)
dmπ πddt
.
(7)Weassume noasymmetries inthetaggingefficiencies,whichare accountedforinthesystematicuncertainties.Theresultingsignal PDFis
P
(
t,
mπ π,, q
|y, δt
)
=
1N
(δ
t)
F
(
t,
mπ π,, q
|y, δt
).
(8)ThefitterusesatechniquesimilartosPlot [40] tosubtract back-groundfromthelog-likelihoodsum.Eachcandidateisassigneda weight,Wi
= +
1 fortheRSeventsandnegativevaluesfortheWS events.Thelikelihoodfunctionisdefinedas−
2 lnL
= −
2 sWi
Wiln
P
(
t,
mπ π,
, q
|y, δt
),
(9)wheresW
≡
iWi/
iWi2 isaconstantfactoraccountingforthe effectofthebackgroundsubtractiononthestatisticaluncertainty.The decay-time acceptance is assumed to be factorized from other variables,butduetothe
χ
2IP cuton thetwo pions,the
de-caytimeiscorrelatedwiththeangularvariables.Toavoidbiason thedeterminationof
Hfromthedecay-timeacceptance,the
sim-ulated B0s signal isweightedinordertoreproducethemππ reso-nantstructure observedindataby usingthepreferredamplitude modelthatisdeterminedbytheoverallfit.Aniterativeprocedure isperformedtofinalizethedecay-timeacceptance.Thisprocedure converges in three steps beyondwhich
H doesnot vary. When
weapply thismethodtopseudoexperimentsthatincludethe cor-relationmentionedbefore,thefitterreproducestheinputvaluesof
Table 3
Likelihoodsofvariousresonancemodelfits.Positiveornegativeinterferences(Int) amongthecontributingresonancesareindicated.TheSolutionsareindicatedby#.
# Resonance content Int −2 lnL
I f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525)+NR − −4850 II f0(980)+f0(1500)+f0(1710)+f2(1270)+f2(1525)+NR + −4834 III f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525)+NR + −4830 IV f0(980)+f0(1500)+f0(1790)+f2(1270)+f2(1525) − −4828 V f0(980)+f0(1500)+f0(1710)+f2(1270)+f2(1525) − −4706 Table 4
Fitresultsforthe
CP -violating
parametersforSolutionI.Thefirstuncertaintiesare statistical,andthesecondsystematic.Thelastthreecolumnsshowthestatistical correlationcoefficientsforthethreeparameters.Fit result Correlation
Parameter H− B0 |λ| φs
H− B0 ( ps−1) −0.050±0.004±0.004 1.000 0.022 0.038
|λ| 1.01−+00..0806±0.03 0.022 1.000 0.065
φs(rad) −0.057±0.060±0.011 0.038 0.065 1.000
9. Fitresults
Wefirstchoosethe resonancesthatbestfitthemππ
distribu-tion. Table 3 lists the different fit components and the value of
−
2lnL
.In thesecomparisons,themassandwidthofmost reso-nancesarefixed tothecentralvalueslistedinTable2,exceptfor the f0(
980)
and f0(
1500)
resonances, whose parameters areal-lowedtovary.Wefindtwotypesoffitresults,onewithapositive integratedsumofallinterferingcomponentsandonewitha nega-tiveone.ThefirstlistedSolutionIisbetterthanSolutionIIbyfour standard deviations, calculated by taking the square root of the
−
2lnL
difference. We take Solution I for our measurement and IIforsystematicuncertaintyevaluation.Themodelscorresponding toSolutionsIandIIareverysimilartothosefoundinourprevious analysisofthesamefinalstate [21].Fig. 5. Data distributionof
m
π πwiththeprojectionoftheSolutionIfitresultover-laid.Thedataaredescribedbythepoints(black)witherrorbars.Thesolid(blue) curveshowstheoverallfit.
ForthefitweassumethattheCP -violationquantities(
φ
s i,|λ
i|
) arethesameforalltheresonances.Wealsofixmstothecentral value of the world average 17
.
757±
0.
021 ps−1 [14], and fixL
tothecentralvalueof0
.
6995±
0.
0047 ps−1 fromtheLHCb B0s
→
J
/ψ
K+K− results [6].The fit valuesandcorrelations ofthe CP -violating parameters are shown in Table 4 for Solution I. The shape parameters of
f0
(
980)
and f0(
1500)
resonancesare foundtobeconsistentwithour previous results [21]. The angular anddecay-time fit projec-tionsareshowninFig.4.Themππ fitprojectionisshowninFig.5, wherethecontributionsoftheindividualresonancesarealso dis-played.AllsolutionslistedinTable3giveverysimilarfitvaluesfor
φ
s andH.Wealsofind thatthe CP -odd fractionisgreater than
97% at95% confidencelevel.The resonantcontent forSolutions I andIIarelistedinTable5.
