• No results found

Descartes' rule of signs, Newton polygons, and polynomials over hyperfields

N/A
N/A
Protected

Academic year: 2021

Share "Descartes' rule of signs, Newton polygons, and polynomials over hyperfields"

Copied!
27
0
0

Bezig met laden.... (Bekijk nu de volledige tekst)

Hele tekst

(1)

University of Groningen

Descartes' rule of signs, Newton polygons, and polynomials over hyperfields

Baker, Matthew; Lorscheid, Oliver

Published in: Journal of algebra DOI:

10.1016/j.jalgebra.2020.10.024

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below.

Document Version

Publisher's PDF, also known as Version of record

Publication date: 2021

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):

Baker, M., & Lorscheid, O. (2021). Descartes' rule of signs, Newton polygons, and polynomials over hyperfields. Journal of algebra, 569, 416-441. https://doi.org/10.1016/j.jalgebra.2020.10.024

Copyright

Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum.

(2)

Contents lists available atScienceDirect

Journal

of

Algebra

www.elsevier.com/locate/jalgebra

Descartes’

rule

of

signs,

Newton

polygons,

and

polynomials

over

hyperfields

Matthew Bakera,∗, Oliver Lorscheidb

a SchoolofMathematics,GeorgiaInstituteofTechnology,Atlanta,USA b InstitutoNacionaldeMatemáticaPuraeAplicada,RiodeJaneiro,Brazil

a r t i c l e i n f o a bs t r a c t

Article history:

Received11June2019

Availableonline4November2020 CommunicatedbyLouisRowen

Keywords: Hyperfields Polynomials Orderedblueprints Newtonpolygons Valuations Tropicalalgebra

In this note, wedevelop a theoryof multiplicities of roots for polynomials over hyperfields anduse this to provide a unified andconceptualproofofbothDescartes’ruleofsigns andNewton’s“polygonrule”.

©2020ElsevierInc.Allrightsreserved.

Introduction

Given areal polynomialp∈ R[T ],Descartes’ rule of signs provides anupperbound

for the number of positive (resp. negative) real roots of p in terms of the signs of the

coefficients ofp.Specifically,the numberof positive realrootsof p (counting

multiplic-✩ Acknowledgments. WethankPhilippJellforpointingoutRemark1.10,ZiqiLiuforsharingwithusthe

examplefromAppendixA.2,andStéphaneGaubertandananonymousrefereeforseveralremarks,including explanationsontherelationsofcertainhyperfieldswithsupertropicalandsymmetrizedsemirings.Wealso thankTrevorGunn,JaiungJun,YoavLen,SamPayneandThorWittichfortheircommentsonanearly draftversionofthismanuscript.ThefirstauthorwassupportedbyNSFGrantDMS-1529573andaSimons FoundationFellowship(Grant708029).

* Correspondingauthor.

E-mailaddresses:mbaker@math.gatech.edu(M. Baker),oliver@impa.br(O. Lorscheid).

https://doi.org/10.1016/j.jalgebra.2020.10.024

(3)

ities)is bounded aboveby the numberof sign changes in the coefficients of p(T ), and

the number of negative roots is bounded above by the number of sign changes inthe

coefficientsofp(−T ).

Anotherclassical “rule”, which isless well knownto mathematicians in generalbut

isusedquiteofteninnumbertheory,isNewton’s polygonrule.Thisrule concerns

poly-nomials over fields equipped with a valuation, which is a function v : K → R∪ {∞}

satisfying

• v(a)=∞ ifandonlyifa= 0

• v(ab)= v(a)+ v(b)

• v(a+ b) min{v(a),v(b)},withequality ifv(a)= v(b)

foralla,b∈ K.

Anexampleisthep-adicvaluationvp onQ,wherep isaprimenumber,givenbythe

formulavp(s/t)= ordp(s)− ordp(t),whereordp(n) isthemaximumpowerofp dividing

anonzerointegern.

Another example is the T -adic valuation vT on k(T ), for any field k, given by

vT(f /g) = ordT(f )− ordT(g), where ordT(f ) is the maximum power of T dividing

anonzeropolynomialf ∈ k[T ].

Given afieldK,avaluation v onK, andapolynomialp∈ K[T ],Newton’s polygon

ruleprovidesanupperbound forthenumberofroots(againcountingmultiplicities)of

p havinga given valuation s in terms of the valuations of the coefficientsof p. In this

case, the rule is morecomplicated than inthe case K = R; theupper bound νs(p) is

thelengthofthe projectiontothe x-axisoftheunique segmentoftheNewton polygon

ofp havingslope−s (ifsuchasegmentexists),or zero(ifnosuchsegmentexists).(See

Definition1.15foradefinitionoftheNewtonpolygonofp.)Ifp splitsintolinearfactors

overK,theupperboundprovidedbyNewton’sruleisinfactanequality.

Thepurpose of thisnote is to provide aconceptualunification of these two

similar-looking,and yetseeminglyrather different,upperboundsviathetheoryofhyperfields.

Hyperfieldsareageneralizationoffieldswhereadditionisallowedtobemulti-valued.

Given a hyperfield F and apolynomial p overF (by which we simply mean a formal

expression of the form ni=0ciTi with ci ∈ F ), we will define what it means for an

element a∈ F tobe aroot of p,andmoregenerallywe willdefine themultiplicity ofa

asarootofp.Wedenotethismultiplicity bymulta(p).

Inthecaseofthesignhyperfield S,wewillfindthatthemultiplicity of1 as arootof

p∈ S[T ] isjustthe numberof signchangesinthe coefficientsof p. Andinthe caseof thetropical hyperfield T , wewill see thatthemultiplicity of s asaroot ofp∈ T[T ] is

preciselyνs(p).

Moreover, if K is a field (considered as a hyperfield), f : K → F is a hyperfield

homomorphism,andp∈ K[T ] isapolynomial,ourdefinitionofmultiplicitieswillimply

thatthemultiplicity ofa∈ F as arootof f (p) isatleast thesumof themultiplicities

(4)

sign : R → S will yield Descartes’ rule of signs, and given avaluation v ona field K

(which is the samething as ahomomorphism from K to T ) we will recover Newton’s

polygonrule.

Content overview In section 1, we explain the overall idea behind our simultaneous

proof of Descartes’ rule of signs and Newton’s polygon rule. In section 2, we give a

rigorous definition of hyperfields and a proof of Lemma A and Proposition B. The

above-mentioned interpretation of the multiplicities of roots over the sign hyperfield

isestablishedinsection3,andforthetropicalhyperfieldthisisworkedoutinsection4.

InAppendixA,weinvestigatedifferentpossiblenotionsof“polynomialalgebra”overa

hyperfieldF .Wearguethatwhiletheoldertheoryof“additive-multiplicativehyperrings”

leadstoaratherbadlybehavednotion,thesecondauthor’stheoryoforderedblueprints

furnishes an efficient and satisfying (at least from a categorical perspective) theory of

polynomial algebras over hyperfields. We also discuss how the theory described in the

bodyofthispapergeneralizesneatlytoorderedbluefieldswhichsatisfya“reversibility”

axiom.

1. Statementofthe mainresults

Introductiontohyperfields Wealreadymentionedthathyperfields1areageneralization

of fields where addition is allowed to be multi-valued. Somewhat more precisely, in a

hyperfieldF additionisreplacedbyahyperoperation ,whichisamap

 : F× F −→ P(F )

intothepowersetP(F ) ofF .ThemultiplicationandhyperadditionoperationsonF are

required to satisfy various axioms,the mostnon-obvious of which is thatthere should

be adistinguished neutral element 0 ∈ F such thatfor each x∈ F , there is a unique

−x∈ F suchthat0∈ x(−x).We willgiveamoreprecise definitioninsection2;for

now wecontentourselveswithsomeexamples.

Thethreemostimportantexamplesofhyperfields,forthepurposesofthispaper,are

thefollowing:

• Every fieldK istautologicallyahyperfieldbydefiningab={a+ b}.

• Thesign hyperfield S consistsofthree elements{0,1,−1} withtheusual

multiplica-tionandhyperadditioncharacterizedbytherules11={1},−1− 1={−1} and

1− 1={0,1,−1}.