Table 5
FitresultsoftheresonantstructureforbothSolutionsIandII.Theseresultsdonot supersedethoseinRef. [21] fortheresonantfractionsbecausenosystematic un-certaintiesarequoted.Thesumoffitfractionisnotnecessary100%duetopossible interferencesbetweenresonanceswiththesamespin.
Component Fit fractions (%) Transversity fractions (%)
0 ⊥ Solution I f0(980) 60.09±1.48 100 − − f0(1500) 8.88±0.87 100 − − f0(1790) 1.72±0.29 100 − − f2(1270) 3.24±0.48 13±3 37±9 50±10 f2(1525) 1.23±0.86 40±13 31±14 29±25 NR 2.64±0.73 100 − − Solution II f0(980) 93.05±1.12 100 − − f0(1500) 6.47±0.41 100 − − f0(1710) 0.74±0.11 100 − − f2(1270) 3.22±0.44 17±4 30±8 53±10 f2(1525) 1.44±0.36 35±8 31±12 34±17 NR 8.13±0.79 100 − − 10. Systematicuncertainties
ThesystematicuncertaintiesfortheCP -violatingparameters,
λ
and
φ
s,aresmallerthanthestatisticalones.Theyaresummarized inTable6alongwiththeuncertaintyonH
−
B0.Theuncertaintyonthedecay-timeacceptanceisfoundbyvarying theparameters ofthe acceptancefunction within their uncertainties and repeat-ing the fit.The same procedure is followedfor the uncertainties onthe B0 lifetime,
ms,
L,mππ and angularefficiencies, reso-nancemassesandwidths,flavour-taggingcalibration,andallowing fora2%productionasymmetry [41];thisuncertaintyalsoincludes anypossibledifferenceinflavourtaggingbetweenB0s andB0s. Sim-ulationisusedtovalidatethemethodforthetime-resolution cali-bration.Theuncertaintiesoftheparametersofthetime-resolution modelareestimatedusingthedifference betweenthesignal sim-ulation andprompt J
/ψ
simulation. These uncertainties are var-ied to obtain the effects on the physics parameters. Resonance modelling uncertainty includes varying the Breit–Wigner barrier factors, changing the default values of LB=
1 for the D-wave resonances to one or two, the differencesbetween the two best solutions,and replacingthe NR component by the f0(
500)
reso-nance.Furthermore,includinganisospin-violating
ρ
(
770)
0 compo-nentinthefit,resultsinanegligiblecontributionof(
1.
1±
0.
3)
%. Thelargest shiftamongthe modellingvariations is takenas sys-tematicuncertainty.Theinclusion ofρ
componentsresultsinthe largestshiftsofthethreephysicsparameters quoted.The processB+c
→
π
+B0s canaffectthemeasurementof
H
−
B0.Anestimateofthefractionofthesedecaysinoursampleis0.8% [5].Neglecting theB+c contributionleadstoabiasof0.0005 ps−1,whichisadded asasystematicuncertainty.Otherparametersareunchanged.
Correctionsfrompenguinamplitudesareignoredbecausetheir effects are known to be small [42–44] compared to the current experimentalprecision.
11. Conclusions
Using B0s and B0s
→
J/ψ
π
+π
− decays, we measure the CP-violatingphase,
φ
s= −
0.
057±
0.
060±
0.
011 rad,thedecay-width differenceH
−
B0= −
0.
050±
0.
004±
0.
004 ps−1, and thepa-rameter
|λ| =
1.
01−+00..0806±
0.
03,wherethequoteduncertaintiesare statistical and systematic. These results are more precise thanTable 6
Absolutesystematicuncertaintiesforthephysicsparameters.
Source H− B0 |λ| φs
[ fs−1] [×10−3] [mrad]
Decay-time acceptance 2.0 0.0 0.3
τB0 0.2 0.5 0.0
Efficiency (mπ π,) 0.2 0.1 0.0
Decay-time resolution width 0.0 4.3 4.0 Decay-time resolution mean 0.3 1.2 0.3
Background 3.0 2.7 0.6 Flavour tagging 0.0 2.2 2.3 ms 0.3 4.6 2.5 L 0.3 0.4 0.4 B+c 0.5 – – Resonance parameters 0.6 1.9 0.8 Resonance modelling 0.5 28.9 9.0 Production asymmetry 0.3 0.6 3.4 Total 3.8 29.9 11.0
those obtainedfromthe previous studyofthismodeusing7 TeV and 8 TeV pp collisions (Run 1) [4]. To combine the Run-1 re-sults with these, we reanalyze them by fixing
ms
=
17.