• The tropical hyperfield T hasfor itsunderlyingset R∪ {∞}.Multiplication inT is

givenbyadditionof(extended)realnumbers,andhyperadditionisdefinedasfollows:

1 MarcKrasnerintroducedhyperringsandhyperfieldsin[17],andsincethenmanyauthorshave

consid-eredmoregeneralversionsofthesenotions.Thehyperfieldsconsideredinthispaper,however,willallbe hyperfieldsintheoriginalsenseofKrasner.

(5)

if a = b then ab = min(a,b), while aa = {c ∈ R : c  a}∪ {∞}. The

hyperinverseofx isequaltox forallx∈ T.

Thefollowinghyperfieldswillalsobe usedlateronto givesomeexamplesand

coun-terexamples:

• TheKrasnerhyperfield K consistsoftwoelements{0,1} withtheusualmultiplication

andhyperadditioncharacterized bytherule11={0,1}.

• Theweaksignhyperfield W consistsofthreeelements{0,1,−1} withtheusual

mul-tiplicationandhyperadditioncharacterizedbytherules11=−1 − 1={1,−1}

and1 − 1={0,1,−1}.

• Thephasehyperfield P hasforitsunderlyingsetS1∪ {0},whereS1={e ∈ C |0

θ < 2π} isthecomplexunitcircle.MultiplicationonP isdeduced fromthe

multipli-cationonC,andhyperadditionis characterizedbythefollowingrules:

– If θ1= θ2+ π,theneiθ1eiθ2 ={0,eiθ1,eiθ2}.

– If θ1< θ2< θ1+ π, theneiθ1eiθ2 ={eiθ|θ1< θ < θ2}.

Remark 1.1.All six of these examples are special cases of a general construction of

hyperfieldsas quotientsoffields byamultiplicativesubgroup,whichisdescribedin[5].

LetK beafieldand letG beasubgroup of . Thenthe quotientK/G ofK by the

actionof G by (left)multiplication carriesanatural structure ofahyperfield: wehave

(K/G)×= K×/G asanabeliangroupand

[a][b] = [c]c = a+ b for some a∈ [a], b∈ [b]

forequivalenceclasses[a] and[b] in K/G.

For any field K we have K = K/{1} and if |K| > 2 then K = K/K×. Similarly, S = R/R>0,P = C/R>0,andW = Fp/(Fp×)2 foranyprimep 7 with p≡ 3 (mod 4).

ThetropicalhyperfieldT is alsoaspecialcaseofthequotientconstruction:ifK isany

fieldendowedwithasurjectivevaluation v : K×→ R,thenT = K/v−1(0).

Remark1.2.Thereareexamplesofhyperfieldswhichdonotarisefromtheconstruction

giveninRemark1.1;see, forexample,[20].

Rootsandmultiplicities Ifp(T )=ni=0ciTi isapolynomialwithcoefficientsinafield

K,anelement a∈ K isarootof p ifandonly ifeitherofthefollowing two equivalent

conditionsissatisfied: (1) p(a)= 0,i.e.,ciai= 0.

(2) T − a dividesp(T ), i.e.,there is apolynomialq(T )=ni=0−1diTi ∈ K[T ] suchthat

(6)

Note that(2) isequivalent totheexistenceofelementsd0,. . . ,dn−1∈ K suchthat

c0=−ad0, ci=−adi+ di−1 for i = 1, . . . , n− 1, and cn = dn−1. (2)

IfF isahyperfield,theninordertodefinewhatitmeanstobearootofapolynomial

over F wewill generalizeconditions(1) and(2) byreplacing sumswithhypersums.

Lemma A.Letc0,. . . ,cn∈ F . Thefollowingare equivalent foranelement a∈ F :

(1) 0∈



ciai.

(2) Thereexistelements d0,. . . ,dn−1∈ F such that

c0=−ad0, ci ∈ (−adi)di−1for i = 1, . . . , n− 1, and cn= dn−1.

Wewrite 0∈ p(a) if(1) issatisfied,and p∈ (T − a)q ifq =n−1i=0 diTi satisfies(2).

Wewill giveaproofofLemmaAinsection 2.

Remark1.3.Notethat,unlikethecasewhereF = K isafield,the“quotient”polynomial

q = ni=0−1diTi is ingeneral not unique.For example, suppose F = S and let p(T ) =

T3− T2− T + 1.Thenp∈ (T − 1)q forq(T )∈ {T2− 1,T2+ T− 1,T2− T − 1}.

LemmaAmotivatesthefollowingdefinition:

Definition 1.4.Let c0,. . . ,cn ∈ F . An element a ∈ F is aroot of the polynomialp =

n

i=0ciTi ifitsatisfieseitheroftheequivalentconditions(1) or(2).

Wedefine themultiplicitymulta(p) of a asarootofp in termsof asimplerecursion

as follows.

Definition 1.5.Ifa isnotarootofp,set multa(p)= 0.Ifa isarootofp,define

multa(p) = 1 + max



multa(q)p∈ (T − a)q



.

NotethatwhenF = K isafield,multa(p) isjusttheusualmultiplicityofa asaroot

of p.

Remark 1.6. The ideato define roots of polynomials over hyperfields using (1) is due

to Viro, cf. [24]. However, we believethatLemma A and the definitionof multa(p) in

(7)

Homomorphisms ofhyperfields

Definition 1.7. Let F1,F2 be hyperfields. A map f : F1 → F2 is called a hyperfield

homomorphism iff (0)= 0,f (1)= 1,f (ab)= f (a)f (b), andf (a+ b)⊂ f(a)f (b) for

alla,b∈ F1.

Example1.8.Here areacoupleofexamplesofhyperfieldhomomorphisms.

(1) The functionsign : R → S takingareal numberto its signis ahomomorphism of

hyperfields.

(2) IfK isafield,amap v : K→ R∪ {∞} iscalleda(Krull)valuation ifv−1(∞)= 0

and for all a,b ∈ K we have v(ab) = v(a)+ v(b) and v(a+ b)  min{v(a),v(b)}.

One checks easily that a map v : K → R∪ {∞} is a valuation if and only if the

corresponding mapK→ T is ahomomorphismofhyperfields.

PropositionB.LetK be afieldandf : K → F ahomomorphismtoahyperfield F .Let

p=ciTi beapolynomialoverK andletp =¯ f (ci)Ti thecorresponding polynomial

overF . Then

multbp) 



a∈f−1(b)

multa(p) (1)

for every b ∈ F . Moreover, if b∈Fmultbp)  deg(¯p) and p splits into a product of

linearfactors overK, thenwehave equalityin(1).

Wewillgiveaproofof PropositionBinsection 2.

Remark1.9(Apathologicalexample).IfF isahyperfieldandp isapolynomialofdegree

d overF ,itispossibleforthesuma∈Fmulta(p) toexceedd.Forexample,ifF = W is

theweaksignhyperfield,thenboth1 and−1 aredoublerootsofthequadraticpolynomial

p(T )= T2+ T + 1. (Indeed,itis immediatelyverifiedthat0∈ q(1) for q∈ {p,T− 1}, 0∈ q(−1) for q∈ {p,T + 1},p∈ (T + 1)(T + 1),andp∈ (T − 1)(T − 1).)

Such“pathological” behavior doesnothappenwhenF is afieldor whenF = K, S,

orT ;inthesecases,a∈Fmulta(p) d foreverypolynomialp overF byRemarks1.11,

1.13,and1.17below.

Remark1.10(Anevenmorepathologicalexample).Anonzeropolynomialp overa

hyper-fieldF canhaveinfinitelymany roots,inwhichcasea∈Fmulta(p)=∞.Forexample,

takeF = P tobethephasehyperfieldandletp(T )= T2+ T + 1.Thena= e isaroot

ofp forallπ/2< θ < 3π/2.

Remark1.11.Ifp(T )= crTr+ cr+1Tr+1+· · · + cnTn isapolynomial overtheKrasner

hyperfieldK,whereweassumethatcr,cn= 0,thenonecheckseasilythatmult0(p)= r

(8)

Remark 1.12.The inequalityprovidedby PropositionBdoes nothold ingeneralifwe

replace K by an arbitrary hyperfield.For example, consider themap f : P → K from

thephasehyperfieldtotheKrasnerhyperfieldthatsendsallnonzeroelementsofP to1.

ByRemark1.11,1 isaroot ofmultiplicity2 ofthepolynomialT2+ T + 1 overK.But

when consideredas a polynomialoverP , it hasinfinitely manyroots by Remark1.10,

sothesumofthemultiplicitiesofallrootsofT2+ T + 1 inP isnotboundedfromabove

by2.

It follows from theresults ofthis text, however,thatProposition Bistrue forT or

S in place ofK. In the caseof the tropical hyperfieldT , this follows from the unique

factorizationofpolynomialsoverT intolinearterms(Theorem4.1),whichallowsforthe

sameargumentsasinthecaseofafieldtoprovetheinequalityofPropositionB.Inthe

case of the signhyperfield S,the inequalityof Proposition Bcan be establishedalong

the following lines. There is only one proper surjection from S to another hyperfield,

namelythemapf : S→ K thatsends±1 to1.Letp=±Tn+ . . .± Tmbeapolynomial

over S and p its¯ image polynomial over K. The inequality for b = 0 is clear. Since

mult−1(p)= mult1(p(−T )),wecandeducetheinequalitymult1(p)+ mult−1(p) n− m

from Descartes’sruleofsigns(TheoremC).Sincen− m= mult1(¯p) (cf.Remark1.11),

we obtainthedesiredinequality.

Multiplicities overthe sign hyperfieldand Descartes’ rule of signs Let p(T )=ciTi

be apolynomial over the sign hyperfieldS, so thatall coefficients are 0, 1 or−1. We

define thenumberof signchangesin thecoefficientsof p as

σ(p) = #ici =−ci+k= 0 and ci+1=· · · = ci+k−1= 0 for some k 1.

Thefollowing resultwill beprovedinsection 3.

Theorem C.Letp beapolynomial overS. Thenmult1(p)= σ(p).

Remark1.13.Weleaveit asaneasy exercisefor thereaderto verify,using Theorem C

and thefactthat−1 isaroot ofp(T ) if andonly if1 isaroot ofp(−T ),thatifp is a

polynomialoverS thena∈Smulta(p) deg(p).

AsaconsequenceofTheoremCandPropositionB,weobtainanewproofofDescartes’

rule ofsigns.

Theorem (Descartes’ rule of signs).Let p = ciTi be a polynomial over R and let

p =sign(ci)Ti.Thenthenumberofpositiverealroots ofp (countingmultiplicities)is

at mostσp,with equalityifp splits intoaproductof linearfactors overR. Proof. Since neither a>0multa(p) nor σ



p changes if we multiply f by a nonzero

real number,we canassume thatf is monic. ByTheorem C, σp= mult1



p. Since sign(a)= 1 ifandonlyifa> 0, PropositionBimplies

(9)



a>0

multa(p)  mult1



p = σp,

which establishes the firstpart of the theorem.The assertionregarding equality when

p splits into a product of linear factors over R follows from Proposition B and

Re-mark1.13. 

Remark 1.14.For any polynomial p¯∈ S[T ] there exists a polynomial p ∈ R[T ] with

sign(p)= ¯p such thatthe numberof positive (resp.negative) real roots of p (counting

multiplicities) is equal to mult1(¯p) (resp. mult−1p)), cf. [10]. So the bound given by

our Proposition Bwhen the homomorphism in question is sign : R → S is tight ina

particularlystrongsense.

Itwouldbeinterestingtocharacterizethehyperfieldhomomorphismsf : K→ F with

theproperty that forany p over¯ F , there exists apolynomialp∈ K[T ] with f (p)= ¯p

suchthatmultbp) = a∈f−1(b)multa(p) foreveryb∈ F .

Short historical account Descartes stated his rule without proof in the appendix La

géométrie([8])tohisbookDiscoursdelaméthode,whichwaspublishedin1637.Newton

restatedthis formula in 1707, alsowithout aproof. Thefirst proof appearsin 1740 in

text Usages de l’analyse de Descartes ([11]) by de Guade Malves. It was reproven by

Gauß ([9]) in 1728, including the addition that the difference between the number of

positiverealrootsandnumberofsignchangesisalwayseven, whichisoftenmentioned

asapartofDescartes’rule.

TropicalmultiplicitiesandNewton’s polygonrule

Definition1.15.Given apolynomialp=ni=0ciTi ofdegreen with ci∈ T, itsNewton

polygon NP(p) isdefinedtobethelower convexhullof{(i,ci) : 0 i n}⊂ R2.(For

simplicity, we assume thatc0 = ∞; this allows us to avoid having to consider vertical

segmentsintheNewton polygon.)

Morevividly,imaginethepoints(i,ci) asnailsstickingoutfromtheplaneandattach

along piece of string with oneend nailed to (x0,y0)= (0,c0) and theother end free.

Rotatethestringcounter-clockwiseuntil itmeetsoneof thenails;thiswill bethenext

vertex(x1,y1) oftheNewtonpolygon.Aswecontinuerotating,thesegmentL1ofstring between(x0,y0) and(x1,y1) willbefixed.Continuingtorotatethestringinthismanner untilthestringcatchesonthepoint(xt,yt)= (n,cn) yieldstheNewtonpolygonofp.

ThusNP(f ) isafinite unionL1,. . . ,Ltof linesegments,eachwith adifferent slope.

We let sj be the negative of the slope of Lj and we denote by λj the length of the

projectionofLj to thex-axis.

Finally,fors∈ R wedefine νs(p) tobe0ifs= sj forallj = 1,. . . ,t,and otherwise

(10)

Example 1.16.Weillustrate these definitionsinthefollowing example.Let p=ciTi

be themonic polynomialof degree5 withc0= 2, c1= 0, c2= 1,c3=∞, c4 =−1 and

c5= 0.Then theNewton polygoncanbeillustratedas follows:

0 1 2 −1 1 2 3 4 5 (0, c0) (1, c1) (2, c2) (4, c4) (5, c5) L1 L2 L3 i ci k 1 2 3 sk 2 1/3 −1 λk 1 3 1

We displaythe valuesofthe sk andthe λk for theline segmentsL1, L2 and L3 in the

table nextto thegraphic. Thus thefunction νs(p) hasthe valuesν2(p) = 1,ν1/3(p) =

3,ν−1(p)= 1,andνs(p)= 0 for alls∈ {2,/ 1/3,−1}.

Thefollowing resultwill beprovedinsection 4.

Theorem D.Letp beapolynomial overT .Forevery s∈ T,wehave mults(p)= νs(p).

Remark1.17.Itfollowsimmediatelyfrom TheoremDthata∈Tmulta(p)= deg(p) for

everypolynomialp overT .

Using TheoremDand PropositionB,wededuce:

Theorem (Newton’s polygon rule).Let K be afield and let v : K → T be a valuation.

Let p= ciTi be a polynomial over T and let p = v(ci)Ti. Let s ∈ T. Then the

number ofrootsa∈ K ofp withv(a)= s (countingmultiplicities)isatmostνs(p),with

equalityif p splits intoaproductoflinear factorsover K.

Proof. Newton’spolygonrulecanbe provenwiththesameargumentasDescartes’rule

of signs, where we rely onTheorem D instead of Theorem C in this case. Namely, by

PropositionBandTheoremD,wehave



a∈v−1(s)

multa(p)  mults(p) = vs(p).

Thus thefirstclaim ofthetheorem.Ifp splits intolinearfactors, thenwe deducefrom

(11)

deg(p) = 

a∈K

multa(p)  mults(p) = deg(p) = deg(p),

andthusequalitythroughout,whichestablishesthesecondclaimofthetheorem. 

Remark1.18.If K iscompletewith respectto thevaluationv (i.e., K iscomplete asa

metric space with respect to thedistance function d(a,b) = e−v(a−b)), then v extends

uniquelytoavaluationonanyfixedalgebraic closureK of¯ K;cf. [21,ChapterII,Thm.

4.8].Sointhiscase,Newton’spolygonrulecanbeformulatedasfollows: thenumberof

rootsa∈ ¯K ofp withv(a)= s (countingmultiplicities)isequalto νs(p).

Remark 1.19.When K is complete, one often uses Hensel’s Lemma [21, Chapter II,

Lemma 4.6] in conjunction with Newton’s polygon rule to guarantee the existence of

precisely νs(p) roots in K with valuation s. For example, if p has coefficients in the

valuation ring R of K and the reduction of p modulo the maximal ideal of R splits

completelyintodistinctlinearfactors,thenitfollowsfromHensel’sLemmathatp splits

completelyinto linearfactorsoverK.

Remark1.20.It wouldbe interestingto findother usefulapplications ofPropositionB

besidesDescartes’rule andNewton’s polygonrule.2 Itwouldalsobe interestingto

for-mulate a higher-dimensional version of the theory of multiplicities developed in this

paper.