757±
0.
021 ps−1fromRef. [14],andL
=
0.
6995±
0.
0047 ps−1fromtheLHCb B0s
→
J/ψ
K+K− results [6]. We remove the Gaussian con-straintons andlet
Hvary.Insteadoftakingtheuncertainties
offlavourtagginganddecay-timeresolutionintothestatistical un-certainty,weplacethesesourcesinthesystematicuncertaintyand assume100%correlationwithournewresults.Theupdatedresults are:
φ
s=
0.
075±
0.
065±
0.
014 radand|λ|
=
0.
898±
0.
051±
0.
013 with a correlation of 0.
025. We then use the updatedφ
s and|λ|
Run-1 results as a constraintinto our newφ
s fit.7 The com-bined resultsareH
−
B0= −
0.
050±
0.
004±
0.
004 ps−1,|λ|
=
0
.
949±
0.
036±
0.
019, andφ
s=
0.
002±
0.
044±
0.
012 rad. The correlation coefficientsamongthe fitparameters are 0.025(
ρ
12)
,−
0.
001(
ρ
13)
,and0.026(
ρ
23)
.OurresultsstillhaveuncertaintiesgreaterthantheSM predic-tion and are slightly more precise than the measurement using
B0s
→
J/ψ
K+K− decays,based only on Run-1 data, which hasa precisionof0.049 rad [5].Hencethisisthemostprecise determi-nationofφ
s todate.Acknowledgements
We express our gratitude to our colleagues in the CERN ac-celerator departments for the excellent performance of the LHC. We thank the technical and administrative staff at the LHCb in-stitutes. We acknowledge support from CERN and from the na-tional agencies: CAPES, CNPq, FAPERJ and FINEP (Brazil); MOST and NSFC (China); CNRS/IN2P3 (France); BMBF, DFG and MPG (Germany); INFN (Italy); NWO (Netherlands); MNiSW and NCN (Poland); MEN/IFA (Romania); MSHE (Russia); MINECO (Spain); SNSF andSER (Switzerland);NASU (Ukraine); STFC (United King-dom);NSF (USA). We acknowledgethe computingresources that are provided by CERN, IN2P3 (France),KIT andDESY (Germany), INFN(Italy),SURF(Netherlands),PIC(Spain),GridPP(United King-dom), RRCKI and Yandex LLC (Russia), CSCS (Switzerland), IFIN-HH (Romania), CBPF (Brazil), PL-GRID (Poland) and OSC (USA). We are indebted to the communities behind the multiple open-sourcesoftwarepackagesonwhichwe depend.Individual groups or members have received support from AvH Foundation (Ger-many); EPLANET,MarieSkłodowska-Curie ActionsandERC (Euro-peanUnion);ANR,LabexP2IOandOCEVU, andRégion
Auvergne-7 Wedonotincludeanaveragevalueof
Hsincenosystematicuncertaintywas
Rhône-Alpes (France); KeyResearch Program ofFrontier Sciences ofCAS,CASPIFI,andtheThousandTalentsProgram(China);RFBR, RSFandYandexLLC(Russia);GVA,XuntaGalandGENCAT(Spain); the Royal Society and the Leverhulme Trust (United Kingdom); Laboratory Directed ResearchandDevelopment program of LANL (USA).
References
[1]I.I.Y. Bigi, A.I. Sanda, CP violation, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol.
9 (2000) 1.
[2] CKMfittergroup,J.Charles,etal.,CurrentstatusoftheStandardModelCKMfit andconstraintson F=2 newphysics,Phys.Rev.D91(2015)073007,arXiv: 1501.05013,updatedresultsandplotsavailableathttp://ckmfitter.in2p3 .fr/. [3]CDF collaboration, T. Aaltonen, et al., First flavor-tagged determination of
bounds on mixing-induced CP violation in B0
s→J/ψφdecays, Phys. Rev. Lett.