Relation to the supertropical numbers and the symmetrization of the tropical numbers

Thetropicalhyperfieldiscloselyrelatedtothesupertropicalnumbers,whichwere

intro-ducedbyIzhakianin[13].Toexplain,wecanextendtheproductandthehyperaddition

onthetropicalhyperfieldT tothewholepowersetP(T) ofT byelementwiseevaluation.

Withtheseoperations,P(T) becomesasemiring.ThesmallestsubsemiringofP(T) that

contains all singletons {a} with a ∈ T consists of all singletons {a} together with all

intervals ofthe form [a,∞], where a variesthrough T . This subsemiringis isomorphic

to Izhakian’s semiring of supertropical numbers. In joint work with Rowen, Izhakian

extends his theory in [14] and [15] to polynomials over the semiring of supertropical

numbers.Thecommon intersections with thecontent ofthis paper are: (a)they

intro-ducetheconceptof aroot, whichagreeswith oursunderthecorrespondence described

above;and(b)theyshow in[14,Lemma5.7] thateverysupertropicalpolynomialhasa

root.

Inthe sameway, the powerset P(S) of thesign hyperfieldS is asemiring, and the

smallestsubsemiringwhich containsallsingletons is isomorphicto the symmetrization

of the Boolean semifield. This semiring, or more precisely its extension to the

sym-metrizationofthetropicalnumbers,areintroducedin[22];alsocf.[1,section3.4].In[1,

2 Noteadded:thefirstauthor’sstudentTrevorGunnhasrecentlyfoundasimultaneousgeneralizationof

Descartes’ruleandNewton’spolygonrulebyapplyingPropositionBtothesignedtropicalhyperfield;see [12] fordetails.

(12)

section 3.6],polynomialsover thissemiring aretreated,including theconceptsofroots

andtheirmultiplicities.Theirnotionofrootscoincideswithours,buttheirdefinitionof

multiplicity forrootsisdifferentfrom ours.

2. Hyperfields

Togivearigorousdefinitionofhyperfields,wefirstdefineabinary hyperoperation on

asetG to beamap

 : G× G −→ P(G)

into thepowersetP(G) ofG suchthatab is non-emptyforalla,b∈ G.

The hyperoperation  is called commutative if ab = ba for all a,b ∈ G, and

associative if d∈bc ad = d∈ab dc foralla,b,c∈ G.

If  isbothcommutativeandassociative,wecandefinethehypersum



ni=1 aifor

alln 2 anda1,. . . ,an∈ G bytherecursiveformula n



i=1 ai = b∈



n−1i=1 ai ban.

A commutative hypergroup isa set G endowed with a commutativeand associative

binaryhyperoperation  andadistinguishedelement0∈ G suchthatforalla,b,c∈ G:

(HG1) 0a= a0={a}. (neutralelement)

(HG2) Thereisauniqueelement −a inG suchthat0∈ a(−a). (inverses)

(HG3) a∈ bc ifandonlyif−b∈ (−a)c. (reversibility)

A hyperfield isa set F togetherwith a binary operation ·, abinary hyperoperation

,and distinguishedelements0 and1 suchthatforalla,b,c∈ F :

(HF1) (F,,0) isacommutativehypergroup.

(HF2) (F\ {0},·,1) is anabeliangroup.

(HF3) a· 0= 0· a= 0.

(HF4) a· (bc)= abac,where a· (bc)={ad|d∈ bc}. (distributivity)

(13)

Proof of LemmaA. The case a= 0 is easy:we have 0



ciai = 0· · ·0c0 if

andonlyifc0= 0.Ontheother hand,theconditionsin(2) reduceto

c0= 0, ci∈ 0di−1={di−1} for i = 1, . . . n − 1, and cn= dn−1,

whichcanbe fulfilled(uniquely)bydi= ci+1 fori= 0,. . . ,n− 1 ifandonly ifc0 = 0.

Thisestablishesthedesiredequivalencefora= 0.

Ifa= 0,thenbytheverydefinitionofthehypersumofn+ 1 summands,0



ciai

ifandonlyifthere isasequence ofelementse1,. . . ,en−1 ∈ F suchthat

e1 ∈ c0c1a, ei ∈ ei−1ciai for i = 2, . . . , n− 1, and 0 ∈ en−1cnan.

Let d0,. . . ,dn−1 ∈ F be the uniqueelements satisfying c0 =−ad0 and ei = −diai+1.

Thentheaboverelationscanberewrittenas

−diai+1 ∈ (−di−1ai)ciai for i = 1, . . . , n− 1, and − dn−1an = −cnan.

(Hereweusethefactthat,by(HG2),0∈ en−1cnan ifandonlyifen−1 =−cnan.)

These relations can be brought into the form in which they appear in (2) by first

multiplying each of them by −a−i and then using the reversibility Axiom (HG3) to

exchangethetermsdi and −ci. 

Wealsogivethepromised proofofPropositionB:

Proof of PropositionB. Let a1,. . . ,an ∈ K be not necessarily distinct elements such

that(T−ai) dividesp inK[T ].Defineq1= p andfori= 1,. . . ,n,definethepolynomial

qi+1∈ K[T ] bythepropertythatqi= (T − ai)qi+1 inK[T ].

Toprovethe proposition,assume thatp(a1)= . . . = p(an)= b andthatthere is no

a∈ K such thatf (a)= b andqn+1(a)= 0,i.e., thata1,. . . ,an areallof therootsofp

(countedwithmultiplicities)havingf (ai)= b.

Bythedefinition ofahomomorphism of hyperfields,therelations qi= (T − ai)qi+1

implythatqi∈ (T −b)qi+1overF ,whereqiistheimageofqiunderf .Thusthesequence

oftheqicertifiesthatmultb(p) isatleastn.Thisprovesthefirstpartoftheproposition.

If p splitsinto linearfactors and b∈Fmultb(p)  deg p, then the first assertion of

thepropositionimpliesthat

deg p = 

a∈K

multa(p) 



b∈F

multb(p)  deg p = deg p,

and thus equality holds throughout. Therefore multbp) =



a∈f−1(b)multa(p) for all

(14)

3. Multiplicitiesoverthesignhyperfield

Ourgoalinthis sectionistoproveTheoremC.

Letp=ciTi beamonicpolynomialoverthesignhyperfieldS ofdegreen.Recall

thatthenumberof signchangesin thecoefficientsof p is

σ(p) = #ici =−ci+k= 0 and ci+1=· · · = ci+k−1= 0 for some k 1



.

Theorem3.1. Letp=ciTibeamonicpolynomialofdegreen overS.Thenmult1(p)=

σ(p).

Proof. The maineffortoftheproofconsistsinshowingthatifσ(p)> 0 then

σ(p) = 1 + maxσ(q)p∈ (T − 1)q.

Once we have shown this, we can conclude the proof of the theorem by induction on

σ(p). If σ(p)= 0, then0∈ p(1)/ = 1· · ·1 andthus mult1(p)= 0.Ifσ(p)> 0,then 0∈ p(1)= cn· · ·c0 sincethereisasignchange,and

σ(p) = 1 + max{σ(q)p∈ (T − 1)q = 1 + max{mult1(q)p∈ (T − 1)q 

= mult1(p),

where we use the inductive hypothesis for the second equality and the definition of

mult1(p) forthelastequality.

Weproceed with showingthatthemaximumofthevaluesσ(q) with p∈ (T − 1)q is

σ(p)− 1.Let q = diTi be a polynomialover S such thatp∈ (T − 1)q.This means

thatdeg q = deg p− 1 and

d0=−c0, ci∈ −didi−1for i = 1, . . . , n− 1, and dn−1 = cn= 1.

Thestrategyoftheproofistoboundthenumberofsignchangesinq bythenumberof

signchangesinp indecreasingorderof i.

Letσi(p) bethenumberofsignchangesinthesequenceofcoefficientscn,. . . ,ci ofp,

i.e.,

σi(p) = #



k ick =−ck+l+1= 0 and ck+1=· · · = ck+l= 0 for some l 0



.

Letσi(q) bethenumberofsignchangesinthesequenceofcoefficientsdn−1,. . . ,di ofq,

whichisdefinedanalogously toσi(p).

Weclaimthatσi(q) σi(p) foralli= 0,. . . ,n,withσi(q)+ 1 σi(p) ifdi=−ci= 0.

Wewill provethis claimbydescendinginductiononi.Ifi= n,thenσi(q)= σi(p)= 0,

whichproves ourclaiminthiscasesincedn= 0= −cn.

Before explaining the inductive step, we begin with some preliminary observations

(15)

consider.Namely, if0= ci and ci = −ci+1 as well as 0= di anddi = −di+1, then we

haveσi(p)= σi+1(p) andσi(q)= σi+1(q).Thuswedonotchangethevaluesofσi(p) and

σi(q) ifweomitci+1 and di+1 from thesequencescn,. . . ,ci anddn−1,. . . ,di.Therefore

we mayassume without loss of generality thatthis situationdoes not occur.We may

similarlyassumethatc0= 0,sinceotherwised0=−c0= 0 andthusσ0(p)= σ1(p) and

σ0(q)= σ1(q).

Theseassumptionsandtherelationp∈ (T − 1)q havethefollowingconsequencesfor

i= 0,. . . ,n− 1:

(1) Wehaveci+1= 0.Indeed,ifci+1= 0,thenci+1∈ −di+1diimpliesthatdi+1= di.

Butthissituationisexcludedbyourassumptions.

(2) Ifdi+1=−di,thenci+1∈ −di+1di impliesthatci+1 = di=−di+1.

(3) Ifci =−di,thenwehaveci+1= di=−ci.Indeed,ifci+1 = cithenci+1∈ −di+1di

impliesdi+1= di,whichisexcludedbyourassumptions.

Assume that i < n. We prove the inductive step of our claim by considering the

followingfourconstellationsofpossiblevaluesforci,di,anddi+1.(Weindicateusageof

theinductivehypothesisinthefollowingrelationsby“(IH)”.)

Case1: di+1 = −di andci= −di.Inthiscase,weobtain

σi(q) = σi+1(q) 

(IH)

σi+1(p)  σi(p).

Case2: di+1=−di andci= −di. By(1) and(2),we haveci+1=−di+1= di = ci, and

thus

σi(q) = σi+1(q) + 1 

(IH)

σi+1(p) = σi(p).

Case3: di+1 = −di andci=−di.By(3),wehaveci+1 = di=−ci, andthus

σi(q) + 1 = σi+1(q) + 1 

(IH)

σi+1(p) + 1 = σi(p).

Case4: di+1 =−di andci=−di.By(3),wehaveci+1 = di=−ci =−di+1,andthus

σi(q) + 1 = σi+1(q) + 2 

(IH)

σi+1(p) + 1 = σi(p).

Thisconcludestheproofofourclaim.

Notethatσ(p)= σ0(p) andσ(q)= σ0(q).Sinced0=−c0andq waschosenarbitrarily

withrespectto thepropertyp∈ (T − 1)q,thisshowsthat

(16)

To complete the proof of the theorem,we haveto show thatthere is aq0 with p∈ (T− 1)q0 andσ(q0)+ 1= σ(p).Wedefineq0=diTi asfollows. Letk bethenumber

suchthatc0= . . . = ck =−ck+1,anddefine

di= ci+1 if ci+1= 0 and i > k;

di= di+1 if ci+1= 0 and i > k;

di=−c0 if i k.

Weleavetheeasyverificationthatp∈ (T − 1)q0andσ(q0)+ 1= σ(p) tothereader. 

4. Multiplicitiesoftropicalroots

Our goal inthis section is to prove Theorem D. Our proof is based ona hyperfield

version(Theorem4.1below)oftheso-called“Fundamentaltheoremoftropicalalgebra”

(cf. Lemma4.2).

Letp=ciTi beamonicpolynomialofdegreen overT andleta1,. . . ,an∈ T.We

write p∈(T + ai) if

cn−i∈



e1<···<ei

ae1· · · aei

foralli= 1,. . . ,n.

Theorem 4.1(Fundamentaltheorem forthetropical hyperfield).Letp=ni=0ciTi be a

monic polynomialof degree n overT .Then:

(1) There is a unique sequence a1,. . . ,an ∈ T, up to permutation of the indices,

suchthatp∈(T + ai).

(2) For everya∈ T, wehaveequalities

multa(p) = #



i∈ {1, . . . , n}a = ai



= vp(a).

The rest of this section is devoted to the proof of Theorem 4.1. The main idea of

theproofistoconsiderpolynomialsoverthetropicalhyperfieldT asfunctionsfrom the

tropical semifield R toitself,andto comparethehyperfieldandsemifieldperspectives.

As aset,R = R∪ {∞} isequaltoT ,and theyhavethesamemultiplicationas well:

the product ab∈ R isdefined asthe sumof thecorresponding extendedreal numbers.

ThedifferencebetweenR andT appearsintheadditionlaw:thesumoftwoelementsa

andb ofR isdefinedasmin{a,b},whichisanelement ofR,opposedtothesubset ab

of T .

Toavoidconfusionbetweentropicaladditionandusual addition(i.e.,tropical

(17)

T by a,b,c,d andelements of R bya,b,c,d. Given anelement a∈ T, wewrite a if we

consider itas anelementof R.Wekeepthepreviouslyestablishednotations forT , i.e.

the hypersum of a and b is denotedby ab and their product by ab. We denote the

tropical sumof two elements a and b of R by min{a,b} andtheir tropical product by

a + b.Wewritei· a for thei-foldsuma +· · · + a ofa withitself.

Anontrivialpolynomialp=ciTi ofdegreen overT defines afunction

p : R −→ R b −→ min i=0,...,n  ci+ i· b  ,

whichwesometimesextendtoafunctionR→ R viap(∞)=∞.Thetrivialpolynomial

yieldsthetrivialfunction b → ∞.

We say that two polynomials p =ciTi and q = diTi over T are functionally

equivalent,denotedp = q, iftheydefine the samefunctionR → R.We call afunction

p : R→ R asaboveatropical(polynomial)function anddenoteitbyp = min{ci+ i·T }.

Thedegreeof p isthedegreeofp andp ismonic ifp ismonic.Notethatbothnotionsare

independentofthechoiceoftherepresentingpolynomialp.Notefurtherthattheset of

tropicalfunctionsinheritsthestructureofasemiringfromR byaddingandmultiplying

functionsvaluewise.

Itiswell-knownthateverytropicalfunctionfactorsuniquelyinto aproductoflinear

functions.This resultissometimesreferredto asthe “fundamentaltheoremof tropical

algebra”,anditwasfirstprovenin[6,Thm.11];seealso[1,Thm.3.43].

Lemma4.2(Fundamentaltheoremoftropicalalgebra).Foreverymonictropicalfunction

p = min{ci + i· T } of degree n, there is a unique sequence a1,. . . ,an ∈ R, up to a

permutationof indices,suchthat p =i=1n min{T,ai} astropical functions. 

Thesecondequalityinpart2ofTheorem4.1followsfromtheusualargumentsinthe

theoryofNewtonpolygons;inparticular,wehavethefollowingwell-knownfact(see[4]

or[6,section9],forexample,forproofs):

Lemma4.3.Letp=ciTibeamonicpolynomialofdegreen overT andleta1,. . . ,an

T besuchthat p =ni=1min{T,ai}.Leta∈ R. Then#{i|a= ai}= vp(a). 

Therestoftheproof ofTheorem4.1 isnovel.Part(1) follows immediatelyfrom the

followingproposition,coupledwithLemma4.2.

Proposition4.4. Letp beamonicpolynomialofdegree n overT andleta1,. . . ,an ∈ T.

Thenp∈(T + ai) if andonlyif p =min{T,ai} astropical functions.

Proof. Letp=ciTi andassumethata1 · · ·  an.Wedefine

(18)

which can be thought of as the i-th elementary symmetric polynomial evaluated at (a1,. . . ,an) (withrespectto thetropicaladditionfromR,notthehyperadditionofT ).

Thus n  i=1 min{b, ai} = min i=0,...,n{si+ ib}.

Therelationp∈(T + ai) meansthatcn−i si foralli= 1,. . . ,n,withequalityifthe

minimumoccurs onlyonceamong thetermsae1· · · aei with1 e1<· · · < ei n.This

is thecaseifandonlyifai< ai+1.

Webeginwiththeproofthatp∈(T + ai) impliesp =



min{T,ai}.Forb∈ T,we

have

p(b) = min

i=0,...,n{ci+ ib}  mini=0,...,n{si+ ib} = n



i=1

min{b, ai}.