100 (2008) 161802, arXiv:0712 .2397;
D0 collaboration, V.M. Abazov, et al., Measurement of B0
s mixing parameters
from the flavor-tagged decay B0
s→J/ψφ, Phys. Rev. Lett. 101 (2008) 241801,
arXiv:0802 .2255;
CDF collaboration, T. Aaltonen, et al., Measurement of the CP -violating
phase
βsJ/ψ φin B0s→J/ψφdecays with the CDF II detector, Phys. Rev. D 85 (2012)
072002, arXiv:1112 .1726;
D0 collaboration, V.M. Abazov, et al., Measurement of the CP -violating
phase
φsJ/ψ φusing the flavor-tagged decay B0s→J/ψφ in 8 fb−1of p p collisions,
Phys. Rev. D 85 (2012) 032006, arXiv:1109 .3166.
[4]LHCb collaboration, R. Aaij, et al., Measurement of the CP -violating
phase
φsinB0
s→J/ψπ+π−decays, Phys. Lett. B 736 (2014) 186, arXiv:1405 .4140.
[5]LHCb collaboration, R. Aaij, et al., Precision measurement of CP violation
in
B0s→J/ψK+K−decays, Phys. Rev. Lett. 114 (2015) 041801, arXiv:1411.3104.
[6]LHCb collaboration, R. Aaij, et al., Resonances and CP violation
in
B0sand B0s→
J/ψK+K−decays in the mass region above the φ(1020), J. High Energy Phys. 08 (2017) 037, arXiv:1704 .08217.
[7]ATLAS collaboration, G. Aad, et al., Measurement of the CP -violating
phase
φsand the B0
s meson decay width difference with B0s→J/ψφdecays in ATLAS,
J. High Energy Phys. 08 (2016) 147, arXiv:1601.03297;
CMS collaboration, V. Khachatryan, et al., Measurement of the CP -violating
weak phase φs and the decay width difference s using the B0s →
J/ψ φ(1020)decay channel in pp collisions at √s=8 TeV, Phys. Lett. B 757 (2016) 97, arXiv:1507.07527.
[8]S. Stone, L. Zhang, S-waves and the measurement of CP violating phases in Bs
decays, Phys. Rev. D 79 (2009) 074024, arXiv:0812 .2832.
[9]LHCb collaboration, A.A. Alves Jr., et al., The LHCb detector at the LHC, J.
In-strum. 3 (2008) S08005.
[10]LHCb collaboration, R. Aaij, et al., LHCb detector performance, Int. J. Mod. Phys.
A 30 (2015) 1530022, arXiv:1412 .6352.
[11]R. Aaij, et al., Performance of the LHCb vertex locator, J. Instrum. 9 (2014)
P09007, arXiv:1405 .7808.
[12]M. Adinolfi, et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys.
J. C 73 (2013) 2431, arXiv:1211.6759.
[13]A.A. Alves Jr., et al., Performance of the LHCb muon system, J. Instrum. 8 (2013)
P02022, arXiv:1211.1346.
[14]Particle Data Group, M. Tanabashi, et al., Review of particle physics, Phys. Rev.
D 98 (2018) 030001.
[15]T. Sjöstrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High
En-ergy Phys. 05 (2006) 026, arXiv:hep -ph /0603175;
T. Sjöstrand, S. Mrenna, P. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852, arXiv:0710 .3820.
[16]I. Belyaev, et al., Handling of the generation of primary events in Gauss, the
LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047.
[17]D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum.
Meth-ods A 462 (2001) 152.
[18]P. Golonka, Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections
in Z andW decays,
Eur. Phys. J. C 45 (2006) 97, arXiv:hep
-ph /0506026.[19]Geant4 collaboration, J. Allison, et al., Geant4 developments and applications,
IEEE Trans. Nucl. Sci. 53 (2006) 270;
Geant4 collaboration, S. Agostinelli, et al., Geant4: a simulation toolkit, Nucl. Instrum. Methods A 506 (2003) 250.
[20]M. Clemencic, et al., The LHCb simulation application, Gauss: design, evolution
and experience, J. Phys. Conf. Ser. 331 (2011) 032023.
[21]LHCb collaboration, R. Aaij, et al., Measurement of resonant and CP
com-ponents in B0
s→J/ψπ+π− decays, Phys. Rev. D 89 (2014) 092006, arXiv:
1402 .6248.
[22]L. Zhang, S. Stone, Time-dependent Dalitz-plot formalism for B0
q→J/ψh+h−,
Phys. Lett. B 719 (2013) 383, arXiv:1212 .6434.
[23]A.S. Dighe, I. Dunietz, H.J. Lipkin, J.L. Rosner, Angular distributions and lifetime
differences in B0
s→J/ψφdecays, Phys. Lett. B 369 (1996) 144, arXiv:hep -ph /
9511363.