In order to verify the reverse inequality, we choose some a0  min{b,a1} and define

an+1 = ∞. Then ak  b < ak+1 for some k ∈ {0,. . . ,n}. Since ak < ak+1, we have

cn−k= sk,asnotedbefore.Therefore

p(b) = min i=0,...,n{ci+ ib}  cn−k+ (n− k)b = sk+ (n− k)b = n  i=1 min{b, ai}.

This concludestheproofthatp =min{T,ai}.

Wecontinuewiththereverseimplicationandassumethatp =min{T,ai}.Weneed

to showfork = 1,. . . ,n thatcn−k sk,withequality ifak < ak+1.Chooseb∈ T such

thatak b ak+1,where wesetan+1=∞ asbefore.Then

min i=0,...,n{ci+ ib} = p(b) = n  i=1 min{b, ai} = a1+· · ·+ak+ b + · · · + b  n−k times = sk+ (n−k)b.

It follows, inparticular, that cn−k  sk. If ak < ak+1, then p(b) = sk+ (n− k)b for

infinitelymanyb.Thisisonlypossibleifcn−k= sk. 

Weareleftwithprovingthefirstequalityinpart(2) ofTheorem4.1.Asafirststep,

we willprovethefollowingfact.(Tomakesense ofthecasen= 1,wedefine theempty

product ofpolynomialsoverT as{0}.)

Lemma 4.5. Let p be a polynomial over T and let a1,. . . ,an ∈ T be such that p

n

i=1(T + ai). Ifp∈ (T + an)q for apolynomialq over T ,then q∈

n−1

i=1(T + ai).

Proof. Notethatthehypothesesofthepropositionimplythatp ismonicofdegreen 1

and that q is monic ofdegree n− 1. Weprove theresult byinduction on n.If n = 1,

(19)

Let n > 1. By part (1) of Theorem 4.1, q ni=1−1(T + ai) for some sequence

a1,. . . ,an−1∈ T.Thismeansthat

di



1e1<···<en−i−1<n

(ae1+· · · + aen−i−1)

foralli= 0,. . . ,n− 2.Thusp∈ (T + an)q impliesthat

ci ∈ di−1dian



1e1<···<en−i<n

(ae1· · · aen−i)



1e1<···<en−i−1<n

(ae1· · · aen−i−1an)

=



1e1<···<en−in

(ae1· · · aen−i)

fori= 1,. . . ,n−1,wherewesetan= an.Alsoc0= d0an=ai,andthusp∈

(T +ai). Bytheuniquenessofa1,. . . ,ansuchthatp∈(T +ai) (bypart(1) ofTheorem4.1),we

concludethatthere isapermutationσ∈ Sn−1 suchthatai= aσ(i)for i= 1,. . . ,n− 1.

Thusq∈n−1i=1(T + ai),asclaimed. 

In order to complete the proof of Theorem 4.1, consider a monic polynomial p =



ciTi ofdegreen overT withp∈(T + ai) andleta∈ T.Then∞∈ p(a) ifandonly

ifthe minimum appears twiceamong theterms ci+ i· a for i= 0,. . . ,n. This means

thatthefunctionp : R→ R hasachangeof slopeat a,whichisthecaseifand onlyif

a∈ {a1,. . . ,an}.

We prove that multa(p) = #{i|a = ai} by induction on the latter quantity. If

#{i|a = ai} = 0, then a ∈ {a/ 1,. . . ,an} and ∈ p(a)./ Thus multa(p) = 0, as

de-sired.

If #{i|a = ai} > 0, then a ∈ {a1,. . . ,an} and ∈ p(a). After relabeling the

indices,wecanassumethata= an.Foreverypolynomialq overT with p∈ (T + an)q,

Proposition4.5showsthatq∈n−1i=1(T + ai).Thustheinductivehypothesisappliesto

q andyields multa(p)  multa(q) + 1 = #  i∈ {1, . . . , n − 1}a = ai  + 1 = #i∈ {1, . . . , n}a = ai  .

Bydefinition, multa(p) = 1+ max{multa(q)|p ∈ (T + a)q}. By LemmaA, there is a

polynomialq0 suchthatp∈ (T + a)q0. Sinceq wasarbitrary,thefirst inequalityinthe

displayedequation isanequality.Thisconcludestheproofof Theorem4.1. 

Appendix A. Polynomialalgebrasoverhyperfields

Upto this point, we have consideredpolynomials over ahyperfield F asformal

(20)

tomakesenseofsuchexpressionsaselementsofa“polynomialalgebra”overF ,andhow

thedefinitionsof rootsandtheirmultiplicitiestakeamoreconventionalforminsucha

formulation.

Infact,wewillconsider twocandidatesforthepolynomialalgebraoverahyperfield:

as a“additive-multiplicative hyperring” withmulti-valued multiplicationand addition,

or as anordered blueprint. Weargue thatthesecond ofthese alternatives is themore

naturalandlesspathologicalone.

A.1. Polynomial hyperrings

LetF beahyperfield.ThesetPoly(F )={ciTi|ci∈ F } ofallpolynomialsoverF

can be naturallyendowed with two hyperoperations  and



, whichare defined for

polynomials p=ciTi andq =  diTi as pq =  eiTiei∈ cidi  , p



q =  eiTiei∈



k+l=i ckdl  .

TheseoperationsturnPoly(F ) intoanadditive-multiplicativehyperringwhichhasbeen

consideredin[7],[16],andotherpublications.

Let a ∈ F , and let p= ciTi and q = diTi be polynomials over F . Then p∈

(T − a)



q ifand onlyifn= deg p= deg q + 1 and

c0=−ad0, ci∈ (−adi)di−1for i = 1, . . . , n− 1, and cn = dn−1.

This means thatthe relationp∈ (T − a)q, as introduced insection 1,is equivalent to

therelationp∈ (T − a)



q stemmingfromthehypermultiplication ofpolynomialsover

F .

Similar to the case of the hypersum of a hyperfield, we define n-fold products of

polynomials overF bytherecursiveformula

n



i=1 pi = q∈



n−1 i=1pi q



pn.

In the case of the tropical hyperfield T , the relation p∈ (T + ai) from section 4

is equivalenttop∈



ni=1(T + ai).Indeed, bymultiplyingoutalllinearterms,wefind

thatp∈



ni=1(T + ai) isequivalent top=



ciTi being monicofdegreen suchthat

cn−i



1e1<···<ein

ae1· · · aei

(21)

In spite of these appealing interpretations of the relations p ∈ (T + a)q and p

(T + ai), we view the (additive-multiplicative) polynomial hyperring Poly(F ) as an

objectoflimitedutilityduetothefollowing twodeficiencies.

A.2. Deficiency#1:polynomial hyperrings arenot associative

Thehypermultiplication ofapolynomialhyperringfails tobe associativeingeneral.

Thisis,forinstance,thecaseforthepolynomialalgebraPoly(S) overthesignhyperfield,

asthefollowingexample(dueto ZiqiLiu,cf. [18])shows:

While  (T− 1)



(T− 1)



(T + 1) = T2− T + 1



(T + 1) = T3+ aT2+ bT + 1a, b∈ S, wehave (T− 1)



(T− 1)



(T + 1) = (T − 1)



T2+ aT− 1a∈ S = T3+ aT2+ bT + 1a =−1 or b = −1.

This means, in particular, that n-fold products



i=1n pi of linear polynomials pi

Poly(S) dependontheorder ofthepi.

RemarkA.1.Notethatthisexamplealsoshowsthatwecannotdefinethemultiplicities

ofrootsinanaïvewayintermsoffactorizationsintolinearfactors:p= T3+ T2+ T + 1

isanelementof(T− 1)



(T− 1)



(T + 1),butp(1) doesnotcontain0.

Remark A.2.Liu also shows in [18] that hypermultiplication in Poly(T ) is

non-associative. Note, however, that Theorem 4.1 implies that the hyperproduct of linear

polynomials overT is associative, andthus



ni=1(T + ai) isindependent oftheorder

ofthefactors.

Remark A.3.We could overcome Deficiency #1 by extending the hyperproduct of

polynomials to certain sets of polynomials inthe following way. For a finite sequence

C0,. . . ,Cn ⊂ F ofsubsetsofF ,wedenotebyCiTithesetofpolynomialsp=ciTi

withcoefficientsci ∈ Ci. Wedefine

(CiTi)(DiTi) =  



k+l=iCkDl



Ti,

which recovers the hyperproduct (ciTi)



(

 diTi) = (  CiTi)(  DiTi) in the

caseof singletons Ci ={ci} and Di ={di}. Withthese conventions,  is associative,

(22)

n



i=1 pi =   diTi di∈



j1+···+jn=i n k=1 ck,jk   , forpi=ci,jTj.

We will notpursuethis line ofthought any further;note,however, that  appears

implicitlyinourproposedsolutionusingorderedblueprints.Namely,q∈



ni=1piifand

onlyifqni=1pi intheassociated orderedblueprint;cf.sectionA.8.

A.3. Deficiency#2:polynomial hyperrings arenotfree

Polynomialhyperringsfailtosatisfytheuniversalpropertyofafreealgebra.Infact,it

appearstobethecasethatneitherthecategoryofhyperringsnorasuitablecategoryof

(non-associative)additive-multiplicativehyperringspossessfreealgebrasingeneral.Here

we assumethatamorphism ofadditive-multiplicativehyperringsisamap f : R1→ R2

thatpreserves0 and1 andsatisfiesf (ab)⊂ f(a)f (b) andf (a



b)⊂ f(a)



f (b).

For instance, we can extend the identity map K → K of the Krasner hyperfield

to different morphisms K[T ] → K that map T to 1. One example is the morphism

f1: K[T ]→ K thatmaps everynonzeropolynomialp tof (p)= 1. Anotherexampleis

the morphism f0 : K[T ] → K for which f0(p) = 1 if and only ifp is a monomial, i.e.

p= Tn forsomen 0.

A.4. Towards freealgebras

One way to incorporatefree (and associative)algebras over hyperfieldsmight be to

develop a theory of “partial hyperrings”, as considered in [2], which allows for such

objects. Inthisappendix,however,wewill usethemoregeneraland alreadydeveloped

theoryoforderedblueprintstoproducefreealgebraswhichsatisfythedesireduniversal

property. Weremark thatonecouldmostlikelyalso developasimilar theorybased on

Rowen’snotionofsystems (cf.[23]),whichissimilartothatofanorderedblueprint.

Inlayman’sterms,thepassagefrom hyperfieldsto orderedblueprintsconsists

essen-tiallyinanexchangeofsymbols:therelationsc∈ ab inahyperfieldF getreplacedby

therelationsc a+ b intheassociatedordered blueprint.Underthehood,thesymbol

 refers toapartialorderthatisdefinedonthegroupsemiringB+= N[F×].

We now outlinethe definitionofordered blueprintsand indicatehow theyallow for

freealgebras overhyperfields;formoredetails,wereferthereaderto[3] and [19].

A.5. Ordered blueprints

An ordered semiring is a commutative (and associative) semiring R with 0 and 1

together with a partial order  that is additive and multiplicative, i.e. a  b implies

a+ c  b+ c and ac  bc for all a,b,c ∈ R. Given a set S = {ai  bi} of relations

on R,we saythat S generates thepartial order on R if is the smallestadditiveand

(23)

Anorderedblueprint isanorderedsemiringB+togetherwithamultiplicativesubset

B• of B+ thatcontains0 and 1 and thatgenerates B+ as asemiring. Wewrite B for

an ordered blueprint and refer to its ambient semiring by B+ and to its underlying

monoid by B•. A morphism f : B1 → B2 of ordered blueprints is an order-preserving homomorphismf : B+1 → B2+ ofsemiringssuchthatf (B1)⊂ B2.

Example A.4. The tropical semifield R can be considered as the ordered blueprint B

withB•= B+= R whosepartialordersatisfies a b ifandonlyifa+ b= b.

For the purpose of this appendix, we invite the reader to think of R as the

max-times-algebra R0, incontrast to themin-plus-algebra R∪ {∞} usedinthemain part

of thispaper. The negativelogarithm log : R0 → R∪ {∞} defines anisomorphism

ofsemiringsbetweenthesetwomodelsforR.Notethat agreeswiththenaturalorder

onR0 andwith thereversed natural orderonR∪ {∞}.

A.6. Hyperfieldsas orderedblueprints

TheincarnationofahyperfieldF asanorderedblueprintB isasfollows.Itsambient

semiring is thegroup semiringB+ = N[F×], its underlying(multiplicative) monoid is

B•= F ,anditspartialorderisgeneratedbyallrelationsoftheformc a+ b whenever

c ∈ ab in F . We illustrate this in more detailfor the main examples of hyperfields

whichappearinthispaper.

A.6.1. Fields

Given a field K, the associated hyperaddition is defined as ab = {a+ b}. This

yieldstheordered blueprintB withambientsemiringB+= N[K×],underlyingmonoid

B•= K,andpartialorder  thatisgeneratedby

c a + b whenever c = a + b in K.

A.6.2. Thetropical hyperfield

As with the tropical semifield R, we adoptthe multiplicative notation from

Exam-pleA.4,i.e.,weidentifytheelementsofthetropicalhyperfieldwithR0and,byabuseof

notation,use theletterT forthe associatedordered blueprint,which canbedescribed

explicitly as follows. The ambientsemiring of T is the group semiring T+ = N[R

>0]

generated bythe multiplicativegroupof positive real numbers,theunderlying monoid

isT= R0,andthepartialorderis generatedbytherelations

c a + b whenever c = max{a, b} or c a = b in R0.

Note that the semiring T+ is not idempotent,in contrast to the tropical semifield R.

Rather, it isa subsemiringof thegroup ringZ[R>0]. Theconnection to R is given by

(24)

linearly toan order-preservingsurjectionf : T+ = N[R>0]→ R0 = R

+

ofsemirings,

i.e., f isamorphism oforderedblueprints.

A.6.3. The sign hyperfield

As anordered blueprint,thesignhyperfield S consistsoftheambientsemiringS+=

N[{1,−1}],theunderlyingmonoid S ={0,1,−1},and thepartial order generated by therelations

1 1 + 1, 1 1 − 1, and 0 1 − 1.

Note that0 and1− 1 aredistinct elementsinS+.

A.7. Free algebras

LetB beanorderedblueprintwithambientsemiringB+,underlyingmonoidB•,and

partial order.Thefreealgebra B[T ] over B consistsof theambientsemiring

B[T ]+ =  n  i=0 riTiri∈ B+  ,

with respect to theusual additionand multiplication rulesfor polynomials,the

under-lying monoid

B[T ]• = { aTi| a ∈ B•}

of monomials inB+[T ] with coefficients inB, andthe partial order generated by the

relations

rTn  sTn whenever r  s

forr,s∈ B+.Theuniversalproperty forB[T ] isas follows,cf.[19,Lemma5.5.2].

Lemma A.5.Foreverymorphismof orderedblueprintsf : B+ → C+ andeveryelement

a ∈ C, there is a unique morphism of ordered blueprints g : B[T ] → C such that

g(r)= f (r) forr∈ B+ andg(T )= a.

Example A.6.A typicalelement of thefreealgebraT [T ] over thetropicalhyperfieldis

of the form riTi where ri ∈ N[T×] is aformal sum ri =



ak of tropical numbers

ak ∈ T×.Forexample,wehave

T2+ T + 1  T2+ T + T + 1 = (T + 1)2

(25)

AtypicalelementofS[T ] isoftheformriTiwhereri∈ N[{1,−1}] isaformalsum

oftheformri= 1+· · · + 1− 1− · · · − 1. Forexample,wehave

T2− 1  T2+ T− T − 1 = (T + 1)(T − 1) since0 T − T ,butequalitydoesnothold inS[T ]+.

A.8. Polynomialhyperrings, revisited

LetF beahyperfieldandB theassociatedorderedblueprint.Theneverypolynomial



ciTioverF istautologicallyanelementofthesemiringB[T ]+= N[F×].Thisidentifies

Poly(F ) withasubsetofB[T ]+,whichcanbe recoveredfrom B[T ] asfollows.

LetB be anordered blueprint. A polynomial over B is an element of B[T ]+ of the

form p = ciTi with ci ∈ B•. We denote by Poly(B) the subset of polynomials in

B[T ]+.