[24]LHCb collaboration, R. Aaij, et al., Measurement of CP violation
and the
B0s
meson decay width difference with B0
s→J/ψK+K− and B0s→J/ψπ+π−
decays, Phys. Rev. D 87 (2013) 112010, arXiv:1304 .2600.
[25]LHCb collaboration, R. Aaij, et al., Measurement of the CP asymmetry
in
B0s–B0s
mixing, Phys. Rev. Lett. 117 (2016) 061803, arXiv:1605 .09768.
[26]U. Nierste, Three lectures on meson mixing and CKM phenomenology, arXiv:
0904 .1869.
[27]LHCb collaboration, R. Aaij, et al., Opposite-side flavour tagging of B mesons at
the LHCb experiment, Eur. Phys. J. C 72 (2012) 2022, arXiv:1202 .4979; LHCb collaboration, R. Aaij, et al., A new algorithm for identifying the flavour of B0
s mesons at LHCb, J. Instrum. 11 (2016) P05010, arXiv:1602 .07252;
D. Fazzini, Flavour tagging in the LHCb experiment, PoS LHCP2018 (2018) 230.
[28]L. Breiman, J.H. Friedman, R.A. Olshen, C.J. Stone, Classification and Regression
Trees, Wadsworth International Group, Belmont, California, USA, 1984.
[29]Y. Freund, R.E. Schapire, A decision-theoretic generalization of on-line learning
and an application to boosting, J. Comput. Syst. Sci. 55 (1997) 119.
[30]J. Stevens, M. Williams, uBoost: a boosting method for producing uniform
se-lection efficiencies from multivariate classifiers, J. Instrum. 8 (2013) P12013, arXiv:1305 .7248.
[31]W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum.
Meth-ods A 552 (2005) 566, arXiv:physics /0503191.
[32]D. Martínez Santos, F. Dupertuis, Mass distributions marginalized over
per-event errors, Nucl. Instrum. Methods A 764 (2014) 150, arXiv:1312 .5000.
[33]LHCb collaboration, R. Aaij, et al., Observation of the decay B0
s →
J/ψ (2S)K+π−, Phys. Lett. B 747 (2015) 484, arXiv:1503 .07112.
[34]S.M. Flatté, On the nature of 0+mesons, Phys. Lett. B 63 (1976) 228. [35]J. Daub, C. Hanhart, B. Kubis, A model-independent analysis of final-state
in-teractions in B0d/s→J/ψπ+π−, J. High Energy Phys. 02 (2016) 009, arXiv:
1508 .06841.
[36]S. Ropertz, C. Hanhart, B. Kubis, A new parametrization for the scalar pion form
factors, Eur. Phys. J. C 78 (2018) 1000, arXiv:1809 .06867.
[37]BES collaboration, M. Ablikim, et al., Resonances in J/ψ → φπ+π− and
φK+K−, Phys. Lett. B 607 (2005) 243, arXiv:hep -ex /0411001.
[38]LHCb collaboration, R. Aaij, et al., Analysis of the resonant components in B0→
J/ψπ+π−, Phys. Rev. D 87 (2013) 052001, arXiv:1301.5347.
[39]LHCb collaboration, R. Aaij, et al., Analysis of the resonant components in B0
s→
J/ψπ+π−, Phys. Rev. D 86 (2012) 052006, arXiv:1204 .5643.
[40]M. Pivk, F.R. Le Diberder, sPlot: a statistical tool to unfold data distributions,
Nucl. Instrum. Methods A 555 (2005) 356, arXiv:physics /0402083;
Y. Xie, sFit: a method for background subtraction in maximum likelihood fit, arXiv:0905 .0724.
[41]LHCb collaboration, R. Aaij, et al., Measurement of B0, B0
s, B+ and Λ0b
pro-duction asymmetries in 7 and 8 TeV proton-proton collisions, Phys. Lett. B 774 (2017) 139, arXiv:1703 .08464.
[42]R. Fleischer, Theoretical prospects for B physics, PoS FPCP2015 (2015) 002,
arXiv:1509 .00601.
[43]LHCb collaboration, R. Aaij, et al., Measurement of the CP -violating
phase
βinB0→J/ψπ+π−decays and limits on penguin effects, Phys. Lett. B 742 (2015)
38, arXiv:1411.1634.
[44]LHCb collaboration, R. Aaij, et al., Measurement of CP violation
parameters and
polarisation fractions in B0
s→J/ψK∗0decays, J. High Energy Phys. 11 (2015)
082, arXiv:1509 .00400.
LHCbCollaboration