IfB istheorderedblueprintassociatedwithahyperfieldF ,thenPoly(F )= Poly(B)

assubsetsofB[T ]+.Moreover,weobtainthefollowingreinterpretationofthe

hyperad-ditionandhypermultiplication ofpolynomialsoverF :

p1p2 =  q∈ Poly(B)q p1+ p2  , p1



p2 =  q∈ Poly(B)q p1· p2  ,

wherep1+ p2andp1· p2 are,respectively,thesumandproductofp1andp2aselements ofB[T ]+.Inother words, forp

1,p2,q∈ Poly(F )= Poly(B) we haveq∈ p1p2 ifand onlyifq p1+ p2 andq∈ p1



p2 ifandonlyifq p1· p2.

A.9. Rootsofpolynomials overordered blueprints

Toclosethecircleofideas,wereformulatethenotionsofrootsandtheirmultiplicities

in our newly developed formalism and then extend these notions to a more general

class of ordered blueprintsthan hyperfields.For this purpose,we introduce thenotion

of a pasture, which is an algebraic structure closely connected to the ‘foundation’ of

amatroid, cf. [3]. There are several equivalent definitionsof pastures. Inthis text, we

realizethemasaparticulartypeoforderedblueprints.

Webeginwith somepreliminarynotions.Wedenote by thegroupof

multiplica-tively invertible elements of B. An ordered blue field isanonzero ordered blueprint B

suchthatB = B×∪ {0}. Anordered blueprintB isreversible if itcontainsanelement

 with 2 = 1 such thateveryrelation a  b+ r where a,b ∈ B and r ∈ B+ implies

b a+ r. Asshownin[19, Lemma5.6.34], is uniquelydeterminedbythisproperty

and for everyelement a∈ B• there is aunique element b ∈ B• (namely b = a) such

(26)

Definition A.7.A pasture is a reversible ordered blue field B whose partial order is

generated by relationsofthe form c a+ b witha,b,c ∈ B andsuch thatthenatural

map N[B×]→ B+ isbijective.

NotethattheorderedblueprintB associatedtoahyperfieldF isapasture.Clearly,B

isanorderedbluefield.ThereversibilityAxiom(HG3)forF impliesthatB isreversible.

The last property follows from the fact that the partial order  is generated by the

relationsc a+ b for whichc∈ a+ b inF .

Weextendthenotionsofrootsandtheirmultiplicitiestopolynomialsfromhyperfields

to pastures.

DefinitionA.8.LetB beapasture,leta∈ B•,andletp=ciTi beapolynomialover

B. Letp(a) denotetheelementciai ofB+.Then a isaroot ofp if 0 p(a).

Ifa isnotarootofp,wesaythatthemultiplicitymulta(p) ofa is0.Ifa isarootof

p,wedefine multa(p) = 1 + max  multa(q)p (T + a)q  .

LemmaAgeneralizestopasturesB,withthesameproof.Namely,a∈ B•istheroot

ofapolynomialp∈ Poly(B) ifandonlyifthereisaq∈ Poly(B) suchthatp (T +a)q.

PropositionBalsogeneralizestopastures,withthesameproof.LetB betheordered

blueprintassociated with afieldK (cf. sectionA.6.1)and f : B→ C a morphismto a

pasture C.Let p=ciTi ∈ Poly(B) and denote by p = f (ci)Ti the image of p in

Poly(C). Thenforallb∈ C• wehave

multb(p)   a∈B•with f (a)=b multa(p). References

[1]FrançoisLouisBaccelli,GuyCohen,GeertJanOlsder,Jean-PierreQuadrat,Synchronizationand Linearity,WileySeriesinProbabilityandMathematicalStatistics:ProbabilityandMathematical Statistics,JohnWiley&Sons,Ltd.,Chichester,1992.

[2]Matthew Baker, Nathan Bowler, Matroids over partialhyperstructures, Adv.Math. 343 (2019) 821–863.

[3]MatthewBaker,OliverLorscheid,Themodulispaceofmatroids,Preprint,arXiv:1809.03542,2018. [4] Bill Casselmann, Newton polygons. Notes, www.math.ubc.ca/~cass/research/pdf/Newton.pdf,

2018,versionfromSeptember1,2018.

[5]AlainConnes,CaterinaConsani,Thehyperringofadèleclasses,J.NumberTheory131 (2)(2011) 159–194.

[6]R.A.Cuninghame-Green,P.F.J.Meijer,Analgebraforpiecewise-linearminimaxproblems,Discrete Appl.Math.2 (4)(1980)267–294.

[7]B.Davvaz,A.Koushky,Onhyperringofpolynomials,Ital.J.PureAppl.Math.15(2004)205–214. [8]RenéDescartes,Lagéométrie.AppendixtoDiscoursdelaméthode,1637.

[9]FriedrichCarlGauß,BeweiseinesalgebraischenLehrsatzes,J.ReineAngew.Math.3(1828)1–4. [10]DavidJ.Grabiner,Descartes’ruleofsigns:anotherconstruction,Am.Math.Mon.106 (9)(1999)

(27)

[11]JeanPauldeGuadeMalves,Usagesdel’analysedeDescartes,1740.

[12]Trevor Gunn,A Newton polygonrule for formally-real valuedfields andmultiplicities over the signedtropicalhyperfield,Preprint,arXiv:1911.12274,2019.

[13]ZurIzhakian,Tropicalarithmeticandmatrixalgebra,Commun.Algebra37 (4)(2009)1445–1468. [14]ZurIzhakian,LouisRowen,Supertropicalalgebra,Adv.Math.225 (4)(2010)2222–2286.

[15]ZurIzhakian, LouisRowen,Supertropicalpolynomialsandresultants,J.Algebra324 (8)(2010) 1860–1886.

[16]Sanja Jančic-Rašović, About thehyperring of polynomials, Ital. J. Pure Appl.Math.21 (2007) 223–234.

[17]Marc Krasner, Approximation des corps valués complets de caractéristique p = 0 par ceux de caractéristique0,in:Colloqued’algèbresupérieure,tenuàBruxellesdu19au22décembre1956,in: CentreBelge deRecherchesMathématiques, ÉtablissementsCeuterick/LibrairieGauthier-Villars, Louvain/Paris,1957,pp. 129–206.

[18]ZiqiLiu,Afewresultsonassociativityofhypermultiplicationsinpolynomialhyperstructuresover hyperfields,Preprint,arXiv:1911.09263,2019.

[19] OliverLorscheid,Blueprintsandtropicalschemetheory,Lecturenotes,http://oliver.impa.br/2018 -Blueprints/versions/lecturenotes180521.pdf,2018,versionfromMay21,2018.

[20]Ch.G.Massouros,Methodsofconstructinghyperfields,Int.J.Math.Math.Sci.8 (4)(1985)725–728. [21]Jürgen Neukirch, Algebraic Number Theory, Grundlehren der Mathematischen Wissenschaften,

vol. 322,Springer-Verlag,Berlin,1999.

[22]MaxPlus,Linearsystemsin(max,+)-algebra,in:Proceedingsofthe29thConferenceonDecision andControl(Honolulu),1990.

[23]Louis Rowen, An informal overview of triples and systems,in: Rings, Modules and Codes, in: Contemp.Math.,vol. 727,Amer.Math.Soc.,Providence,RI,2019,pp. 317–335.

[24]Oleg Ya. Viro,Onbasicconceptsoftropical geometry,Proc.SteklovInst.Math.273 (1)(2011) 252–282.

Referenties

GERELATEERDE DOCUMENTEN

The more recent turn that access to justice is conceived of as access to a much broader range of institutions, including non- state ones, points at two issues relevant to

It is conceivable, however, that this is not a compound either (cf. for a discussion of this word). This situation is comparable to that of Sanskrit where the initial s- of the

even boxes. Currently there’s no L3 command for this. This module provides two new L3 functions for rules. The “-D” in the module name indicates, that currently the im-

But the problem might also arise in those situations where the Union cannot point to any specific legal duty incumbent upon the relevant Member State as a matter of directly

The first rule format The first rule format that we present deals with exam- ples of left distributivity with respect to operators whose semantics is given by rules of the form

In this section we provide a rule format guaranteeing that certain constants act as left or right zero elements for a set of binary operators1. To this end we employ a variation on

De Directie van Wageningen IMARES is niet aansprakelijk voor gevolgschade, alsmede voor schade welke voortvloeit uit toepassingen van de resultaten van werkzaamheden of

Aan de neiging van de ziel naar iets volmaakts moest worden voldaan: ‘Gedenk dan dat godsdienst niet bestaat in woord, maar in daad, dat er slechts twee geboden zijn: God en de